
Chapter 10

Algebraic schemes: geometry over
an arbitrary field

In this chapter, we allow the base field to be arbitrary, and we allow the structure sheaves
to contain nilpotent elements. Thus, we aremoving away from geometry towards scheme
theory.

We assume that the reader is familiar with the contents of the first 9 chapters, and we
are more brief, since many arguments essentially repeat those in the first nine chapters.

Throughout, 𝑘 is a field and 𝑘al is an algebraic closure of 𝑘. Unadorned tensor
products are over 𝑘. All 𝑘-algebras are finitely generated, and 𝖠𝗅𝗀𝑘 denotes the category
of such algebras. A reference n.mm is to the main notes Algebraic Geometry. CA= my
Commutative Algebra notes. Hyperlinks may work if both pdf files are in the same folder.
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a. Preliminaries

Sheaves

In the first nine chapters we considered only sheaves of functions, and so the restriction
maps did, in fact, restrict a function to an open subset. Here we consider more general
sheaves, and the restriction maps have to be included as part of the data.

10.1. A presheaf ℱ on a topological space 𝑉 is a map assigning to each open subset 𝑈
of 𝑉 a set ℱ(𝑈) and to each inclusion 𝑈′ ⊂ 𝑈 a “restriction” map𝑎 ↦ 𝑎|𝑈′∶ ℱ(𝑈) → ℱ(𝑈′);
when 𝑈 = 𝑈′ the restriction map is required to be the identity map, and if𝑈′′ ⊂ 𝑈′ ⊂ 𝑈,
then the composite of the restriction mapsℱ(𝑈) → ℱ(𝑈′) → ℱ(𝑈′′)
is required to be the restriction map ℱ(𝑈) → ℱ(𝑈′′). In other words, a presheaf is a
contravariant functor to the category of sets from the category whose objects are the
open subsets of 𝑉 and whose morphisms are the inclusions. A homomorphism of
presheaves 𝛼∶ ℱ → ℱ′ is a family of maps𝛼(𝑈)∶ ℱ(𝑈) → ℱ′(𝑈)
commuting with the restriction maps, i.e., it is a morphism of functors. We sometimes
write 𝛤(𝑈,ℱ) for ℱ(𝑈).
10.2. A presheaf ℱ is a sheaf if it satisfies the sheaf condition:

for any open covering {𝑈𝑖} of an open subset 𝑈 of 𝑉 and family of sections𝑎𝑖 ∈ ℱ(𝑈𝑖) agreeing on overlaps (that is, such that 𝑎𝑖|𝑈𝑖 ∩ 𝑈𝑗 = 𝑎𝑗|𝑈𝑖 ∩ 𝑈𝑗
for all 𝑖, 𝑗), there is a unique element 𝑎 ∈ ℱ(𝑈) such that 𝑎𝑖 = 𝑎|𝑈𝑖 for all 𝑖.

A homomorphism of sheaves on 𝑉 is a homomorphism of presheaves. If the setsℱ(𝑈)
are abelian groups and the restriction maps are homomorphisms, then ℱ is a sheaf
of abelian groups. Similarly one defines the notions of a sheaf of rings, a sheaf of𝑘-algebras, and a sheaf of modules over a sheaf of rings.
10.3. For 𝑃 ∈ 𝑉, the stalk of a sheaf ℱ (or presheaf) at 𝑃 isℱ𝑃 = lim,,→ ℱ(𝑈) (limit over the open neighbourhoods of 𝑃).
In other words, it is the set of equivalence classes of pairs (𝑈, 𝑠) with 𝑈 an open neigh-
bourhood of 𝑃 and 𝑠 ∈ ℱ(𝑈); two pairs (𝑈, 𝑠) and (𝑈′, 𝑠′) are equivalent if 𝑠|𝑈′′ = 𝑠′|𝑈′′
on some open neighbourhood 𝑈′′ of 𝑃 contained in 𝑈 ∩ 𝑈′.
10.4. A ringed space is a pair (𝑉,𝒪) consisting of topological space 𝑉 together with
a sheaf of rings. If the stalk 𝒪𝑃 of 𝒪 at all 𝑃 is a local ring, then (𝑉,𝒪) is called a
locally ringed space. Amorphism (𝑉,𝒪) → (𝑉′, 𝒪′) of ringed spaces is a pair (𝜑, 𝜓)
comprising a continuous map 𝜑∶ 𝑉 → 𝑉′ and a family of maps𝜓(𝑈)∶ 𝒪′(𝑈) → 𝒪(𝜑−1(𝑈)), 𝑈 open in 𝑉′,
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commuting with the restriction maps. Such a pair defines a homomorphism of rings𝜓𝑃 ∶ 𝒪′𝜑(𝑃) → 𝒪𝑃 for all 𝑃 ∈ 𝑉. Amorphism of locally ringed spaces is a morphism of
ringed space such that 𝜓𝑃 is a local homomorphism for all 𝑃.
10.5. Let 𝑉 be a topological space. Recall that a collection ℬ of open sets in 𝑉 is a
base for the topology if every open subset is a union of elements from ℬ. Regard ℬ as
a category with the inclusions as the only morphisms. A presheaf of sets on ℬ is a
functorℱ fromℬ to sets. A sheaf of sets onℬ is a presheafℱ of sets satisfying the sheaf
condition: for any covering {𝑈𝑖} of a basic open subset 𝑈 by basic open subsets 𝑈𝑖 and
family of sections s𝑖 ∈ ℱ(𝑈𝑖) agreeing on overlaps, there is a unique section 𝑠 ∈ ℱ(𝑈)
such that 𝑠𝑖 = 𝑠|𝑈𝑖 for all 𝑖. By 𝑠𝑖 and 𝑠𝑗 agreeing on the overlap 𝑈𝑖 ∩ 𝑈𝑗 we mean that𝑠𝑖|𝑈′ = 𝑠𝑗|𝑈′ for the sets 𝑈′ in some covering of 𝑈𝑖 ∩ 𝑈𝑗 by basic open subsets. When𝑈𝑖 ∩ 𝑈𝑗 is itself a basic open subset, this just means that 𝑠𝑖|𝑈𝑖 ∩ 𝑈𝑗 = 𝑠𝑗|𝑈𝑖 ∩ 𝑈𝑗. Every
sheaf on a base ℬ of 𝑉 extends uniquely to a sheaf on 𝑉. More precisely, the functor
sending a sheaf on 𝑉 to a sheaf on ℬ is an equivalence of categories. See Stacks, 009H.

Extending scalars (extending the base field)

Nilpotents

Recall that a ring 𝐴 is reduced if it has no nonzero nilpotents. A 𝑘-algebra 𝐴 can be
reduced without 𝐴⊗𝑘 𝑘al being reduced. Consider, for example,𝐴 = 𝑘[𝑋, 𝑌]∕(𝑋𝑝 + 𝑌𝑝 + 𝑎),
where 𝑝 = char(𝑘). If 𝑎 is not a 𝑝th-power in 𝑘, then 𝑋𝑝 + 𝑌𝑝 + 𝑎 is irreducible in𝑘[𝑋, 𝑌], and so 𝐴 is an integral domain. As 𝑎 becomes a 𝑝th power in 𝑘al, say, 𝑎 = 𝛼𝑝,𝑋𝑝 + 𝑌𝑝 + 𝑎 = (𝑋 + 𝑌 + 𝛼)𝑝,
in 𝑘al[𝑋, 𝑌], and so (𝑥 + 𝑦 + 𝛼)𝑝 = 0 in𝐴⊗𝑘 𝑘al = 𝑘al[𝑋, 𝑌]∕(𝑋𝑝 + 𝑌𝑝 + 𝑎) = 𝑘al[𝑥, 𝑦].

In this subsection, we show that problems of this kind arise only because of insepa-
rability. In particular, they do not occur if 𝑘 is perfect.

Let 𝑝 be the characteristic exponent of 𝑘 (so 𝑝 is 1 or a prime according as the
characteristic of 𝑘 is zero or nonzero). Let𝑘1∕𝑝 = {𝛼 ∈ 𝑘al | 𝛼𝑝 ∈ 𝑘}.
It is a subfield of 𝑘al, and 𝑘1∕𝑝 = 𝑘 if and only if 𝑘 is perfect (for example, has characteristic
zero). Let Ω be some (large) field containing 𝑘al.
Definition 10.6. Subfields 𝐾 and 𝐾′ of Ω containing 𝑘 are said to be linearly disjoint
over 𝑘 if the map 𝐾 ⊗𝑘 𝐾′ → Ω is injective.

Equivalent conditions:⋄ if 𝑒1, … , 𝑒𝑚 ∈ 𝐾 are linearly independent over 𝑘 and 𝑒′1, … , 𝑒′𝑚′ ∈ 𝐾′ are linearly
independent over 𝑘, then the elements 𝑒1𝑒′1, 𝑒1𝑒′2, … , 𝑒𝑚𝑒′𝑚′ of Ω are linearly inde-
pendent over 𝑘;

https://stacks.math.columbia.edu/tag/009H
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⋄ if 𝑒1, … , 𝑒𝑚 ∈ 𝐾 are linearly independent over 𝑘, then they are linearly independent
over 𝐾′.

Similarly, we say that a 𝑘-algebra 𝐴 in Ω is linearly disjoint from 𝐾 over 𝑘 if the map𝐴⊗𝑘 𝐾 → Ω is injective.

10.7. (a) Purely transcendental extensions of 𝑘 are linearly disjoint over 𝑘 from alge-
braic extensions of 𝑘.

(b) Separable algebraic extensions of 𝑘 are linearly disjoint over 𝑘 from purely insepa-
rable algebraic extensions of 𝑘.

(c) Let 𝐾 ⊃ 𝑘 and 𝐿 ⊃ 𝐸 ⊃ 𝑘 be subfields of Ω.𝐾𝐿𝐾𝐸 𝐿𝐾 𝐸𝑘
Then 𝐾 is linearly disjoint from 𝐿 over 𝑘 if and only if 𝐾 is linearly disjoint from 𝐸
over 𝑘 and 𝐾𝐸 is linearly disjoint from 𝐿 over 𝐸,

Definition 10.8. A separating transcendence basis for 𝐾 ⊃ 𝑘 is a transcendence
basis {𝑥1, … , 𝑥𝑑} such that 𝐾 is separable over 𝑘(𝑥1, … , 𝑥𝑑).

The next proposition improves Theorem 9.27 of Milne 2022.

Proposition 10.9. Let 𝐾 be a finitely generated field extension of 𝑘, and let Ω be an
algebraically closed field containing 𝐾al. The following statements are equivalent:
(a) 𝐾∕𝑘 admits a separating transcendence basis;
(b) 𝐾 is linearly disjoint from every purely inseparable extension of 𝑘 inΩ;
(c) the fields 𝐾 and 𝑘1∕𝑝 are linearly disjoint over 𝑘.

Proof. (a)⇒(b). Let {𝑥1, … , 𝑥𝑑} be a separating transcendence basis for𝐾 over 𝑘, and let𝐾′ be a purely inseparable extension of 𝑘 inΩ. Then 𝑘(𝑥1, … , 𝑥𝑑) is linearly disjoint from𝐾′ over 𝑘 (by 10.7(a)), and 𝐾′(𝑥1, … , 𝑥𝑑) is linearly disjoint from 𝐾 over 𝑘(𝑥1, … , 𝑥𝑑) (by
10.7(b)). Now apply 10.7(c).

(b)⇒(c). Trivial.
(c)⇒(a). Let 𝐾 = 𝑘(𝑥1, … , 𝑥𝑛), and let 𝑑 be the transcendence degree of 𝐾∕𝑘. After

renumbering, we may suppose that 𝑥1, … , 𝑥𝑑 are algebraically independent (1.63(b)).
We proceed by induction on 𝑛. If 𝑛 = 𝑑 there is nothing to prove, and so we may suppose
that 𝑛 ≥ 𝑑 + 1. Then 𝑓(𝑥1, … , 𝑥𝑑+1) = 0 for some nonzero irreducible polynomial𝑓(𝑋1, … , 𝑋𝑑+1) with coefficients in 𝑘. Not all 𝜕𝑓∕𝜕𝑋𝑖 are zero, for otherwise 𝑓 would be
a polynomial in 𝑋𝑝1 , … , 𝑋𝑝𝑑+1, which contradicts the lemma below. After renumbering
again, we may suppose that 𝜕𝑓∕𝜕𝑋𝑑+1 ≠ 0, and so {𝑥1, … , 𝑥𝑑} is a separating transcen-
dence basis for 𝑘(𝑥1, … , 𝑥𝑑+1) over 𝑘, which proves the proposition when 𝑛 = 𝑑 + 1. In
the general case, 𝑘(𝑥1, … , 𝑥𝑑+1, 𝑥𝑑+2) is algebraic over 𝑘(𝑥1, … , 𝑥𝑑) and 𝑥𝑑+1 is separable
over 𝑘(𝑥1, … , 𝑥𝑑), and so, by the primitive element theorem (Milne 2022, 5.1) there is an
element 𝑦 such that 𝑘(𝑥1, … , 𝑥𝑑+2) = 𝑘(𝑥1, … , 𝑥𝑑, 𝑦). Thus 𝐾 is generated by the 𝑛 − 1
elements 𝑥1, … 𝑥𝑑, 𝑦, 𝑥𝑑+3, … , 𝑥𝑛, and we apply induction. 2
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Lemma 10.10. Let𝐾 = 𝑘(𝑥1, … , 𝑥𝑑+1) ⊂ Ω with 𝑥1, … , 𝑥𝑑 algebraically independent over𝐹, and let 𝑓 ∈ 𝑘[𝑋1, … , 𝑋𝑑+1] be an irreducible polynomial such that 𝑓(𝑥1, … , 𝑥𝑑+1) = 0.
If 𝐾 is linearly disjoint from 𝑘1∕𝑝, then 𝑓 ∉ 𝑘[𝑋𝑝1 , … , 𝑋𝑝𝑑+1].
Proof. Suppose otherwise, say, 𝑓 = 𝑔(𝑋𝑝1 , … , 𝑋𝑝𝑑+1). Let 𝑀1, … ,𝑀𝑟 be the distinct
monomials in𝑋1, … , 𝑋𝑑+1 that actually occur in 𝑔(𝑋1, … , 𝑋𝑑+1), and let𝑚𝑖 = 𝑀𝑖(𝑥1, … , 𝑥𝑑+1).
Then𝑚1, … ,𝑚𝑟 are linearly independent over 𝑘 because they are distinct polynomials of
degree less than that of 𝑓. However,𝑚𝑝1 , … ,𝑚𝑝𝑟 are linearly dependent over 𝑘, because𝑔(𝑥𝑝1 , … , 𝑥𝑝𝑑+1) = 0. But∑𝑎𝑖𝑚𝑝𝑖 = 0 (𝑎𝑖 ∈ 𝑘) ⇐⇒ ∑𝑎1∕𝑝𝑖 𝑚𝑖 = 0 (𝑎1∕𝑝𝑖 ∈ 𝑘1∕𝑝)
contradicting the linear disjointness of 𝐾 and 𝑘1∕𝑝. 2

Definition 10.11. A finitely generated field extension 𝐾 ⊃ 𝑘 is said to be regular if it
satisfies the equivalent conditions of the proposition.

Proposition 10.12. Let 𝐴 be a reduced 𝑘-algebra. The following statements are equiva-
lent:
(a) 𝑘1∕𝑝 ⊗𝑘 𝐴 is reduced;

(b) 𝑘al ⊗𝑘 𝐴 is reduced;

(c) 𝐾 ⊗𝑘 𝐴 is reduced for all fields 𝐾 ⊃ 𝑘.
When𝐴 is an integral domain, they are also equivalent to𝐴 and 𝑘1∕𝑝 being linearly disjoint
over 𝑘.
Proof. The implications (c)⇒(b)⇒(a) are obvious, and so we only have to prove (a)⇒(c).
After localizing 𝐴 at a minimal prime, we may suppose that it is a field. Let 𝑒1, … , 𝑒𝑛 be
elements of 𝐴 linearly independent over 𝑘. If they become linearly dependent over 𝑘1∕𝑝,
then 𝑒𝑝1 , … , 𝑒𝑝𝑛 are linearly dependent over 𝑘, say,∑𝑎𝑖𝑒𝑝𝑖 = 0, 𝑎𝑖 ∈ 𝑘. Now∑𝑎1∕𝑝𝑖 ⊗ 𝑒𝑖
is a nonzero element of 𝑘1∕𝑝 ⊗𝑘 𝐴, but(∑𝑎1∕𝑝𝑖 ⊗ 𝑒𝑖)𝑝 = ∑𝑎𝑖 ⊗ 𝑒𝑝𝑖 = ∑1⊗ 𝑎𝑖𝑒𝑝𝑖 = 1 ⊗∑𝑎𝑖𝑒𝑝𝑖 = 0.
This shows that 𝐴 and 𝑘1∕𝑝 are linearly disjoint over 𝑘, and so 𝐴 has a separating
transcendence basis over 𝑘. From this it follows that 𝐾 ⊗𝑘 𝐴 is reduced for all fields𝐾 ⊃ 𝑘. 2

Corollary 10.13. Let 𝐴 be a 𝑘-algebra such that 𝑘al ⊗𝑘 𝐴 is reduced. Then 𝐴⊗𝑘 𝐵 is
reduced for all reduced 𝑘-algebras 𝐵 (not necessarily finitely generated).
Proof. For any minimal prime ideal 𝔭 of 𝐵, the local ring 𝐵𝔭 is a field, and the map𝐴⊗𝑘 𝐵 →∏𝐴⊗𝑘 𝐵𝔭 is injective. 2

10.14. A ring 𝐴 is said to be normal if 𝐴𝔭 is an integrally closed domain for all prime
ideals 𝔭 in 𝐴. A 𝑘-algebra 𝐴 is geometrically reduced (resp. normal) if 𝑘′ ⊗𝑘 𝐴 is
reduced (resp. normal) for all extension fields 𝑘′ of 𝑘. It suffices to check this condition
for 𝑘′ = 𝑘1∕𝑝, where 𝑝 is the characteristic exponent of 𝑘.1

1For “normal”, this is Corollary 3.3 of Nagamachi, I., and Takamatsu, T., On behavior of conduc-
tors. . . over imperfect fields. J. Pure Appl. Algebra 228 (2024).
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Idempotents

Even when a 𝑘-algebra 𝐴 is an integral domain and 𝐴 ⊗𝑘 𝑘al is reduced, the latter
need not be an integral domain. Suppose, for example, that 𝐴 is a finite separable field
extension of 𝑘. Then𝐴 = 𝑘[𝑋]∕(𝑓(𝑋)) for somemonic irreducible separable polynomial𝑓(𝑋), and so𝐴⊗𝑘 𝑘al = 𝑘al[𝑋]∕(𝑓(𝑋)) = 𝑘al∕(∏(𝑋 − 𝑎𝑖)) ≃∏𝑘al∕(𝑋 − 𝑎𝑖)
(by Theorem 1.1). Thus if𝐴 contains a finite separable field extension of 𝑘, then𝐴⊗𝑘 𝑘al
cannot be an integral domain. The proposition below provides a converse.

