Chapter 10

Algebraic schemes: geometry over
an arbitrary field

In this chapter, we allow the base field to be arbitrary, and we allow the structure sheaves
to contain nilpotent elements. Thus, we are moving away from geometry towards scheme
theory.

We assume that the reader is familiar with the contents of the first 9 chapters, and we
are more brief, since many arguments essentially repeat those in the first nine chapters.

Throughout, k is a field and k?® is an algebraic closure of k. Unadorned tensor
products are over k. All k-algebras are finitely generated, and Alg, denotes the category
of such algebras. A reference n.mm is to the main notes Algebraic Geometry. CA= my
Commutative Algebra notes. Hyperlinks may work if both pdf files are in the same folder.
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a. Preliminaries

Sheaves

In the first nine chapters we considered only sheaves of functions, and so the restriction
maps did, in fact, restrict a function to an open subset. Here we consider more general
sheaves, and the restriction maps have to be included as part of the data.

10.1. A presheaf ¥ on a topological space V is a map assigning to each open subset U
of V aset F(U) and to each inclusion U’ C U a “restriction” map

ar~ a|lU': F(U) - FU);
when U = U’ the restriction map is required to be the identity map, and if
U'cU cU,
then the composite of the restriction maps
FU) - FU) - FU")

is required to be the restriction map F(U) — F(U"). In other words, a presheaf is a
contravariant functor to the category of sets from the category whose objects are the
open subsets of V' and whose morphisms are the inclusions. A homomorphism of
presheaves a : ¥ — F' is a family of maps

a(U): FU) - F'(U)

commuting with the restriction maps, i.e., it is a morphism of functors. We sometimes
write I'(U, F) for F(U).

10.2. A presheaf F is a sheaf if it satisfies the sheaf condition:

for any open covering {U;} of an open subset U of V' and family of sections

a; € F(U;) agreeing on overlaps (that is, such that ¢;|U; N U; = a;|U; N U;

for all i, j), there is a unique element a € #(U) such that a; = a|U; for all i.
A homomorphism of sheaves on V is a homomorphism of presheaves. If the sets #(U)
are abelian groups and the restriction maps are homomorphisms, then ¥ is a sheaf
of abelian groups. Similarly one defines the notions of a sheaf of rings, a sheaf of
k-algebras, and a sheaf of modules over a sheaf of rings.

10.3. For P € V, the stalk of a sheaf & (or presheaf) at P is
Fp = h_n)l F(U) (limit over the open neighbourhoods of P).

In other words, it is the set of equivalence classes of pairs (U, s) with U an open neigh-
bourhood of P and s € F(U); two pairs (U, s) and (U’, s") are equivalent if s|U"" = s'|U"’
on some open neighbourhood U” of P contained in U N U’.

10.4. A ringed space is a pair (V, Q) consisting of topological space V together with
a sheaf of rings. If the stalk Op of O at all P is a local ring, then (V, Q) is called a
locally ringed space. A morphism (V,0) — (V', 0') of ringed spaces is a pair (¢, )
comprising a continuous map ¢ : V — V' and a family of maps

P(U): O'(U) - O(p~'(U)), U openin V’,
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commuting with the restriction maps. Such a pair defines a homomorphism of rings
Yp: (9; @ = Op for all P € V. A morphism of locally ringed spaces is a morphism of

ringed space such that 1p is a local homomorphism for all P.

10.5. Let V be a topological space. Recall that a collection B of open sets in V is a
base for the topology if every open subset is a union of elements from B. Regard B as
a category with the inclusions as the only morphisms. A presheaf of sets on B is a
functor F from 3B to sets. A sheaf of sets on 3B is a presheaf F of sets satisfying the sheaf
condition: for any covering {U;} of a basic open subset U by basic open subsets U; and
family of sections s; € F(U;) agreeing on overlaps, there is a unique section s € F(U)
such that s; = s|U; for all i. By s; and s; agreeing on the overlap U; N U; we mean that
s;|U" = s;|U’ for the sets U’ in some covering of U; N U; by basic open subsets. When
U; N U; is itself a basic open subset, this just means that 5;|U; N U; = 5;|U; N U;. Every
sheaf on a base B of V extends uniquely to a sheaf on V. More precisely, the functor
sending a sheaf on V' to a sheaf on B is an equivalence of categories. See Stacks, 009H.

Extending scalars (extending the base field)
NILPOTENTS

Recall that a ring A is reduced if it has no nonzero nilpotents. A k-algebra A can be
reduced without A ®; k¥ being reduced. Consider, for example,

A=k[X,Y]/(XP+YP + a),

where p = char(k). If a is not a pth-power in k, then X? + YP + a is irreducible in
k[X,Y], and so A is an integral domain. As a becomes a pth power in k2l say,a = oP,

XP+YP+a=X+Y+a),
in k4[X,Y],and so (x + y + @) = 0 in
AQ® k¥ =KX, Y]/(XP +YP +a) = k¥[x, y].

In this subsection, we show that problems of this kind arise only because of insepa-
rability. In particular, they do not occur if k is perfect.

Let p be the characteristic exponent of k (so p is 1 or a prime according as the
characteristic of k is zero or nonzero). Let

K'/P = {a € k¥ | aP € k}.

Itisasubfield of k¥, and k/P = k if and only if k is perfect (for example, has characteristic
zero). Let Q be some (large) field containing k2.

DEFINITION 10.6. Subfields K and K’ of Q containing k are said to be linearly disjoint
over k if the map K ®; K’ — Q is injective.

Equivalent conditions:

o ifeyq,..,e, € K are linearly independent over k and ei, s e:n , € K’ are linearly
independent over k, then the elements e;e], e;e), ... ,ee/ , of Q are linearly inde-
m
pendent over k;


https://stacks.math.columbia.edu/tag/009H

o ifeq,...,e, € K arelinearly independent over k, then they are linearly independent
over K'.

Similarly, we say that a k-algebra A in Q is linearly disjoint from K over k if the map
A ®; K — Qisinjective.

10.7. (a) Purely transcendental extensions of k are linearly disjoint over k from alge-
braic extensions of k.

(b) Separable algebraic extensions of k are linearly disjoint over k from purely insepa-
rable algebraic extensions of k.

(c) LetK D kand L D E D k be subfields of Q.

KL
N
KE L

K E
\k/

Then K is linearly disjoint from L over k if and only if K is linearly disjoint from E
over k and KE is linearly disjoint from L over E,

DEFINITION 10.8. A separating transcendence basis for K D k is a transcendence
basis {x, ..., X4} such that K is separable over k(xy, ..., Xg).

The next proposition improves Theorem 9.27 of Milne 2022.

PROPOSITION 10.9. Let K be a finitely generated field extension of k, and let Q be an
algebraically closed field containing K*'. The following statements are equivalent:

(a) K/k admits a separating transcendence basis;
(b) K is linearly disjoint from every purely inseparable extension of k in Q;

(c) thefields K and k'/P are linearly disjoint over k.

PROOF. (a)=(b). Let {xy, ..., x4} be a separating transcendence basis for K over k, and let
K’ be a purely inseparable extension of k in Q. Then k(x, ..., x4) is linearly disjoint from
K’ over k (by 10.7(a)), and K’(xy, ..., X4) is linearly disjoint from K over k(x, ..., x4) (by
10.7(b)). Now apply 10.7(c).

(b)=(c). Trivial.

(c)=>(a). LetK = k(xy, ..., x,), and let d be the transcendence degree of K /k. After
renumbering, we may suppose that x,, ..., x4 are algebraically independent (1.63(b)).
We proceed by induction on n. If n = d there is nothing to prove, and so we may suppose
that n > d + 1. Then f(xy,...,x441) = 0 for some nonzero irreducible polynomial
f(Xq, ..., X 441) with coefficients in k. Not all d f /3X; are zero, for otherwise f would be
a polynomial in X?, ..., X 5 +1> Which contradicts the lemma below. After renumbering
again, we may suppose that 0 f /60X ., # 0, and so {xy, ..., X4} is a separating transcen-
dence basis for k(x, ..., x441) over k, which proves the proposition whenn = d + 1. In
the general case, k(x1, ..., X441, X442) is algebraic over k(x, ..., X4) and x4, is separable
over k(x, ..., X;), and so, by the primitive element theorem (Milne 2022, 5.1) there is an
element y such that k(x, ..., X442) = k(xy, ..., X4, ). Thus K is generated by the n — 1
elements X1, ... X4, Y, X443, --- » X, and we apply induction. o
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LEMMA 10.10. LetK = k(xy, ..., X441) C Qwith x4, ..., X4 algebraically independent over
F,andlet f € k[X,...,X4,1] be an irreducible polynomial such that f(xy,...,X441) = 0.

IfK is linearly disjoint from k'/P, then f ¢ k[Xf, ,Xgﬂ].

PROOF. Suppose otherwise, say, f = g(X?, ... ,Xg +1)- Let My, ..., M, be the distinct
monomialsin Xy, ..., X4, thatactually occur in g(X1, ..., Xg41), and let m; = M;(xq, ..., Xg41)-
Then m,, ..., m, are linearly independent over k because they are distinct polynomials of
degree less than that of f. However, mf ,...,m? are linearly dependent over k, because
g(xf, ,xgﬂ) = 0. But

Zaimlp =0 (q;€k) = Zail/pmi =0 (al.l/p € kl/p)
contradicting the linear disjointness of K and Kl/p. o

DEFINITION 10.11. A finitely generated field extension K D k is said to be regular if it
satisfies the equivalent conditions of the proposition.

PROPOSITION 10.12. Let A be a reduced k-algebra. The following statements are equiva-
lent:

(a) kYP ®, A is reduced;
(b) k¥ ® A is reduced;
(c) K ® Aisreduced forall fieldsK D k.

