Chapter 11

Surfaces

The theory of surfaces is one of the most beautiful parts of algebraic geometry. It is
more complex than the theory of curves, but is more complete than the theory of higher
dimensional varieties and serves as a model for it. In this chapter, we prove the Riemann-
Roch theorem for a surface, and deduce the Hodge index theorem. From this, the
Riemann hypothesis for curves over finite fields follows easily — this remains the most
illuminating proof.

We fix an algebraically closed field k. Algebraic varieties over k are assumed to
be irreducible. Points on varieties are closed. A surface is an algebraically variety of
dimension 2.

a. Divisors and their intersections

Let V be a smooth surface over k. Recall that smoothness means that the local ring Op at
a point P of V is regular. In particular, it is factorial, and so we have a good theory of Weil
divisors (cf. Chapter 12). If x, y generate the maximal ideal in Op, the the completion of
Op is the power series ring k[[x, y]].

Definitions

If V is affine, say, V' = Spec A, then the prime ideals p of A are of the following types
according as their height is 0, 1, or 2:

p=0 < trdeg, A/p=2 = Vp)=V
p minimal nonzero < trdeg, A/p =1 < V(p)=acurveonV
p maximal < trdeg A/p=0(s0A/p=k) < V(p)=apoint.

By a curve on V, we mean an irreducible closed subvariety of V' of dimension one (hence
also codimension one). Equivalently, it is an irreducible closed subset of |V'| of dimension
1 equipped with its canonical structure as a reduced scheme. By a divisor on V, we
mean a finite formal sum

D= Z nZ;, n,€Z, Z;acurveonV.
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We say that D is positive (or effective), denoted D > 0, if all n; > 0.

Let Zbeacurveon V. If U is an open affine of V' that intersects Z, then Z corresponds
to a prime ideal p in Oy (U) of height 1, and so O, déf Oy(U)y is a normal noetherian
local ring of dimension 1. It is therefore a discrete valuation ring (Commutative Algebra,
20.2), and we let

ord, : k(V)* » Z

denote the corresponding normalized valuation on k(V'). The divisor of f is
(f) =D ordy(f)- Z

(sum over the finitely many curves Z on V such that ord,(f) # 0). Write (f) as the
difference of two positive divisors

()= = (N>

— (f)o is the divisor of zeros of f and (f),, the divisor of poles. A divisor of the form
(f) is said to be principal. Two divisors D; and D, are said to be linearly equivalent,
denoted D; ~ D,, if they differ by a principal divisor,

Dy - D, = ().

Intersections

We first consider the problem of defining the intersection of two curves Z; and Z, on a
smooth surface V (note that Z; and Z, may be singular).

PROPOSITION 11.1. If Z; and Z, are distinct curves on V, then Z; N Z, is a finite set of
points.

PROOF. It suffices to prove this when V is affine, say V' = Spec(A). Then Z; and Z,
correspond to prime ideals p; and p, in A, and

Z1NZy =V(p1, b
Let ;
(P1,p2) = ﬂ qi
i=1
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be a minimal primary decomposition of (p;, p,), and let plf = rad(q;) (Commutative
Algebra, 19.7 et seq.). If p; were a minimal nonzero prime ideal in A, then it would have
to equal both p; and p, because it contains them, but p; # p,, and so this is impossible.
Therefore plf is maximal. Now

n n
Z1NZy = V(ﬂizl q;) = L_Jl.:1 vV(p),
which is a finite set of points. O

Let P be a point on V. Let Op be the local ring at P and let mp be its maximal ideal.
A curve Z on V defines an ideal p in Op (for example, if V = Spec A and Z = V(p’), then
p = p'Op). Because Op is factorial, and p has height 1, it is principal, say p = (f) (1.25).
Now
Z = (f) + components not passing through P.

We call f = 0 a local equation for Z near P. Note that f is a unit in Op if and only if
P&z
Let Z, and Z, be curves on V with local equations f = 0 and g = 0 near P. Then

(P1, P2)0p = (f,8)Op.

IfP ¢ Z, N Z,, then (p1, p2) = Op. On the other hand, if P € Z; N Z,, then (f,g)Op
is primary for mp, and so rad(f, g) = mp. Because Op is noetherian, this implies that

(f, g) contains some power m;+1 of mp. Therefore

dlmk(OP/(f’ g)) < dimk(Op/m;;l) = dlmk k[[x’y]]/(x’y)r+1 < 0.

DEFINITION 11.2. Let Z; and Z, be distinct curves on a smooth surface V, and let P be
a point on V. We set

(Zy - Z,)p = dimy Op/(f, 8),

where f and g are local equations for Z; and Z, near P.

ASIDE 11.3. Let X, X, be local parameters at P.! Then every f € Op can be written uniquely in
the form

f = (polynomial of degree < rin X;, X, with coefficients in k) + f,, f, € m'*!

(because gr(A) ~ k[X;,X,]) and so the calculation of (Z; - Z,)p comes down to a calculation in
a polynomial ring.

Note that
(Zl 'Zz)p =0 — P ng ﬂZ2

The support of a divisor D = )’ n;Z; is the union of the set of curves Z; with n; # 0.
We say that D; N D, is defined (or that D, and D, are in general position) if supp(D;)
and supp(D,) have no common curves. We extend the above definition to all divisors
D, = ), m;Z; and D, = ), n;Z; such that D; N D, is defined by setting

(Dy - Dy)p = Z mini(Z; - Z;)p.

!Let P be a nonsingular point on a variety V. By a system of local parameters at P we mean a family
{f1, -, fa} of germs of regular functions at P generating the maximal ideal in O,. Equivalent condition:
(df1)p, ..., (df4)p is a basis for the dual space to T(V). Such a system defines an étale map U — A? on
an open neighbourhood of P. We also say that f7, ..., f, are local uniformizing parameters, or just local
parameters, at P. See Section 50.
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Py

Zy Ly =P +P,+P; Zy - Zy =2P

Let D = ) n;Z; be a positive divisor. Let f; = 0 be a local equation for Z; near P, and
let f =T, f". Then

D = (f) + components not passing through P,
and we call f = 0 a local equation for D near P.

PROPOSITION 11.4. Let D, D, > 0 be divisors on V such that D; N D, is defined. Then

(D; - Dy)p = dim(Op/(f,8)),
where f and g are local equations for D; and D, near P.

PROOF. From the above description of a local equation for D, (and induction), one sees
that it suffices to prove that

dimy (Op/(f1f2,8)) = dimy(Op/(f1,8)) + dim(O/(f>.8)) )

for all nonzero f4, f,, g € Op with f; f, and g relatively prime. Consider the quotient
map

~ — def
fef:10p—>0=0p/(9).
This gives an isomorphism

Op/(f,8) = O/(f),

and so equation (1) can be rewritten as

dimy(0/(f1f2)) = dim(O0/(f1)) + dimy(O/(f2))-

Consider the map

ar fra: 0 - f10 (e, 0p/(g) = (f1,8)/(8)
If @ maps to zero, then

f1o = Bg for some § € Op,

but Op is factorial and f; and g are relatively prime, and so this implies that g|«, i.e.,
& = 0. Therefore the map is an isomorphism. It maps (f,) isomorphically onto (f; f5),
and so

dimk(@/(fz)) = dimk((fl)/(flfz))-

Now

dimi(0/(f1f2) = dimy(O/(f)+dimi((f1)/(f1£2)) = dimi(O/(f1))+dimi(O/(f2))
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as required,

N
(f1) (f2)
NS

(Fif ]
EXAMPLE 11.5. Consider the curves Y? = X? and Y = X? in A? at the origin P = (0, 0).

Y = X?

Y2 =Xx3

Here f = Y2 — X3 and g = Y — X2. What is dim(Op/(f, g))? The ideal (f, g) contains
Y2 - X3,Y — X2, and X3 — X*. In the quotient ring Op/(f,g), y = x?, and so we can
forget powers of y; we have x3(x —1) = 0, and so x> = 0 because x — 1 is a unit in Op.
Therefore, 1, x, x? is a basis for Op/(f,g), and so (Z; - Z,)p = 3.

In the alternative (old Italian) approach, one moves one curve slightly, say, to Y + ¢ =
X2. In the quotient ring, we then have the relation

(x2—¢)P —-x3=0,ie.,
x*—x3—2x%+¢e2 =0,

which has one root near 1 and 3 near zero.

Brief review of cohomology (see Chapter 13)

Let
0O-M >M->M"-0 (2)

be an exact sequence of coherent sheaves of Oy-modules on an algebraic variety V.
When we tensor this with a locally free sheaf V' of finite rank r, then

0O-MON->MIN - M'QN =0
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is exact because locally it is just a direct sum of r copies of the original sequence. In
general, when JV is only coherent, only the sequence

MOIN->MIN >M' QN -0
is exact. However, this sequence extends to an exact sequence
= Tor!M,N) = Tor'M', N) > M QN - MOIN - M'QN =0

with well-defined sheaves 7 or'.