Let 𝐴 be an integral domain containing 𝑘. We say that 𝑘 is algebraically closed
in 𝐴 if every element of 𝐴 algebraic over 𝑘 lies in 𝑘, i.e., an element 𝑎 of 𝐴 lies in 𝑘 if𝑓(𝑎) = 0 for some nonzero 𝑓 ∈ 𝑘[𝑋].
Lemma 10.15. Let 𝑘 be algebraically closed in an extension field𝐾, and let 𝑎 be an element
of 𝐾al that is algebraic over 𝑘. Then 𝐾 and 𝑘[𝑎] are linearly disjoint over 𝑘, and[𝐾[𝑎] ∶ 𝐾] = [𝑘[𝑎] ∶ 𝑘].
Proof. Let 𝑓(𝑋) be the minimal polynomial of 𝑎 over 𝑘. If ℎ is a factor of 𝑓 in 𝐾[𝑋],
then the roots of ℎ are among the roots of 𝑓, hence are algebraic over 𝑘, and so the
coefficients of ℎ are algebraic over 𝑘, hence lie in 𝑘. Thus ℎ ∈ 𝑘[𝑋], and we deduce that𝑓 is irreducible in 𝐾[𝑋]. Now the map1 ⊗ 𝑎 ↦ 𝑎∶ 𝐾 ⊗𝑘 𝑘[𝑎] → 𝐾[𝑎]
is an isomorphism because both 𝐾-algebras equal 𝐾[𝑋]∕(𝑓(𝑋)). 2

Proposition 10.16. Let 𝐴 be a 𝑘-algebra, and assume that 𝐴 is an integral domain, and
that𝐴⊗𝑘𝑘al is reduced. Then𝐴⊗𝑘𝑘al is an integral domain if and only if 𝑘 is algebraically
closed in 𝐴..
Proof. ⇐⇐: Let 𝐾 be the field of fractions of 𝐴— it suffices to show that 𝐾 ⊗𝑘 𝑘al is an
integral domain, and for this it suffices to show that 𝐾 is linearly disjoint from 𝐿 where𝐿 is any finite algebraic extension of 𝑘 in 𝐾al (because then 𝐾 ⊗𝑘 𝐿 ≃ 𝐾𝐿, which is an
integral domain). If 𝐿 is separable over 𝑘, then it can be generated by a single element,
and so this follows from the lemma. In the general case, we let 𝐸 denote the largest
subfield of 𝐿 separable over 𝑘. From (10.7)(c), we see that it suffices to show that 𝐾𝐸
and 𝐿 are linearly disjoint over 𝐸. From (10.12), we see that 𝐾 and 𝑘1∕𝑝 are linearly
disjoint over 𝑘, and so 𝐾 is a regular extension of 𝑘 (see 10.9). It follows easily that 𝐾𝐸 is
a regular extension of 𝐸, and 𝐾𝐸 is linearly disjoint from 𝐿 by (10.7)(b).⇐⇒ : If 𝑘 is not algebraically closed in 𝐴, then 𝐴 ∖ 𝑘 contains an element 𝑎 such that
either 𝑎𝑝 ∈ 𝑘 or 𝑎 is separable over 𝑘. In the first case, 𝐴⊗𝑘 𝑘al is not reduced, and in
the second it contains a nontrivial idempotent. 2

Corollary 10.17. Let 𝐴 be a finitely generated 𝑘-algebra, and assume that 𝐴 is an inte-
gral domain. Then
(a) 𝐴⊗𝑘 𝑘al has no nilpotents if and only if 𝐴 and 𝑘1∕𝑝 are linearly disjoint over 𝑘;
(b) 𝐴⊗𝑘 𝑘al has no idempotents if and only if 𝑘 is separably closed in 𝐴.

Thus, 𝐴⊗𝑘 𝑘al is an integral domain if and only if 𝐴 and 𝑘1∕𝑝 are linearly disjoint and 𝑘
is separably closed in 𝐴.
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b. Affine algebraic schemes

Let 𝐴 be a (finitely generated) 𝑘-algebra.
10.18. Let 𝑉 be the set of maximal ideals in 𝐴, and, for an ideal 𝔞 in 𝐴, let𝑉(𝔞) = {𝔪 ∣ 𝔪 ⊃ 𝔞}.
Then⋄ 𝑉(0) = 𝑉, 𝑉(𝐴) = ∅,⋄ 𝑉(𝔞𝔟) = 𝑉(𝔞 ∩ 𝔟) = 𝑉(𝔞) ∪ 𝑉(𝔟) for every pair of ideals 𝔞, 𝔟, and⋄ 𝑉(∑𝑖∈𝐼 𝔞𝑖) = ⋂𝑖∈𝐼 𝔞𝑖 for every family of ideals (𝔞𝑖)𝑖∈𝐼 .
For example, if𝔪 ∉ 𝑉(𝔞) ∪ 𝑉(𝔟), then there exist 𝑓 ∈ 𝔞 ∖ 𝔪 and 𝑔 ∈ 𝔟 ∖ 𝔪; but then𝑓𝑔 ∉ 𝔞𝔟 ∖ 𝔪, and so𝔪 ∉ 𝑉(𝔞𝔟) (cf. 2.10).

These statements show that the sets 𝑉(𝔞) are the closed sets for a topology on 𝑉,
called the Zariski topology. We write spm(𝐴) for 𝑉 endowed with this topology.

For example, 𝔸𝑛 def= spm(𝑘[𝑋1, … , 𝑋𝑛]) is affine 𝑛-space over 𝑘. If 𝑘 is algebraically
closed, then the maximal ideals in 𝐴 are exactly the ideals (𝑋1 − 𝑎1, … , 𝑋𝑛 − 𝑎𝑛), and𝔸𝑛 can be identified with 𝑘𝑛 endowed with its usual Zariski topology.

We now restate the Nullstellensatz and its immediate consequences for a nonalge-
braically closed field 𝑘.
10.19 (Nullstellensatz). Every proper ideal 𝔞 in 𝑘[𝑋1, … , 𝑋𝑛] has a zero in (𝑘al)𝑛, i.e.,
there exists a point (𝑎1, … , 𝑎𝑛) ∈ (𝑘al)𝑛 such that 𝑓(𝑎1, … , 𝑎𝑛) = 0 for all 𝑓 ∈ 𝔞.
Proof. We have to show that there exists a 𝑘-algebra homomorphism 𝑘[𝑋1, … , 𝑋𝑛] →𝑘al containing𝔞 in its kernel. Let𝔪 be amaximal ideal containing𝔞. Then𝑘[𝑋1, … , 𝑋𝑛]∕𝔪
is a field, which is finitely generated as a 𝑘-algebra. Therefore it is finite over 𝑘 by Zariski’s
lemma (2.12), and so there exists a 𝑘-algebra homomorphism 𝑘[𝑋1, … , 𝑋𝑛]∕𝔪 → 𝑘al.
The composite of this with the quotient map 𝑘[𝑋1, … , 𝑋𝑛] → 𝑘[𝑋1, … , 𝑋𝑛]∕𝔪 contains𝔞 in its kernel. 2

10.20 (Strong Nullstellensatz). For an ideal 𝔞 in 𝑘[𝑋1, … , 𝑋𝑛], let 𝑍(𝔞) denote the
set of zeros of 𝔞 in (𝑘al)𝑛. If a polynomial ℎ ∈ 𝑘[𝑋1, … , 𝑋𝑛] is zero on 𝑍(𝔞), then some
power of ℎ lies in 𝔞.
Proof. This can be deduced from 10.19 exactly as 2.16 is deduced from 2.11. 2

Corollary 10.21. The radical of an ideal 𝔞 in a 𝑘-algebra 𝐴 is equal to the intersection
of the maximal ideals containing it:rad(𝔞) =⋂𝔪⊃𝔞𝔪.
In particular, if 𝐴 is reduced, then the intersection of the maximal ideals in 𝐴 is zero.

Proof. The inclusion rad(𝔞) ⊂ ⋂𝔪⊃𝔞𝔪 holds in any ring (ℎ lies in a maximal ideal if
some power of ℎ does).

Because of the correspondence between the ideals in a ring and in a quotient of the
ring, it suffices to prove the reverse inclusion for 𝐴 = 𝑘[𝑋1, … , 𝑋𝑛].
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Let ℎ lie in all maximal ideals containing 𝔞, and let (𝑎1, … , 𝑎𝑛) be a zero of 𝔞 in (𝑘al)𝑛.
The image of the evaluation map𝑓 ↦ 𝑓(𝑎1, … , 𝑎𝑛)∶ 𝑘[𝑋1, … , 𝑋𝑛] → 𝑘al
is a subring of 𝑘al which is algebraic over 𝑘, and hence is a field. Therefore, the kernel of
the map is a maximal ideal, which contains 𝔞, and so also contains ℎ. This shows thatℎ(𝑎1, … , 𝑎𝑛) = 0, and we conclude from the strong Nullstellensatz that ℎ ∈ rad(𝔞). 2

10.22. For a subset 𝑆 of spm(𝐴), let𝐼(𝑆) =⋂{𝔪 ∣ 𝔪 ∈ 𝑆}.
Then 𝑉(𝐼(𝑆)) = Zariski-closure of 𝑆,
and, for an ideal 𝔞 in 𝐴,𝐼(𝑉(𝔞)) def= ⋂{𝔪 ∣ 𝔪 ⊃ 𝔞} 10.21= rad(𝔞).
It follows that 𝑉 and 𝐼 are inverse bijections between the collections of radical ideals
of 𝐴 and closed subsets of spm(𝐴). Under this bijection, prime ideals correspond to
irreducible sets, and maximal ideals correspond to points.

10.23. For𝑓 ∈ 𝐴, let𝐷(𝑓) = {𝔪 ∣ 𝑓 ∉ 𝔪}. It is open in spm(𝐴) because its complement
is the closed set𝑉((𝑓)). The sets of this form are called the basic open subsets of spm(𝐴).
Let 𝑉 = 𝑉(𝔞) be a closed subset of spm(𝐴). According to the Hilbert basis theorem (2.8),𝐴 is noetherian, and so 𝔞 = (𝑓1, … , 𝑓𝑚) for some 𝑓𝑖 ∈ 𝐴, andspm(𝐴) ∖ 𝑉 = 𝐷(𝑓1) ∪ … ∪ 𝐷(𝑓𝑚).
This shows that every open subset of spm(𝐴) is a finite union of basic open subsets. In
particular, the basic open subsets form a base for the Zariski topology on spm(𝐴).
10.24. Let 𝛼∶ 𝐴 → 𝐵 be a homomorphism of 𝑘-algebras, and let𝔪 be a maximal ideal
in 𝐵. As 𝐵 is finitely generated as a 𝑘-algebra, so also is 𝐵∕𝔪, which implies that it is
a finite field extension of 𝑘 (Zariski’s lemma 2.12). Therefore the image of 𝐴 in 𝐵∕𝔪𝐵
is an integral domain of finite dimension over 𝑘, and hence is a field. This image is
isomorphic to 𝐴∕𝛼−1(𝔪), and so the ideal 𝛼−1(𝔪) is maximal in 𝐴. Hence 𝛼 defines a
map 𝛼∗∶ spm(𝐵) → spm(𝐴), 𝔪 ↦ 𝛼−1(𝔪),
which is continuous because (𝛼∗)−1(𝐷(𝑓)) = 𝐷(𝛼(𝑓)). In this way, spm becomes a
functor from 𝑘-algebras to topological spaces.
10.25. Recall (1.10) that, for a multiplicative subset 𝑆 of 𝐴, the ring of fractions having
the elements of 𝑆 as denominators is denoted by 𝑆−1𝐴. For example, if 𝑆𝑓 def= {1, 𝑓, 𝑓2, …},
then 𝐴𝑓 def= 𝑆−1𝑓 𝐴 ≃ 𝐴[𝑋]∕(1 − 𝑓𝑋).
Let 𝐷 = 𝐷(𝑓) be a basic open subset of 𝑋. Then𝑆𝐷 def= 𝐴 ∖⋃{𝔪 ∣ 𝔪 ∈ 𝐷}
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is a multiplicative subset of 𝐴, and the map 𝑆−1𝑓 𝐴 → 𝑆−1𝐷 𝐴 defined by the inclusion𝑆𝑓 ⊂ 𝑆𝐷 is an isomorphism. If 𝐷′ and 𝐷 are both basic open subsets of 𝑋 and 𝐷′ ⊂ 𝐷,
then 𝑆𝐷′ ⊃ 𝑆𝐷, and so there is a canonical map𝑆−1𝐷 𝐴 → 𝑆−1𝐷′ 𝐴. (1)

10.26. There is a unique sheaf 𝒪𝑉 of 𝑘-algebras on 𝑉 = spm(𝐴) such that
(a) for every basic open subset 𝐷 of 𝑉,𝒪𝑉(𝐷) = 𝑆−1𝐷 𝐴,
(b) for every pair 𝐷′ ⊂ 𝐷 of basic open subsets of 𝑉, the restriction map𝒪𝑉(𝐷) → 𝒪𝑉(𝐷′)

is the map (1) for the pair.
To prove this, it suffices to show that the system satisfies the sheaf condition on the base
(10.5). This can be shown by the same argument as in the second part of the proof of
3.11.

We write Spm(𝐴) for spm(𝐴) endowed with this sheaf of 𝑘-algebras. Note that, for
every 𝑓 ∈ 𝐴, 𝐴𝑓 def= 𝑆−1𝑓 𝐴 ≃ 𝑆−1𝐷(𝑓)(𝐴) def= 𝒪𝑉(𝐷(𝑓)).
10.27. By a 𝑘-ringed space we mean a topological space equipped with a sheaf of 𝑘-
algebras. An affine algebraic scheme over 𝑘 is a 𝑘-ringed space isomorphic to Spm(𝐴)
for some 𝑘-algebra 𝐴. Amorphism (or regular map) of affine algebraic schemes over𝑘 is a morphism of 𝑘-ringed spaces (it is automatically a morphism of locally ringed
spaces).

10.28. The functor 𝐴 ⇝ Spm(𝐴) is a contravariant equivalence from the category
of 𝑘-algebras to the category of affine algebraic schemes over 𝑘, with quasi-inverse(𝑉,𝒪𝑉) ⇝ 𝒪𝑉(𝑉). In particularHom(𝐴, 𝐵) ≃ Hom(Spm(𝐵), Spm(𝐴))
for all 𝑘-algebras 𝐴 and 𝐵. (Same proof as for 3.24, 3.25.)
10.29. Let 𝑀 be an 𝐴-module. There is a unique sheaf ℳ of 𝒪𝑉-modules on 𝑉 def=Spm(𝐴) with the following properties,
(a) for every basic open subset 𝐷 of 𝑉,ℳ(𝐷) = 𝑆−1𝐷 𝑀, and
(b) for every pair 𝐷′ ⊂ 𝐷 of basic open subsets, the restriction mapℳ(𝐷) → ℳ(𝐷′)

is the map 𝑆−1𝐷 𝑀 → 𝑆−1𝐷′𝑀 defined by the inclusion 𝑆𝐷 ⊂ 𝑆𝐷′ .
A sheaf of 𝒪𝑉-modules on 𝑉 is said to be coherent if it is isomorphic toℳ for some
finitely generated𝐴-module𝑀. The functor𝑀 ⇝ℳ is an equivalence from the category
of finitely generated 𝐴-modules to the category of coherent 𝒪𝑉-modules — it has quasi-
inverseℳ ⇝ℳ(𝑉). Under this equivalence, finitely generated projective 𝐴-modules
correspond to locally free 𝒪𝑉-modules of finite rank (CA 12.6).

10.30. For fields𝐾 ⊃ 𝑘, the Zariski topology on𝐾𝑛 induces that on 𝑘𝑛. In order to prove
this, we have to show (a) that every closed subset 𝑆 of 𝑘𝑛 is of the form 𝑇 ∩ 𝑘𝑛 for some
closed subset 𝑇 of 𝐾𝑛, and (b) that 𝑇 ∩ 𝑘𝑛 is closed for every closed subset of 𝐾𝑛.
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(a) Let 𝑆 = 𝑉(𝑓1, … , 𝑓𝑚) with the 𝑓𝑖 ∈ 𝑘[𝑋1, … , 𝑋𝑛]. Then𝑆 = 𝑘𝑛 ∩ {zero set of 𝑓1, … , 𝑓𝑚 in 𝐾𝑛}.
(b) Let 𝑇 = 𝑉(𝑓1, … , 𝑓𝑚) with the 𝑓𝑖 ∈ 𝐾[𝑋1, … , 𝑋𝑛]. Choose a basis (𝑒𝑗)𝑗∈𝐽 for 𝐾

as a 𝑘-vector space,2 and write 𝑓𝑖 = ∑𝑒𝑗𝑓𝑖𝑗 (finite sum) with 𝑓𝑖𝑗 ∈ 𝑘[𝑋1, … , 𝑋𝑛].
Then 𝑉(𝑓𝑖) ∩ 𝑘𝑛 = {zero set of the family (𝑓𝑖𝑗)𝑗∈𝐽 in 𝑘𝑛}
for each 𝑖, and so 𝑇 ∩ 𝑘𝑛 is the zero set in 𝑘𝑛 of the family (𝑓𝑖𝑗).