When A is an integral domain, they are also equivalent to A and k'/P being linearly disjoint
over k.

PROOF. The implications (c)=(b)=>(a) are obvious, and so we only have to prove (a)=(c).
After localizing A at a minimal prime, we may suppose that it is a field. Let e, ..., e, be
elements of A linearly independent over k. If they become linearly dependent over k'/P,

then ef . ,eﬁ are linearly dependent over k, say, ), aief =0, q; € k. Now ), ail/ P e;
is a nonzero element of k1/P ®x A, but

0.

(Zail/l’®ei)p=2ai®ef=21®aief=1®zaie5’

This shows that A and k'/P are linearly disjoint over k, and so A has a separating
transcendence basis over k. From this it follows that K ®; A is reduced for all fields
KDk u]

COROLLARY 10.13. Let A be a k-algebra such that k¥ ®; A is reduced. Then A ®; B is
reduced for all reduced k-algebras B (not necessarily finitely generated).

PROOF. For any minimal prime ideal p of B, the local ring B,, is a field, and the map
A ®i B = ] A ® B, is injective. -

10.14. Aring A is said to be normal if A, is an integrally closed domain for all prime
ideals p in A. A k-algebra A is geometrically reduced (resp. normal) if k' ®; A is
reduced (resp. normal) for all extension fields k’ of k. It suffices to check this condition
for k’ = k/P, where p is the characteristic exponent of k.

!For “normal”, this is Corollary 3.3 of Nagamachi, I., and Takamatsu, T., On behavior of conduc-
tors...over imperfect fields. J. Pure Appl. Algebra 228 (2024).



Idempotents

Even when a k-algebra A is an integral domain and A ®; k* is reduced, the latter
need not be an integral domain. Suppose, for example, that A is a finite separable field
extension of k. Then A = k[X]/(f(X)) for some monic irreducible separable polynomial
f(X), and so

A® k= K[X]/(fX) = Kk /(TTX —a) = [[ K/ X — a)

(by Theorem 1.1). Thus if A contains a finite separable field extension of k, then A ®; k!
cannot be an integral domain. The proposition below provides a converse.

Let A be an integral domain containing k. We say that k is algebraically closed
in A if every element of A algebraic over k lies in k, i.e., an element a of A lies in k if
f(a) = 0 for some nonzero f € k[X].

LEMMA 10.15. Let k be algebraically closed in an extension field K, and let a be an element
of K¥ that is algebraic over k. Then K and k[a] are linearly disjoint over k, and

[K[a] : K] = [k[a] : k].

PROOF. Let f(X) be the minimal polynomial of a over k. If & is a factor of f in K[X],
then the roots of h are among the roots of f, hence are algebraic over k, and so the
coefficients of h are algebraic over k, hence lie in k. Thus h € k[X], and we deduce that
f isirreducible in K[X]. Now the map

1®a+— a: K®;kl[a] — K[a]
is an isomorphism because both K-algebras equal K[X|/(f(X)). O

PROPOSITION 10.16. Let A be a k-algebra, and assume that A is an integral domain, and
that A®, k? is reduced. Then A®) k? is an integral domain if and only ifk is algebraically
closed in A..

PROOF. <=: Let K be the field of fractions of A — it suffices to show that K ®; k* is an
integral domain, and for this it suffices to show that K is linearly disjoint from L where
L is any finite algebraic extension of k in K¥ (because then K ®, L ~ KL, which is an
integral domain). If L is separable over k, then it can be generated by a single element,
and so this follows from the lemma. In the general case, we let E denote the largest
subfield of L separable over k. From (10.7)(c), we see that it suffices to show that KE
and L are linearly disjoint over E. From (10.12), we see that K and k!/P are linearly
disjoint over k, and so K is a regular extension of k (see 10.9). It follows easily that KE is
a regular extension of E, and KE is linearly disjoint from L by (10.7)(b).

= : If k is not algebraically closed in A, then A \ k contains an element a such that
either a? € k or a is separable over k. In the first case, A @y k2! is not reduced, and in
the second it contains a nontrivial idempotent. o

COROLLARY 10.17. Let A be a finitely generated k-algebra, and assume that A is an inte-
gral domain. Then

(a) A ®; k¥ has no nilpotents if and only if A and k'/P are linearly disjoint over k;
(b) A ®; k* has no idempotents if and only if k is separably closed in A.

Thus, A ®y k® is an integral domain if and only if A and k'/P are linearly disjoint and k
is separably closed in A.
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b. Affine algebraic schemes

Let A be a (finitely generated) k-algebra.

10.18. Let V be the set of maximal ideals in A, and, for an ideal a in A, let
V(a)={m | m D a}l.

Then
o V(0)=V,V(A) =40,
o V(ab) =V(anb)="V(a)uV(b) for every pair of ideals a, b, and
o V(X i) = [, @i for every family of ideals (a;);¢;-
For example, if m ¢ V(a) U V(b), then there exist f € a~m and g € b~ m; but then
fg & ab~m, and so m ¢ V(ab) (cf. 2.10).
These statements show that the sets V(a) are the closed sets for a topology on V,
called the Zariski topology. We write spm(A) for V endowed with this topology.
For example, A" < spm(k[X, ..., X, ]) is affine n-space over k. If k is algebraically
closed, then the maximal ideals in A are exactly the ideals (X; — a4, ..., X,, — a,,), and
A" can be identified with k" endowed with its usual Zariski topology.

We now restate the Nullstellensatz and its immediate consequences for a nonalge-
braically closed field k.

10.19 (NULLSTELLENSATZ). Every properideal a in k[X1, ..., X,] has a zero in (k*)", i.e.,
there exists a point (ay, ..., a,) € (k¥)" such that f(a,, ...,a,) = 0 forall f € a.

PROOF. We have to show that there exists a k-algebra homomorphism k[X;, ..., X, ] —
k2 containing a in its kernel. Let m be a maximal ideal containing a. Then k[X, ..., X,,]/m
isafield, which is finitely generated as a k-algebra. Therefore it is finite over k by Zariski’s
lemma (2.12), and so there exists a k-algebra homomorphism k[Xj, ..., X,]/m — k3.
The composite of this with the quotient map k[X, ..., X, ] = k[X1, ..., X, ]/m contains
a in its kernel. O

10.20 (STRONG NULLSTELLENSATZ). For anideal a in k[X, ...,X,,], let Z(a) denote the
set of zeros of a in (k*)". If a polynomial h € k[Xj, ..., X,] is zero on Z(a), then some
power of h lies in a.

PROOF. This can be deduced from 10.19 exactly as 2.16 is deduced from 2.11. o

COROLLARY 10.21. The radical of an ideal a in a k-algebra A is equal to the intersection
of the maximal ideals containing it:

rad(a) = ﬂmja m

In particular, if A is reduced, then the intersection of the maximal ideals in A is zero.

PROOF. The inclusion rad(a) C ﬂmja m holds in any ring (h lies in a maximal ideal if
some power of h does).

Because of the correspondence between the ideals in a ring and in a quotient of the
ring, it suffices to prove the reverse inclusion for A = k[Xj, ..., X, ].



Let h lie in all maximal ideals containing a, and let (a1, ..., a,,) be a zero of a in (k®)".
The image of the evaluation map

f [ f(al, vee ,an) . k[Xl,... ,Xn] - kal

is a subring of k® which is algebraic over k, and hence is a field. Therefore, the kernel of
the map is a maximal ideal, which contains a, and so also contains k. This shows that
h(ay, ..., a,) = 0, and we conclude from the strong Nullstellensatz that h € rad(a).

10.22. For a subset S of spm(A), let

I(S)=m{m|m€S}.

Then
V(I(S)) = Zariski-closure of S,

and, for an ideal ain A,

V() €

10.21
ﬂ {fm|m>Da} = rad(a).

It follows that V and I are inverse bijections between the collections of radical ideals
of A and closed subsets of spm(A). Under this bijection, prime ideals correspond to
irreducible sets, and maximal ideals correspond to points.

10.23. For f € A,letD(f) = {m | f € m}. Itisopen in spm(A) because its complement
is the closed set V((f)). The sets of this form are called the basic open subsets of spm(A).
Let V = V(a) be a closed subset of spm(A). According to the Hilbert basis theorem (2.8),
A is noetherian, and so a = (f4, ..., f,,) for some f; € A, and

spm(A)\V = D(f1)U...UD(f,,)-

This shows that every open subset of spm(A) is a finite union of basic open subsets. In
particular, the basic open subsets form a base for the Zariski topology on spm(A).

10.24. Leta : A — B be a homomorphism of k-algebras, and let m be a maximal ideal
in B. As B is finitely generated as a k-algebra, so also is B/m, which implies that it is
a finite field extension of k (Zariski’s lemma 2.12). Therefore the image of A in B/mB
is an integral domain of finite dimension over k, and hence is a field. This image is
isomorphic to A/a~1(m), and so the ideal a~!(m) is maximal in A. Hence a defines a
map

*

a*: spm(B) = spm(4), m = a~l(m),

which is continuous because (a*)'(D(f)) = D(a(f)). In this way, spm becomes a
functor from k-algebras to topological spaces.

10.25. Recall (1.10) that, for a multiplicative subset S of A, the ring of fractions having
the elements of S as denominators is denoted by S~ A. For example, if S, E1LfL 20
then w

€

Ap = SJ:lA ~ A[X]/(1 = fX).

Let D = D(f) be a basic open subset of X. Then

Sp = Ax| Jtm | m e D}
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is a multiplicative subset of A, and the map S;lA - SglA defined by the inclusion

Sy C Sp is an isomorphism. If D’ and D are both basic open subsets of X and D’ C D,
then Spr D Sp, and so there is a canonical map

S;IA = STIA. (1)

10.26. There is a unique sheaf Oy, of k-algebras on V' = spm(A) such that
(a) for every basic open subset D of V,

Oy (D) = S;'A,
(b) for every pair D’ C D of basic open subsets of V, the restriction map
Oy(D) - Oy(D")

is the map (1) for the pair.