For a coherent sheaf M of Oy,-modules, we define H(V, M) to be the Cech cohomol-
ogy groups of M relative to a finite covering V = Ul. U, of V by open affines U;. Thus,
HY(V,M) is the ith cohomology group of a complex

[I,mwy -1, mWinup 1], MUnU; ALY - -

Up to a canonical isomorphism, the groups are independent of the covering. As M is
a sheaf, H'(V, M) = M(U). An exact sequence (2) gives rise to an exact cohomology
sequence (of k-vector spaces)

0—- H'(V, M) - HV,M) - H'(V,M") - H(V,M") - H(V,M) - ---.

If V has dimension n, then H'(V,M) = 0 for i > n, and if V is complete, then the
k-vector spaces H'(V, M) are finite-dimensional.

Let V be a normal closed subvariety of dimension > 2 in some projective space, and
let £ be a locally free sheaf on V of finite rank. Then “Theorem B”:

HY(V,L(—n)) =0 for all sufficiently large n.

Serre FAC,? §76). This statement is related to the “Enriques-Severi lemma” proved
by Zariski (1952)° and used by him to prove the Riemann-Roch theorem in nonzero
characteristic.

Intersections and cohomology

Given a divisor D, we define the sheaf O(D) by
r'u,oM)) ={f € k(Vy*|(f)+D = 0}u{o}.
When D is positive, we define the sheaf Op by the exact sequence
0—-> O(-D)—> O — Oy —0.

Then supp(Op) = supp(D). For example, if D is a curve Z, then O is the structure sheaf
on Z extended by zero to V, i.e., O, = j.(structure sheaf on Z), where j is the inclusion
Z <V,

PROPOSITION 11.6. Let D, and D, be divisors on V:

2Serre, Jean-Pierre. Faisceaux algébriques cohérents. Ann. of Math. (2) 61, (1955), 197-278. Translation
available.

3Zariski, Oscar, Complete linear systems on normal varieties and a generalization of a lemma of
Enriques-Severi. Ann. of Math. (2) 55, (1952). 552-592.
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(a) supp(Op, ® Op,) = supp(D;) U supp(D,);
(b) dimk(HO(OD1 ® ODZ)) = (D: - Dy);

(c) Tory, (Op,,Op,) =0.
PROOF. These are all local statements. For (a) and (b), it suffices to show that
Op/(f,8) = 0p/(f) ® Op/(8),
and for (¢) it suffices to show that
TOV%gP(OP/(f)’ Op/(g)) =0.

On tensoring
0—-(—->0—-0/(g—0

with (f), we obtain an isomorphism

(H®0/@Q) =~ (/[

On tensoring
0=>(f)=>0-0p/(f) =0

with O/(g), we obtain an exact sequence

0 — Tor,(0/(f),0/®) — (H®0V/(®) — 0/(g) — O/())®O/(g) — 0

N/(f8)

— atleft I ortl_,)(O, 0/(g)) = 0 because O is (locally) free. But the map (f)/(fg) = O/(g)
is injective because Op is factorial, and so

Tory(0/(),0/(g) =0

and

Op/(f,8) = O0p/(f) ® Op/(8). -

For a divisor D, we let
x(D) = x(O(D)) = dimy H(V, O(D)) — dimy HY(V, O(D)) + dimy HX(V, O(D)).

PROPOSITION 11.7. Let V' be a smooth complete surface over k, and let D;,D, > 0 be
divisors on V such that D, N D, is defined. Then

(D - Dy) = x(0) = x(=Dy) = x(=D;) + x(=D; — D5).

PROOF. Tensoring
0— O(=D;) > O— Op, -0

with Op, gives an exact sequence

0 — O(-=Dy) ® Op, — Op, = Up, ® Up, = 0.
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Therefore,

(D, - D) = dim H(Op, ® Op,) (by 11.6)
= x(Op, ® Op,) (supp(Op, ® Op,) has dimension 0)
= x(Op,) — x(O(=D;) ® Op,) (see the above sequence)
= —x(=D;) + x(0) = x(=Dy) + x(=Dy — D5).

For the last equality, we used the exact sequences

0— O(=D;) > O— 0Op,—0
0 — O(=Dy) ® O(=D,) —» O(=D;) - O(=D;) ® Op, = 0

(the first is the definition of Op, and the second is obtained from it by tensoring with
O(=D,); note that O(—=D;) ® O(—D,) ~ O(—D; — D,)). O

COROLLARY 11.8. Let D; and D, be divisors on V (not necessarily positive). If D, is princi-
pal and D, N D, is defined, then (D; - D,) = 0.

PROOF. By linearity, we may suppose that D, > 0. Let D; = E; — E,, E; > 0. Then
(Dy-Dy) =(E,-Dy) —(E;-Dy) =0

because E, ~ E, implies O(E;) ~ O(E,).
(More directly, if D, is a smooth curve C on V and D = (f), then C - (f) is the divisor
of f|C on C, and
(C - D) =deg(C - D) =deg(f|C)=0.) -

DEFINITION 11.9. Let V be a smooth complete surface, and let D; and D, be divisors on
V such that D; n D, is defined. We set

D, D, = ) .(D; - D,)pP
(D1 -Dy) = Z(D1 “Dy)p.

ASIDE 11.10. Every smooth complete surface is projective (Zariski 1958*), and so we can use
“smooth projective” and “smooth complete” interchangeably. A singular surface need not be
projective.

LEMMA 11.11. Let C be a curve on a smooth surface V. For any divisor D > 0 such that
C N D is defined,

Oc(D-C) = O¢c ®p, O(D) (= restriction of O(D) to C).

PROOF. On tensoring
0> 0O0(-C)> O > 0Or—0

with O(D), we get an exact sequence

0— O(-C) ® O(D) - O(D) - Oc ® O(D) — 0.

4Zariski, Oscar. Introduction to the problem of minimal models in the theory of algebraic surfaces.
Publications of the Mathematical Society of Japan, no. 4 The Mathematical Society of Japan, Tokyo 1958.
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Let f = 0 (resp. g = 0) be a local equation for D (resp. C) near P. Then, near P, these
sequences become
0-(@—->0-0-0

and
N@~->)—0()~0.
Therefore
0®(f)~(NH/(f2).
But there is an Op-isomorphism
N/ — ()
(see the proof of (11.4)). O

DEFINITION 11.12. Curves Z; and Z, on V are said to intersect transversally at P if
(Z,-Zy)p = 1.

In other words, Z; and Z, intersect transversally at P if their local equations near P form
a system of local parameters at P.
We wish to define D, - D, for arbitrary D;, e.g., for D; = D,.

LEMMA 11.13 (MOVING LEMMA). Given divisors Dy, D,, there exists D} ~ Dy such that
D! N D, is defined.

PROOF. The surface V is normal (because smooth), and so each curve Z on V defines a
discrete valuation ord, of k(V). The weak approximation theorem for valuations’ says
that, for any finite set {Z1, ..., Z,,;} of distinct curves on V and integers n,, ..., n,,, there
exists an f € k(V) such that ordy (f) = n; for all i.

Write D; = D) ord;(D)Z, and choose f so that

ord,(f) = { ord,z(D,) all Z C supp(D,)
277 o all Z c supp(D,) but not in supp(D; ).

Let D! = D; — (f), and consider a curve Z € supp(D,). Then

{ Z c supp(D;) = ordy(D]) = ord,(D;) — ordz(f) =0
Z ¢ supp(D;) = ordz(D;) = ordy(f) =0,

and so D] N D, is defined. -

Now we can define
(D; - D,) = (D - D,)

with D' as in the lemma. This makes sense, because if D}’ ~ D; is such that D!’ n D, is
also defined, then
(D] - D,) = (D} - D,) because D; ~ Dy'.

In particular, (D - D) is defined — we denote it by (D?).

My notes Algebraic Number Theory, Theorem 7.20. Alternatively, let A = O, n---N O, , and let
p; = my N A. Then A is a Dedekind domain with p, ..., p,, as its nonzero prime ideals. For each i, choose
fi€ p:”' < p™*! and apply the Chinese remainder theorem to get f.

i
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SUMMARY 11.14. We have a symmetric bi-additive pairing
Dl’DZ = (Dl . Dz) : DIV(V) X DIV(V) - Z.
When V is complete, the Euler formula holds:

(D - Dy) = x(O) = x(=D;) — x(=D;) + x(=D; — D5).

(We proved this for positive divisors, but it extends by linearity.)

EXAMPLE 11.15. LetV = P! x P!, Z; = Px P!, Z, = P! x P, A = diagonal.

Pl ZI=P><|]3’1

P Z2=[FD1XP

P P!