Aside 10.31. Let 𝑉 be a Zariski-closed subset of 𝑘𝑛 and 𝑉̄ its closure in (𝑘al)𝑛. Do 𝑉 and 𝑉̄ have
the same dimension (as noetherian topological spaces)? The answer is yes, if 𝑘 of characteristic0 and large in the following sense: every irreducible curve over 𝑘 with a smooth 𝑘-point has
infinitely many 𝑘-points. See mo479691.
c. Algebraic schemes

10.32. Let (𝑉,𝒪𝑉) be a 𝑘-ringed space. An open subset 𝑈 of 𝑉 is said to be affine
if (𝑈,𝒪𝑉|𝑈) is an affine algebraic scheme over 𝑘. An algebraic scheme over 𝑘 is a𝑘-ringed space (𝑉,𝒪𝑉) that admits a finite covering by open affines. Amorphism of
algebraic schemes (usually called a regular map) over 𝑘 is a morphism of 𝑘-ringed
spaces. We often let 𝑉 denote the algebraic scheme (𝑉,𝒪𝑉) and |𝑉| the underlying
topological space of 𝑉. When the base field 𝑘 is understood, we write “algebraic scheme”
for “algebraic scheme over 𝑘”.

The local ring at a point 𝑃 of 𝑉 is denoted by 𝒪𝑉,𝑃 or just 𝒪𝑃, and the residue field
at 𝑃 is denoted by 𝜅(𝑃). For example, if 𝑉 = Spm𝐴 and 𝑃 = 𝔪, then 𝒪𝑃 = 𝐴𝔪 and𝜅(𝑃) = 𝐴∕𝔪.

10.33. An algebraic scheme 𝑉 is said to be integral if it is reduced and irreducible. For
example, Spm(𝐴) is integral if and only if 𝐴 is an integral domain. If 𝑉 is integral, then𝒪𝑉(𝑈) is an integral domain for all open affine subsets 𝑈 of 𝑉.
10.34. A regular map 𝜑∶ 𝑊 → 𝑉 of algebraic schemes is said to be surjective (resp.
injective, open, closed, dominant) if the map |𝜑|∶ |𝑊| → |𝑉| of the underlying
topological spaces is surjective (resp. injective, open, closed, dominant, i.e., has dense
image).3 Note that the conditions depend only on the underlying topological spaces.

10.35. Let 𝑉 be an algebraic scheme over 𝑘, and let 𝐴 be a 𝑘-algebra. By definition,
a morphism 𝜑∶ 𝑉 → Spm(𝐴) gives a homomorphism 𝜑♮∶ 𝐴 → 𝒪𝑉(𝑉) of 𝑘-algebras
(𝒪𝑉(𝑉) is not necessarily finitely generated). In this way, we get an isomorphism (cf. 5.11)𝜑 ↔ 𝜑♮∶ Mor𝑘(𝑉, Spm𝐴) ≃ Hom𝑘-algebra(𝐴,𝒪𝑉(𝑉)). (2)

10.36. Let 𝑉 be an algebraic scheme over 𝑘. If 𝑉 is affine, say, 𝑉 = Spm(𝐴), then the
closed subsets of |𝑉| correspond to radical ideals in 𝐴, and hence satisfy the descending
chain condition. In the general case, 𝑉 is a finite union of open affines, and so its closed
subsets satisfy the descending chain condition. In other words, |𝑉| is a noetherian
topological space. It follows that |𝑉| can be written as a finite union of closed irreducible

2This may require the axiom of choice.
3These definitions are from EGA I, 2.3.3.

https://mathoverflow.net/questions/479691/
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subsets, |𝑉| = 𝑊1 ∪ ⋯ ∪ 𝑊𝑟; when we discard any 𝑊𝑖 contained in another, the
collection {𝑊1, … ,𝑊𝑟} is uniqely determined, and its elements are called the irreducible
components of 𝑉 (2.31).

A noetherian topological space has only finitely many connected components, each
open and closed, and it is a disjoint union of them.

10.37. For an algebraic scheme 𝑉 over 𝑘 and 𝑘-algebra 𝑅, we let𝑉(𝑅) = Hom(Spm(𝑅), 𝑉).
For example, if 𝑉 = Spm(𝐴), then 𝑉(𝑅) = Hom(𝐴, 𝑅) (homomorphisms of 𝑘-algebras).
The elements of 𝑉(𝑅) are called the 𝑅-points of 𝑉 (or the points of 𝑉 with coordinates
in 𝑅). To give a 𝑘-point of 𝑉 is the same as giving a point 𝑃 of |𝑉| such that 𝜅(𝑃) = 𝑘.
We often identify 𝑉(𝑘) with the set of such 𝑃,𝑉(𝑘) = {𝑃 ∈ |𝑉| ∣ 𝜅(𝑃) = 𝑘}.

For a ring 𝑅 containing 𝑘, we define𝑉(𝑅) = lim,,→𝑉(𝑅𝑖),
where𝑅𝑖 runs over the (finitely generated)𝑘-subalgebras of𝑅. Again𝑉(𝑅) = Hom𝑘(𝐴, 𝑅)
if 𝑉 = Spm(𝐴). Then 𝑅 ⇝ 𝑉(𝑅) is a functor from 𝑘-algebras (not necessarily finitely
generated) to sets.

10.38. Let 𝑉 be an algebraic scheme. An 𝒪𝑉-moduleℳ is said to be coherent if, for
every open affine subset 𝑈 of 𝑉, the restriction ofℳ to 𝑈 is coherent (10.29). It suffices
to check this condition for the sets in an open affine covering of 𝑉. Similarly, a sheaf ℐ
of ideals in 𝒪𝑉 is coherent if its restriction to every open affine subset 𝑈 is the subsheaf
of 𝒪𝑉|𝑈 defined by an ideal in the ring 𝒪𝑉(𝑈).
Subschemes

10.39 (open subschemes). Let𝑉 be an algebraic scheme over 𝑘. An open subscheme
of 𝑉 is a pair (𝑈,𝒪𝑉|𝑈) with 𝑈 open in 𝑉. It is again an algebraic scheme over 𝑘. To
give an open subscheme of 𝑉 is the same as giving an open subset of |𝑉|.
10.40 (closed subschemes). Let 𝑉 = Spm(𝐴) be an affine algebraic scheme over 𝑘,
and let 𝔞 be an ideal in𝐴. Then Spm(𝐴∕𝔞) is an affine algebraic scheme with underlying
topological space 𝑉(𝔞).

Let 𝑉 be an algebraic scheme over 𝑘, and let ℐ be a coherent sheaf of ideals in 𝒪𝑉 .
The support of the sheaf 𝒪𝑉∕ℐ is a closed subset 𝑍 of 𝑉 (13.5), and (𝑍, (𝒪𝑉∕ℐ)|𝑍) is an
algebraic scheme, called the closed subscheme of 𝑉 defined by the sheaf of ideals ℐ.
Note that if 𝑈 is an open affine of 𝑉, then 𝑍 ∩ 𝑈 is an open affine 𝑍.

The closed subschemes of an algebraic scheme satisfy the descending chain condition.
To see this, consider a chain of closed subschemes𝑍 ⊃ 𝑍1 ⊃ 𝑍2 ⊃ ⋯
of an algebraic scheme 𝑉. Because |𝑉| is noetherian (10.36), the chain |𝑍| ⊃ |𝑍1| ⊃|𝑍2| ⊃ ⋯ becomes constant, and so we may suppose that |𝑍| = |𝑍1| = ⋯. Write 𝑍 as a
finite union of open affines, 𝑍 = ⋃𝑈𝑖. For each 𝑖, the chain 𝑍 ∩ 𝑈𝑖 ⊃ 𝑍1 ∩ 𝑈𝑖 ⊃ ⋯ of
closed subschemes of 𝑈𝑖 corresponds to an ascending chain of ideals in the noetherian
ring 𝒪𝑍(𝑈𝑖), and therefore becomes constant.
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10.41 (subschemes). A subscheme of an algebraic scheme 𝑉 is a closed subscheme
of an open subscheme of 𝑉. Its underlying set is locally closed in 𝑉 (i.e., open in its
closure). Equivalently, it is the intersection of an open subset with a closed subset).

10.42. A regular map 𝜑∶ 𝑊 → 𝑉 is said to be an immersion if it induces an isomor-
phism from𝑊 onto a subscheme 𝑍 of 𝑉. If 𝑍 is open (resp. closed), then 𝜑 is called an
open (resp. closed) immersion.

Reduced schemes

10.43. For a ring 𝐴, the map𝐴 →∏𝔪𝐴𝔪 (product over the maximal ideals of 𝐴)
is injective. To see this, let 𝑎 map to zero, and let 𝔞 be the annihilator of 𝑎. As 𝑎 maps to
zero in 𝐴𝔪, 𝔞 contains an element of 𝐴 ∖ 𝔪. Therefore the ideal 𝔞 is not contained in
any maximal ideal of 𝐴, and so 𝔞 = 𝐴. This implies that 𝑎 = 0.

If 𝐴 is reduced, then 𝑆−1𝐴 is reduced for any multiplicative subset 𝑆 of 𝐴. It follows
from the above remark that a ring 𝐴 is reduced if and only if 𝐴𝔪 is reduced for all
maximal ideals𝔪 in 𝐴.

An algebraic scheme 𝑉 is said to be reduced if 𝒪𝑉,𝑃 is reduced for all 𝑃 ∈ 𝑉. For
example, Spm(𝐴) is reduced if and only if 𝐴 is reduced. If 𝑉 is reduced, then 𝒪𝑉(𝑈) is
reduced for all open affine subsets 𝑈 of 𝑉.
10.44. Let 𝑉 be an algebraic scheme over 𝑘. There is a unique reduced algebraic sub-
scheme 𝑉red of 𝑉 with the same underlying topological space as 𝑉. For example, if𝑉 = Spm(𝐴), then 𝑉red = Spm(𝐴∕𝔫) where 𝔫 is the nilradical of 𝐴.

Every regular map𝑊 → 𝑉 from a reduced scheme𝑊 to 𝑉 factors uniquely through
the inclusion map 𝑖 ∶ 𝑉red → 𝑉. In particular,𝑉red(𝑅) ≃ 𝑉(𝑅) (3)

if 𝑅 is a reduced 𝑘-algebra, for example, a field.
Every locally closed subset𝑊 of |𝑉| carries a unique structure of a reduced sub-

scheme of 𝑉; we write𝑊red for𝑊 equipped this structure.☡ Passage to the associated reduced scheme does not commute with extension of the
base field. For example, an algebraic scheme 𝑉 over 𝑘 may be reduced without 𝑉𝑘al
being reduced (see p. 8 for the example 𝑋𝑝 + 𝑌𝑝 = 𝑎).
Fibred products of algebraic schemes

10.45. Let 𝜑∶ 𝑉 → 𝑍 and 𝜓∶ 𝑊 → 𝑍 be regular maps of algebraic schemes over 𝑘.
Then the functor𝑅 ⇝ 𝑉(𝑅) ×𝑍(𝑅) 𝑊(𝑅) def= {(𝑥, 𝑦) ∈ 𝑉(𝑅) ×𝑊(𝑅) ∣ 𝜑(𝑥) = 𝜓(𝑦)}
is representable by an algebraic scheme𝑉×𝑍𝑊 over 𝑘, and𝑉×𝑍𝑊 is the fibred product
of (𝜑, 𝜓) in the category of algebraic 𝑘-schemes, i.e., the diagram𝑉 ×𝑍 𝑊 𝑊

𝑉 𝑍.

←→←→ ←→ 𝜓← →𝜑
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is cartesian, Hom(𝑇, 𝑉 ×𝑍 𝑊) ≃ Hom(𝑇, 𝑉) ×Hom(𝑇,𝑍) Hom(𝑇,𝑊).
For example, if 𝑅 → 𝐴 and 𝑅 → 𝐵 are homomorphisms of 𝑘-algebras, then 𝐴⊗𝑅 𝐵 is a
finitely generated 𝑘-algebra, andSpm(𝐴) ×Spm(𝑅) Spm(𝐵) = Spm(𝐴 ⊗𝑅 𝐵).

When 𝜑 and 𝜓 are the structure maps 𝑉 → Spm(𝑘) and𝑊 → Spm(𝑘), the fibred
product becomes the product, denoted 𝑉 ×𝑊, andHom(𝑇, 𝑉 ×𝑊) ≃ Hom(𝑇, 𝑉) × Hom(𝑇,𝑊).
The diagonal map ∆𝑉 ∶ 𝑉 → 𝑉 × 𝑉 is the regular map whose composites with the
projectionmaps equal the identity map of𝑉. When𝑉 is affine, ∆𝑉 is a closed immersion;
in general, it is only an immersion (cf. 5.26).

Let 𝜑∶ 𝑊 → 𝑉 be a regular map of algebraic schemes over 𝑘. The fibre 𝜑−1(𝑃) of 𝜑
over 𝑃 is defined to be the fibred product,

𝑊 𝑊 ×𝑉 𝑃 def= 𝜑−1(𝑃)
𝑉 𝑃= Spm(𝜅(𝑃)).←→ 𝜑 ←→ ←→←→

Thus, it is an algebraic scheme over the field 𝜅(𝑥), which need not be reduced even if
both 𝑉 and𝑊 are reduced.

10.46. For a pair of regular maps 𝜑1, 𝜑2∶ 𝑉 → 𝑊, the functor𝑅 ⇝ {𝑥 ∈ 𝑉(𝑅) ∣ 𝜑1(𝑥) = 𝜑2(𝑥)}
is represented by a fibred product,

∆𝑊 ×𝑊×𝑊 𝑉 𝑉
∆𝑊 𝑊 ×𝑊.←→ ← → ←→ (𝜑1,𝜑2)← →

The subscheme ∆𝑊 ×𝑊×𝑊 𝑉 of 𝑉 is called the equalizer Eq(𝜑1, 𝜑2) of 𝜑1 and 𝜑2. Its
underlying set is {𝑥 ∈ |𝑉| ∣ 𝜑1(𝑥) = 𝜑2(𝑥)}.
10.47. The intersection of two closed subschemes 𝑍1 and 𝑍2 of an algebraic scheme𝑉 is defined to be 𝑍1 ×𝑉 𝑍2 regarded as a closed subscheme of 𝑉 with underlying set|𝑍1| ∩ |𝑍2|. For example, if 𝑉 = Spm(𝐴), 𝑍1 = Spm(𝐴∕𝔞1), and 𝑍1 = Spm(𝐴∕𝔞2), then𝑍1 ∩ 𝑍2 = Spm(𝐴∕𝔞1 + 𝔞2). This definition extends in an obvious way to finite, or even
infinite, sets of closed subschemes. Because 𝑉 has the descending chain condition on
closed subschemes (10.40), every infinite intersection is equal to a finite intersection.
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Separated schemes

10.48. An algebraic scheme 𝑉 over 𝑘 is said to be separated4 if, for any pair of regular
maps𝜑1, 𝜑2∶ 𝑊 → 𝑉, the subset of |𝑊| onwhich𝜑1 and𝜑2 agree is closed (soEq(𝜑1, 𝜑2)
is a closed subscheme of𝑊).

For example, affine algebraic schemes are separated (cf. 5.6).

10.49. The following conditions on an algebraic scheme 𝑉 are equivalent:
(a) 𝑉 is separated;
(b) the diagonal in 𝑉 × 𝑉 is closed (so ∆𝑉 is a closed immersion);
(c) for every pair of open affines 𝑈,𝑈′ in 𝑉, 𝑈 ∩𝑈′ is an open affine subset of 𝑉, and

the homomorphism𝑓 ⊗ 𝑔 ↦ 𝑓|𝑈∩𝑈′ ⋅ 𝑔|𝑈∩𝑈′ ∶ 𝒪𝑉(𝑈) ⊗ 𝒪𝑉(𝑈) → 𝒪𝑉(𝑈 ∩ 𝑈′)
is surjective;

(d) the condition in (c) holds for the sets in some open covering of 𝑉.
See the proofs of 5.25 and 5.28.

Extension of the base field (extension of scalars)

10.50. Let 𝐾 be a field containing 𝑘. There is a functor 𝑉 ⇝ 𝑉𝐾 from algebraic schemes
over 𝑘 to algebraic schemes over𝐾. For example, if𝑉 = Spm(𝐴), then𝑉𝐾 = Spm(𝐾⊗𝐴).
If 𝑉 is separated and (𝑈𝑖)𝑖∈𝐼 is a finite covering of 𝑉 by open affines, then 𝑉𝐾 is obtained
by patching together the affine schemes𝑈𝑖𝐾 using the open immersions of affine schemes(𝑈𝑖 ∩ 𝑈𝑗)𝐾 → 𝑈𝑖𝐾 .
d. Algebraic varieties

10.51. An affine 𝑘-algebra5 is a 𝑘-algebra 𝐴 such that 𝑘al ⊗𝐴 is reduced; in particular,𝐴 itself is reduced. If 𝐴 is an affine 𝑘-algebra and 𝐵 is a reduced ring containing 𝑘, then𝐴 ⊗ 𝐵 is reduced (10.13); in particular 𝐴 ⊗ 𝐾 is reduced for all fields 𝐾 containing 𝑘.
The tensor product of two affine 𝑘-algebras is affine (𝑘al ⊗𝑘 𝐴 is reduced if 𝐴 is affine,
and then 𝑘al ⊗𝑘 𝐴 ⊗𝑘 𝐵 is reduced if 𝐵 is also affine). When 𝑘 is a perfect field, every
reduced 𝑘-algebra is affine (10.12).
10.52. An algebraic scheme 𝑉 is said to be geometrically reduced if 𝑉𝑘al is reduced.
For example, Spm(𝐴) is geometrically reduced if and only if 𝐴 is an affine 𝑘-algebra.
If 𝑉 is geometrically reduced, then 𝑉𝐾 is reduced for all fields 𝐾 containing 𝑘. If 𝑉 is
geometrically reduced and 𝑊 is reduced (resp. geometrically reduced), then 𝑉 × 𝑊
is reduced (resp. geometrically reduced). If 𝑘 is perfect, then every reduced algebraic
scheme over 𝑘 is geometrically reduced. These statements all follow from the affine case
(10.51).