To prove this, it suffices to show that the system satisfies the sheaf condition on the base
(10.5). This can be shown by the same argument as in the second part of the proof of
3.11.
We write Spm(A) for spm(A) endowed with this sheaf of k-algebras. Note that, for
every f € A,
Ap £ 8714 2 551 (4) E 0y(D(f)).
f D(f)

10.27. By a k-ringed space we mean a topological space equipped with a sheaf of k-
algebras. An affine algebraic scheme over k is a k-ringed space isomorphic to Spm(A)
for some k-algebra A. A morphism (or regular map) of affine algebraic schemes over
k is a morphism of k-ringed spaces (it is automatically a morphism of locally ringed
spaces).

10.28. The functor A ~ Spm(A) is a contravariant equivalence from the category
of k-algebras to the category of affine algebraic schemes over k, with quasi-inverse
(V, Oy) » Oy(V). In particular

Hom(A, B) ~ Hom(Spm(B), Spm(A))
for all k-algebras A and B. (Same proof as for 3.24, 3.25.)

10.29. Let M be an A-module. There is a unique sheaf M of Oy,-modules on V «f
Spm(A) with the following properties,

(a) for every basic open subset D of V, M(D) = S];lM ,and

(b) for every pair D’ C D of basic open subsets, the restriction map M(D) — M(D')
is the map S;'M — S;'M defined by the inclusion Sy, C Sp.

A sheaf of Oy,-modules on V is said to be coherent if it is isomorphic to M for some
finitely generated A-module M. The functor M ~ M is an equivalence from the category
of finitely generated A-modules to the category of coherent Oy,-modules — it has quasi-
inverse M ~ M(V'). Under this equivalence, finitely generated projective A-modules
correspond to locally free Oy -modules of finite rank (CA 12.6).

10.30. For fields K D k, the Zariski topology on K" induces that on k". In order to prove
this, we have to show (a) that every closed subset S of k" is of the form T N k" for some
closed subset T of K", and (b) that T n k" is closed for every closed subset of K".
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(a) LetS =V(fy,...,fn) with the f; € k[X}, ..., X, ]. Then
S = k" n{zeroset of f1,..., f,,, in K"}.

(b) LetT = V(fy,..., fm) with the f; € K[Xj,...,X,]. Choose a basis (e;)c; for K
as a k-vector space,” and write f; = ) e; f;; (finite sum) with f;; € k[X, ..., X,].
Then

V(f) nk"™ = {zero set of the family (f;);es in k"}

for each i, and so T N k™ is the zero set in k™ of the family (f;).

ASIDE 10.31. Let V be a Zariski-closed subset of k" and V its closure in (k). Do V and V have
the same dimension (as noetherian topological spaces)? The answer is yes, if k of characteristic
0 and large in the following sense: every irreducible curve over k with a smooth k-point has
infinitely many k-points. See mo479691.

c. Algebraic schemes

10.32. Let (V, Oy ) be a k-ringed space. An open subset U of V is said to be affine
if (U, Oy|U) is an affine algebraic scheme over k. An algebraic scheme over k is a
k-ringed space (V, Oy ) that admits a finite covering by open affines. A morphism of
algebraic schemes (usually called a regular map) over k is a morphism of k-ringed
spaces. We often let V denote the algebraic scheme (V, Oy) and |V| the underlying
topological space of V. When the base field k is understood, we write “algebraic scheme”
for “algebraic scheme over k.

The local ring at a point P of V' is denoted by Oy p or just Op, and the residue field
at P is denoted by x(P). For example, if V = Spm A and P = m, then Op = A, and
x(P) = A/m.

10.33. An algebraic scheme V is said to be integral if it is reduced and irreducible. For
example, Spm(A) is integral if and only if A is an integral domain. If V is integral, then
Oy(U) is an integral domain for all open affine subsets U of V.

10.34. A regular map ¢ : W — V of algebraic schemes is said to be surjective (resp.
injective, open, closed, dominant) if the map |p|: |W| — |V| of the underlying
topological spaces is surjective (resp. injective, open, closed, dominant, i.e., has dense
image).> Note that the conditions depend only on the underlying topological spaces.

10.35. Let V be an algebraic scheme over k, and let A be a k-algebra. By definition,
a morphism ¢ : V — Spm(A) gives a homomorphism ¢ : A — Oy (V) of k-algebras
(Oy(V)is not necessarily finitely generated). In this way, we get an isomorphism (cf. 5.11)

¢ < ¢ : Mor(V,Spm A) = Homy_yigebra(4, Oy (V). )

10.36. Let V be an algebraic scheme over k. If V is affine, say, V' = Spm(A), then the
closed subsets of |V| correspond to radical ideals in A, and hence satisfy the descending
chain condition. In the general case, V is a finite union of open affines, and so its closed
subsets satisfy the descending chain condition. In other words, |V| is a noetherian
topological space. It follows that |V'| can be written as a finite union of closed irreducible

This may require the axiom of choice.
3These definitions are from EGA I, 2.3.3.
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subsets, |V| = W; U --- U W,; when we discard any W; contained in another, the
collection {W1, ..., W,}is unigely determined, and its elements are called the irreducible
components of V (2.31).

A noetherian topological space has only finitely many connected components, each
open and closed, and it is a disjoint union of them.

10.37. For an algebraic scheme V' over k and k-algebra R, we let
V(R) = Hom(Spm(R), V).

For example, if V' = Spm(A), then V(R) = Hom(A, R) (homomorphisms of k-algebras).
The elements of V(R) are called the R-points of V (or the points of V with coordinates
in R). To give a k-point of V is the same as giving a point P of |V| such that x(P) = k.
We often identify V' (k) with the set of such P,

V(k) ={P € |V| | x(P) = k}.
For a ring R containing k, we define
V(R) = lim V(R,),

where R; runs over the (finitely generated) k-subalgebras of R. Again V(R) = Hom (A, R)
if V = Spm(A). Then R w V(R) is a functor from k-algebras (not necessarily finitely
generated) to sets.

10.38. Let V be an algebraic scheme. An O -module M is said to be coherent if, for
every open affine subset U of V, the restriction of M to U is coherent (10.29). It suffices
to check this condition for the sets in an open affine covering of V. Similarly, a sheaf 7
of ideals in Oy, is coherent if its restriction to every open affine subset U is the subsheaf
of Oy |U defined by an ideal in the ring Oy (U).

Subschemes

10.39 (OPEN SUBSCHEMES). Let V be an algebraic scheme over k. An open subscheme
of V is a pair (U, Oy |U) with U open in V. It is again an algebraic scheme over k. To
give an open subscheme of V' is the same as giving an open subset of |V|.

10.40 (CLOSED SUBSCHEMES). Let V = Spm(A) be an affine algebraic scheme over k,
and let a be an ideal in A. Then Spm(A/a) is an affine algebraic scheme with underlying
topological space V' (a).

Let V be an algebraic scheme over k, and let J be a coherent sheaf of ideals in Oy.
The support of the sheaf Oy, /7 is a closed subset Z of V (13.5), and (Z, (O, /J)|Z) is an
algebraic scheme, called the closed subscheme of V defined by the sheaf of ideals J.
Note that if U is an open affine of V, then Z N U is an open affine Z.

The closed subschemes of an algebraic scheme satisfy the descending chain condition.
To see this, consider a chain of closed subschemes

ZD3Z,DZyD -

of an algebraic scheme V. Because |V| is noetherian (10.36), the chain |Z| D |Z;| D
|Z,| D --- becomes constant, and so we may suppose that |[Z| = |Z;]| = ---. Write Z as a
finite union of open affines, Z = | J U;. For each i, thechainZNnU; > Z, N U; D --- of
closed subschemes of U; corresponds to an ascending chain of ideals in the noetherian
ring O,(U;), and therefore becomes constant.
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10.41 (SUBSCHEMES). A subscheme of an algebraic scheme V is a closed subscheme
of an open subscheme of V. Its underlying set is locally closed in V' (i.e., open in its
closure). Equivalently, it is the intersection of an open subset with a closed subset).

10.42. A regular map ¢ : W — V is said to be an immersion if it induces an isomor-
phism from W onto a subscheme Z of V. If Z is open (resp. closed), then ¢ is called an
open (resp. closed) immersion.

Reduced schemes
10.43. For aring A, the map
A—> Hm An (product over the maximal ideals of A)

is injective. To see this, let a map to zero, and let a be the annihilator of a. As a maps to
zero in A,,, a contains an element of A ~ m. Therefore the ideal a is not contained in
any maximal ideal of A, and so a = A. This implies that a = 0.

If A is reduced, then S~'A is reduced for any multiplicative subset S of A. It follows
from the above remark that a ring A is reduced if and only if A,, is reduced for all
maximal ideals m in A.

An algebraic scheme V' is said to be reduced if Oy, p is reduced for all P € V. For
example, Spm(A) is reduced if and only if A is reduced. If V is reduced, then O (U) is
reduced for all open affine subsets U of V.

10.44. Let V be an algebraic scheme over k. There is a unique reduced algebraic sub-
scheme Vo4 of V with the same underlying topological space as V. For example, if
V = Spm(A), then V,.q4 = Spm(A/n) where n is the nilradical of A.

Every regular map W — V from a reduced scheme W to V factors uniquely through
the inclusion map i: V,q — V. In particular,

Vied®) = V(R) (3)

if R is a reduced k-algebra, for example, a field.
Every locally closed subset W of |V| carries a unique structure of a reduced sub-
scheme of V; we write W4 for W equipped this structure.

l Passage to the associated reduced scheme does not commute with extension of the
base field. For example, an algebraic scheme V over k may be reduced without Va
being reduced (see p. 8 for the example X? + YP = a).