Then
(Z,-2,) =1, (Zf) =0= (Z§)~

The diagonal A is the zero-set of X — X’ on V, which has poles, where X and X’ have
poles, namely, on P, X P! and P! x P_,. Therefore A ~ Z; + Z,, and so

(A'A)=(A'Zl)+(A'Z2)=1+1=2.
In general, if C is a curve of genus g, then on C x C,
(A-A)=2-2g

(see later 11.32).

EXAMPLE 11.16. Let V be the projective plane with a point P “blown up” to a line, i.e.,
we have a monoidal transformation

v 2 p2,

Then V is smooth, and 7 is an isomorphism outside 7~ Y(P), which is a curve C on V.
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We claim that (C - C) = —1.

L= 7 Y(Ly)

L) =71y

C=n"'(P)

The curve C parametrizes the directions through P (the lines through the origin in Tp(V")).
The line L; intersects C at the point representing the direction of L, and L; ncC =40.
Because L, ~ L, on P2, we have C + L; ~ L; for their inverse images on V. Therefore

Cc-O=C-Ly-LH)=0-1=-1

ASIDE 11.17. When C and D move in an algebraic family, the intersection number (C - D) is
preserved. Hence, if (C?) < 0, then C cannot move in a family of effective divisors (i.e., C is
“rigid” inside V); otherwise, if C moved to distinct curves C'and C”, then

c-o=c-c=o.

ASIDE 11.18. Let V be a smooth complete surface. A divisor D on V is numerically equivalent
to zero, D =, 0if (D - C) = 0 for all curves C. Such divisor classes form a subgroup N = Pic’ (V)
of Pic(V), and the quotient Pic(V)/N is the Néron-Severi group of V. It is a free abelian group
of finite rank p, called the Picard number of V. There is a filtration of Pic(V') with the quotients
at right:
Pic(V)
U Néron-Severi group
N
U finite group
Pic’(V)
U abelian variety
0

Over C,

p = dimg HY'(V, @) & HY(V,C) n HA(V, Q).

ASIDE 11.19. The first rigorous general definition of the intersection numbers of algebraic cycles
on smooth abstract varieties over arbitrary fields was given by Weil in his Foundations.® For a
“static” approach, see Serre’s Multiplicity notes.” For an introduction to modern intersection
theory, see Fulton 1984.3

®Weil, André, Foundations of Algebraic Geometry. American Mathematical Society Colloquium
Publications, vol. 29. American Mathematical Society, New York, 1946.

’Serre, Jean-Pierre, Algébre Locale Multiplicités, LNM 11, 1965.

8Fulton, W., Introduction to Intersection Theory in Algebraic Geometry, AMS, 1984.
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b. Differentials

Following Zariski (Harvard notes, 1957-58),° we give a down-to-earth definition of
differentials, which is especially suitable for computation. Later we shall show that, in the
case of interest to us, namely, smooth varieties, they agree with the Kdhler differentials.

Let V be a variety (possibly incomplete, singular) of dimension n over an algebraically
closed field k. We consider derivations of k(V)/k, i.e. maps D : k(V) — k(V') satisfying

D(x+y)=Dx+ Dy, D(xy)=xDy+yDx, Dc=0, x,yek(V), cek.
The derivations of k(V) /k become a k(V')-vector space of dimension n with the definition

(aD)(x) = a(Dx), a,x € k(V).

For example, if V = P, then k(V) = k(X,...,X,), and {%, aj( } is a basis for the
1 n

space of derivations.

THEOREM 11.20. Let {X1,...,X,} be a transcendence basis for k(V)/k. Then k(V)/k is
separable if and only if every derivation of k(X, ..., X,,)/ k extends uniquely to k(V).

PROOF. Let D be a derivation of k(X1,...,X,)/k, and lety € k(V). Then

f(y7X1’ ’Xl'l) =0

for some polynomial f, and

of B
ay? +Zax =0.

If of # 0, then this equation defines Dy uniquely. O

Recall that a transcendence basis {X1, ..., X,,} for k(V')/k is separating if k(V) is sep-
arable over k(Xi, ..., X,). Any transcendence basis {X;, ..., X,,} such that the derivations
d/0X; extend to k(V) is separating (and then the d/0X; form a basis for the space of
derivations). Such transcendence bases exists (Field Theory, 9.27).

The differential 1-forms of k(V') /k are the elements of the k(V')-dual of the space
of derivations. Hence, if X1, ..., X,, form a separating transcendence basis of F /k, then
dXi,...,dX, (where dX;(D) = D(X;)) form a basis for the differential 1-forms, and so
every differential 1-form has a unique expression Y, a;dX;, a; € k(V). If X/, ..., X}, is

second such basis, then
Z a;dX; = Z oc,—dX’
ij

We let Dy, denote the k(V')-space 1-forms. Then /\p Dy, is the space of p-forms.
Relative to a separating transcendence basis {X1, ..., X,,}, such a form can be written
uniquely as

w = Z ail"'ideil dXip’ a; i S k(V)

1

9Zariski, Oscar. An Introduction to the theory of algebraic surfaces (notes of a course at Harvard,
1957-58). Lecture Notes in Mathematics, No. 83 Springer, 1969.
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We are especially interested in the space of n-forms. This is a one-dimensional space
over k(V), with basis dX,dX, --- dX,, for any separating transcendence basis {X7, ..., X, }.
Note that if {X”, ..., X} } is a second such transcendence basis

3(Xy, s X))

dx, ---dX, =
! "X, X0

dx! -+ X,

LEMMA 11.21. Let P be a smooth point of V, and let X1, ..., X,, be a system of local param-
eters at P. Then

(a) Xy,...,X, is a separating transcendence basis for F [ k;

E} E}
b) —OpC Op, —m'*lcm.
()aXi P Py S

PROOF. We shall use that f € Op can be written

f = (polynomial in the X;with coefficients in k) + f,, fo, € m'*!

(algebraic Taylor’s formula).
(a) It suffices to show that a k-derivation D of k(V)/k is zero if it is zero on X1, ..., X,

(for then dX1, ..., dX,, is a basis for the space of 1-forms; hence a%’ s a% is a basis for
1 1

the k-derivations of k(V)/k, and so X1, ... X,, form a separating transcendence basis for

k(V)/k).

I claim that
D'Op C Op.

for some multiple D’ = gD of D with g € Op. To see this, note that

hDf — fDh

D(f/h) = ——

(3)

and so, if Op is a localization of k[ f1, ..., f,,,], then it suffices to take g to be the product
of the denominators of the D f;. Now

D/mr+1 C mr

because

D'(fy - fra) =D'(f)f 2 fran + o+ f1oo frD'(f i) 4)
Let f € Op. We are given that D’X; = 0 all i, and so
le - D,fo (S mr.
As this is true for all r, Krull’s intersection theorem (1.8) shows that D’ f = 0. Now

D = g~'D’ is zero on Op, and this implies that it is zero on k(V) by (3).
(b)LetD = %. Choose a g as in (a), so that (gD)Op C Op. Let f € Op; then

(gD)X;€(g) (allj) = (gD)f €(g)+m" (allr) = Df € Op.

Now (4) shows that %mr L cm”. O
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We now assume that V' is smooth.
A differential 1-form w is holomorphic at P if, when expressed in terms of a system
of local parameters X; at P,

w = Z OCidXi,
the a; € Op. This definition is independent of the choice of the X; because, for another
choice X ; of a system of local parameters, % and its inverse lie in Op, by the lemma.

Similarly, a differential n-form w = adX; - dX, is said to be holomorphic at P if
0(X 1, X))

a € Op. Again this is independent of the choice of the X; because the Jacobian 3 X
e

and its inverse lie in Op.
The sheaf in of holomorphic p-forms on V is defined by setting

I, Qﬁ) = {p-forms w | @ holomorphic at all points of U}
for all open U in V. For example

Q! = “cotangent sheaf”
Q" = “canonical sheaf”, is invertible

= Oy (K) where K is a canonical divisor.

PROPOSITION 11.22. The sheaf in is locally free of rank
n
rank(QP) = ;
@)= (3)

We need the following basic fact (5.52):

in particular, it is coherent.

11.23. Let f1, ..., f, be a system of local parameters at a smooth point P. Then there is an
open neighbourhood U of P such that f1, ..., f,, are represented by pairs (f1, U), ..., (f,, U)
and the map (f1, ..., f) : U — A" s étale.

In particular, f; — f1(Q),..., fn — f,(Q) is a system of local parameters at Q for
all points Q € U. It follows that the family df, ..., df, is a basis for Q‘l/lU, which is
therefore free of rank n. Similarly,

dfy, edfi, i< <,

form a basis for Qf; |U.
Now assume that V' is complete. We define

hP4 = dim, HI(V, QP).