4The first edition of EGA I, required a scheme to be separated — otherwise it was called a prescheme.
This was changed in the second edition and now, universally, a scheme is not required to be separated.

5Some authors define an affine 𝑘-algebra to be a reduced finitely generated 𝑘-algebra because these are
the rings of functions on algebraic subsets. However, this class of rings is not closed under the formation of
tensor products or extension of the base field.
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10.53. An algebraic variety over 𝑘 is an algebraic scheme over 𝑘 that is both separated
and geometrically reduced. Algebraic varieties remain algebraic varieties under exten-
sion of the base field, and products of algebraic varieties are again algebraic varieties.☡ The fibred product of two algebraic varieties over an algebraic variety need not be an
algebraic variety. Consider, for example,𝔸1 𝔸1 ×𝔸1 {𝑎} = Spm(𝑘[𝑋]∕(𝑋𝑝 − 𝑎))

𝔸1 {𝑎}.←→𝑥↦𝑥𝑝 ←→ ←→←→

Fibred products computed in the category of algebraic varieties may differ from those
computed in the category of algebraic schemes. Similar statements apply to intersections
of subvarieties. For example, over a field of characteristic 2, the intersection of the
diagonal in GL2 with SL2 is trivial in the category of algbraic varieties but is𝜇2 def= Spm(𝑘[𝑋]∕(𝑋2 − 1))
in the category of algebraic schemes.

e. The dimension of an algebraic scheme

10.54. Let 𝐴 be a noetherian ring (not necessarily a 𝑘-algebra). Recall that the height
of a prime ideal 𝔭 is the greatest length 𝑑 of a chain of distinct prime ideals𝔭 = 𝔭𝑑 ⊃ ⋯ ⊃ 𝔭1 ⊃ 𝔭0.
Let 𝔭 be minimal among the prime ideals containing an ideal (𝑎1, … , 𝑎𝑚); thenheight(𝔭) ≤ 𝑚.
Conversely, if height(𝔭) = 𝑚, then there exist 𝑎1, … , 𝑎𝑚 ∈ 𝔭 such that 𝔭 is minimal
among the prime ideals containing (𝑎1, … , 𝑎𝑚). (3.52, 3.53, or CA 21.6, 21.7).

The (Krull) dimension of 𝐴 is sup{height(𝔭)}, where 𝔭 runs over the prime ideals of𝐴 (or just the maximal ideals — the two are obviously the same). Clearly, the dimension
of a local ring with maximal ideal𝔪 is the height of𝔪, and for a general noetherian
ring 𝐴, dim(𝐴) = sup(dim(𝐴𝔪)).
Since all prime ideals of 𝐴 contain the nilradical𝔑 of 𝐴, we havedim(𝐴) = dim(𝐴∕𝔑).
10.55. Let 𝐴 be a finitely generated 𝑘-algebra, and assume that 𝐴∕𝔑 is an integral do-
main. According to the Noether normalization theorem (2.45), 𝐴 contains a polynomial
ring 𝑘[𝑥1, … , 𝑥𝑟] such that 𝐴 is a finitely generated 𝑘[𝑥1, … , 𝑥𝑟]-module. We call 𝑟 the
transcendence degree of 𝐴 over 𝑘— it is equal to the transcendence degree of the field
of fractions of 𝐴∕𝔑 over 𝑘. The length of every maximal chain of distinct prime ideals
in 𝐴 is tr deg𝑘(𝐴). In particular, every maximal ideal in 𝐴 has height tr deg𝑘(𝐴), and so𝐴 has dimension tr deg𝑘(𝐴). The proofs of these facts in Section 2m and Section 3l do
not require that 𝑘 be algebraically closed.
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10.56. Let 𝑉 be an irreducible algebraic scheme over 𝑘. The dimension of 𝑉 is the
length of one (hence every) maximal chain of irreducible closed subschemes𝑉 = 𝑉0 ⊃ ⋯ ⊃ 𝑉𝑑.
It is equal to the Krull dimension of 𝒪𝑉,𝑥, all 𝑥 ∈ |𝑉|, and to the Krull dimension of𝒪𝑉(𝑈), all open affines 𝑈 in 𝑉. We have dim(𝑉) = dim(𝑉red), and if 𝑉 is reduced, thendim(𝑉) is equal to the transcendence degree of 𝑘(𝑉) over 𝑘.

An affine algebraic scheme 𝑉 = Spm(𝐴) is irreducible if and only if 𝐴∕𝔑 is an
integral domain. In this case, the statements follow from (10.55). The general case
follows easily.

The dimension of a reducible algebraic scheme over 𝑘 is defined to be the maximum
dimension of an irreducible component. When the irreducible components all have the
same dimenions, the scheme is said to be equidimensional.

10.57. Let 𝑉 an irreducible algebraic variety. Let 𝑈 be an open affine in 𝑉, and let𝐴 = 𝒪𝑉(𝑈). Then 𝐴 is an integral domain, and it satisfies the equivalent conditions
of 10.12. In particular, 𝐴 is linearly disjoint from 𝑘1∕𝑝 over 𝑘.Therefore, its field of
fractions 𝑘(𝑉) is linearly disjoint from 𝑘1∕𝑝 over 𝑘, and so 𝑘(𝑉) is a regular extension
of 𝑘 (10.11). Thus 𝑘(𝑉) admits a separating transcendence basis over 𝑘. This means
that 𝑉 is birationally equivalent to a hypersurface 𝑓(𝑇1, … , 𝑇𝑑+1), 𝑑 = dim𝑉, such that𝜕𝑓∕𝜕𝑇𝑑+1 ≠ 0 (cf. 3.37). It follows that the points 𝑥 in 𝑉 such that 𝜅(𝑥) is separable over𝑘 form a dense subset of |𝑉|. In particular, 𝑉(𝑘) is dense in |𝑉| if 𝑘 is separably closed.
f. Tangent spaces and cones; regular and smooth points

10.58. Let 𝐴 be a noetherian local ring with maximal ideal𝔪. The dimension of 𝐴 is
the height of𝔪, and so (10.55),dim𝐴 ≤ minimum number of generators for𝔪.

When equality holds, 𝐴 is said to be regular. Nakayama’s lemma (1.3) shows that a set
of elements of𝔪 generates𝔪 if and only if it spans the 𝑘-vector space𝔪∕𝔪2, where𝑘 = 𝐴∕𝔪. Therefore dim(𝐴) ≤ dim𝑘(𝔪∕𝔪2)
with equality if and only if 𝐴 is regular. Every regular local ring is a unique factorization
domain; in particular, it is an integrally closed domain. See Matsumura 1989, 20.3.

10.59. Let 𝑉 be an algebraic scheme over 𝑘. A point 𝑃 ∈ |𝑉| is regular if 𝒪𝑉,𝑃 is a
regular local ring. The scheme 𝑉 is regular if every point is regular. A connected regular
algebraic scheme is integral, but not necessarily geometrically reduced.

10.60. Let 𝑘[𝜀] be the ring of dual numbers (so 𝜀2 = 0), and let𝑉 be an algebraic scheme
over 𝑘. From the 𝑘-algebra homomorphism 𝜀 ↦ 0∶ 𝑘[𝜀] → 𝑘, we get a map𝑉(𝑘[𝜀]) → 𝑉(𝑘).
The fibre of this over a point 𝑃 ∈ 𝑉(𝑘) is the tangent space 𝑇𝑃(𝑉) of 𝑉 at 𝑃. Thus 𝑇𝑃(𝑉)
is defined for all 𝑃 ∈ |𝑉| with 𝜅(𝑃) = 𝑘. To give a tangent vector at 𝑃 amounts to giving
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a local homomorphism 𝛼∶ 𝒪𝑉,𝑃 → 𝑘[𝜀] of 𝑘-algebras. Such a homomorphism can be
written 𝛼(𝑓) = 𝑓(𝑃) + 𝐷𝛼(𝑓)𝜀, 𝑓 ∈ 𝒪𝑃, 𝑓(𝑃), 𝐷𝛼(𝑓) ∈ 𝑘,
and 𝐷𝛼 is a 𝑘-derivation𝒪𝑃 → 𝑘, which induces a 𝑘-linear map𝔪∕𝔪2 → 𝑘. In this way,
we get canonical isomorphisms𝑇𝑃(𝑉) ≃ Der𝑘(𝒪𝑃, 𝑘) ≃ Hom𝑘-linear(𝔪∕𝔪2, 𝑘). (4)

The formation of the tangent space commutes with extension of the base field:𝑇𝑃(𝑉𝑘′) ≃ 𝑇𝑃(𝑉)𝑘′ .
10.61. Let 𝑉 be an irreducible algebraic scheme over 𝑘, and let 𝑃 be a point on 𝑉 such
that 𝜅(𝑃) = 𝑘. Then dim𝑇𝑃(𝑉) ≥ dim𝑉
with equality if and only if 𝑃 is regular (10.58).
10.62. Let 𝑉 be an irreducible closed subscheme of 𝔸𝑛, say,𝑉 = Spm𝐴, 𝐴 = 𝑘[𝑋1, … , 𝑋𝑛]∕𝔞, 𝔞 = (𝐹1, … , 𝐹𝑟).
Consider the Jacobian matrix

𝐽 = Jac(𝐹1, … , 𝐹𝑟) = ⎛⎜⎜⎜⎝
𝜕𝐹1𝜕𝑋1 , … , 𝜕𝐹1𝜕𝑋𝑛⋮ ⋮𝜕𝐹𝑟𝜕𝑋1 , … , 𝜕𝐹𝑟𝜕𝑋𝑛

⎞⎟⎟⎟⎠ .
Let 𝑑 = dim𝑉. The singular locus 𝑉sing of 𝑉 is the closed subscheme of 𝑉 defined by
the (𝑛 − 𝑑) × (𝑛 − 𝑑)minors of this matrix.

For example, if𝑉 is the hypersurface defined by the polynomial 𝐹(𝑋1, … , 𝑋𝑑+1), then
Jac(𝐹) = ( 𝜕𝐹𝜕𝑋1 , … , 𝜕𝐹𝜕𝑋𝑑+1 ) ∈ 𝑀1,𝑑+1(𝐴),

and the singular locus is the closed subscheme of 𝑉 defined by the equations𝜕𝐹𝜕𝑋1 = 0,… , 𝜕𝐹𝜕𝑋𝑑+1 = 0.
10.63. Let 𝑉 be an affine algebraic variety over 𝑘. The choice of closed immersion of 𝑉
into an affine space determines a closed subscheme 𝑉sing of 𝑉 which is independent of
the embedding. For a general algebraic scheme 𝑉 over 𝑘, the singular locus is defined
to be the closed subscheme 𝑉sing of 𝑉 such that 𝑉sing ∩ 𝑈 = 𝑈sing for every open affine𝑈 of 𝑉. In the next section, we shall see that 𝑉sing is the complement of the open set
where the sheaf Ω𝑉∕𝑘 of differentials is locally free of rank dim(𝑉).

From its definition, one sees that the formation of 𝑉sing commutes with exension of
the base field, (𝑉sing)𝑘′ = (𝑉𝑘′)sing.
Under the canonical bijection 𝑉(𝑘al) ≃ 𝑉𝑘al(𝑘al)|, the elements of 𝑉sing(𝑘al) correspond
to the singular points of 𝑉𝑘al(𝑘al) (those such that dim𝑇𝑃(𝑉) > dim𝑉).
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10.64. Let 𝑉 be an algebraic scheme over 𝑘. A point 𝑃 of 𝑉 is singular or nonsingular
according as 𝑃 lies in the singular locus or not, and 𝑉 is nonsingular (=smooth) or
singular according as 𝑉sing is empty or not. If 𝑃 is such that 𝜅(𝑃) = 𝑘, then 𝑃 is
nonsingular if and only if it is regular. A smooth variety is regular, and a regular variety
is smooth if 𝑘 is perfect. In general,

𝑉 nonsingular ⇐⇒ 𝑉𝑘al nonsingular⇓ ⇓𝑉 regular ̸⇐⇒ 𝑉𝑘al regular.
10.65. Let𝑉 be geometrically reduced and irreducible. Then𝑉 is birationally equivalent
to a hypersurface 𝑓(𝑇1, … , 𝑇𝑑+1) = 0 with 𝜕𝑓∕𝜕𝑇𝑑+1 ≠ 0 (see 10.57). It follows that the
singular locus of 𝑉 is a proper closed subscheme of 𝑉 (10.62).

Aside 10.66. An algebraic scheme 𝑉 over a field 𝑘 is smooth if and only if, for all 𝑘-algebras 𝑅
and ideals 𝐼 in 𝑅 such that 𝐼2 = 0, the map 𝑉(𝑅) → 𝑉(𝑅∕𝐼) is surjective.
Tangent cones

Now that we are allowing nilpotents, we can give a more satisfactory definition of the
tangent cone: the tangent cone of a 𝑘-point on an algebraic variety (or scheme) is an
algebraic scheme.

Definition 10.67. Let 𝑉 be the curve in 𝔸2 defined by a polynomial 𝐹(𝑋, 𝑌) without
square factors. If (0, 0) ∈ 𝑉(𝑘), we define the tangent cone at (0, 0) to be

𝐶𝑃(𝑉) = Spm(𝑘[𝑋, 𝑌[∕(𝐹∗),
where 𝐹∗ is the leading form of 𝐹. To obtain the tangent cone at any other 𝑘-point,
translate to the origin, and then translate back.

Example 10.68. See p. 86 for more examples.

Curve Tangent Cone𝑋3 + 𝑋2 − 𝑌2 𝑋2 − 𝑌2 pair of line 𝑌 = ±𝑋𝑋3 − 𝑋2 − 𝑌2 𝑋2 + 𝑌2 Spm𝑘[𝑋, 𝑌]∕(𝑋2 + 𝑌2)𝑋3 − 𝑌2 𝑌2 Spm𝑘[𝑋, 𝑌]∕(𝑌2)
In each case, the curve is integral but its cone is reducible (first curve), becomes reducible
after a field extension (second case), or is nonreduced (third case).
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𝑋3 + 𝑋2 − 𝑌2

𝑃 tangent cone

𝑋3 − 𝑌2

𝑃 tangent cone

Definition 10.69. Let 𝑉 be closed algebraic subscheme of 𝔸𝑚, and let 𝔞 = 𝐼(𝑉). As-
sume that 𝑃 = (0, … , 0) ∈ 𝑉(𝑘). Define 𝔞∗ to be the ideal generated by the leading forms𝐹∗ of the polynomials 𝐹 ∈ 𝔞. We define the tangent cone to 𝑉 at 𝑃 to be𝐶𝑃(𝑉) = Spm(𝑘[𝑋1, … , 𝑋𝑚]∕𝔞∗.

Let 𝐴 be a local ring with maximal ideal 𝔫. The associated graded ringgr(𝐴) =⨁
𝑖≥0 𝔫𝑖∕𝔫𝑖+1.

Note that, if 𝐴 = 𝐵𝔪 and 𝔫 = 𝔪𝐴, then gr(𝐴) = ⨁𝑖≥0𝔪𝑖∕𝔪𝑖+1 (because of 1.15).
Proposition 10.70. The homomorphism of 𝑘-algebras𝑘[𝑋1, … , 𝑋𝑛]∕𝔞∗ → gr(𝒪𝑃)
sending the class of 𝑋𝑖 in 𝑘[𝑋1, … , 𝑋𝑛]∕𝔞∗ to the class of 𝑋𝑖 in gr(𝒪𝑃) is an isomorphism.
Proof. See 4.34.

Definition 10.71. Let 𝑉 be an algebraic scheme over 𝑘, and let 𝑃 ∈ 𝑉(𝑘). The tangent
cone to 𝑉 at 𝑃 is 𝐶𝑃(𝑉) = Spm(gr(𝒪𝑃)).

Because of Proposition 10.70, the three definitions are consistent.