Fibred products of algebraic schemes

10.45. Letgp: V — Zand ¢p: W — Z be regular maps of algebraic schemes over k.
Then the functor

R V(R) Xz W(R) = {(x,y) € VR) x W(R) | (x) = $p(»)}

is representable by an algebraic scheme V x; W over k, and V X, W is the fibred product
of (¢, ) in the category of algebraic k-schemes, i.e., the diagram

VX, W —s W
l |
Z.

v —



c. Algebraic schemes 13

is cartesian,
Hom(T,V Xz W) =~ Hom(T, V) Xyom(r,z) Hom(T, W).

For example, if R - A and R — B are homomorphisms of k-algebras, then A ®z B is a
finitely generated k-algebra, and

Spm(A) Xspm(r) SPm(B) = Spm(A ®g B).

When ¢ and 1 are the structure maps V — Spm(k) and W — Spm(k), the fibred
product becomes the product, denoted V' x W, and

Hom(T,V X W) ~ Hom(T, V) X Hom(T, W).

The diagonal map Ay, : V' — V X V is the regular map whose composites with the
projection maps equal the identity map of V. When V is affine, Ay, is a closed immersion;
in general, it is only an immersion (cf. 5.26).

Let ¢ : W — V be a regular map of algebraic schemes over k. The fibre ¢~!(P) of ¢
over P is defined to be the fibred product,

W —— Wxy, P E o7(P)

P

V «——— P= Spm(x(P)).

Thus, it is an algebraic scheme over the field x(x), which need not be reduced even if
both V and W are reduced.

10.46. For a pair of regular maps ¢;, ¢, : V — W, the functor

R {x € V(R) | 1(x) = pp(x)}

is represented by a fibred product,

AW XWXW Ve—— 1V

l l(%JPz)

Ay —— WXW.

The subscheme Ay, Xy V of V is called the equalizer Eq(¢;, ¢,) of ¢; and ¢,. Its
underlying set is {x € |V| | ¢;(x) = p,(x)}.

10.47. The intersection of two closed subschemes Z; and Z, of an algebraic scheme
V is defined to be Z; Xy, Z, regarded as a closed subscheme of V' with underlying set
|Z1| N|Z,|. For example, if V = Spm(A), Z; = Spm(A/a,), and Z; = Spm(A/a,), then
Z1 N Z, = Spm(A/a; + a,). This definition extends in an obvious way to finite, or even
infinite, sets of closed subschemes. Because V has the descending chain condition on
closed subschemes (10.40), every infinite intersection is equal to a finite intersection.
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Separated schemes

10.48. An algebraic scheme V over k is said to be separated* if, for any pair of regular
maps ¢;, ¢, : W — V, the subset of |W| on which ¢; and ¢, agree is closed (so Eq(¢;, ¢,)
is a closed subscheme of W).

For example, affine algebraic schemes are separated (cf. 5.6).

10.49. The following conditions on an algebraic scheme V are equivalent:
(a) V is separated;
(b) the diagonal in V X V' is closed (so Ay, is a closed immersion);

(c) for every pair of open affines U, U’ in V, U N U’ is an open affine subset of V, and
the homomorphism

f®gr flunv - &luau @ Oy(U) ® Oy(U) = Oy (UNT)

is surjective;
(d) the condition in (c) holds for the sets in some open covering of V.
See the proofs of 5.25 and 5.28.

Extension of the base field (extension of scalars)

10.50. Let K be a field containing k. There is a functor V' w Vi from algebraic schemes
over k to algebraic schemes over K. For example, if V' = Spm(A), then Vx = Spm(K® A).
If V is separated and (U;);¢ is a finite covering of V by open affines, then Vi is obtained
by patching together the affine schemes U;x using the open immersions of affine schemes
(UinUj), < Uk-

d. Algebraic varieties

10.51. An affine k-algebra5 is a k-algebra A such that k¥ ® A is reduced; in particular,
A itself is reduced. If A is an affine k-algebra and B is a reduced ring containing k, then
A ® B is reduced (10.13); in particular A @ K is reduced for all fields K containing k.
The tensor product of two affine k-algebras is affine (k¥ ®; A is reduced if A is affine,
and then k¥ ®, A ®) B is reduced if B is also affine). When k is a perfect field, every
reduced k-algebra is affine (10.12).

10.52. An algebraic scheme V is said to be geometrically reduced if V. is reduced.
For example, Spm(A) is geometrically reduced if and only if A is an affine k-algebra.
If V is geometrically reduced, then Vi is reduced for all fields K containing k. If V' is
geometrically reduced and W is reduced (resp. geometrically reduced), then V' x W
is reduced (resp. geometrically reduced). If k is perfect, then every reduced algebraic
scheme over k is geometrically reduced. These statements all follow from the affine case
(10.51).

“The first edition of EGA I, required a scheme to be separated — otherwise it was called a prescheme.
This was changed in the second edition and now, universally, a scheme is not required to be separated.

5Some authors define an affine k-algebra to be a reduced finitely generated k-algebra because these are
the rings of functions on algebraic subsets. However, this class of rings is not closed under the formation of
tensor products or extension of the base field.
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10.53. An algebraic variety over k is an algebraic scheme over k that is both separated
and geometrically reduced. Algebraic varieties remain algebraic varieties under exten-
sion of the base field, and products of algebraic varieties are again algebraic varieties.

¢ The fibred product of two algebraic varieties over an algebraic variety need not be an
algebraic variety. Consider, for example,

Al «—— Al xa1 {a} = Spm(k[X]/(XP — a))

]

Al «—— {a}.

Fibred products computed in the category of algebraic varieties may differ from those
computed in the category of algebraic schemes. Similar statements apply to intersections
of subvarieties. For example, over a field of characteristic 2, the intersection of the
diagonal in GL, with SL, is trivial in the category of algbraic varieties but is

1, & Spm(k[X]/(X? — 1))

in the category of algebraic schemes.

e. The dimension of an algebraic scheme

10.54. Let A be a noetherian ring (not necessarily a k-algebra). Recall that the height
of a prime ideal p is the greatest length d of a chain of distinct prime ideals

P=PqsD--2P12Po
Let p be minimal among the prime ideals containing an ideal (ay, ..., a,,); then
height(p) < m.

Conversely, if height(p) = m, then there exist ay, ..., a,, € p such that p is minimal
among the prime ideals containing (a, ..., a,,). (3.52, 3.53, or CA 21.6, 21.7).
The (Krull) dimension of A is sup{height(p)}, where p runs over the prime ideals of
A (or just the maximal ideals — the two are obviously the same). Clearly, the dimension
of a local ring with maximal ideal m is the height of m, and for a general noetherian
ring A,
dim(A) = sup(dim(A4,)).

Since all prime ideals of A contain the nilradical 9 of A, we have
dim(A) = dim(A/N).

10.55. Let A be a finitely generated k-algebra, and assume that A/ is an integral do-
main. According to the Noether normalization theorem (2.45), A contains a polynomial
ring k[x,, ..., X, ] such that A is a finitely generated k[x, ..., X, ]-module. We call r the
transcendence degree of A over k — it is equal to the transcendence degree of the field
of fractions of A/ over k. The length of every maximal chain of distinct prime ideals
in A is tr deg,(A). In particular, every maximal ideal in A has height tr deg, (A), and so
A has dimension tr deg;(A). The proofs of these facts in Section 2m and Section 31 do
not require that k be algebraically closed.
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10.56. Let V be an irreducible algebraic scheme over k. The dimension of V is the
length of one (hence every) maximal chain of irreducible closed subschemes

V=Vyd- DV,

It is equal to the Krull dimension of Oy ,, all x € |V, and to the Krull dimension of
Oy (U), all open affines U in V. We have dim(V) = dim(V .4), and if V is reduced, then
dim(V) is equal to the transcendence degree of k(V') over k.

An affine algebraic scheme V' = Spm(A) is irreducible if and only if A/ is an
integral domain. In this case, the statements follow from (10.55). The general case
follows easily.

The dimension of a reducible algebraic scheme over k is defined to be the maximum
dimension of an irreducible component. When the irreducible components all have the
same dimenions, the scheme is said to be equidimensional.

10.57. Let V an irreducible algebraic variety. Let U be an open affine in V, and let
A = Oy(U). Then A is an integral domain, and it satisfies the equivalent conditions
of 10.12. In particular, A is linearly disjoint from kl/P over k.Therefore, its field of
fractions k(V) is linearly disjoint from k'/P over k, and so k(V) is a regular extension
of k (10.11). Thus k(V) admits a separating transcendence basis over k. This means
that V is birationally equivalent to a hypersurface f(T4, ..., T441), d = dim V, such that
0f /0T 441 # 0 (cf. 3.37). It follows that the points x in V such that x(x) is separable over
k form a dense subset of |V|. In particular, V (k) is dense in |V| if k is separably closed.

f. Tangent spaces and cones; regular and smooth points

10.58. Let A be a noetherian local ring with maximal ideal m. The dimension of A is
the height of m, and so (10.55),

dim A < minimum number of generators for m.

When equality holds, A is said to be regular. Nakayama’s lemma (1.3) shows that a set
of elements of m generates m if and only if it spans the k-vector space m/m?, where
k = A/m. Therefore

dim(A) < dimy(m/m?)

with equality if and only if A is regular. Every regular local ring is a unique factorization
domain; in particular, it is an integrally closed domain. See Matsumura 1989, 20.3.

10.59. Let V' be an algebraic scheme over k. A point P € |V| is regular if Oy p is a
regular local ring. The scheme V' is regular if every point is regular. A connected regular
algebraic scheme is integral, but not necessarily geometrically reduced.