Thus, hP° < dim;, H°(V, Q) is number of independent holomorphic p-forms on V.
The integer
h0 = dim;, H(V, Q")

is called the geometric genus of V and is denoted p,.
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In characteristic 0, the theory of harmonic integrals shows that

hPd = h9-P
P4 = pr—p.n—q

and h'? is the irregularity of V.
In characteristic # 0, then Mumford!?, showed that there exists a surface with

hl,O 7& hO,l‘

(See also Igusa 1955). Serre duality implies that K% = h™"~49 in all characteristics.

The canonical class

The sheaf Qf, can also be described as Oy (K), where K is the divisor of an n-form w, as
we now explain.

Let w be an n-form on V (smooth, not necessarily complete), and let P be a (closed)
point on V. We want to define the divisor (w) of w. Let Z be an irreducible closed
subvariety of V' of codimension 1, and suppose that

w = C(Xm an,
where the X; are a system of local parameters at some nonsingular point in Z. Set
ord;(w) = ord,(a).

We first check that this is independent of the choice of X, ..., X,,.We have

d
—0 o
ax, 2 c Uz

(writef € Oz as B = f/g, f,g& € Op, g|Z # 0, and note that %, % € Op). Therefore,

w=adX;---dX,
= aJdX! - dX),

09Xy, X))
AX! . X0)
Secondly, one checks that it is independent of the choice of P.
Thirdly, one check that the sum (w) = ), , ordz(w)Z is finite, i.e., ordz(w) # 0 for
only finitely many Z. For this, we use the following fact:

withJ = a unit in O, and so ord,(cx) = ord,(aJ).

IfX,, ..., X, is a separating transcendence basis for k(V")/k, then there exists
an open subset U of V such that (a) X3, ..., X, are all holomorphic on U,
and (b) for all points P in U, the functions X; — X;(P) form a system of local
parameters at P.

0Amer. J. Math. 83 (1961), 339-342; 84 (1962), 642—648.
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Here X}, ..., X,, are a system of local parameters at all unramified points (the X; define
a regular map to A" on an open subset U of V, which is étale over an open subset of
U because it is at the generic point; cf. 11.23). On U, we can write w = adX; --- dX,,,
where dX; = d(X; — X;(P)). The only Z that enter into (w) are (a) the Z in (a) (finite
number), and (b) the Z that occur in V' \ U (finite number).

Let K = (w). Replacing w with fw, f € k(V)*, replaces K with a linearly equivalent
divisor. The class of K is said to be canonical.

Fix a wy. Then any other n-form w on an open subset U of V' can be written in the
form w = fwy, and the map w — f defines an isomorphism

Q" - O(K).

EXAMPLE 11.24. Consider V = P". Let
Ty, ..., T, be homogeneous coordinates
X; =T;/T,
Y,=T,/T,andY; = T;/T;, i3> 2.
ThenX; =1/Y,,X; =Y;/Y,i > 2. Thus

dy, Y,dY, — Y,dY,
dX,---dX, & | — .
L ( Yf) ( Y?
—dY,dY,---dY, - Y"!
= ! 2 n " 1 ledYI e = 0
Yl
— dy dy
o oyntl 1 %4ne

1

Note that Y; = 0 is the hyperplane at infinity, H,, and so
(dX,---dX,)=—-(+1)H.
In fact,

Kpn = —(n+1)H, H any hyperplane.
pg = dim H(V, QP) = 0 (because K < 0).

EXAMPLE 11.25. Let V be the product of two complete smooth curves,

V:CIXCZ.
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I claim that
KCIXCZ = Kcl X Cz + Cl X KCZ'

Let w; (resp. w,) be a 1-form on C; (resp. C,); then w; A w, is a 2-form on C; X C,, and
(w1 Awy) = (w1) X Cy + € X (),

and so

2 — 0l 1
Q2 e, = 0L ®QL.

1XCy

By the Kiinneth formula,!!

2 _ 1 1
HO(chch) - HO(QCI) ® HO(QCZ)’

and so
pg(cl xCy) = pg(cl) X pg(cz)-

(In fact, we didn’t use that the C; have dimension 1).

The residue map and the adjunction formula

Now let V' be a smooth variety over k, and let Z be a smooth closed subvariety of
codimension 1. We wish to relate Ky, to K, by showing that there is an exact sequence

residue

(Z) _ Qn—l

4

n

v — 0. (5)

0— Q —— Q
Here Qp(Z) = Qf, ® O(Z) =“n-forms with at worst a simple pole on Z”.

First we must define the (Poincaré) residue map. Let P be a pointin Z, and let z = 0
be a local equation for Z near P. Write Oy p — Ozp = Oy p/(z)as f — f: Op = Op.
Let X4, ...,X,_1 € Op be such that X, ..., X,_; are a system of local parameters at P on
Z; then X, ..., X,,_;, z are a system of local parameters for P on V. Define the residue
of the n-form w > —Z at P as follows: by assumption, zw is a holomorphic n-form at P,
say, zw = fdX; ---dX,_,;dZ with f € Op; then

resp(w) = fdX; ---dX,,_;.

LEMMA 11.26. This definition is independent of the choice of X; and z.

PROOF. Suppose that z’, X {, s X ;l are used instead. Note that (%) is a well-defined

!
i

derivation on O. Moreover, (%) = j—? fory = Xy,...,X,_;, and therefore equality.
. X

holds for all y € O. Note also that z = ez’ with ¢ a unit in Op because (z) = (z’) as ideals
in Op (by definition). We have

{ zw = fdX;---dX,_,dz
Zw=f'dX]--dX/_ dz'.

Tet  and G be coherent sheaves on algebraic varieties V and W. Define a coherent sheaf on V. x W
by setting F X G = F Qp, Ovxw Ro,, - Then

HVXW,FX 9 ~H*V,F)Q H*(W, 9).

See Serre, GACC, 1959, VII, n°17.
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Therefore,
{ zw = fJdX---dX!  dz’
Zw=(f/e)JdX] ---dX!  dz’
and so

=/

f=(/a].
We calculate J. First
oXx, 0x,
— — *
C) )
J= :

: %
ez . ... 8=
hd 9z

Now 5 3 5
z , 0¢ €
7 =St 2 (5 €O
therefore
0z -
(@) =g, z'=0
6_2, :a—_Z:O (asz=0)
ax]. 0x;
‘We conclude that
3%, ox,
ax] ax!_
il Kot
Y X!,
0 0 0 €
— a(Xl B Xn—l)_
6()_({ " X;—l)
Therefore,
_ 0X; X))
ff=f———=—
oX! X' )
and so

fdx, - dX, = f'dX, - dX},

as required.
At this point, it is easy to check the exactness of the sequence. o

THEOREM 11.27 (ADJUNCTION FORMULA). Let Z be a smooth curve on a smooth surface
V. Then
K,=(Ky+2) Z.
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PROOF. We write the residue sequence in the form
0— Oy(Ky) = Op(Ky +Z) = 0z(Kz) = 0
Tensoring the following exact sequence (which is the definition of O)
0->0(-2)-0->0,—-0
with O(Ky + Z) gives an exact sequence
0> 0OKy)—> OKy+2Z)—> O,Ky+Z-Z)—0

(recall (11.11) that O, ® O(D) = O(D - Z)). On comparing the two sequences, we find
that

OZ(KV + Z . Z) =~ Oz(Kz)
and hence that

Ky +Z-Z~Kjy.

ASIDE 11.28. The theorem holds for any smooth closed subvariety Z of dimensionn — 1in a
smooth variety V of dimension n. We have to define D - Z for D a divisor on V. For this, write
D = (f) locally near P, and define D - Z locally to be (f|Z). Now the equality O, ® O(D) =
Oz(D - Z) holds in general (with the same proof).

EXAMPLE 11.29. Let C be a smooth curve on a smooth complete surface V. From the
theory of curves,
deg(K.) = 2g(C) — 2.

From the adjunction formula
deg(Kc) = (Ky +C) - O).

Therefore 1
g(C) = E(KV +C)-C+1.

For a curve C (possibly singular) on a surface V, define
Pu(C) = 3(Ky +C O +1.
This is the “virtual arithmetic genus of C on V. Note that it is an invariant of C on V.
THEOREM 11.30. p,(C) > g(C), and equality holds if and only if C is smooth.
PROOF. Zariski, Harvard notes, 11.3. o

EXAMPLE 11.31. Let C be a smooth curve of degree n in P2. Then Ky, = —3H by 11.24
and C ~ nH, where H is a hyperplane in P2. From the adjunction formula,

Kc=(-3H+C(C)-C
=(n-3)H-C
= hypersurface section of C of degree n — 3
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and so
deg(Ky) = (n — 3)n.