10.72. The dimension of the tangent cone at 𝑃 equals the dimension of 𝑉 because the
Krull dimension of a noetherian local ring is equal to that of its graded ring (Matsumura
1989, Theorem 13.9). Moreover, gr(𝒪𝑃) is a polynomial ring in dim𝑉 variables if and
only if 𝒪𝑃 is regular (ibid., Exercise 19.1). Let 𝑃 ∈ 𝑉(𝑘). Then𝑃 is nonsingular ⇐⇒ 𝑇𝑃(𝑉) = 𝑘dim𝑉 ⇐⇒ 𝐶𝑃(𝑉) = 𝔸dim𝑉 .
10.73. A regular map 𝜑∶ 𝑉 → 𝑊 sending 𝑃 to 𝑄 induces a homomorphism gr(𝒪𝑄) →gr(𝒪𝑃), and hence a map 𝐶𝑃(𝑉) → 𝐶𝑄(𝑉) of the tangent cones. We say that 𝜑 is étale at𝑃 if gr(𝒪𝑄) → gr(𝒪𝑃) is an isomorphism. When 𝑃 and 𝑄 are nonsingular points, this
just says that the map 𝑑𝜑∶ 𝑇𝑃(𝑉) → 𝑇𝑄(𝑊) on tangent spaces is an isomorphism.
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g. Sheaves of differentials

Let 𝐴 be a 𝑘-algebra, and let𝑀 be an 𝐴-module. Recall (from §5) that a 𝑘-derivation is a𝑘-linear map 𝐷∶ 𝐴 → 𝑀 satisfying Leibniz’s rule:𝐷(𝑓𝑔) = 𝑓 ⋅ 𝐷𝑔 + 𝑔 ⋅ 𝐷𝑓, all 𝑓, 𝑔 ∈ 𝐴.
Definition 10.74. A pair (Ω1𝐴∕𝑘, 𝑑) comprising an 𝐴-module Ω1𝐴∕𝑘 and a 𝑘-derivation𝑑∶ 𝐴 → Ω1𝐴∕𝑘 is called the module of differential one-forms for 𝐴 over 𝑘 if it has
the following universal property: for any 𝑘-derivation 𝐷∶ 𝐴 → 𝑀, there is a unique𝐴-linear map 𝛼∶ Ω1𝐴∕𝑘 →𝑀 such that 𝐷 = 𝛼◦𝑑,

𝐴 Ω1
𝑀.

← →𝑑← →𝐷 ←→ ∃! 𝐴-linear
Thus, Der𝑘(𝐴,𝑀) ≃ Hom𝐴-linear(Ω1𝐴∕𝑘,𝑀)).
It can be defined to be the free 𝐴-module with basis the symbols 𝑑𝑓, 𝑓 ∈ 𝐴, modulo the
relations 𝑑(𝑓 + 𝑔) = 𝑑𝑓 + 𝑑𝑔, 𝑑(𝑓𝑔) = 𝑓 ⋅ 𝑑𝑔 + 𝑔 ⋅ 𝑑𝑓, 𝑑𝑐 = 0 if 𝑐 ∈ 𝑘.
Example 10.75. Let 𝐴 = 𝑘[𝑋1, ..., 𝑋𝑛]; then Ω1𝐴∕𝑘 is the free 𝐴-module with basis the
symbols 𝑑𝑋1, ..., 𝑑𝑋𝑛, and 𝑑𝑓 = ∑ 𝜕𝑓𝜕𝑋𝑖 𝑑𝑋𝑖.
Example 10.76. Let𝐴 = 𝑘[𝑋1, ..., 𝑋𝑛]∕𝔞; thenΩ1𝐴∕𝑘 is the free𝐴-module with basis the
symbols 𝑑𝑋1, ..., 𝑑𝑋𝑛 modulo the relations:𝑑𝑓 = 0 for all 𝑓 ∈ 𝔞.
Example 10.77. A homomorphism 𝐴 → 𝐴′ of 𝑘-algebras gives rise to an isomorphism𝐴′ ⊗𝐴 Ω1𝐴∕𝑘 → Ω1𝐴′∕𝑘.
In particular, for any multiplicative subset 𝑆 of 𝐴, we have canonical isomorphisms𝑆−1Ω1𝐴∕𝑘 ≃ 𝑆−1𝐴⊗𝐴 Ω1𝐴∕𝑘 ≃ Ω1𝑆−1𝐴∕𝑘.
Proposition 10.78. Let 𝑉 be an algebraic scheme over 𝑘. There is a unique sheaf of𝒪𝑉-modulesΩ1𝑉∕𝑘 on 𝑉 such thatΩ1𝑉∕𝑘(𝑈) = Ω1𝒪𝑉(𝑈)∕𝑘 for every open affine𝑈 of 𝑉.
Proof. When 𝑉 is affine, say, 𝑉 = Spm𝐴, then 10.77 shows that the coherent sheaf of𝒪𝑉-modules defined by the 𝐴-module Ω1𝐴∕𝑘 has the required properties. In the general
case, the open affines form a base for the topology on 𝑉, and the statement follows from
10.5 (this is easier if 𝑉 is separated). 2
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The sheaf Ω1𝑉∕𝑘 is called the sheaf of differential 1-forms on 𝑉.
Example 10.79. Let 𝐸 be the affine curve𝑌2 = 𝑋3 + 𝑎𝑋 + 𝑏,
and assume that 𝑋3 + 𝑎𝑋 + 𝑏 has no repeated roots (so that 𝐸 is nonsingular). Write 𝑥
and 𝑦 for the regular functions on 𝐸 defined by 𝑋 and 𝑌. On the open set 𝐷(𝑦) where𝑦 ≠ 0, let 𝜔1 = 𝑑𝑥∕𝑦, and on the open set 𝐷(3𝑥2 + 𝑎), let 𝜔2 = 2𝑑𝑦∕(3𝑥2 + 𝑎). Since𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 2𝑦𝑑𝑦 = (3𝑥2 + 𝑎)𝑑𝑥.
and so 𝜔1 and 𝜔2 agree on 𝐷(𝑦) ∩ 𝐷(3𝑥2 + 𝑎). Since 𝐸 = 𝐷(𝑦) ∪ 𝐷(3𝑥2 + 𝑎), we see
that there is a differential 𝜔 on 𝐸 that restricts to 𝜔1 on 𝐷(𝑦) and 𝜔2 on 𝐷(3𝑥2 + 𝑎). It
is an easy exercise in working with projective coordinates to show that 𝜔 extends to a
differential one-form on the whole projective curve𝑌2𝑍 = 𝑋3 + 𝑎𝑋𝑍2 + 𝑏𝑍3.
In fact, Ω1𝐶∕𝑘(𝐶) is a one-dimensional vector space over 𝑘, with 𝜔 as basis. Note that𝜔 = 𝑑𝑥∕𝑦 = 𝑑𝑥∕(𝑥3 + 𝑎𝑥 + 𝑏)1∕2,
which cannot be integrated in terms of elementary functions. Integrals of the form ∫ 𝜔
arise when computing the arc length of an ellipse, and are called elliptic integrals. The
study of elliptic integrals was one of the starting points for the study of algebraic curves.

In general, if 𝐶 is a complete nonsingular absolutely irreducible curve of genus 𝑔,
then Ω1𝐶∕𝑘(𝐶) is a vector space of dimension 𝑔 over 𝑘.
Proposition 10.80. Let 𝑉 be an irreducible variety over 𝑘. There exists a nonempty open
subvariety𝑈 of 𝑉 such thatΩ1𝑉∕𝑘|𝑈 is free of rank dim𝑉 and dim𝜅(𝑣)(Ω1𝑉∕𝑘(𝑣)) > dim𝑉
if 𝑣 ∉ |𝑈|.
Proof. We may suppose that 𝑘 is algebraically closed. For 𝑃 ∈ 𝑉(𝑘), we haveHom𝒪𝑃(Ω1𝒪𝑃∕𝑘.𝑘) ≃ Der𝑘(𝒪𝑝, 𝑘) ≃ 𝑇𝑃(𝑉).
Thus, dim𝑘(Ω1𝑉∕𝑘(𝑃)) = dim𝑘 𝑇𝑃(𝑉).
It follows from 13.6 (Chapter 13), that Ω1𝑉∕𝑘 is locally free of rank dim𝑉 over the open
subset of 𝑉 consisting of the nonsingular points, and at the remaining points it has fibre
of dimension > dim𝑉. 2

h. Algebraic schemes as functors

This section is a brief survey, which the reader can skip.
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10.81. Recall that 𝖠𝗅𝗀𝑘 is the category of finitely generated 𝑘-algebras. For a 𝑘-algebra 𝐴,
let ℎ𝐴 denote the functor 𝑅 ⇝ Hom(𝐴, 𝑅) from 𝑘-algebras to sets. A functor 𝐹∶ 𝖠𝗅𝗀𝑘 →𝖲𝖾𝗍 is said to be representable if it is isomorphic to ℎ𝐴 for some 𝑘-algebra 𝐴. A pair(𝐴, 𝑎), 𝑎 ∈ 𝐹(𝐴), is said to represent 𝐹 if the natural transformation𝑇𝑎 ∶ ℎ𝐴 → 𝐹, (𝑇𝑎)𝑅(𝑓) = 𝐹(𝑓)(𝑎),
is an isomorphism. Thismeans that, for each𝑥 ∈ 𝐹(𝑅), there is a unique homomorphism𝐴 → 𝑅 such that 𝐹(𝐴) → 𝐹(𝑅) sends 𝑎 to 𝑥. The element 𝑎 is said to be universal. For
example, (𝐴, id𝐴) represents ℎ𝐴. If (𝐴, 𝑎) and (𝐴′, 𝑎′) both represent 𝐹, then there is a
unique isomorphism 𝐴 → 𝐴′ sending 𝑎 to 𝑎′.
10.82 (Yoneda lemma). Let 𝐵 be a 𝑘-algebra and let 𝐹 be a functor 𝖠𝗅𝗀𝑘 → 𝖲𝖾𝗍. An
element 𝑥 ∈ 𝐹(𝐵) defines a homomorphismHom(𝐵, 𝑅) → 𝐹(𝑅)
sending an 𝑓 to the image of 𝑥 under 𝐹(𝑓). This homomorphism is natural in 𝑅, and so
we have a map of sets 𝐹(𝐵) → 𝖭𝖺𝗍(ℎ𝐵, 𝐹).
The Yoneda lemma (q.v. Wikipedia) says that this is a bijection, natural in both 𝐵 and 𝐹.
For 𝐹 = ℎ𝐴, it becomes Hom(𝐴, 𝐵) ≃ 𝖭𝖺𝗍(ℎ𝐵, ℎ𝐴).
In other words, the contravariant functor 𝐴 ⇝ ℎ𝐴 is fully faithful. Its essential image
consists of the representable functors.

10.83. Let ℎ𝑉 denote the functorHom(−,𝑉) from algebraic schemes over 𝑘 to sets. The
Yoneda lemma in this situation says that, for algebraic schemes 𝑉,𝑊,Hom(𝑉,𝑊) ≃ Nat(ℎ𝑉 , ℎ𝑊).
Let ℎaf f𝑉 denote the functor 𝑅 ⇝ 𝑉(𝑅)∶ 𝖠𝗅𝗀𝑘 → 𝖲𝖾𝗍. Then ℎaf f𝑉 = ℎ𝑉◦ Spm, and can be
regarded as the restriction of ℎ𝑉 to affine algebraic schemes.

Let 𝑉 and𝑊 be algebraic schemes over 𝑘. Every natural transformation ℎaf f𝑉 → ℎaf f𝑊
extends uniquely to a natural transformation ℎ𝑉 → ℎ𝑊 ,Nat(ℎaf f𝑉 , ℎaf f𝑊 ) ≃ Nat(ℎ𝑉 , ℎ𝑊),
and so Hom(𝑉,𝑊) ≃ Nat(ℎaf f𝑉 , ℎaf f𝑊 ).
In other words, the functor𝑉 ⇝ ℎaf f𝑉 is fully faithful. We shall also refer to this statement
as the Yoneda lemma. It allows us to identify an algebraic scheme over 𝑘 with its “points-
functor” 𝖠𝗅𝗀𝑘 → 𝖲𝖾𝗍.
10.84. A morphism 𝜑∶ 𝑉 → 𝑊 of functors is amonomorphism if 𝜑(𝑅) is injective
for all 𝑅. A morphism 𝜑 is an open immersion if it is open and a monomorphism
(Demazure and Gabriel 1970, I, §1, 3.6, p. 10). Let 𝜑∶ 𝑉 → 𝑊 be a regular map of
algebraic schemes. If 𝑉̃ → 𝑊̃ is a monomorphism, then it is injective (ibid., 5.1, p. 24). If𝑉 is irreducible and 𝑉̃ → 𝑊̃ is a monomorphism, then there exists a dense open subset𝑈 of 𝑉 such that 𝜑|𝑈 is an immersion.
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Aside 10.85. Originally algebraic geometers considered algebraic varieties 𝑉 over algebraically
closed fields 𝑘. Here it sufficed to consider the set 𝑉(𝑘) of 𝑘-points. Later algebraic geometers
considered algebraic varieties 𝑉 over arbitrary fields 𝑘. Here 𝑉(𝑘) does not tell you much about𝑉 (it is often empty), and so people worked with 𝑉(𝐾) where 𝐾 is some (large) algebraically
closed field containing 𝑘. For algebraic schemes, even 𝑉(𝐾) is inadequate because it does not
detect nilpotents. This suggests that we consider 𝑉(𝑅) for all 𝑘-algebras, i.e., we consider the
functor 𝑉∶ 𝑅 ⇝ 𝑉(𝑅) defined by 𝑉. This certainly determines 𝑉 but leads to set-theoretic
difficulties — putting a condition on 𝑉̃ involves quantifying over a proper class, and, in general,
the natural transformations from one functor on 𝑘-algebras to a second functor form a proper
class. These difficulties vanish when one restricts to 𝑘-algebras that are small in some sense.
From this point-of-view, an algebraic scheme over 𝑘 is determined by the functor it defines on
small 𝑘-algebras, and it defines a functor on all 𝑘-algebras.
A criterion for a functor to arise from an algebraic scheme

By a functor in this subsection we mean a functor 𝖠𝗅𝗀𝑘 → 𝖲𝖾𝗍. A subfunctor 𝑈 of a
functor 𝑉 is open if, for all maps 𝜑∶ ℎ𝐴 → 𝑉, the subfunctor 𝜑−1(𝑈) of ℎ𝐴 is defined by
an open subscheme of Spm(𝐴). A family (𝑈𝑖)𝑖∈𝐼 of open subfunctors of 𝑉 is an open
covering of 𝑉 if each 𝑈𝑖 is open in 𝑉 and 𝑉 = ⋃𝑈𝑖(𝐾) for every field 𝐾. A functor 𝑉 is
local if, for all 𝑘-algebras 𝑅 and all finite families (𝑓𝑖)𝑖 of elements of 𝐴 generating the
ideal 𝐴, the sequence of sets𝑉(𝑅) →∏𝑖 𝑉(𝑅𝑓𝑖 ) ⇉∏𝑖,𝑗 𝑉(𝑅𝑓𝑖𝑓𝑗 )
is exact.

Let 𝔸1 denote the functor sending a 𝑘-algebra 𝑅 to its underlying set. For a functor𝑈, let 𝒪(𝑈) = Hom(𝑈,𝔸1)— it is a 𝑘-algebra. A functor 𝑈 is affine if 𝒪(𝑈) is finitely
generated and the canonical map 𝑈 → ℎ𝒪(𝑈) is an isomorphism.
10.86. A local functor admitting a finite covering by open affines is representable by an
algebraic scheme (i.e., it is of the form 𝑉̃ for an algebraic scheme 𝑋).

This is the definition of a scheme in Demazure and Gabriel 1970, I, §1, 3.11, p. 12.

i. Projective space; Grassmanians

10.87. The condition that 𝑘 be algebraically closed in Section 6k (The functor defined
by projective space) and Section 6m (Grassmann varieties) is unnecessary.

j. Dense points; dense subschemes

Because we allow nilpotents in the structure sheaf, a morphism 𝑉 → 𝑊 of algebraic
schemes is not in general determined by its effect on 𝑉(𝑘), even when 𝑘 is algebraically
closed. We introduce some terminology to handle this.

Definition 10.88. Let 𝑉 be an algebraic scheme over 𝑘. We say that a subset 𝑆 of 𝑉(𝑘)
is schematically dense in 𝑉 if the only closed subscheme 𝑍 of 𝑉 such that 𝑆 ⊂ 𝑍(𝑘) is𝑉 itself.

For example, let 𝑉 = Spm(𝐴), and let 𝑆 be a subset of 𝑉(𝑘). A closed subscheme𝑍 = Spm(𝐴∕𝔞) of 𝑉 is such that 𝑆 ⊂ 𝑍(𝑘) if and only if 𝔞 ⊂ 𝔪 for all𝔪 ∈ 𝑆. Therefore,𝑆 is schematically dense in 𝑉 if and only if
⋂{𝔪 ∣ 𝔪 ∈ 𝑆} = {0}.
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Proposition 10.89. Let 𝑉 be an algebraic scheme over 𝑘 and 𝑆 a subset of 𝑉(𝑘) ⊂ |𝑉|.
The following conditions are equivalent:

(a) 𝑆 is schematically dense in 𝑉;
(b) 𝑉 is reduced and 𝑆 is dense in |𝑉|;
(c) the family of homomorphisms𝑓 ↦ 𝑓(𝑠)∶ 𝒪𝑉 → 𝜅(𝑠) = 𝑘, 𝑠 ∈ 𝑆,

is injective, i.e., 𝑓 = 0 if 𝑓(𝑠) = 0 for all 𝑠 ∈ 𝑆.
Proof. (a)⇒(b). Let 𝑆̄ denote the closure of 𝑆 in |𝑉|. There is a unique reduced sub-
scheme 𝑍 of 𝑉 with underlying space 𝑆̄ (10.44). As 𝑆 ⊂ |𝑍|, the scheme 𝑍 = 𝑉, and so𝑉 is reduced with underlying space 𝑆̄.

(b)⇒(c). Let 𝑈 be an open affine subscheme of 𝑉, and let 𝐴 = 𝒪𝑉(𝑈). Let 𝑓 ∈ 𝐴 be
such that 𝑓(𝑠) = 0 for all 𝑠 ∈ 𝑆 ∩ |𝑈|. Then 𝑓(𝑢) = 0 for all 𝑢 ∈ |𝑈| because 𝑆 ∩ |𝑈| is
dense in |𝑈|. This means that 𝑓 lies in all maximal ideals of 𝐴, and so lies in the radical
of 𝐴 (10.21), which is zero because 𝑉 is reduced.