10.60. Let k[¢] be the ring of dual numbers (so e = 0), and let V be an algebraic scheme
over k. From the k-algebra homomorphism ¢ - 0: k[e] — k, we get a map

Vk[e]) = V (k).

The fibre of this over a point P € V' (k) is the tangent space Tp(V) of V at P. Thus Tp(V)
is defined for all P € |V'| with x¥(P) = k. To give a tangent vector at P amounts to giving
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a local homomorphism a : Oy p — k[¢] of k-algebras. Such a homomorphism can be
written

a(f) = f(P)+Da(f)e, f€O0p, [f(P), Du(f) €K,

and D, is a k-derivation Op — k, which induces a k-linear map m/m? — k. In this way,
we get canonical isomorphisms

TP(V) = Derk(oPa k) = Homk-linear(m/mzs k) (4)
The formation of the tangent space commutes with extension of the base field:
Tp(Vir) = Tp(V)

10.61. Let V' be an irreducible algebraic scheme over k, and let P be a point on V such
that x(P) = k. Then
dimTp(V) > dimV

with equality if and only if P is regular (10.58).
10.62. Let V be an irreducible closed subscheme of A", say,
V =SpmA, A=k[Xy,..,X,]/a, a=(Fy,..,F,).

Consider the Jacobian matrix

a_)(l, cee g aXn
J =Jac(Fy,...,F,) = : :

OF, OF,

0xX,> " adX,

Letd = dim V. The singular locus Vg, of V is the closed subscheme of V' defined by
the (n — d) X (n — d) minors of this matrix.
For example, if V is the hypersurface defined by the polynomial F(X3, ..., X4,;), then

9F  oF
5%, X

sac(F) = ) € Migna,

and the singular locus is the closed subscheme of V' defined by the equations

oF oF

— =0,...,——— =0.
0X, 0X 411

10.63. Let V be an affine algebraic variety over k. The choice of closed immersion of V'
into an affine space determines a closed subscheme V;,, of V' which is independent of
the embedding. For a general algebraic scheme V over k, the singular locus is defined
to be the closed subscheme Vg, of V' such that V,, N U = Ug;pg for every open affine
U of V. In the next section, we shall see that Vi, is the complement of the open set
where the sheaf Qy, /, of differentials is locally free of rank dim(V").

From its definition, one sees that the formation of V;,, commutes with exension of
the base field,

(Vsing)k’ = Vi )sing-

Under the canonical bijection V(k*) ~ Va(k™)|, the elements of Ve(k™) correspond
to the singular points of V1 (k?) (those such that dim Tp(V) > dim V).



18

10.64. Let V be an algebraic scheme over k. A point P of V is singular or nonsingular
according as P lies in the singular locus or not, and V' is nonsingular (=smooth) or
singular according as Vg, is empty or not. If P is such that x(P) = k, then P is
nonsingular if and only if it is regular. A smooth variety is regular, and a regular variety
is smooth if k is perfect. In general,

V nonsingular < Va nonsingular

Y Y
V regular » Vi regular.

10.65. LetV be geometrically reduced and irreducible. Then V is birationally equivalent
to a hypersurface f(T,...,Tg41) = Owith 0f /0T 4., # 0 (see 10.57). It follows that the
singular locus of V' is a proper closed subscheme of V' (10.62).

ASIDE 10.66. An algebraic scheme V over a field k is smooth if and only if, for all k-algebras R
and ideals I in R such that I?> = 0, the map V(R) — V(R/I) is surjective.

Tangent cones

Now that we are allowing nilpotents, we can give a more satisfactory definition of the
tangent cone: the tangent cone of a k-point on an algebraic variety (or scheme) is an
algebraic scheme.

DEFINITION 10.67. Let V be the curve in A? defined by a polynomial F(X, Y) without
square factors. If (0,0) € V(k), we define the tangent cone at (0,0) to be

Cp(V) = Spm(k[X, Y[/(F.),

where F, is the leading form of F. To obtain the tangent cone at any other k-point,
translate to the origin, and then translate back.

EXAMPLE 10.68. See p. 86 for more examples.

Curve Tangent Cone
X3+ X2 -Y? X% —y? pair of line Y = +X
X3 -X?2_-Y? X2 47?2 Spmk[X,Y]/(X? +Y?)
X3 -y? Y? Spmk[X,Y]/(Y?)

In each case, the curve is integral but its cone is reducible (first curve), becomes reducible
after a field extension (second case), or is nonreduced (third case).
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angent cone

P tangent cone

DEFINITION 10.69. Let V be closed algebraic subscheme of A™, and let a = I(V). As-
sume that P = (0, ...,0) € V(k). Define a,, to be the ideal generated by the leading forms
F, of the polynomials F € a. We define the tangent cone to V at P to be

Cp(V) = Spm(k[ X1, ..., X,,]/a..
Let A be a local ring with maximal ideal n. The associated graded ring
gr(A) = @ ni/nitL,
i>0

Note that, if A = B, and n = mA, then gr(A) = @, , m!/m'*! (because of 1.15).

i>0

PROPOSITION 10.70. The homomorphism of k-algebras
k[X1, ..., Xy]/a, — gr(Op)

sending the class of X; in k[X4, ..., X, ]/ a,. to the class of X; in gr(Op) is an isomorphism.

PROOF. See 4.34.

DEFINITION 10.71. Let V be an algebraic scheme over k, and let P € V' (k). The tangent
conetoV atPis
Cp(V) = Spm(gr(Op)).

Because of Proposition 10.70, the three definitions are consistent.

10.72. The dimension of the tangent cone at P equals the dimension of V' because the
Krull dimension of a noetherian local ring is equal to that of its graded ring (Matsumura
1989, Theorem 13.9). Moreover, gr(Op) is a polynomial ring in dim V variables if and
only if Op is regular (ibid., Exercise 19.1). Let P € V (k). Then

Pisnonsingular < Tp(V) = k9™ & Cp(V) = AdmV,

10.73. Aregular map ¢ : V — W sending P to Q induces a homomorphism gr(Qg) —
gr(Op), and hence a map Cp(V') — Cp(V) of the tangent cones. We say that ¢ is étale at
P if gr(Og) — gr(Op) is an isomorphism. When P and Q are nonsingular points, this
just says that the map d¢ : Tp(V) — To(W) on tangent spaces is an isomorphism.
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g. Sheaves of differentials

Let A be a k-algebra, and let M be an A-module. Recall (from §5) that a k-derivation is a
k-linear map D : A — M satisfying Leibniz’s rule:

D(fg)=f-Dg+g-Df, allf,geA.

. 1 1
DEFINITION 10.74. A pair (Q Ak Ak

d: A—> (2114 Jk is called the module of differential one-forms for A over k if it has
the following universal property: for any k-derivation D : A — M, there is a unique

A-linear map a: Q= — M such that D = aod,

Alk
1
\‘ 3! A-linear

|
|
|
v
M.

d) comprising an A-module Q’, . and a k-derivation

Thus,
Derk(A, M) = HomA-linear(Qil/ks M))

It can be defined to be the free A-module with basis the symbols df, f € A, modulo the
relations

d(f +g)=df +dg, d(fg)=f-dg+g-df, dc=0ifcek.

EXAMPLE 10.75. Let A = k[X4,...,X,,]; then Qi/k is the free A-module with basis the
symbols dX1, ...,dX,,, and

9
df =), a—)](:dXi.

EXAMPLE 10.76. Let A = k[X,,...,X,]/a; then Qi‘/k is the free A-module with basis the

symbols dXj, ...,dX, modulo the relations:
df =0forall f €a.
EXAMPLE 10.77. A homomorphism A — A’ of k-algebras gives rise to an isomorphism

! 1 1
A®A, ) QY

In particular, for any multiplicative subset S of A, we have canonical isomorphisms

-101 . ¢-1 1 ool
S QA/k_S A®AQA/k_QS—1A/k'
PROPOSITION 10.78. Let V be an algebraic scheme over k. There is a unique sheaf of

Oy -modules Q‘l//k on V such that Q‘l//k(U) = Qév(U)/k for every open affine U of V.

PROOF. When V is affine, say, V' = Spm A, then 10.77 shows that the coherent sheaf of
Oy-modules defined by the A-module QZ Jk has the required properties. In the general
case, the open affines form a base for the topology on V, and the statement follows from
10.5 (this is easier if V' is separated). O
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The sheaf Q‘ll Ik is called the sheaf of differential 1-formsonV'.

EXAMPLE 10.79. Let E be the affine curve
Y2=X34aX +b,

and assume that X3 + aX + b has no repeated roots (so that E is nonsingular). Write x
and y for the regular functions on E defined by X and Y. On the open set D(y) where
y # 0,let w; = dx/y, and on the open set D(3x? + a), let w, = 2dy/(3x? + a). Since
y2 =x3+ax+b,

2ydy = (3x? + a)dx.

and so w; and w, agree on D(y) N D(3x? + a). Since E = D(y) U D(3x? + a), we see
that there is a differential w on E that restricts to w; on D(y) and w, on D(3x? + a). It
is an easy exercise in working with projective coordinates to show that w extends to a
differential one-form on the whole projective curve

Y2Z = X3 + aXZ? + bZ3.

In fact, QL

c /k(C) is a one-dimensional vector space over k, with w as basis. Note that

w=dx/y =dx/(x* + ax + b)'/?,

which cannot be integrated in terms of elementary functions. Integrals of the form f w
arise when computing the arc length of an ellipse, and are called elliptic integrals. The
study of elliptic integrals was one of the starting points for the study of algebraic curves.

In general, if C is a complete nonsingular absolutely irreducible curve of genus g,

then Qé /k(C) is a vector space of dimension g over k.