From the formula deg(K-) = 2g(C) — 2, we deduce that

1 n—1)(n-2
gC)==n—-3n+1= M

2 2
For example, a smooth cubic curve C in P? has genus 1 and canonical class K = 0.
EXAMPLE 11.32. Let V = C X C with C a smooth curve of genus g. Then (see 11.25),

KV=KC><C+CXKC

The diagonal A is a smooth curve on C X C, isomorphic to C, and so K, = K- when we
identify the two curves. We have

Ky=((KcXC+CxKc+A)-A (adjunction formula)
=Ky+Kp+A-A (becauseP X C - A = (P,P)“="P).

Therefore
A-A=—Kj.

(Weil 1945'2 uses this as the definition of K, = K). On taking degrees, we find that
(A-A)=2-2g.
Topologically (over C),

(A - A) = Euler characteristic by — b; + b, of C
=1-2g+1.

EXAMPLE 11.33. Consider P? with a point P “blown up” to a line. Thus, we have a
surface V and a regular birational map

TV — P?

such that the restriction of 77 to V ~ C — P? \ P is an isomorphism. Here C = P! is the
curve 7~1(P), which is the set of “directions” through P. Let w be a 2-form on P2, Its

12Weil, André, Sur les courbes algébriques et les variétés qui s'en déduisent. Publications de I'Institut de
Mathématiques de 'Université de Strasbourg, 7 (1945).
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divisor (w) = —3H, and 7*w is a 2-form on V. Choose a hyperplane (i.e., a line) H in P?
not containing P, and let H' = 77'H. Then

Ky = (m*w) = —3H' + nC, some n.
Take degrees in the adjunction formula, we find that

(Ke) =((Ky +C)-C)
—2=((-3H"+(n+1)C)-C)
= (n+1)(C?) (notethat H' - C = 0because H 3 P).

ButC - C = —1(see 11.16), and so
—2=—=(n+1)
and n = 1. We have shown that
K, =—-3H' +C.
(More generally, when blowing up a point on a smooth surface,
Ky, = m*(canonical class) + C.)
EXAMPLE 11.34. Let V be a smooth surface of degree n in P3. Then

Kps = —4H
KV = (—4H + V) ‘ V,

where H is a hyperplane in P3. We have V ~ nH, and so
Ky, = hypersurface section of degree n — 4.

n = 4, quartic surface, K = 0 (K3 surfaces, Kummer, Kihler, Kodaira).
n = 3, cubic.
n = 2, quadric surface
K = -2 (hyperplane section)
V = P! x P! if V smooth
Ky =K xP! + P! xK.

Comparison with Kdahler differentials

Let A be a k-algebra, and let M be an A-module. Recall (from §5) that a k-derivation is a
k-linear map D : A — M satisfying Leibniz’s rule:

D(fg) = foDg+goDf, allf,ge€A.

A pair (Q,/y, d) comprising an A-module Q4 and a k-derivation d: A — Qg is
the (Kdhler) module of differential one-forms for A over k if it has the following
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universal property: for any k-derivation D : A — M, there is a unique A-linear map
a: Qy — M such that D = aod,

A1

D W

M.

Thus,
Derk(Aa M) ad HomA-linear(QA/ka M)

For any multiplicative subset S of A,
S_IQA/k o~ QS—IA/k. (6)

Now let V be an irreducible algebraic variety over k. The sheaf of Kdhler differentials
on V is the coherent Oy -module Qy ;. such that

(U, Qy /i) = Qowyk
for all open affines U. From (6), we deduce that
F(U, QV/k) = {Cl) S Qk(V)/k | [ONS QOp/k forallP € U}
Now assume that V' is nonsingular. Then
~ Ol
Qe = Ly i

since both are (by definition) the k(V)-linear dual of Der, (k(V), k(V)). Similarly,

(6) def
(QV/k)P = QOP/k = Qép/k = (Q‘l//k)P
Therefore Qy /; and 911/ /i e equal as subsheaves of the constant sheaf Q}C(V) Ik (and the

arguments in the text show that both are locally free of rank dim V).

c. The Riemann-Roch theorem
Let V be a smooth projective surface over k, and let D be a divisor on V. Define

hY(D) = dimy H/(V, O(D))
xv(D) = D (—=1)'h(D)

xv(Oy) = xy = “Euler characteristic” of V

=p,(V)+1, pu(V) = arithmetic genusof V.
For example, for a surface,

x(D) = h°(D) — h'(D) + h*(D)
pa(V) = —=h'(Oy) + h*(Oy).
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The weak Riemann-Roch theorem

Recall that, for a curve C, the weak Riemann-Roch theorem (i.e., Riemann’s theorem)
says that
x(D) =1-—g+deg(D),

where 1 — g = yc. This holds for D = 0 by definition, and it can be proved for a general
D by noting that adding a point P to a divisor D adds 1 to both sides. Indeed, on tensoring

0> O(-P)> O—> 0Op—>0
with O(D + P), we obtain an exact sequence
0->0OMD)—> OD+P)—> OD+P)R Op — 0;

but O(D + P) ® Op = Op (i.e., it is the sheaf supported on the point P having fibre k),
and so

XD +P)— x(D) = x(Op) = 1.

The proof of the similar result for surfaces is more complicated because curves on surfaces
are more complicated than points in curves.

THEOREM 11.35 (WEAK RIEMANN-ROCH FOR SURFACES). LetD be a divisor on a smooth
projective surface. Then

x(D) =y + 5(D D =K.

PROOF. If D = 0, then the statement is true by definition. Thus, to prove the theorem it
suffices to show that the statement is true for D + C if and only if it is true for D, where
C is any curve on D. We prove this first for a smooth curve C.
On tensoring
0> 0(-C)> O > 0Or—0

with O(D + C), we obtain an exact sequence
0> 0OD)—>OD+C)—> Oc(D+C-C)—0
(we used (11.11) to replace O(D + C) ® O with O-(D + C - C)). Hence

XD +C) = x(D) = xc(D+C-C)
=xc+(D+C-C) byR-Rforacurve
=1-g(C)+(D+C-C)
1

=—5K+C-O)+(D+C-0).

On the other hand,

%(D+C-D+C—K)—%(D~D—K)=%(D+C-C+C~D—K)

1
=§(D+C-C+D+C-C—C-C+K)
= x(D+C)— x(D)

This completes the proof of the theorem when D is a sum of smooth curves.
To complete the proof of the theorem, we need to use a weak form of Bertini’s theorem
(proved later 11.45).
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Let V be a smooth projective variety, and let D be a divisor on V. Then there
exists a hypersurface section C of V such that D + C is linearly equivalent to
asum ); E; with the E; smooth and irreducible and such that E; N E; = ¢
fori # j.

We can now prove the weak Riemann-Roch theorem for an arbitrary divisor D. According

to the Bertini theorem,
with the E; and C; all smooth. This completes the proof. O

REMARK 11.36. We use this to compute the Hilbert polynomial of a surface:

x(O(n)) « x(C,) (C, =nH, H ahyperplane section)
=Xy + %(Cn -C,—K) (weak R-R)

(H-H)
2

1
l’l2 - EK -H+ Xv-
In general, for a smooth projective variety V' of dimension d and degree &,

x(0O(n)) = %nd + terms of lower degree in n.

Recall that the degree of V' is the intersection number of V' with a linear subvariety
of P of codimension 2. This agrees with our calculation. For n sufficiently positive,
h{(C,) = 0fori > 1, and so

x(O(n)) = h°(C,) = dimy(kyom[V],) for n > 0,

where kyom[V'] is the homogeneous coordinate ring of V' and ky,[V],, is the part of
degreee n.

Serre duality

THEOREM 11.37 (SERRE DUALITY). Let V be a smooth projective variety of dimension n
over k, let & be a locally free sheaf on V, and let Q" be the sheaf of holomorphic n-forms on
V. Then the cup-product pairing

HP(V, &) x H™P(V, &Y @ Q") -» HY(V,Q") ~ k
is a perfect pairing (i.e., it identifies each of HP and H" P with the dual of the other).

Therefore,
dim, HP(V, &) = dim, H"P(V, &V ® Q").

When € = O(D), this becomes
hP(D) = h"P(K — D).
In particular, for V' a surface,

h?(D) = h°(K — D)
h'(D) = h'(K — D).
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Hence, Riemann-Roch for a surface becomes
1
h°(D) — h'(D) + h°(K — D) = yy + E(D -D —K).

The general theorem is proved in Grothendieck’s Séminaire Bourbaki 149. See also
Grothendieck’s talk at the 1958 ICM (Edinburgh), and the last section of Serre’s FAC.
We will prove only that (D) = h°(K — D).'* This will suffice to complete the proof of
the Riemann-Roch theorem for a surface.

LEMMA 11.38. Let V be a complete smooth surface embedded in some projective space PV,
and let C,, be a section of V' by a hypersurface of degree n (i.e., a section of O(n)). Let D be
a divisoron V. Then

D>0= D-C,>00nC,,

and so (D - C,) > 0. For example, (C%) > 0.