(c)⇒(a). Let 𝑍 be a closed subscheme of 𝑉 such that 𝑆 ⊂ 𝑍(𝑘). Because 𝑍 is
closed in 𝑉, the homomorphism 𝒪𝑉 → 𝒪𝑍 is surjective. Because 𝑆 ⊂ 𝑍(𝑘), the maps𝑓 ↦ 𝑓(𝑠)∶ 𝒪𝑉 → 𝜅(𝑠), 𝑠 ∈ 𝑆, factor through 𝒪𝑍 , and so 𝒪𝑉 → 𝒪𝑍 is injective, hence an
isomorphism, which implies that 𝑍 = 𝑉. 2

Proposition 10.90. A schematically dense subset remains schematically dense under
extension of the base field.

Proof. Let 𝑘′ be a field containing 𝑘, and let 𝑆 ⊂ 𝑉(𝑘) be schematically dense in 𝑉.
We may suppose that 𝑉 is affine, say, 𝑉 = Spm(𝐴). Let 𝑠′∶ 𝐴 ⊗ 𝑘′ → 𝑘′ be the map
obtained from 𝑠 ∶ 𝐴 → 𝜅(𝑠) = 𝑘 by extension of scalars. The family 𝑠′, 𝑠 ∈ 𝑆, is injective
because the family 𝑠, 𝑠 ∈ 𝑆, is injective and 𝑘′ is flat over 𝑘. 2

Corollary 10.91. If 𝑉 admits a schematically dense subset 𝑆 ⊂ 𝑉(𝑘), then it is geometri-
cally reduced.

Proof. When regarded as a subset of 𝑉(𝑘al), 𝑆 is schematically dense in 𝑉𝑘al , which is
therefore reduced (10.89). 2

Proposition 10.92. Let 𝑢, 𝑣∶ 𝑉 ⇉ 𝑊 be morphisms from 𝑉 to a separated algebraic
scheme𝑊 over 𝑘. If 𝑆 is schematically dense in 𝑉 and 𝑢(𝑠) = 𝑣(𝑠) for all 𝑠 ∈ 𝑆, then 𝑢 = 𝑣.
Proof. Because𝑊 is separated, the equalizer of the pair of maps is closed in 𝑉 (10.48).
As its underlying space contains 𝑆, it equals 𝑉. 2

Definition 10.93. Let 𝑉 be an algebraic scheme over a field 𝑘, and let 𝑘′ be a field
containing 𝑘. We say that𝑉(𝑘′) is schematically dense in𝑉 if the only closed subscheme𝑍 of 𝑉 such that 𝑍(𝑘′) = 𝑉(𝑘′) is 𝑉 itself.

Proposition 10.94. If 𝑉(𝑘′) is schematically dense in 𝑉, then 𝑉 is reduced. Conversely,
if 𝑉(𝑘′) is dense in |𝑉𝑘′| and 𝑉 is geometrically reduced, then 𝑉(𝑘′) is schematically dense
in 𝑉.
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Proof. Recall (10.44) that𝑉red is the (unique) reduced subscheme of𝑉 with underlying
space |𝑉|. Moreover 𝑉red(𝑘′) = 𝑉(𝑘′), and so 𝑉red = 𝑉 if 𝑉(𝑘′) is schematically dense
in 𝑉.

Conversely, suppose that 𝑉 is geometrically reduced and 𝑉(𝑘′) is dense in |𝑉𝑘′|. Let𝑍 be a closed subscheme of 𝑉 such that 𝑍(𝑘′) = 𝑉(𝑘′). Then |𝑍𝑘′| = |𝑉𝑘′| by the density
condition. This implies that 𝑍𝑘′ = 𝑉𝑘′ because 𝑉𝑘′ is reduced, which in turn implies
that 𝑍 = 𝑉 (see 10.156 below). 2

Corollary 10.95. If 𝑉 is geometrically reduced and 𝑘′ ⊃ 𝑘 is separably closed, then𝑉(𝑘′) is schematically dense in 𝑉.
Proof. By a standard result (10.57), 𝑉(𝑘′) is dense in |𝑉𝑘′|. 2

Corollary 10.96. Let 𝑍 and 𝑍′ be closed subvarieties of an algebraic scheme 𝑉 over 𝑘. If𝑍(𝑘′) = 𝑍′(𝑘′) for some separably closed field 𝑘′ containing 𝑘, then 𝑍 = 𝑍′.
Proof. The closed subscheme 𝑍 ∩ 𝑍′ of 𝑍 has the property that (𝑍 ∩ 𝑍′)(𝑘′)= 𝑍(𝑘′), and so 𝑍 ∩ 𝑍′ = 𝑍. Similarly, 𝑍 ∩ 𝑍′ = 𝑍′. 2

Thus, a closed subvariety 𝑍 of𝑉 is determined by the subset 𝑍(𝑘sep) of𝑉(𝑘sep). More
explicitly, if 𝑉 = Spm(𝐴) and 𝑍 = Spm(𝐴∕𝔞), then 𝔞 is the set of 𝑓 ∈ 𝐴 such that𝑓(𝑃) = 0 for all 𝑃 ∈ 𝑍(𝑘sep).
k. Finite schemes; connected components

Recall that an 𝑅-algebra 𝐴 is said to be finite if it is finitely generated as an 𝑅-module.
Finite algebraic schemes

Proposition 10.97. The following conditions on a finitely generated 𝑘-algebra 𝐴 are
equivalent:

(a) 𝐴 is artinian;

(b) 𝐴 has Krull dimension zero;

(c) 𝐴 is a finite 𝑘-algebra;
(d) spm(𝐴) is discrete (in which case it is finite).

Proof. (a)⇔(b). Because finitely generated, 𝐴 is noetherian, and hence artinian if and
only if of dimension zero (CA 16.6).

(b)⇒(c). According to the Noether normalization theorem (2.45), there exist alge-
braically independent elements 𝑥1, … , 𝑥𝑟 in 𝐴 such that 𝐴 is finite over 𝑘[𝑥1, … , 𝑥𝑟]. As𝑘[𝑥1, … , 𝑥𝑟] has Krull dimension 𝑟 (2.55) and dim𝑘[𝑥1, … , 𝑥𝑟] ≤ dim𝐴 (1.54), we see
that (b) implies that 𝑟 = 0 and that 𝐴 is finite over 𝑘.

(c)⇒(a). Because 𝐴 is finite-dimensional as a 𝑘-vector space, any descending chain
of subspaces (a fortiori, ideals) terminates.

(d)⇒(b). Let𝔪 be amaximal ideal in𝐴. As {𝔪} is open in spm(𝐴), it equals spm(𝐴𝑓)
for some 𝑓 ∈ 𝐴. Every prime ideal in 𝐴𝑓 is an intersection of maximal ideals (CA 13.11),
and hence equals𝔪. It follows that no prime ideal of 𝐴 is properly contained in𝔪. As
this is true of all maximal ideals in 𝐴, its dimension is zero.
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(a)⇒(d). Because 𝐴 is artinian, it has only finitely many maximal ideals𝔪1, … ,𝔪𝑟,
and some product, say, 𝔪𝑛11 ⋯𝔪𝑛𝑟𝑟 , equals 0 (CA §16). According Theorem 1.1, 𝐴 ≃𝐴∕𝔪𝑛11 × ⋯ × 𝐴∕𝔪𝑛𝑟𝑟 and so spm(𝐴) = ⨆spm(𝐴∕𝔪𝑛𝑖𝑖 ) = ⨆{𝔪𝑖} (disjoint union of
open one-element sets). 2

Proposition 10.98. The following conditions on an algebraic scheme 𝑉 over 𝑘 are equiv-
alent:

(a) 𝑉 is affine and 𝒪𝑉(𝑉) is a finite 𝑘-algebra;
(b) 𝑉 has dimension zero;

(c) |𝑉| is discrete (in which case it is finite).
Proof. The implications (a)⇒(b)⇒(c) follow immediately from 10.97. It remains to
prove that (c)⇒(a). If |𝑉| is discrete, then (by 10.97) every open affine subscheme is
a finite disjoint union 𝑈 = ⨆Spm(𝐴𝑖) with 𝐴𝑖 a finite local 𝑘-algebra. Therefore, the
same is true of 𝑉, say, 𝑉 = ⨆Spm(𝐴𝑗) = Spm(∏𝐴𝑗), and∏𝐴𝑗 is a finite 𝑘-algebra.2

An algebraic scheme over 𝑘 is finite if it satisfies the equivalent conditions of 10.98.
Finite algebraic varieties (étale schemes)

We summarize part of Chapter 8 of Milne 2022 (=FT).

Definition 10.99. A 𝑘-algebra 𝐴 is diagonalizable if it is isomorphic to the product
algebra 𝑘𝑛 for some 𝑛 ∈ ℕ, and it is étale if 𝑘′ ⊗𝐴 is diagonalizable for some field 𝑘′
containing 𝑘.

In particular, an étale 𝑘-algebra is finite.
10.100 (FT 8.6, 8.7). The following conditions on a finite 𝑘-algebra 𝐴 are equivalent:
(a) 𝐴 is étale;
(b) 𝐴 is a product of separable field extensions of 𝑘;
(c) 𝑘′ ⊗𝐴 is reduced for all fields 𝑘′ containing 𝑘 (i.e., 𝐴 is an affine 𝑘-algebra);
(d) 𝑘sep ⊗𝐴 is diagonalizable.

10.101 (FT 8.8). A 𝑘-algebra 𝑘[𝑇]∕(𝑓(𝑋)) is étale if and only if 𝑓 is separable, i.e., has
no multiple roots. Every étale 𝑘-algebra is a finite product of such algebras.
10.102 (FT 8.9, 8.10, 8.11). Finite products, tensor products, and quotients of diagonal-
izable (resp. étale) 𝑘-algebras are diagonalizable (resp. étale). The composite of any finite
set of étale subalgebras of a 𝑘-algebra is étale. If 𝐴 is étale over 𝑘, then 𝑘′ ⊗𝐴 is étale
over 𝑘′ for every field 𝑘′ containing 𝑘.
Definition 10.103. An algebraic scheme over 𝑘 is étale if it is affine and 𝒪𝑉(𝑉) is an
étale 𝑘-algebra.

Almost by definition, a finite 𝑘-algebra is étale if and only if the ring 𝑘al⊗𝐴 reduced.
It follows from (10.98) that the étale algebraic schemes over 𝑘 are exactly the algebraic
varieties of dimension zero.



k. Finite schemes; connected components 27

10.104 (FT 8.23). Let 𝑘sep be a separable closure of 𝑘, and let 𝛤 = Gal(𝑘sep∕𝑘). By a𝛤-set we meet a set 𝑆 equipped with an action of 𝛤. A 𝛤-set 𝑆 is discrete if the action𝛤 × 𝑆 → 𝑆 is continuous relative to the Krull topology on 𝛤 and the discrete topology on𝑆. If 𝑉 is a zero-dimensional variety over 𝑘, then 𝑉(𝑘sep) is a finite discrete 𝛤-set, and
the functor 𝑉 ⇝ 𝑉(𝑘sep) (5)

is an equivalence from the category of zero-dimensional algebraic varieties over 𝑘 to the
category of finite discrete 𝛤-sets.
The algebraic variety of connected components of an algebraic scheme

Let 𝑓 be a nontrivial idempotent in a ring 𝐴, i.e., 𝑓2 = 𝑓 and 𝑓 ≠ 0, 1. As idempotents
in integral domains are trivial, each prime ideal in 𝐴 contains exactly one of 𝑓 or 1 − 𝑓.
Therefore spm(𝐴) is a disjoint union of the closed-open subsets𝐷(𝑓) and𝐷(1−𝑓). More
generally, let 𝑉 be an algebraic scheme over 𝑘. Then𝒪(𝑉) is a 𝑘-algebra (not necessarily
finitely generated), and a nontrivial idempotent in 𝒪(𝑉) decomposes 𝑉 into a disjoint
union of two nonempty closed-open subsets.

Proposition 10.105. Let 𝑉 be an algebraic scheme over 𝑘. There exists a largest étale𝑘-subalgebra 𝜋(𝑉) in 𝒪(𝑉).
Proof. Let 𝐴 be an étale subalgebra of 𝒪(𝑉). Then 𝐴⊗ 𝑘sep ≃ (𝑘sep)𝑛 for some 𝑛, and
so 1 = 𝑓1 +⋯+ 𝑓𝑛
with the 𝑓𝑖 orthogonal idempotents in 𝒪(𝑉𝑘sep). The 𝑓𝑖 decompose |𝑉𝑘sep| into a disjoint
union of 𝑛 closed-open subsets, and so 𝑛 is not more than the number of connected
components of |||𝑉𝑘sep |||. Thus the number [𝐴∶ 𝑘] = [𝐴 ⊗ 𝑘sep∶ 𝑘sep] is bounded. It
follows that the composite of all étale 𝑘-subalgebras of 𝒪(𝑉) is an étale 𝑘-subalgebra
which contains all others. 2

Define 𝜋0(𝑉) = Spm(𝜋(𝑉)).
Under the canonical isomorphism (see 10.35)Hom𝑘-algebra(𝜋(𝑉), 𝒪(𝑉)) ≃ Hom𝑘-scheme(𝑉, Spm(𝜋(𝑉))),
the inclusion 𝜋(𝑉) → 𝒪(𝑉) corresponds to a morphism 𝜑∶ 𝑉 → 𝜋0(𝑉), which is
universal among morphisms from 𝑉 to an étale 𝑘-scheme.
Proposition 10.106. Let 𝑉 be an algebraic scheme over 𝑘.
(a) For all fields 𝑘′ containing 𝑘, 𝜋0(𝑉𝑘′) ≃ 𝜋0(𝑉)𝑘′ .
(b) Let𝑊 be a second algebraic scheme over 𝑘. Then𝜋0(𝑉 ×𝑊) ≃ 𝜋0(𝑉) × 𝜋0(𝑊).
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Proof. (a) Let 𝜋 = 𝜋(𝒪(𝑉)) and 𝜋′ = 𝜋(𝒪(𝑉𝑘′)). Then 𝜋 ⊗ 𝑘′ ⊂ 𝜋′, and it remains to
prove equality.

Suppose first that 𝑘′ = 𝑘sep, and let 𝛤 = Gal(𝑘sep∕𝑘). By uniqueness, 𝜋′ is stable
under 𝛤, and by Galois theory (FT, 7.13), 𝜋′𝛤 is étale over 𝑘 and 𝜋′𝛤 ⊗ 𝑘′ ≃ 𝜋′. On the
other hand 𝜋 ⊂ 𝜋′𝛤 , and so 𝜋 = 𝜋′𝛤 by maximality. Hence 𝜋 ⊗ 𝑘′ ≃ 𝜋′.

Now suppose that 𝑘 = 𝑘sep and 𝑘′ = 𝑘al. If 𝑘al ≠ 𝑘, then 𝑘 has characteristic 𝑝 ≠ 0.
Let 𝑒1, … , 𝑒𝑚 be a basis for 𝜋′ as a 𝑘al-vector space consisting of idempotents, and let𝑒𝑗 = ∑𝑎𝑖 ⊗ 𝑐𝑖 with 𝑎𝑖 ∈ 𝒪(𝑉) and 𝑐𝑖 ∈ 𝑘al. For some 𝑟, all 𝑐𝑝𝑟𝑖 ∈ 𝑘. As 𝑒𝑗 is an
idempotent, 𝑒𝑗 = 𝑒𝑝𝑟𝑗 = ∑𝑎𝑝𝑟𝑖 ⊗ 𝑐𝑝𝑟𝑖 ∈ 𝒪(𝑉). Hence 𝜋 ⊗ 𝑘al ≃ 𝜋′.

Next suppose that 𝑘 and 𝑘′ are algebraically closed. We have to show that 𝑉 is
connected if and only if 𝑉𝑘′ is connected. If 𝜋′ = 𝑘′, then 𝜋 = 𝑘 because 𝜋 ⊗ 𝑘′ ⊂ 𝜋′.
Conversely, if 𝑉 is connected, then 𝑉𝑘′ is connected because |𝑉| is dense in |𝑉𝑘′|.

In the general case, let 𝑘al ⊂ 𝑘′al be algebraic closures of 𝑘 and 𝑘′. If 𝜋⊗𝑘′ ≠ 𝜋′ then𝜋⊗𝑘′⊗𝑘′ 𝑘′al ≠ 𝜋′⊗𝑘′ 𝑘′al, and so (𝜋⊗𝑘al)⊗𝑘al 𝑘′al ≠ 𝜋′⊗𝑘′ 𝑘′al. But this contradicts
the previous statements.

(b) After (a), we may suppose that 𝑘 = 𝑘al, and then we have to show that 𝑉 ×𝑊 is
connected if 𝑉 and𝑊 are. But 𝑉 ×𝑊 is a union of the connected subvarieties 𝑣 ×𝑊
and 𝑉 × 𝑤 with 𝑣 ∈ |𝑉| and 𝑤 ∈ |𝑊|, and so this is obvious. 2

If 𝜋(𝑉) is a field, then 𝒪(𝑉) has no nontrivial idempotents, and so 𝑉 is connected. If𝑘 is algebraically closed in6 𝒪(𝑉), then it is algebraically closed in𝜋(𝑉), and so𝜋(𝑉) = 𝑘;
in this case, 𝜋(𝑉𝑘al) = 𝑘al and 𝑉𝑘al is connected.
Proposition 10.107. Let 𝑉 be an algebraic scheme over 𝑘.
(a) The fibres of the map 𝜑∶ 𝑉 → 𝜋0(𝑉) are the connected components of 𝑉.
(b) For all 𝑣 ∈ |𝜋0(𝑉)|, the fibre 𝜑−1(𝑣) is a geometrically connected scheme over 𝜅(𝑣).