PROPOSITION 10.80. Let V be an irreducible variety over k. There exists a nonempty open
subvariety U of V such that Q, i |U is free of rank dim V and dim, (), (v)) > dimV

V/k
ifv ¢ U]
PROOF. We may suppose that k is algebraically closed. For P € V(k), we have

Hom@P(Q}DP/k.k) =~ Dery(Op, k) =~ Tp(V).
Thus,

It follows from 13.6 (Chapter 13), that Q%, Ik is locally free of rank dim V over the open

subset of V' consisting of the nonsingular points, and at the remaining points it has fibre
of dimension > dim V. o

h. Algebraic schemes as functors

This section is a brief survey, which the reader can skip.
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10.81. Recall that Alg, is the category of finitely generated k-algebras. For a k-algebra A,
let h* denote the functor R » Hom(A4, R) from k-algebras to sets. A functor F : Alg, —
Set is said to be representable if it is isomorphic to h* for some k-algebra A. A pair
(A,a), a € F(A), is said to represent F if the natural transformation

T,: W' = F, (Tor(f)=F(f)a),

isan isomorphism. This means that, for each x € F(R), there is a unique homomorphism
A — R such that F(A) — F(R) sends a to x. The element a is said to be universal. For
example, (4, id,) represents h“. If (4, a) and (A’, a’) both represent F, then there is a
unique isomorphism A — A’ sending a to a@’.

10.82 (YONEDA LEMMA). Let B be a k-algebra and let F be a functor Alg, — Set. An
element x € F(B) defines a homomorphism

Hom(B,R) — F(R)

sending an f to the image of x under F(f). This homomorphism is natural in R, and so
we have a map of sets
F(B) — Nat(hB, F).

The Yoneda lemma (q.v. Wikipedia) says that this is a bijection, natural in both B and F.
For F = h®, it becomes
Hom(A, B) ~ Nat(h®, h?).

In other words, the contravariant functor A - h4 is fully faithful. Its essential image
consists of the representable functors.

10.83. Let hy denote the functor Hom(—, V) from algebraic schemes over k to sets. The
Yoneda lemma in this situation says that, for algebraic schemes V', W,

Hom(V,W) ~ Nat(hy, hy).

Let h{“,ff denote the functor R w V(R) : Alg, — Set. Then h"{‘,ff = hyo Spm, and can be
regarded as the restriction of hy, to affine algebraic schemes.

Let V and W be algebraic schemes over k. Every natural transformation h{“,ff - h%ﬁf
extends uniquely to a natural transformation hy, — hyy,

Nat(hif, hif) ~ Nat(hy, hy),

and so

Hom(V, W) = Nat(h¥", hih),

In other words, the functor V h?,ff is fully faithful. We shall also refer to this statement
as the Yoneda lemma. It allows us to identify an algebraic scheme over k with its “points-
functor” Alg, — Set.

10.84. A morphism ¢ : V — W of functors is a monomorphism if p(R) is injective
for all R. A morphism ¢ is an open immersion if it is open and a monomorphism
(Demazure and Gabriel 1970, 1, §1, 3.6, p. 10). Let ¢ : V — W be a regular map of
algebraic schemes. If V' — W is a monomorphism, then it is injective (ibid., 5.1, p. 24). If
V is irreducible and V — W is a monomorphism, then there exists a dense open subset
U of V such that ¢|U is an immersion.
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ASIDE 10.85. Originally algebraic geometers considered algebraic varieties V' over algebraically
closed fields k. Here it sufficed to consider the set V (k) of k-points. Later algebraic geometers
considered algebraic varieties V over arbitrary fields k. Here V (k) does not tell you much about
V (it is often empty), and so people worked with V(K) where K is some (large) algebraically
closed field containing k. For algebraic schemes, even V(K) is inadequate because it does not
detect nilpotents. This suggests that we consider V(R) for all k-algebras, i.e., we consider the
functor V: R w V(R) defined by V. This certainly determines V but leads to set-theoretic
difficulties — putting a condition on V involves quantifying over a proper class, and, in general,
the natural transformations from one functor on k-algebras to a second functor form a proper
class. These difficulties vanish when one restricts to k-algebras that are small in some sense.
From this point-of-view, an algebraic scheme over k is determined by the functor it defines on
small k-algebras, and it defines a functor on all k-algebras.

A criterion for a functor to arise from an algebraic scheme

By a functor in this subsection we mean a functor Alg, — Set. A subfunctor U of a
functor V is open if, for all maps ¢ : h4 — V, the subfunctor ¢~(U) of h* is defined by
an open subscheme of Spm(A). A family (U;);¢; of open subfunctors of V' is an open
covering of V if each U; is open in V and V = | U;(K) for every field K. A functor V' is
local if, for all k-algebras R and all finite families (f;); of elements of A generating the
ideal A, the sequence of sets

vR) = [T VR =TT, VR

is exact.

Let A! denote the functor sending a k-algebra R to its underlying set. For a functor
U, let O(U) = Hom(U, A') — it is a k-algebra. A functor U is affine if O(U) is finitely
generated and the canonical map U — h°W) is an isomorphism.

10.86. A local functor admitting a finite covering by open affines is representable by an
algebraic scheme (i.e., it is of the form V for an algebraic scheme X).

This is the definition of a scheme in Demazure and Gabriel 1970, I, §1, 3.11, p. 12.

i. Projective space; Grassmanians

10.87. The condition that k be algebraically closed in Section 6k (The functor defined
by projective space) and Section 6m (Grassmann varieties) is unnecessary.

j- Dense points; dense subschemes

Because we allow nilpotents in the structure sheaf, a morphism V' — W of algebraic
schemes is not in general determined by its effect on V(k), even when k is algebraically
closed. We introduce some terminology to handle this.

DEFINITION 10.88. Let V be an algebraic scheme over k. We say that a subset S of V (k)
is schematically dense in V if the only closed subscheme Z of V such that S ¢ Z(k) is
V itself.

For example, let V' = Spm(A), and let S be a subset of V (k). A closed subscheme
Z = Spm(A/a) of V is such that S C Z(k) if and only if a C m for all m € S. Therefore,
S is schematically dense in V if and only if () {m | m € S} = {0}.
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PROPOSITION 10.89. Let V be an algebraic scheme over k and S a subset of V(k) C |V|.
The following conditions are equivalent:

(a) S isschematically denseinV;
(b) Visreduced and S is dense in |V |;
(c) the family of homomorphisms

e fe): Oy »x(s)=k, s€eS,
is injective, i.e., f = 0if f(s) =0foralls € S.

PROOF. (a)=(b). Let S denote the closure of S in |V|. There is a unique reduced sub-
scheme Z of V with underlying space S (10.44). As S C |Z|, the scheme Z = V, and so
V is reduced with underlying space S.

(b)=(c). Let U be an open affine subscheme of V, and let A = Oy (U). Let f € A be
such that f(s) = 0forall s € SN |U|. Then f(u) = 0 for all u € |U| because S N |U]| is
dense in |U|. This means that f lies in all maximal ideals of A, and so lies in the radical
of A (10.21), which is zero because V is reduced.

(c)=>(a). Let Z be a closed subscheme of V such that S ¢ Z(k). Because Z is
closed in V, the homomorphism Oy, — Oy is surjective. Because S C Z(k), the maps
f e f(s): Oy - x(s), s € S, factor through Oz, and so Oy — O is injective, hence an
isomorphism, which implies that Z = V. O

PROPOSITION 10.90. A schematically dense subset remains schematically dense under
extension of the base field.

PROOF. Let k’ be a field containing k, and let S C V(k) be schematically dense in V.
We may suppose that V is affine, say, V = Spm(A). Lets’: A ® k’ — k’ be the map
obtained from s : A — x(s) = k by extension of scalars. The family s’, s € S, is injective
because the family s, s € S, is injective and k’ is flat over k. o

COROLLARY 10.91. IfV admits a schematically dense subset S C V(k), then it is geometri-
cally reduced.

PROOF. When regarded as a subset of V(k), S is schematically dense in Va, which is
therefore reduced (10.89). o

PROPOSITION 10.92. Let u,v: V = W be morphisms from V to a separated algebraic
scheme W over k. If S is schematically dense in V and u(s) = v(s) forall s € S, then u = v.

PROOF. Because W is separated, the equalizer of the pair of maps is closed in V' (10.48).
As its underlying space contains S, it equals V. o

DEFINITION 10.93. Let V be an algebraic scheme over a field k, and let k’ be a field
containing k. We say that V' (k") is schematically dense in V if the only closed subscheme
Z of V such that Z(k") = V(k’) is V itself.

PROPOSITION 10.94. IfV (k') is schematically dense in V, then V is reduced. Conversely,
if V(k")is dense in |V, | and V is geometrically reduced, then V (k') is schematically dense
inV.
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PROOF. Recall (10.44) that V4 is the (unique) reduced subscheme of V with underlying
space |V|. Moreover Vq(k") = V(k"), and so Vg = V if V(k') is schematically dense
inV.

Conversely, suppose that V is geometrically reduced and V(k’) is dense in |V}/|. Let
Z be a closed subscheme of V such that Z(k’) = V(k’). Then |Z;/| = |V}| by the density
condition. This implies that Z,, = V., because V. is reduced, which in turn implies
that Z = V (see 10.156 below). O

COROLLARY 10.95. IfV is geometrically reduced and k' D k is separably closed, then
V (k') is schematically dense in V.

PROOF. By a standard result (10.57), V(k") is dense in |V}/]. O

COROLLARY 10.96. Let Z and Z' be closed subvarieties of an algebraic scheme V over k. If
Z(k") = Z' (k") for some separably closed field k' containing k, then Z = Z'.

PROOF. The closed subscheme Z n Z’ of Z has the property that (Z n Z")(k’)
=Z(k'),andsoZnZ' = Z. Similarly,ZnZ' = Z'. O

Thus, a closed subvariety Z of V is determined by the subset Z(k5¢P) of V (k5¢P). More
explicitly, if V' = Spm(A) and Z = Spm(A/a), then a is the set of f € A such that
f(P) =0forall P € Z(kP).

k. Finite schemes; connected components

Recall that an R-algebra A is said to be finite if it is finitely generated as an R-module.