PROOF. Choose C,, so that its intersection with all the components of D are defined.
Then
supp(D - C,) = supp(D) N supp(Cy) # @

Indeed, C, = H, NV with H, a hypersurface of degree n in PV, and
supp(D) N supp(C,) = supp(D) N H,
is nonempty because otherwise each component of D would be contained an affine
variety PN \ H,,. -
LEMMA 11.39. Let V be a smooth projective surface over k.
(a) HA(V,Q7) ~ k;
(b) H*(V,Q;(D)) =0ifD > 0.

PROOF. (a) From the residue sequence

0- Q) - Q}(Cy) > Q, =0,

we get an exact cohomology sequence
a
H'(V,Q(n) > H'(C,Q¢ ) — HA(V,Q}) » HA(V, Q5 (n)) - 0.

But by Theorem B in cohomology (p. 6), the two end terms are zero for large n, and so
is an isomorphism for large n. But

H'(C,QL ) ~k

by the theory of curves.
(b) On tensoring the residue sequence with O(D), we get an exact sequence

0- QD) > Q. (D+C,) > Qéﬂ ® O(D) - 0.

But Qén = O(Kc,), and so Qén ® O(D) = O¢c (K¢, + D - C,). Now the cohomology
sequence of this sequence and Theorem B show that
HX(V,Q(D)) = H'(Cy, O, (K¢, + D - Cy)
~ H°(C,,—D-C,)" (Serre duality on a curve)
=0 as —D-C, <0O. O
13Following Zariski, Bulletin of the AMS, 1958 — see the end of the report.
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Let V be a smooth projective surface.

DEFINITION 11.40. We let J(D) denote the dual k-vector space to H2(O(D)).
If D’ > D, then there is an exact sequence
0— OMD) - OD')— L -0,

and the sheaf £ has support in supp(D’ \ D) (let P be a point of V; if there exists an f
such that (f) > —D’ but (f) # —D at P, then clearly P € supp(D’ — D)). Thus, supp(£)
is of dimension < 1, and so H*(V, £) = 0, and we have an exact sequence

H*(O(D)) - H*(0(D")) = 0.

Dually, this becomes
J(D) <« J(D") « 0.

In other words,
D' >D = J(D") cJ(D).

DEFINITION 11.41. The “Weil differential 2-forms” are defined to be

J =limJ(D) = U J(D)
D

(limit as D becomes more negative).
Let f € k(V) and ¢ € H*(D), then

f(@) € H*(D —(f)) (roughly, fo > =D + (f)).

Let A € J(D) and f € k(V); then fA1 € J(D + (f)) is the element

H(D + (f)) - HAD) — k(V),

i.e.,
(fA)(o) = A(f(o)) forallc € H*(D + (f)).

In this way, J becomes a k(V')-vector space.

THEOREM 11.42. J is a one-dimensional k(V')-vector space.

PROOF. Clearly, dimyyJ > 1, because J(K) is dual to H*(V, Q?) = k # 0. It remains
to show that dimy,yJ < 1. Suppose not, and let 4, and 1, be two k(V')-independent
elements of J, which we may suppose lie in J(D) for some D < 0. The map

®: HWV,0n)®H'(V,0(n) = J, f,g+= fA+gl,

is injective, because 4, 4, are independent over k(V), and it takes values in J(D — C,,),
because
f>2-C,A€lJD) = flelJD+(f) cJD-C).

We obtain a contradiction by estimating the dimensions of the k-vector spaces for n > 0.
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For the left hand side,

2
dim H(V, O(n)) ~ Tlnz + lower powers.

— see (11.36), or use the weak Riemann-Roch theorem,
h(c Lz k)~ Lee2
(C) ~ 5(CE=K) ~ 5(r2CD)

Therefore
dim (H°(V, O(n)) ® H°(V, O(n))) ~ nz(Cf).

On the other hand,
dim,(J(D — C,)) = dim H2(O(D — C),)).
From the cohomology sequence of
0—-0OD-Cy)— OD) > O, (D-Cy)—0

we find that
hz(D - Cn) ~ hé (D : Cn),

and
hL (D Cy) =1-g(Cy) +deg(D - C,)

by the Riemann-Roch theorem for curves (note that hocn (D-C,)=0asD < 0). Now
deg(D - C,,) = ndeg(D - C;)
and so we can ignore it. On the other hand,
g(C,) = %(Cn -C,+K)+1 (adjunction formula)
~ %nz(Cf) (we may suppose C,, smooth by Bertini).

Hence 5
. n
dim (D = C)) ~ 5-(CD).

which is a contradiction (because (Cf) > 0).

Now consider the pairing

H°(Q?*(-D)) x  H*OD)) - H*(D) ~ k.
o = {fijk} wo ={wfiji}
©>D (fi jk) >]—D - o fijk holomo]rphic

The pairing gives a commutative diagram (all D’ > D):

H%Q*(-D)) —— J(D) H*(O(D))

J JA dual to l

HY%(Q*(-D")) —— J(D") H*(O(D")).
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On passing to the direct limit, we get a map

. 2
P Ly =

where Qi(v) Ik is the space of 2-forms of k(V')/k. This is a nonzero k(V)-linear map, and
both spaces are one-dimensional k(V')-vector spaces, and so ¢ is an isomorphism.

It follows that each map ¢p, is injective, but we shall in fact show that ¢ is also
surjective. For this it suffices to show:

{wa2-form, w > D and p(w) € J(D'), D' >D} = {w>D'}.

It suffices prove this with D’ = D + E with E irreducible, because, if D’ = D + E; + --- +
E,, then

w>D, ¢(w)eJD)cJD+E,)
=>w>D+E, ¢ eJD)cJD+E, +E,)
= eftc.

Note that p(w) € J(D') < ¢(w) vanishes on Ker(y). Consider the diagram

00— OD) — OD+E) —> M; — 0

l l i

0 Q2 Q*(E) M, 0

in which the vertical arrows at left are multiplication by w, and the dashed arrow on the
cokernels is induced by the other two. If E is smooth, then M; = Og(D + E - E) and
M, = Q}E In any event, supp(M;) C E. Consider

HY(E,M,) —— HXOD)) —— H2(OD +E)) —— 0

! [ !

HYE,M,) —— H*(Q?) ——— H?*(Q*(E)) —— 0

0

The zeros at right are because E is one-dimensional, and H*(Q*(E)) = 0 because E > 0
(see an earlier lemma). Now ¢(w) vanishes on Ker(y)) = Im(p), and so ¢g(a)op = 0;
therefore aoar = 0, and so «a is not surjective.

k

LEMMA 11.43. Ifw # D + E, then o must be surjective.

PROOF. Let (w) =D + D", D" > 0, supp(E) ¢ supp(D").
In order to show that a : HY(E,M,) — H(E,M,) is surjective, it suffices to show
that M; — M, is surjective except at a finite number of points. To see this, consider,

N
0/ \0

0 K, K, 0.
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If M; — M, is surjective for almost all points, then supp(K,) has dimensional zero, and
the cohomology sequences of the two short exact sequences give surjections

H'(C) » H' (M)
HY(M,)) » HY(O).
It remains to show that M; — M, is almost surjective. It suffices to show that
O(D + E)p — Q(E)p
is surjective for almost all P € E. But
o)y — O

is surjective whenever (w)p = Dp, i.e., whenever P ¢ D. The same is true after tensoring
with O(E): the map O(D + E)p — Q?(E)p is surjective whenever P ¢ D", and D" N E
has only finitely many points. This completes the proof. o

This type of argument works only to show that H(O(D)) and H*(O(K — D)) are
dual.

The full Riemann-Roch theorem

THEOREM 11.44 (RIEMANN-ROCH). Let D be a divisor on a smooth projective surface.
Then

h°(D) — h'(D) + h°(K — D) = yy + %(D -D —K).

PROOF. Combine the weak version of the theorem (11.35) with the equality h?(D) =
h°(K — D) proved in the last subsection. O

Compare this with the original version (of the early Italian geometers):
ho(D) + h°(K — D) > xy + %(D -D—K)

The difference of the two sides was denoted i(D), and called the “superabundance” of D.
The early Italian geometers could prove that i(D + C,)) = 0 for n > 0.
When D = 0, O(D) = Oy, and
1—h'(O) +h(K) = xv
h°(K) = dimy H(Q?) = p, (geometric genus)
Do = xv — 1 (arithmetic genus).
Pg — Pa = h'(0).

In characteristic zero only,

h(Q% = ho(QY).

h°(Q') = number independent holomorphic 1-forms

= q (irregularity = dim Picard variety).

Note that
bPg —Pa =4
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Grothendieck’s Riemann-Roch theorem:

2 = (&) +[ea).

Here [c,] is the degree of the second Chern class of V. In characteristic zero, [c,] is the
topological Euler characteristic, Y,(—1)" dimg H'(V, Q) (any good cohomology theory
and coefficient field Q). This was proved in characteristic zero by Max Noether and in
characteristic p by Grothendieck. (It would be nice to have a proof of the theorem just
for surfaces.)