Proof. Let 𝑣 ∈ |𝜋0(𝑉)|. For the fibre 𝑉𝑣 = 𝜑−1(𝑣), we have 𝜋(𝑉𝑣) = 𝜅(𝑣). Therefore
the statements follow from the above discussion. 2

Corollary 10.108. Let 𝑉 be a connected algebraic scheme over 𝑘 such that 𝑉(𝑘) ≠ ∅.
Then 𝑉 is geometrically connected, and 𝑉 ×𝑊 is connected for any connected algebraic
scheme𝑊 over 𝑘.
Proof. By definition, 𝐴 = 𝜋(𝑉) is a finite product of separable field extensions of 𝑘. If𝐴 had more than one factor, 𝒪(𝑉) would contain a nontrivial idempotent, and 𝑉 would
not be connected. Therefore, 𝐴 is a field containing 𝑘. Because 𝑉(𝑘) is nonempty, there
is a 𝑘-homomorphism 𝐴 → 𝑘, and so 𝐴 = 𝑘. Now 𝑉𝑘al is connected (see the above
discussion). Moreover, 𝜋0(𝑉 ×𝑊) ≃ 𝜋0(𝑉) × 𝜋0(𝑊) ≃ 𝜋0(𝑊),
and so 𝑉 ×𝑊 is connected. 2

Remark 10.109. Let 𝑉 be an algebraic scheme over 𝑘.
(a) The connected components of 𝑉𝑘sep form a finite set on which Gal(𝑘sep∕𝑘) acts

continuously, and 𝜋0(𝑉) is the étale scheme over 𝑘 corresponding to this set under
the equivalence 𝑍 ⇝ 𝑍(𝑘sep) in (5).

6This means that an element 𝑎 of 𝒪(𝑉) lies in 𝑘 if 𝑓(𝑎) = 0 for some nonzero 𝑓(𝑋) ∈ 𝑘[𝑋].
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(b) For 𝑣 ∈ 𝜋0(𝑉), 𝜑−1(𝑣) → Spm(𝜅(𝑣)) is flat because 𝜅(𝑣) is a field. Therefore, the
morphism 𝜑∶ 𝑉 → 𝜋0(𝑉) is faithfully flat.

(c) The formation of 𝜑∶ 𝑉 → 𝜋0(𝑉) commutes with extension of the base field. This
is what the proof of 10.106 shows.

Summary 10.110. Let 𝑉 be an algebraic scheme over 𝑘. Among the regular maps from𝑉 to a zero-dimensional algebraic variety there is one 𝑉 → 𝜋0(𝑉) that is universal. The
fibres of the map 𝑉 → 𝜋0(𝑉) are the connected components of 𝑉. The map 𝑉 → 𝜋0(𝑉)
commutes with extension of the base field, and 𝜋0(𝑉×𝑊) ≃ 𝜋0(𝑉)×𝜋0(𝑊). The variety𝜋0(𝑉) is called the variety of connected components of 𝑉.
l. Properties of morphisms

In this section, we review the definitions of the different types of morphisms and their
properties. Most proofs in the first nine chapters generalize without difficulty to the new
situation.

Separated maps

10.111. For a regular map 𝑉 → 𝑆 of algebraic schemes over 𝑘, we define ∆𝑉∕𝑆 to be the
equalizer of the projection maps ∆𝑉 ⇉ 𝑆. It is a subscheme of 𝑉 ×𝑆 𝑉. The map 𝑉 → 𝑆
is said to be separated if ∆𝑉∕𝑆 is closed. For example, if 𝑉 is an algebraic scheme over 𝑘,
then ∆𝑉∕Spm(𝑘) = ∆𝑉 , and so the structure map 𝑉 → Spm(𝑘) is separated if and only if𝑉 is separated.

10.112. A regular map 𝜑∶ 𝑉 → 𝑆 is separated if there exists an open covering 𝑆 = ⋃𝑆𝑖
of 𝑆 such that 𝜑−1(𝑆𝑖) 𝜑,→ 𝑆𝑖 is separated for all 𝑖.
10.113. A regular map 𝜑∶ 𝑉 → 𝑆 is separated if 𝑉 and 𝑆 are separated. (As 𝑉 is
separated, the diagonal ∆𝑉 in 𝑉 × 𝑉 is closed; as 𝑆 is separated, the equalizer of the
projections ∆𝑉 ⇉ 𝑆 is closed.)
Affine maps

10.114. A regular map 𝜑∶ 𝑉 → 𝑆 is said to be affine if, for all open affines 𝑈 in 𝑆,𝜑−1(𝑈) is an open affine in 𝑉. It suffices to check the condition for the 𝑈 in an open
affine cover of 𝑉.
10.115. Every affine map is separated. (Affine algebraic schemes over 𝑘 are separated,
and so regular maps of affine algebraic schemes are separated (10.113). Therefore, this
follows from (10.112).)

Flat maps

A flat morphism is the algebraic analogue of a map whose fibres form a continuously varying
family. For example, a surjective morphism of smooth varieties is flat if and only if all fibres have
the same dimension (10.130). A finite morphism to a reduced algebraic scheme is flat if and
only if, over every connected component, all fibres have the same number of points (counting
multiplicities) (10.123). A flatmorphism of finite type of algebraic schemes is open, and surjective
flat morphisms are epimorphisms in a very strong sense (10.75).
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10.116. Recall from Section 9c: A homomorphism 𝐴 → 𝐵 of rings is flat if the functor𝑀 ⇝ 𝐵 ⊗𝐴 𝑀 of 𝐴-modules is exact. It is faithfully flat if, in addition,𝐵 ⊗𝐴 𝑀 = 0 ⇐⇒ 𝑀 = 0.
(a) If 𝑓∶ 𝐴 → 𝐵 is flat, then so also is 𝑆−1𝑓∶ 𝑆−1𝐴 → 𝑆−1𝐵 for any multiplicative

subsets 𝑆 of 𝐴.
(b) A homomorphism 𝑓∶ 𝐴 → 𝐵 is flat if and only if 𝐴𝑓−1(𝔫) → 𝐵𝔫 is flat for all

maximal ideals 𝔫 in 𝐵.
(c) Let 𝐴 → 𝐴′ be a homomorphism of rings. If 𝐴 → 𝐵 is flat (resp. faithfully flat),

then 𝐴′ → 𝐴′ ⊗ 𝐵 is flat (resp. faithfully flat).
(d) Faithfully flat homomorphisms are injective.

10.117. A regular map 𝜑∶ 𝑊 → 𝑉 of algebraic schemes over 𝑘 is said to be flat if, for
all 𝑤 ∈ |𝑊|, the map 𝒪𝑉,𝜑𝑤 → 𝒪𝑊,𝑤 is flat. A flat map 𝜑 is faithfully flat if it is flat
and |||𝜑||| is surjective.

For example, the map Spm(𝐵) → Spm(𝐴) defined by a homomorphism of 𝑘-algebras𝐴 → 𝐵 is flat (resp. faithfully flat) if and only if 𝐴 → 𝐵 is flat (resp. faithfully flat).
10.118. A flat map 𝜑∶ 𝑊 → 𝑉 of algebraic schemes is open, and hence universally
open.

10.119 (Generic flatness). Let 𝜑∶ 𝑊 → 𝑉 be a dominant map of algebraic schemes.
If 𝑉 is integral, there exists a dense open subset 𝑈 of 𝑉 such that 𝜑−1(𝑈) 𝜑,→ 𝑈 is
faithfully flat.

After passing to suitable open affine subschemes, we may suppose 𝜑 is defined by
a homomorphism 𝐴 → 𝐵 of finitely generated 𝑘-algebras with 𝐴 an integral domain.
According toCA, 11.21, there are nonzero elements𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that Spm𝐵𝑏 →Spm𝐴𝑎 is faithfully flat.
10.120. Let 𝜑∶ 𝑊 → 𝑉 be a regular map of algebraic schemes. If pr1∶ 𝑊 ×𝑉 𝑊 →𝑊
is faithfully flat, then so also is 𝜑.
Finite maps and quasi-finite maps

10.121. A regular map 𝜑∶ 𝑊 → 𝑉 of algebraic schemes over 𝑘 is finite if, for all open
affine 𝑈 ⊂ 𝑉, 𝜑−1(𝑈) is affine and 𝒪𝑊(𝜑−1(𝑈)) is a finite 𝒪𝑉(𝑈)-algebra. It suffices to
check the condition for 𝑈 in an open affine cover of 𝑉.

For example, the map Spm(𝐵) → Spm(𝐴) defined by a homomorphism of 𝑘-algebras𝐴 → 𝐵 is finite if and only if 𝐴 → 𝐵 is finite.
10.122. A regular map 𝜑∶ 𝑊 → 𝑉 of algebraic schemes over 𝑘 is quasi-finite if, for all𝑣 ∈ 𝑉, the fibre 𝜑−1(𝑣) is a finite scheme over 𝑘(𝑣) . Finite maps are quasi-finite.

For 𝑣 ∈ 𝑉, we let deg𝑣(𝜑) = dim𝑘(𝒪𝜑−1(𝑣)(𝜑−1(𝑣)).
For example, if 𝜑 is the map of affine algebraic schemes defined by a homomorphism of𝑘-algebras 𝐴 → 𝐵, then thendeg𝑣(𝜑) = dim𝑘 𝐵 ⊗𝐴 (𝐴∕𝔪𝑣).
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10.123. A regular map 𝜑∶ 𝑊 → 𝑉 of algebraic schemes with 𝑉 integral is flat if and
only if deg𝑣(𝜑) is independent of 𝑣 ∈ 𝑉.
10.124. Let 𝜑∶ 𝑊 → 𝑉 be a finite map of integral schemes. The degree of 𝜑 is the
degree of 𝑘(𝑊) over 𝑘(𝑉), and the separable degree of 𝜑 is the degree of the greatest
separable subextension of 𝑘(𝑊) over 𝑘(𝑉).
(a) For all 𝑣 ∈ 𝑉, deg𝑣(𝜑) ≤ deg(𝜑),

and the points 𝑣 for which equality holds form a dense open subset of 𝑉.
(b) Assume that 𝑘 is algebraically closed. For all 𝑣 ∈ 𝑉,# ||||𝜑−1(𝑣)|||| ≤ sep deg(𝜑),

and the points 𝑣 for which equality holds form a dense open subset of 𝑉.
10.125 (Zariski’s main theorem). Every separated map 𝜑∶ 𝑊 → 𝑉 factors into the
composite 𝑊 𝜄,→ 𝑊′ 𝜑′,→ 𝑉
of an open immersion 𝜄 and a finite map 𝜑′.
10.126. Let 𝜑∶ 𝑊 → 𝑉 be a quasi-finite map of integral algebraic schemes. If 𝜑 is
birational (i.e., of degree 1) and 𝑉 is normal, then 𝜑 is an open immersion.
The fibres of regular maps

Let 𝜑∶ 𝑊 → 𝑉 be a dominant map of integral schemes.

10.127. There exists a dense open subset𝑈 of𝑊 such that𝜑(𝑈) is open,𝑈 = 𝜑−1(𝜑(𝑈)),
and 𝑈 𝜑,→ 𝜑(𝑈) is flat.
10.128. Let 𝑃 ∈ 𝜑(𝑉). Thendim(𝜑−1(𝑃)) ≥ dim(𝑊) − dim(𝑉).
Equality holds for 𝑃 ∈ 𝜑(𝑈), where 𝑈 is as in 10.127.

In particular, equality holds for all 𝑃 ∈ 𝑉 if 𝜑 is faithfully flat.
10.129. Let 𝑆 be an irreducible closed subset of𝑉, and let𝑇 be an irreducible component
of 𝜑−1(𝑆) such that 𝜑(𝑇) is dense in 𝑆. Thendim(𝑇) ≥ dim(𝑆) + dim(𝑊) − dim(𝑉).
With 𝑈 as in 10.127, if 𝑆 intersects 𝜑(𝑈) and 𝑇 intersects 𝑈, then equality holds.
10.130. A surjective morphism of smooth algebraic 𝑘-schemes is flat (hence faithfully
flat) if its fibres all have the same dimension.
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Étale maps

Definition 10.131. A regularmap𝜑∶ 𝑊 → 𝑉 of algebraic schemes over 𝑘 is étale if (a)
it is flat and (b) for every 𝑣 ∈ |𝑉|, the fibre 𝜑−1(𝑣) over 𝑣 is an étale scheme (=algebraic
variety of dimension zero).

10.132. A regular map 𝜑∶ 𝑊 → 𝑉 of algebraic schemes over an algebraically closed
field 𝑘 is étale if and only the map 𝐶𝑄(𝑊) → 𝐶𝜑𝑄(𝑉) is an isomorphism for all 𝑄 ∈ |𝑊|.

Thus, for algebraic varieties over an algebraically closed field, Definition 10.131
agrees with those in Chapter V. There is much to be said about étale morphisms, but, for
the moment, we refer the reader to I.2 of my notes, Lectures on Étale Cohomology.

Smooth maps

Definition 10.133. A regular map 𝜑∶ 𝑊 → 𝑉 of algebraic schemes over 𝑘 smooth if
(a) it is flat and (b) for every 𝑣 ∈ |𝑉|, 𝜑−1(𝑣) is a smooth scheme (=nonsingular variety).
10.134. A regular map 𝜑∶ 𝑊 → 𝑉 is smooth if and only if it is locally of the form

𝑈 étale,→ 𝔸𝑛𝑉 → 𝑉,
i.e., every 𝑄 ∈ |𝑊| has an open neighbourhood 𝑈 such that 𝜑|𝑈 admits such a factor-
ization.

10.135. Let 𝐴 be a finitely generated 𝑘-algebra. The mapSpm(𝐴[𝑋1, … , 𝑋𝑛]∕(𝑃1, … , 𝑃𝑟)) → Spm𝐴
defined by the 𝑘-algebra homomorphism 𝐴 → 𝐴[𝑋1, … , 𝑋𝑛]∕(𝑃1, … , 𝑃𝑟) is smooth if
and only if the matrix ( 𝜕𝑃𝑖𝜕𝑋𝑗 (𝑎1, … 𝑎𝑛))
has rank 𝑟 for all (𝑎1, … , 𝑎𝑛) ∈ 𝐴𝑛. A regular map 𝜑∶ 𝑊 → 𝑉 is smooth if and only if it
is locally of this form, i.e., for all 𝑤 ∈ 𝑊, there are open affine neighbourhoods 𝑈′ of 𝑤
and 𝑈 of 𝜑(𝑤) such that 𝜑(𝑈′) ⊂ 𝑈 and the restriction of 𝜑 to 𝑈′ → 𝑈 is of the above
form.

10.136. A regular map 𝜑∶ 𝑊 → 𝑉 of algebraic schemes over an algebraically closed
field 𝑘 is smooth if and only if the map 𝐶𝑄(𝑊) → 𝐶𝜑𝑄(𝑉) is surjective for all 𝑄 ∈ |𝑊|.
In particular, if𝑊 and 𝑉 are smooth varieties, then 𝜑 is smooth if and only if it induces
surjective maps on the tangent spaces.

Separable maps

10.137. A dominant map 𝜑∶ 𝑊 → 𝑉 of integral algebraic schemes is separable if𝑘(𝑊) is a separably generated field extension of 𝑘(𝑉).
10.138. Let 𝜑∶ 𝑊 → 𝑉 be a dominant map of integral algebraic schemes.
(a) If there exists a nonsingular point𝑄 ∈ 𝑊 such that 𝜑(𝑄) is nonsingular and (𝑑𝜑)𝑄

is surjective, then 𝜑 is separable.
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(a) If 𝜑 is separable, then the set of points 𝑄 ∈ 𝑊 satisfying the condition in (a) is a
dense open subset of𝑊.

10.139. The pull-back of a separable map of irreducible algebraic varieties is separable.

10.140. Let 𝑍1 and 𝑍2 be closed subschemes of an algebraic scheme 𝑉. Then 𝑍1 ∩ 𝑍2 def=𝑍1 ×𝑉 𝑍2 is a closed algebraic subscheme of 𝑉. If 𝑉, 𝑍1, and 𝑍2 are all algebraic varieties,
then 𝑍1 ∩ 𝑍2 is an algebraic variety provided 𝑇𝑃(𝑍1) and 𝑇𝑃(𝑍2) cross transversally (in𝑇𝑃(𝑉)) for all 𝑃 in an open subset of 𝑉.
m. Complete schemes; proper morphisms

Complete algebraic schemes

10.141. An algebraic scheme 𝑉 is said to be complete if it is separated and if, for all
algebraic schemes 𝑇, the projection map 𝑞∶ 𝑉 × 𝑇 → 𝑇 is closed. (It suffices to check
this with 𝑇 = 𝔸𝑛.)
10.142. (a) Closed subschemes of complete schemes are complete.
(b) An algebraic scheme is complete if and only if its irreducible components are

complete.
(c) Products of complete schemes are complete.
(d) Let 𝜑∶ 𝑉 → 𝑆 be a regular map of algebraic varieties. If 𝑉 is complete, then 𝜑(𝑉)

is a complete closed subvariety of 𝑆. In particular,
i) if 𝜑∶ 𝑉 → 𝑆 is dominant and 𝑉 is complete, then 𝜑 is surjective and 𝑆 is
complete;

ii) complete subvarieties of algebraic varieties are closed.

(e) A regular map 𝑉 → ℙ1 from a complete connected algebraic variety 𝑉 is either
constant or surjective.

(f) The only regular functions on a complete connected algebraic variety are the
constant functions.

(g) The image of a regular map from a complete connected algebraic scheme to an
affine algebraic scheme is a point. The only complete affine algebraic schemes are
the finite schemes.

10.143. Projective algebraic schemes are complete.

10.144. Every quasi-finite map𝑊 → 𝑉 with𝑊 complete is finite.

Proper morphisms

10.145. A regular map 𝜑∶ 𝑉 → 𝑆 of algebraic schemes is proper if it is separated and
universally closed (i.e., for all regular maps 𝑇 → 𝑆, the projection map 𝑞∶ 𝑉 ×𝑆 𝑇 → 𝑇
is closed).