Finite algebraic schemes

PROPOSITION 10.97. The following conditions on a finitely generated k-algebra A are
equivalent:

(a) Aisartinian,

(b) A has Krull dimension zero;

(c) Aisa finite k-algebra;

(d) spm(A) is discrete (in which case it is finite).

PROOF. (a)&(b). Because finitely generated, A is noetherian, and hence artinian if and
only if of dimension zero (CA 16.6).

(b)=>(c). According to the Noether normalization theorem (2.45), there exist alge-
braically independent elements X, ..., X, in A such that A is finite over k[xy, ..., x,]. As
k[x, ..., x,] has Krull dimension r (2.55) and dim k[x;, ..., x,] < dim A (1.54), we see
that (b) implies that r = 0 and that A is finite over k.

(c)=(a). Because A is finite-dimensional as a k-vector space, any descending chain
of subspaces (a fortiori, ideals) terminates.

(d)=(b). Let m be a maximal ideal in A. As {m}is open in spm(A), it equals spm(A)
for some f* € A. Every prime ideal in Ay is an intersection of maximal ideals (CA 13.11),
and hence equals m. It follows that no prime ideal of A is properly contained in m. As
this is true of all maximal ideals in A, its dimension is zero.
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(a)=>(d). Because A is artinian, it has only finitely many maximal ideals my, ..., m,,
and some product, say, m; ---m,", equals 0 (CA §16). According Theorem 1.1, A ~
A/mt x --- x A/m)" and so spm(A) = | |spm(A/m") = | [{m;} (disjoint union of
open one-element sets). o

PROPOSITION 10.98. The following conditions on an algebraic scheme V over k are equiv-
alent:

(a) Visaffine and Oy (V) is a finite k-algebra;

(b) V has dimension zero;

(c) |V| is discrete (in which case it is finite).
PROOF. The implications (a)=(b)=>(c) follow immediately from 10.97. It remains to
prove that (c)=(a). If |V| is discrete, then (by 10.97) every open affine subscheme is

a finite disjoint union U = | | Spm(A4;) with A; a finite local k-algebra. Therefore, the
same is true of V, say, V = | | Spm(A;) = Spm(]] A;), and [ ] A; is a finite k-algebra.q

An algebraic scheme over k is finite if it satisfies the equivalent conditions of 10.98.

Finite algebraic varieties (étale schemes)

We summarize part of Chapter 8 of Milne 2022 (=FT).

DEFINITION 10.99. A k-algebra A is diagonalizable if it is isomorphic to the product
algebra k" for some n € N, and it is étale if k' ® A is diagonalizable for some field k’
containing k.

In particular, an étale k-algebra is finite.

10.100 (FT 8.6, 8.7). The following conditions on a finite k-algebra A are equivalent:
(a) Aisétale;
(b) Aisa product of separable field extensions of k;
(c) kK’ ® Aisreduced for all fields k’ containing k (i.e., A is an affine k-algebra);
(d) k%P ® A is diagonalizable.

10.101 (FT 8.8). A k-algebra k[T]/(f(X)) is étale if and only if f is separable, i.e., has
no multiple roots. Every étale k-algebra is a finite product of such algebras.

10.102 (FT 8.9, 8.10, 8.11). Finite products, tensor products, and quotients of diagonal-
izable (resp. étale) k-algebras are diagonalizable (resp. étale). The composite of any finite
set of étale subalgebras of a k-algebra is étale. If A is étale over k, then kK’ ® A is étale
over k' for every field k’ containing k.

DEFINITION 10.103. An algebraic scheme over k is étale if it is affine and Oy (V) is an
étale k-algebra.

Almost by definition, a finite k-algebra is étale if and only if the ring k%! ® A reduced.
It follows from (10.98) that the étale algebraic schemes over k are exactly the algebraic
varieties of dimension zero.
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10.104 (FT 8.23). Let k%P be a separable closure of k, and let I' = Gal(k*P /k). By a
I'-set we meet a set S equipped with an action of I'. A I'-set S is discrete if the action
I' xS — S is continuous relative to the Krull topology on I" and the discrete topology on
S. If V is a zero-dimensional variety over k, then V(k*P) is a finite discrete I"-set, and
the functor

V -~ V(kSP) ©)

is an equivalence from the category of zero-dimensional algebraic varieties over k to the
category of finite discrete I'-sets.

The algebraic variety of connected components of an algebraic scheme

Let f be a nontrivial idempotent in a ring A, i.e., f2 = f and f # 0, 1. As idempotents
in integral domains are trivial, each prime ideal in A contains exactly one of f or 1 — f.
Therefore spm(A) is a disjoint union of the closed-open subsets D(f) and D(1— f). More
generally, let V be an algebraic scheme over k. Then O(V) is a k-algebra (not necessarily
finitely generated), and a nontrivial idempotent in O(V') decomposes V into a disjoint
union of two nonempty closed-open subsets.

PROPOSITION 10.105. Let V' be an algebraic scheme over k. There exists a largest étale
k-subalgebra w(V') in O(V).

PROOF. Let A be an étale subalgebra of O(V'). Then A ® k5P ~ (k*P)" for some n, and
SO

L=fi++fy

with the f; orthogonal idempotents in O(V s ). The f; decompose |Vsep| into a disjoint
union of n closed-open subsets, and so n is not more than the number of connected
components of [Visep|. Thus the number [A: k] = [A ® k*P : k*P] is bounded. It
follows that the composite of all étale k-subalgebras of O(V') is an étale k-subalgebra
which contains all others. O

Define
7o(V) = Spm(z(V)).

Under the canonical isomorphism (see 10.35)
Homk-algebra(”(v)’ O(V)) = Homk-scheme(v’ Spm(rz(V))),

the inclusion 7z(V) < O(V) corresponds to a morphism ¢ : V' — 7,(V), which is
universal among morphisms from V to an étale k-scheme.

PROPOSITION 10.106. Let V be an algebraic scheme over k.
(a) For all fields k' containing k,

7T0(Vk/) =~ 7T0(V)k/.
(b) Let W be a second algebraic scheme over k. Then

To(V X W) =~ (V) X o(W).
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PROOF. (a)Let 7 = 7(O(V)) and '’ = 7(O(V},)). Then 7 ® k' C 7/, and it remains to
prove equality.

Suppose first that k' = k%P, and let I' = Gal(k®P /k). By uniqueness, 7’ is stable
under I', and by Galois theory (FT, 7.13), 'l is étale over k and 7'’ @ k/ ~ z’. On the
other hand 7 C 7", and so 7 = 7/"" by maximality. Hence 7 @ k’ ~ 7’.

Now suppose that k = k%P and k’ = k?.. If k¥ # k, then k has characteristic p # 0.
Let ey, ..., e, be a basis for 77’ as a k?-vector space consisting of idempotents, and let
e; = Y,0; ® ¢; with q; € O(V) and ¢; € k*. For some r, all cfr € k. Asejisan
idempotent, e; = ej.’r = afr ® cfr € O(V). Hence 7 @ k? ~ 7',

Next suppose that k and k’ are algebraically closed. We have to show that V is
connected if and only if V}, is connected. If 7’ = k’, then = = k because 7 @ k' C 7’.
Conversely, if V' is connected, then V, is connected because |V | is dense in |V/|.

In the general case, let k% C k%! be algebraic closures of k and k’. If 7 ® k’ # 7’ then
TRk Qp k' # ' @ k', and so (7 @ k) @ k' # 7’ @+ k' But this contradicts
the previous statements.

(b) After (a), we may suppose that k = k%, and then we have to show that V x W is
connected if V and W are. But V' X W is a union of the connected subvarieties v X W
and V X w with v € |[V]| and w € |W|, and so this is obvious. o

If 7(V) is a field, then O(V") has no nontrivial idempotents, and so V is connected. If
k is algebraically closed in® O(V), then it is algebraically closed in 7z(V'), and so (V) = k;
in this case, 7(Vju) = k¥ and V is connected.

PROPOSITION 10.107. Let V be an algebraic scheme over k.

(a) The fibres of the map ¢ : V — my(V') are the connected components of V.

(b) Forallv € |my(V)|, the fibre p~1(v) is a geometrically connected scheme over x(v).

PROOF. Letv € |my(V)|. For the fibre V,, = p~!(v), we have 7(V,) = x(v). Therefore
the statements follow from the above discussion. O

COROLLARY 10.108. Let V be a connected algebraic scheme over k such that V (k) # 0.
Then 'V is geometrically connected, and V X W is connected for any connected algebraic
scheme W over k.

PROOF. By definition, A = (V) is a finite product of separable field extensions of k. If
A had more than one factor, O(V)) would contain a nontrivial idempotent, and V would
not be connected. Therefore, A is a field containing k. Because V' (k) is nonempty, there
is a k-homomorphism A — k, and so A = k. Now Va is connected (see the above
discussion). Moreover,

7o(V X W) = 71o(V) X mo(W) = 7ro(W),
and so V X W is connected. O

REMARK 10.109. Let V be an algebraic scheme over k.

(a) The connected components of Vs form a finite set on which Gal(k**P /k) acts
continuously, and 7,(V) is the étale scheme over k corresponding to this set under
the equivalence Z w Z(k*P) in (5).

®This means that an element a of O(V) lies in k if f(a) = 0 for some nonzero f(X) € k[X].
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(b) Forv € my(V), o~ 1(v) — Spm(x(v)) is flat because x(v) is a field. Therefore, the
morphism ¢ : V — 7y(V) is faithfully flat.

(c) The formation of ¢ : V — 7((V) commutes with extension of the base field. This
is what the proof of 10.106 shows.