Proof of the weak weak Bertini theorem

We still have to prove:

THEOREM 11.45. Let D be a divisor on a smooth projective variety V. Then O(D + C,,) has
smooth zeros of sections, i.e., |D + C,,| has smooth irreducible members, i.e., there exists a
smooth irreducible (positive) divisor

E~D+C, n>0.

(The weak Bertini theorem says that D + C,, ~ E, E smooth and irreducible (if
dim(V) > 1). Hence V has smooth hyperplane sections of all degrees.)

In fact, almost all members of D + C,, have these properties.

We first show that it suffices to prove the theorem in the case of a hypersurface
section. Use sections of O(D + C,) to define a rational map

(O V > P".
Suppose that f, ..., f form a basis for the sections. Map

x> (fo(x): -1 fn(x).

We want to show that if n > 0, then ¢ is an isomorphism into P” (then the hyperplane
sections of ¢ (V') correspond to the divisors in |D + C,,|).

(An invertible sheaf £ on V such that ¢, : V --> P" is an isomorphism from V onto
its image is said to be “very ample” . Thus, we want to show that £ ® O(n) is very ample
forn >>0.)

STEP 1: n > 0, then |D + C,| has no base points, so ¢ is a morphism.

[Theorem: O(D + C,,) is generated by its global sections <= |D + C,| has no base
points, i.e., there is no x € V common to all positive divisors ~ D + C,;; therefore ¢, is a
rational map; elementary ZMT + normality implies that it is a morphism.]

STEP 2: For n > ny + 1, |D + C, | separates points (i.e., given x, y, there exists an E
in the linear system such that x € Eand y ¢ E).

PROOF. Take E’ ~ D + C,, E' not containing x. Take a C; containing y but not x. Now
E' + C, contains y but not x. O

Therefore, ¢ is bijective on points, V (k) ~ (¢V)(k). This is not enough to show that
@ is an isomorphism, e.g.,

te (12,83 Al 5 {Y?2 =X3)
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STEP 3: If n > ny + 1, then |D + C,,| separates directions.
Consider the tangent space to V at x,

T,y = Hom(m/m?,k), mC O,.
To separate directions means that

Tx,V - qux,¢V

is injective. In other words, given two tangent vector r; and 7, at x,there exists a divisor
in |D + C,| through x such that its tangent space at x contains 7; but not z,:

If ¢ separates directions at x, then it is an isomorphism at x, because then m’ - m
is surjective, so O;,x — O, is surjective, and it is certainly injective as ¢ is a surjective
morphism.

Take E’ ~ D +C,, not through x. Take C; throught 7, and not through 7,;now E’ +C;
works.

Second part of the proof: V is smooth projective C PV; then a general hyperplane
section is smooth (and irreducible).

We can take V to be affine, say, V = V(fy, ..., f,) of dimension r in A", with f; =
fiXq,...,X,). Recall that the tangent space at x is defined by the system of linear
equations

afi
—X;—x;)=0, i=1,..,r.
Zj an( %)
To say that V' is smooth at x means that the tangent space has dimension n — r, or,
equivalently, that the matrix (:—)J;i) hasrankn —r.
j

When is the hyperplane section defined by

nonsingular at x? Its ideal is (f1, ..., f§, 1), and we need

of; oh
rank(an,a—Xj) =n—-r+1,

i.e., the equation & = 0 should be independent from the equations defining the tangent
space T, y i.e., hisnot zeroon T .

We have to show that, in general, a hyperplane in P" does not contain any tangent
spaceto V.
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Given T, y of dimension r, how many hyperplanes H in P" contain T ;? Note that
H contains T, < H contains r + 1 “independent” points of T',..

Heuristically, there are oo™ hyperplanes in P" (parametrized by the dual projective space),
and so there are co™~"~! hyperplanes containing T,.. But there are < oo’ tangent spaces
T, as x varies over V , i.e., a family of dimension < r. Hence the number of hyperplanes
that do contain some T, is 00" + 00" "+ < 00”71, Therefore, almost all hyperplanes in
P" do not conttain any Ty, and so give nonsingular sections. Irreducible? Generically
they are irreducible (cf. Lang, IAG, p.213).

We now translate the Italian into English.'* We are given V smooth of dimension r
closed in P". We want to show that “in general” a hyperplane of P" does not contain
any Ty . The hyperplanes )} a;X; = 0 are parametrized by P" = {(ag, ..., ay)k

Claim: the hyperplanes containing some T, , correspond to the points of P" in some
closed subset of dimension < n — 1.

LEMMA 11.46. The set of all hyperplanes containing a fixed L" (linear space of dimension
r) is represented in P" by a linear space of dimension n —r — 1.

PROOF. A hyperplane H contains L" <= H contains r + 1 points that span L", say,

Thus,
H>{P,,..,P} <= Z,- ajxi =0, i=1,..,r+l.

This is a system of equations in the variables a;. The equations are independent, and so
the solution space is a projective space of dimension n — (r + 1). -

LEMMA 11.47. The set of tangent spaces T,/ is a “space of dimension < r”.

PROOF. Let S = {(x,H) | x € V, HDT,y}CP"Xx [P".A point P of S has coordi-
nates (X, ... , Xy, ag, .. » 4p,), satisfying certain polynomial equations: the equations of V'
expressing that x € V and the vanishing of various subdeterminants of

ag, ..., a,
F

ox;

expressing that )] a;X; contains the tangent plane to V at x.

S
pr,
o
pr
T
[F[)}’l

14According to Severi, modern algebraic geometers have feet of lead.
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We have pr,(S) = V and prl‘l(x) is a linear space of dimension n — r — 1 (previous
lemma). Hence dim(S) = n — 1. On the other hand, pr,(S) is the set of hyperplanes
containing some T . An a € pr,(S) came from a pair (X, a). It is a closed set because
P" is complete. As dim(S) = n — 1, we have dim pr,(S) <n —1. O

Contrast: Early Italian geometers, systems of objects co”. Modern geometers, objects
are parametrized by a projective space of dimension 7, i.e., can be algebraized to such a
space.

Let L be a linear system of positive divisors on V", projective. Assume that the general
member is irreducible. Then it has no singularieties outside

(a) the singularities of V,
(b) base points of the system (characteristic zero).
EXAMPLE 11.48.

Z
<

Y2:X3

This family doesn’t contradict Bertini because it is not a linear system (it is parametrized
byt, Y2 = (X —t)%).

d. Proof of the Riemann hypothesis for curves

Let V be a smooth projective surface over an algebraically closed field k.

SOME ALGEBRA

Let V be a finite dimensional vector space over Q (or R), and let Q(x, y) be a symmetric
bilinear form with values in Q (or R),

Q(x,y) = Zaijxixj’ ajj = aj;.
The associated quadratic form is
Q(x,x) = Z a;jXx;Xj,
and we can recover Q(x,y) from this by
Qx,y) = 5(QGx +, % +3) = Q(x, x) = QW V).
Such a form is diagonalizable by a rational orthogonal transformation of V,

Q(x,x) = dyx? + dpx3 + -+ + dpX;.
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Law of inertia: the numbers of d; > 0, d; < 0, and d; = 0 are invariants of Q. The index
is the number of d; > 0, and the signature is the family (+,---,+,—,---,—,0,---,0).
For example,

(a) index= n if and only if all d; > 0, i.e., Q positive definite;
(b) index= 0 if and only if Q is negative semi-definite (Q is negative definite if all
d; <0);
(c) index= 1 if and only if there exists an x € V such that (1) Q(x,x) > 0 and (2)
Q(y,y) <0forally € (x)*.
(Proof of (¢). = : Q(, ) = dyx? —dyx — -+ —dpx;, d; > 0,d; > 0. Take
x = (1,0,...,0). Then y € (x)* means that y = (0, x,, ..., X,,). <: Choose coordinates
so that x = (1,0, ..., 0); choose the y; to be an orthogonal basis of the complement (x)t
of (x). Thend; = Q(x,x) > 0and d; = Q(y;,y;) < 0fori=2,..,n.

DIVISORS

A divisor on V is a formal sum D = ) n;C; with n; € Z and C; an irreducible curve on
V. We say that D is positive, denoted D > 0, if all the n; > 0. Every f € k(V)* has an
associated divisor (f) of zeros and poles — these are the principal divisors. Two divisors
D and D’ are said to be linearly equivalent if

D' =D+ (f) some f € k(V)*.
For a divisor D, let
LD)={f € k(V)|(f)+D =0}

Then L(C) is a finite-dimensional vector space over k, whose dimension we denote by
I(D). The map g — gf is an isomorphism L(D) — L(D — (f)), and so I(D) depends only
on the linear equivalence class of D.