10.146. A finite map is proper.
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10.147. An algebraic scheme𝑉 is complete if and only if the map𝑉 → Spm(𝑘) is proper.
The base change of a proper map is proper. In particular, if 𝜋∶ 𝑉 → 𝑆 is proper, then𝜋−1(𝑃) is a complete subscheme of 𝑉 for all 𝑃 ∈ 𝑆.
10.148. If 𝑉 → 𝑆 is proper and 𝑆 is complete, then 𝑉 is complete.

10.149. The inverse image of a complete algebraic scheme under a proper map is com-
plete.

10.150. Let 𝜑∶ 𝑉 → 𝑆 be a proper map. The image 𝜑𝑍 of any complete algebraic
subscheme 𝑍 of 𝑉 is a complete algebraic subscheme of 𝑆.
10.151. Let 𝐴 =⨁𝑑≥0𝐴𝑑 be a graded ring such that
(a) as an 𝐴0-algebra, 𝐴 is generated by 𝐴1, and
(b) for every 𝑑 ≥ 0, 𝐴𝑑 is finitely generated as an 𝐴0-module.
A map 𝜋∶ Proj(𝐴) → Spm(𝐴0) is defined (to be added).

10.152. The map 𝜋∶ proj(𝐴) → spm(𝐴0) is closed.
n. Restriction of the base field

Also called Weil restriction of scalars.
Let 𝐴 be a finite 𝑘-algebra. A functor 𝐹 from 𝐴-algebras to sets defines a functor(𝐹)𝐴∕𝑘 ∶ 𝖠𝗅𝗀𝑘 → 𝖲𝖾𝗍, 𝑅 ⇝ 𝐹(𝐴 ⊗ 𝑅).

If 𝐹 is representable, is (𝐹)𝐴∕𝑘 also representable? We prove that it is in two cases.
Proposition 10.153. If 𝐹∶ 𝖠𝗅𝗀𝐴 → 𝖲𝖾𝗍 is represented by a finitely generated 𝐴-algebra,
then (𝐹)𝐴∕𝑘 is represented by a finitely generated 𝑘-algebra.
Proof. Let 𝐴 = 𝑘𝑒1 ⊕⋯⊕ 𝑘𝑒𝑑, 𝑒𝑖 ∈ 𝐴.

Consider first the case that 𝐹 = 𝔸𝑛, so that 𝐹(𝑅) = 𝑅𝑛 for all 𝐴-algebras 𝑅. For a𝑘-algebra 𝑅, 𝑅′ def= 𝐴⊗ 𝑅 ≃ 𝑅𝑒1 ⊕⋯⊕𝑅𝑒𝑑,
and so there is a bijection(𝑎𝑖)1≤𝑖≤𝑛 ↦ (𝑏𝑖𝑗) 1≤𝑖≤𝑛1≤𝑗≤𝑑 ∶ 𝑅′𝑛 → 𝑅𝑛𝑑
which sends (𝑎𝑖) to the family (𝑏𝑖𝑗) defined by the equations𝑎𝑖 = ∑𝑑𝑗=1 𝑏𝑖𝑗𝑒𝑗, 𝑖 = 1, … , 𝑛. (6)

The bijection is natural in 𝑅, and shows that (𝐹)𝐴∕𝑘 ≈ 𝔸𝑛𝑑 (the isomorphism depends
only on the choice of the basis 𝑒1, … , 𝑒𝑑).

If 𝐹 is represented by a finitely generated 𝐴-algebra, then 𝐹 is a closed subfunctor of𝔸𝑛 for some 𝑛. Therefore (𝐹)𝐴∕𝑘 is a closed subfunctor of (𝔸𝑛)𝐴∕𝑘 ≈ 𝔸𝑑𝑛, and so (𝐹)𝐴∕𝑘
is represented by a quotient of 𝑘[𝑇1, … , 𝑇𝑑𝑛].
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Alternatively, suppose that 𝐹 is the subfunctor of 𝔸𝑛 defined by a polynomial𝑓(𝑋1, … , 𝑋𝑛) in 𝐴[𝑋1, … , 𝑋𝑛]. On substituting𝑋𝑖 = ∑𝑑𝑗=1𝑊𝑖𝑗𝑒𝑗
into 𝑓, we obtain a polynomial 𝑔(𝑌11, 𝑌12, … , 𝑌𝑛𝑑) with the property that𝑓(𝑎1, … , 𝑎𝑛) = 0 ⇐⇒ 𝑔(𝑏11, 𝑏12, … , 𝑏𝑛𝑑) = 0
when the 𝑎 and 𝑏 are related by (6). The polynomial 𝑔 has coefficients in 𝐴, but we can
write it (uniquely) as a sum𝑔 = 𝑔1𝑒1 +⋯+ 𝑔𝑑𝑒𝑑, 𝑔𝑖 ∈ 𝑘[𝑌11, 𝑌12, … , 𝑌𝑛𝑑].
Clearly, 𝑔(𝑏11, 𝑏12, … , 𝑏𝑛𝑑) = 0 ⇐⇒ 𝑔𝑖(𝑏11, 𝑏12, … , 𝑏𝑛𝑑) = 0 for 𝑖 = 1, … , 𝑑,
and so (𝐹)𝐴∕𝑘 is isomorphic to the subfunctor of𝔸𝑛𝑑 defined by the polynomials 𝑔1, … , 𝑔𝑑.
This argument extends in an obvious way to the case that 𝐹 is the subfunctor of 𝔸𝑛
defined by a finite set of polynomials. 2

Proposition 10.154. Let 𝑉 be an algebraic scheme over 𝐴 such that every finite subset of|𝑉| is contained in an open affine subscheme (e.g., 𝑉 quasi-projective). Then (𝑉)𝐴∕𝑘 is an
algebraic scheme over 𝑘.
Proof. We use two obvious facts: (a) if 𝑈 is an open subfunctor of 𝐹, then (𝑈)𝐴∕𝑘 is an
open subfunctor of (𝐹)𝐴∕𝑘; (b) if 𝐹 is local (see 10.86), then (𝐹)𝐴∕𝑘 is local. Let 𝑈 be an
open affine subscheme of 𝑉. Then (𝑈)𝐴∕𝑘 is an open subfunctor of (𝑉)𝐴∕𝑘 and it is an
affine scheme over 𝑘 by (10.153. It remains to show that a finite number of the functors(𝑈)𝐴∕𝑘 cover (𝑉)𝐴∕𝑘 (10.86).

Let 𝑑 = [𝐴∶ 𝑘], and let |𝑉|𝑑 be the topological product of 𝑑 copies |𝑉|. By assump-
tion, the sets𝑈𝑑 with𝑈 open affine in |𝑉| cover |𝑉|𝑑. As |𝑉|𝑑 is quasi-compact, a finite
collection 𝑈1, … ,𝑈𝑛 cover |𝑉|𝑑.

Let 𝑈 be the union of the subfunctors (𝑈𝑖)𝐴∕𝑘 of (𝑉)𝐴∕𝑘. It is an open subfunctor
of (𝑉)𝐴∕𝑘, and so if 𝑈 ≠ (𝑉)𝐴∕𝑘, then 𝑈(𝐾) ≠ (𝑉)𝐴∕𝑘(𝐾) for some field 𝐾 containing𝑘. A point 𝑄 ∈ (𝑉)𝐴∕𝐾 (𝐾) is an 𝐴-morphism Spm(𝐴 ⊗ 𝐾) → 𝑉. The image of |𝑄| is
contained in a subset of |𝑉| with at most 𝑑 elements, and so 𝑄 factors through some 𝑈𝑖.
Therefore (𝑉)𝐴∕𝑘 = ⋃(𝑈𝑖)𝐴∕𝑘. 2

o. Galois descent

10.155. LetΩ ⊃ 𝑘 be an extension of fields, and let𝛤 = Aut(Ω∕𝑘). Assume thatΩ𝛤 = 𝑘.
This is true, for example, if Ω is a Galois extension of 𝑘. Then the functor 𝑉 ⇝ Ω⊗𝑘 𝑉
from vector spaces over 𝑘 to vector spaces over Ω equipped with a continuous action of𝛤 is an equivalence of categories.
10.156. Let 𝑉 be an algebraic scheme over a field 𝑘, and let 𝑉′ = 𝑉𝑘′ for some field𝑘′ containing 𝑘. Let𝑊′ be a closed subscheme of 𝑉′. There exists at most one closed
subscheme𝑊 of 𝑉 such that𝑊𝑘′ = 𝑊′ (as a subscheme of 𝑉′).
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Let 𝛤 = Aut(𝑘′∕𝑘), and assume that 𝑘′𝛤 = 𝑘. Then𝑊′ arises from an algebraic
subscheme of 𝑉 if and only if it is stable under the action of 𝛤 on 𝑉′. When 𝑉 and𝑊′
are affine, say, 𝑉 = Spm(𝐴) and𝑊′ = Spm(𝐴𝑘′∕𝔞), to say that𝑊′ is stable under the
action of 𝛤 means that 𝔞 is stable under the action of 𝛤 on𝐴𝑘′ def= 𝐴⊗𝑘′. More generally,
it means that the ideal defining𝑊′ in 𝒪𝑉′ is stable under the action of 𝛤 on 𝒪𝑉′ .

Let 𝑘′ = 𝑘sep. An algebraic subvariety𝑊′ of 𝑉′ is stable under the action of 𝛤 on 𝑉′
if and only if the set𝑊′(𝑘′) is stable under the action of 𝛤 on 𝑉(𝑘′).
10.157. Let 𝑉 and𝑊 be algebraic schemes over 𝑘 with𝑊 separated, and let 𝑉′ = 𝑉𝑘′
and 𝑊′ = 𝑊𝑘′ for some field 𝑘′ containing 𝑘. Let 𝜑′∶ 𝑉′ → 𝑊′ be a regular map.
Because𝑊′ is separated, the graph 𝛤𝜑′ of 𝜑′ is closed in 𝑉 ×𝑊, and so we can apply
(10.156) to it. We deduce:⋄ There exists at most one regular map 𝜑∶ 𝑉 → 𝑊 such that 𝜑′ = 𝜑𝑘′ .⋄ Let 𝛤 = Aut(𝑘′∕𝑘), and assume that 𝑘′𝛤 = 𝑘. Then 𝜑′∶ 𝑉′ → 𝑊′ arises from

a regular map over 𝑘 if and only if its graph is stable under the action of 𝛤 on𝑉′ ×𝑊′.⋄ Let 𝑘′ = 𝑘sep, and assume that 𝑉 and𝑊 are algebraic varieties. Then 𝜑′ arises
from a regular map over 𝑘 if and only if the map𝜑′(𝑘′)∶ 𝑉(𝑘′) → 𝑊(𝑘′)
commutes with the actions of 𝛤 on 𝑉(𝑘′) and𝑊(𝑘′).

See my article, Descent for algebraic schemes, arXiv:2406.05550.

p. Schemes in general

In this chapter, we have studied schemes of finite type over a base field. In the 1950s
(if not earlier), it became clear that one needed to consider schemes over more general
base rings. For example, the study of algebraic schemes over ℚ and their reductions to
algebraic schemes over the finite fields 𝔽𝑝 amounts to the study of algebraic schemes
over ℤ. This suggested attaching a geometric object to every commutative ring, not just
those finitely generated over a field. Unfortunately, the map𝐴 ↦ spm𝐴 is not functorial
in this wider context: if 𝜑∶ 𝐴 → 𝐵 is a homomorphism of rings, then the inverse image𝜑−1(𝔪) of a maximal ideal𝔪 of 𝐵 need not be maximal — consider for example the
inclusion ℤ → ℚ. Thus one is forced to replace spm(𝐴) with spec(𝐴), the set of all
prime ideals in 𝐴. One then attaches a locally ringed space Spec(𝐴) to 𝐴, and defines
an affine scheme to be any locally ringed space isomorphic to Spec(𝐴) for some ring𝐴. A scheme is a locally ringed space that admits an open covering by affine schemes.
A scheme over a ring 𝐴 is a scheme 𝑉 equipped with a morphism 𝑉 → Spec(𝐴). This
point of view was developed with great vigour by Grothendieck and his associates in the
1960s (see the seminars SGA and the treatise EGA).

There is a natural functor 𝑉 ⇝ 𝑉∗ from the category of algebraic schemes over a
field 𝑘 in our sense to the category of schemes of finite-type over 𝑘 in the sense of EGA,
which gives an equivalence of categories. Under the equivalence, algebraic varieties over𝑘 correspond to the geometrically-reduced separated schemes of finite-type over 𝑘. To
construct the underlying set of 𝑉∗ from that of 𝑉, one only has to add one point 𝑝𝑍 for
each irreducible closed subset 𝑍 of 𝑉 of dimension > 0. In other words, |𝑉∗| is the set of
irreducible closed subsets of |𝑉|. For an open subset 𝑈 of 𝑉, let 𝑈∗ denote the subset of
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𝑉∗ containing the points of 𝑈 together with the points 𝑝𝑍 such that 𝑈 ∩ 𝑍 is nonempty.
Then𝑈 ↦ 𝑈∗ is a bijection from the set of open subsets of 𝑉 onto the set of open subsets
of 𝑉∗ with inverse 𝑈∗ ↦ 𝑉 ∩ 𝑈∗. The closure of {𝑝𝑍} is 𝑍, and so the map 𝑉 → 𝑉∗
identifies 𝑉 with the set of closed points of 𝑉∗. Define 𝛤(𝑈∗, 𝒪𝑉∗) = 𝛤(𝑈,𝒪𝑉) for each
open subset 𝑈 of 𝑉. Note that the topologies (families of open subsets) and sheaves of 𝑉
and 𝑉∗ are the same — only the underlying sets differ. For a closed irreducible subset 𝑍
of 𝑉, the local ring 𝒪𝑉∗,𝑝𝑍 = lim,,→𝑈∩𝑍≠∅ 𝛤(𝑈,𝒪𝑈). The inverse functor is even easier to
describe: simply omit the nonclosed points from the base space.7

Every aspiring algebraic and (especially) arithmetic geometer needs to learn the basic
theory of schemes, and for this I recommend reading Chapters II and III of Hartshorne
1997.

Comparison with algebraic schemes in the sense of EGA

10.158. In the language of EGA, we are ignoring the nonclosed points in our algebraic
schemes. In other words, we are working with ultraschemes rather than schemes (EGA
I, Appendice). For schemes of finite type over a field 𝑘 (i.e., algebraic over 𝑘), we provide
a short dictionary. Note that, in a finitely generated 𝑘-algebra, every prime ideal is an
intersection of maximal ideals (Nullstellensatz 10.21), so the maximal ideals determine
the prime ideals.
(a) Let 𝑉 be an algebraic scheme over 𝑘 in the sense of EGA, and let 𝑉0 be the set

of closed points in 𝑉 with the induced topology. The map 𝑆 ↦ 𝑆 ∩ 𝑉0 is an
isomorphism from the lattice of closed (resp. open, constructible) subsets of 𝑉
to the lattice of similar subsets of 𝑉0. In particular, 𝑉 is connected if and only if𝑉0 is connected. To recover 𝑉 from 𝑉0, add a point 𝑧 for each irreducible closed
subset 𝑍 of 𝑉0 not already a point; the point 𝑧 lies in an open subset 𝑈 if and only
if 𝑈 ∩ 𝑍 is nonempty. Thus the ringed spaces (𝑉,𝒪𝑉) and (𝑉0, 𝒪𝑉|𝑉0) have the
same lattice of open subsets and the same 𝑘-algebra for each open subset; they
differ only in the underlying sets. See EGA IV, §10.

(b) Let 𝑉 be an algebraic scheme over 𝑘 in the sense of EGA. Then 𝑉 is normal (resp.
regular) in the sense of EGA if and only if𝒪𝑉,𝑣 is normal (resp. regular) for all closed
points 𝑣 of𝑉. Moreover,𝑉 is smooth over 𝑘, i.e., themorphism Spec(𝑉) → Spec(𝑘)
is smooth, if and only if 𝑉𝑘a is regular, which again is a condition on the closed
points.

(c) Morphisms of algebraic schemes over 𝑘 map closed points to closed points. The
functor (𝑉,𝒪𝑉) ⇝ (𝑉0, 𝒪𝑉|𝑉0) is an equivalence from the category of algebraic
schemes over 𝑘 to the category of ultraschemes over 𝑘.

(d) Let 𝜑∶ 𝑉 → 𝑊 be a morphism of algebraic schemes over 𝑘 in the sense of EGA.
Then⋄ 𝜑 is surjective if and only if it is surjective on closed points (use (a) and that𝜑maps constructible sets to constructible sets);

7Some authors call a geometrically reduced scheme of finite-type over a field a variety. Despite
their similarity, it is important to distinguish such schemes from varieties (in the sense of these notes).
For example, if𝑊 and𝑊′ are subvarieties of a variety, their intersection in the sense of schemes need
not be reduced, and so may differ from their intersection in the sense of varieties. For example, if𝑊 = 𝑉(𝔞) ⊂ 𝔸𝑛 and 𝑊′ = 𝑉(𝔞′) ⊂ 𝔸𝑛′ with 𝔞 and 𝔞′ radical, then the intersection 𝑊 and 𝑊′ in
the sense of schemes is Spec 𝑘[𝑋1, … , 𝑋𝑛+𝑛′ ]∕(𝔞, 𝔞′) while their intersection in the sense of varieties isSpec 𝑘[𝑋1, … , 𝑋𝑛+𝑛′ ]∕rad(𝔞, 𝔞′).
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⋄ 𝜑 is quasi-finite if and only if 𝜑−1(𝑤) is finite for all closed points 𝑤 of𝑊;⋄ 𝜑 is flat if and only if 𝒪𝑊,𝜑(𝑣) → 𝒪𝑉,𝑣 is flat for all closed points 𝑣 of 𝑉;⋄ 𝜑 is smooth if and only if it is flat and its closed fibres are smooth.
See Demazure and Gabriel 1970, p. 95-96, 6.5–6.10.
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