ELEMENTARY INTERSECTION THEORY

Because V is smooth, a curve C on V has a local equation at every closed point P of V,
i.e., there exists an f such that

C = (f) + components not passing through P.

If C and C’ are distinct irreducible curves on V, then their intersection number at
PecCnCis

(C-C)p = dim(Oyp/(f, ),

where f and f’ are local equations for C and C’ at P, and their (global) intersection
number is
C€-ch= 2 (C-Ch.
PecnC’

This definition extends by linearity to pairs of divisors D, D’ without common compo-
nents. Now observe that ((f) - C) = 0, because it equals the degree of the divisor of f|C
on C, and so (D - D) depends only on the linear equivalence classes of D and D’. This
allows us to define (D - D”) for all pairs D, D’ by replacing D with a linearly equivalent

divisor that intersects D’ properly. In particular, (D?) < (D - D) is defined.
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THE RIEMANN-ROCH THEOREM

Recall that the Riemann-Roch theorem for a curve C states that, for all divisors D on C,
I(D)—I(Kc —D)=deg(D)+1—g,

where g is the genus of C and K- is a canonical divisor (so deg Ko = 2g—2 and [(K¢) = g).
Better, in terms of cohomology,

x(O(D)) = deg(D) + x(O)
h'(D) = h°(K- — D).

The Riemann-Roch theorem for a surface V states that, for all divisors D on V,
1
I(D)—sup(D)+ I(Kyy —D) = p, +1+ E(D -D —Ky),
where Ky, is a canonical divisor and

pa = x(0)—1 (arithmetic genus),

sup(D) = superabundance of D ( > 0, and = 0 for some divisors).
Better, in terms of cohomology,
1
x(OD)) = x(Oy) + (D - D —K)
h*(D) = h°(K — D),

and so
sup(D) = h'(D).

We shall also need the adjunction formula: let C be a curve on V; then

THE HODGE INDEX THEOREM

Embed V in P". A hyperplane section of V is a divisor of the form H = V n H' with H' a
hyperplane in P" not containing V. Any two hyperplane sections are linearly equivalent
(obviously).

LEMMA 11.49. For a divisor D and hyperplane section H,
ID)>1 = (D-H)>0. (7)

PROOF. The hypothesis implies that there exists a D; > 0 linearly equivalent to D. If
the hyperplane H’' is chosen not to contain a component of D;, then the hyperplane
section H = V N H' intersects D; properly. Now D; n H = D; n H’, which is nonempty
by dimension theory, and so (D; - H) > 0. O

THEOREM 11.50 (HODGE INDEX THEOREM). For a divisor D and hyperplane section H,

(D-H)=0 = (D-D)<0.
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PROOF. We begin with a remark: suppose that [(D) > 0, i.e., there exists an f # 0 such
that () + D > 0; then, for a divisor D’,

ID+D")=1(D+(f)+D")=UD". (®)
We now prove the theorem. To prove the contrapositive, it suffices to show that
(D-D)>0 = I(mD) > 1 for some integer m,

because then .
(D-H) = E(mD-H);EO

by (7) above. Hence, suppose that (D - D) > 0. By the Riemann-Roch theorem

(D-D)
2

I(mD) + I(Ky, — mD) > m? + lower powers of m.

Therefore, for a fixed m, > 1, we can find an m > 0 such that

I(mD) + (Kyy — mD) > my + 1
I(—=mD) + (K, + mD) > my + 1.
If both [(mD) < 1 and I(—mD) < 1, then both I(Ky, — mD) > my and I[(Ky, + mD) > m,,
and so
®
I(2Ky) = (Ky, — mD + Ky, + mD) > I(Ky, + mD) > my,.

As m was arbitrary, this is impossible. o

Let Q be a symmetric bilinear form on a finite-dimensional vector space W over Q
(or R). There exists a basis for W such that Q(x, x) = ale + --- + a,x2. The number of
a; > 0 is called the index (of positivity) of Q — it is independent of the basis. There is
the following (obvious) criterion: Q has index 1 if and only if there exists an x € V such
that Q(x,x) > 0 and Q(y,y) < Oforall y € (x)*.

Now consider a surface V' as before, and let Pic(V') denote the group of divisors on V
modulo linear equivalence. We have a symmetric bi-additive intersection form

Pic(V) x Pic(V) — Z.

On tensoring with Q and quotienting by the kernels, we get a nondegenerate intersection
form!>
N(V)XN(®V) - Q.

COROLLARY 11.51. The intersection form on N(V') has index 1.
PROOF. Apply the theorem and the criterion just stated. O

COROLLARY 11.52. Let D be a divisor on V such that (D?) > 0. If(D - D) = 0, then
(D) <0.

PROOF. The form is negative definite on (D)*. O

15Here N(V) is the Néron-Severi group of V.
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THE INEQUALITY OF CASTELNUOVO-SEVERI

Now take V to be the product of two curves, V = C; X C,. Identify C; and C, with the
curves C; X ptand pt X C, on V, and note that

Cl‘C1:0:C2'C2
CI'C2=1=C2’C1.

Let D be a divisoron C; X C, andsetd; =D -C;andd, =D - C,.

THEOREM 11.53 (CASTELNUOVO-SEVERI INEQUALITY). Let D be a divisor on V; then
(D?) < 2d,d,. 9)

PROOF. We have

(C;+Cy)>=2>0
(D - d2C1 - d1C2) . (Cl + Cz) =0.

Therefore, by the Hodge index theorem,
(D —d,Cy —d;C,)* L0.
On expanding this out, we find that D? < 2d,d,. O
Define the equivalence defect (difetto di equivalenza) of a divisor D by
def(D) = 2d,d, — (D?) > 0.
COROLLARY 11.54. Let D, D' be divisors on V; then
|(D-D') - dyt} — dydf| < (def(D)def(D"))""”. (10)
PROOF. Let m,n € Z. On expanding out
def(mD + nD") > 0,
we find that
m2def(D) — 2mn ((D - D') — dyd, — dzd;) + n2def(D") > 0.
As this holds for all m, n, it implies (10). O

EXAMPLE 11.55. Let f be anonconstant morphism C; — C,, and let g; denote the genus
of C;. The graph of f is a divisor I'; on C; X C, with d, = 1 and d, equal to the degree of
f. Now

Kr ;= Ky +Tp)- Ty (adjunction formula).
On using that Ky, = K¢, X C, + C; X K¢,, and taking degrees, we find that
281 —2= () + (281 —2) - 1 + (28, — 2) deg(f).

Hence
def(I'y) = 2g, deg(f). (11)
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PROOF OF THE RIEMANN HYPOTHESIS FOR CURVES

Let C,, be a projective smooth curve over a finite field k,,, and let C be the curve obtained by
extension of scalars to the algebraic closure k of k,. Let 7z be the Frobenius endomorphism
of C. Then (see (11)), def(A) = 2g and def(I';,) = 2gq, and so (see (10)),

(A-Tx)—q—1| <2gg"/%
As
(A - I';;) = number of points on C rational over k,
we obtain Riemann hypothesis for C.

ASIDE 11.56. Note that, except for the last few lines, the proof is purely geometric and takes
place over an algebraically closed field.!® This is typical: study of the Riemann hypothesis over
finite fields suggests questions in algebraic geometry whose resolution proves the hypothesis.
This proof suggested to Grothendieck what have become known as the “standard conjectures”,
which apply to all projective smooth algebraic varieties, and which have the Riemann hypothesis
for the variety as an immediate consequence when the ground field is finite.

CORRESPONDENCES

A divisor D on a product C; X C, of curves is said to have valence zero if it is linearly
equivalent to a sum of divisors of the form C; X pt and pt X C,. The group of correspon-
dences C(Cy, C,) is the quotient of the group of divisors on C; X C, by those of valence
zero. When C; = C, = C, the composite of two divisors D; and D, is

def
DyoD, = P13*(PT2D1 'P§3D2)

where the p;; are the projections C X C X C — C X C; in general, it is only defined up to
linear equivalence. When DoE is defined, we have

di(DoE) = di(D)dy(E), dy(DoE) = dy(D)dy(E), (D-E)=(DoE’,A)  (12)

where, as usual, E’ is obtained from E by reversing the factors. Composition makes the
group C(C, C) of correspondences on C into a ring R(C).
Following Weil, we define the “trace” of a correspondence D on C by

o(D) = d;(D) +dy(D)— (D - A).
Applying (12), we find that
o(DoD’) Z dy(DoD') + dy(DoD') — (DoD') - A)

= dy(D)d,(D) + dy(D)d(D) — (D?)
= def(D).

Thus Weil’s inequality c(DoD’) > 0 is a restatement of (9).

References.
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16T once presented this proof in a lecture. At the end, a listener at the back triumphantly announced
that I couldn’t have proved the Riemann hypothesis because I had only ever worked over an algebraically
closed field.
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