SUMMARY 10.110. Let V be an algebraic scheme over k. Among the regular maps from
V to a zero-dimensional algebraic variety there is one V' — 7y(V) that is universal. The
fibres of the map V' — my(V) are the connected components of V. The map V' — 7((V)
commutes with extension of the base field, and 7,(V X W) ~ 7y(V) X 1y(W). The variety
(V) is called the variety of connected components of V.

1. Properties of morphisms

In this section, we review the definitions of the different types of morphisms and their
properties. Most proofs in the first nine chapters generalize without difficulty to the new
situation.

Separated maps

10.111. For a regular map V' — S of algebraic schemes over k, we define Ay, /g to be the
equalizer of the projection maps Ay, =3 S. Itis a subscheme of V Xg V. The mapV — S
is said to be separated if Ay is closed. For example, if V' is an algebraic scheme over k,
then Ay /spmk) = Ay, and so the structure map V' — Spm(k) is separated if and only if
V is separated.

10.112. A regular map ¢ : V — S is separated if there exists an open covering S = | J S;
of S such that p=1(S;) 2, S; is separated for all i.

10.113. A regular map ¢ : V — S is separated if V and S are separated. (As V is
separated, the diagonal Ay, in V' X V is closed; as S is separated, the equalizer of the
projections Ay = S is closed.)

Affine maps

10.114. A regular map ¢ : V — S is said to be affine if, for all open affines U in S,
@~ 1(U) is an open affine in V. It suffices to check the condition for the U in an open
affine cover of V.

10.115. Every affine map is separated. (Affine algebraic schemes over k are separated,
and so regular maps of affine algebraic schemes are separated (10.113). Therefore, this
follows from (10.112).)

Flat maps

A flat morphism is the algebraic analogue of a map whose fibres form a continuously varying
family. For example, a surjective morphism of smooth varieties is flat if and only if all fibres have
the same dimension (10.130). A finite morphism to a reduced algebraic scheme is flat if and
only if, over every connected component, all fibres have the same number of points (counting
multiplicities) (10.123). A flat morphism of finite type of algebraic schemes is open, and surjective
flat morphisms are epimorphisms in a very strong sense (10.75).
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10.116. Recall from Section 9c: A homomorphism A — B of rings is flat if the functor
M ~» B ®4 M of A-modules is exact. It is faithfully flat if, in addition,

BM=0= M=0.

(a) If f: A — Bisflat, thensoalsois S™'f : S7'A — S~!B for any multiplicative
subsets S of A.

(b) A homomorphism f: A — B is flat if and only if Ag-1,,) — B, is flat for all
maximal ideals n in B.

(c) Let A —» A’ be a homomorphism of rings. If A — B is flat (resp. faithfully flat),
then A’ — A’ ® B is flat (resp. faithfully flat).

(d) Faithfully flat homomorphisms are injective.

10.117. A regular map ¢ : W — V of algebraic schemes over k is said to be flat if, for
allw € |W/|, the map Oy o, = Ow ,, is flat. A flat map ¢ is faithfully flat if it is flat
and || is surjective.

For example, the map Spm(B) — Spm(A) defined by a homomorphism of k-algebras
A — B is flat (resp. faithfully flat) if and only if A — B is flat (resp. faithfully flat).

10.118. A flat map ¢ : W — V of algebraic schemes is open, and hence universally
open.

10.119 (GENERIC FLATNESS). Letgp : W — V be a dominant map of algebraic schemes.

If V is integral, there exists a dense open subset U of V such that ¢~}(U) 2 Uis
faithfully flat.

After passing to suitable open affine subschemes, we may suppose ¢ is defined by
a homomorphism A — B of finitely generated k-algebras with A an integral domain.
According to CA, 11.21, there are nonzero elementsa € Aand b € Bsuch thatSpm B, —
Spm A, is faithfully flat.

10.120. Letp : W — V be a regular map of algebraic schemes. If pr, : W X, W - W
is faithfully flat, then so also is ¢.

Finite maps and quasi-finite maps

10.121. Aregular map ¢ : W — V of algebraic schemes over k is finite if, for all open
affine U C V, ¢~ }(U) is affine and Oy, (¢~ 1(U)) is a finite O, (U)-algebra. It suffices to
check the condition for U in an open affine cover of V.

For example, the map Spm(B) — Spm(A) defined by a homomorphism of k-algebras
A — Bisfinite if and only if A — B is finite.

10.122. A regular map ¢ : W — V of algebraic schemes over k is quasi-finite if, for all
v € V, the fibre ¢~1(v) is a finite scheme over k(v) . Finite maps are quasi-finite.

Forv € V, we let
deg, (¢) = dimy(Op-1(,) (@~ (V).
For example, if ¢ is the map of affine algebraic schemes defined by a homomorphism of
k-algebras A — B, then then

deg,(¢) = dimy B ®4 (A/m,).
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10.123. A regular map ¢ : W — V of algebraic schemes with V integral is flat if and
only if deg, (¢) is independent of v € V.

10.124. Let ¢ : W — V be a finite map of integral schemes. The degree of ¢ is the
degree of k(W) over k(V'), and the separable degree of ¢ is the degree of the greatest
separable subextension of k(W) over k(V).

(a) Forallv eV,
deg,(¢) < deg(p),

and the points v for which equality holds form a dense open subset of V.

(b) Assume that k is algebraically closed. For allv € V,
#|p™! ()| < sep deg(p),
and the points v for which equality holds form a dense open subset of V.

10.125 (ZARISKI'S MAIN THEOREM). Every separated map ¢ : W — V factors into the
composite

t °4
W—W -V
of an open immersion ¢ and a finite map ¢'.

10.126. Let ¢ : W — V be a quasi-finite map of integral algebraic schemes. If ¢ is
birational (i.e., of degree 1) and V is normal, then ¢ is an open immersion.

The fibres of regular maps
Letp : W — V be a dominant map of integral schemes.

10.127. There exists a dense open subset U of W such that p(U) is open, U = ¢~} (p(U)),
and U R p(U) is flat.

10.128. Let P € (V). Then
dim(p~1(P)) > dim(W) — dim(V).
Equality holds for P € ¢(U), where U is as in 10.127.
In particular, equality holds for all P € V if ¢ is faithfully flat.

10.129. Let S be an irreducible closed subset of V', and let T be an irreducible component
of p~1(S) such that ¢(T) is dense in S. Then

dim(T) > dim(S) + dim(W) — dim(V).
With U as in 10.127, if S intersects ¢(U) and T intersects U, then equality holds.

10.130. A surjective morphism of smooth algebraic k-schemes is flat (hence faithfully
flat) if its fibres all have the same dimension.
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Etale maps

DEFINITION 10.131. Aregularmap ¢ : W — V of algebraic schemes over k is étale if (a)
it is flat and (b) for every v € |V|, the fibre ¢~!(v) over v is an étale scheme (=algebraic
variety of dimension zero).

10.132. A regular map ¢ : W — V of algebraic schemes over an algebraically closed
field k is étale if and only the map Co(W) — Cpo(V) is an isomorphism for all Q € |W]|.

Thus, for algebraic varieties over an algebraically closed field, Definition 10.131
agrees with those in Chapter V. There is much to be said about étale morphisms, but, for
the moment, we refer the reader to 1.2 of my notes, Lectures on Etale Cohomology.

Smooth maps

DEFINITION 10.133. A regular map ¢ : W — V of algebraic schemes over k smooth if
(a) it is flat and (b) for every v € |V|, ¢~!(v) is a smooth scheme (=nonsingular variety).

10.134. A regular map ¢ : W — V is smooth if and only if it is locally of the form

étale
U— A} >V,

i.e., every Q € |W| has an open neighbourhood U such that ¢|U admits such a factor-
ization.

10.135. Let A be a finitely generated k-algebra. The map
Spm(A[Xl, e ’X}'l]/(Pl’ e ’Pr)) - SpmA

defined by the k-algebra homomorphism A - A[X;,...,X,]/(Py, ..., P,) is smooth if

and only if the matrix
oP;
(Wj(al, an))

has rank r for all (a4, ..., a,) € A". Aregular map ¢ : W — V is smooth if and only if it
is locally of this form, i.e., for all w € W, there are open affine neighbourhoods U’ of w
and U of ¢(w) such that ¢(U’) C U and the restriction of ¢ to U’ — U is of the above
form.

10.136. A regular map ¢ : W — V of algebraic schemes over an algebraically closed
field k is smooth if and only if the map Co(W) — Cyo(V) is surjective for all Q € |W].
In particular, if W and V are smooth varieties, then ¢ is smooth if and only if it induces
surjective maps on the tangent spaces.

Separable maps

10.137. A dominant map ¢ : W — V of integral algebraic schemes is separable if
k(W) is a separably generated field extension of k(V).

10.138. Let ¢ : W — V be a dominant map of integral algebraic schemes.

(a) Ifthere exists a nonsingular point Q € W such that ¢(Q) is nonsingular and (dqo)Q
is surjective, then ¢ is separable.
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(a) If p is separable, then the set of points Q € W satisfying the condition in (a) is a
dense open subset of W.

10.139. The pull-back of a separable map of irreducible algebraic varieties is separable.
10.140. Let Z; and Z, be closed subschemes of an algebraic scheme V. Then Z; N Z, &«
Z1 Xy Z, is a closed algebraic subscheme of V. If V, Z;, and Z, are all algebraic varieties,
then Z, N Z, is an algebraic variety provided Tp(Z,) and Tp(Z,) cross transversally (in
Tp(V)) for all P in an open subset of V.

m. Complete schemes; proper morphisms

Complete algebraic schemes

10.141. An algebraic scheme V is said to be complete if it is separated and if, for all
algebraic schemes T, the projection map q: V X T — T is closed. (It suffices to check
this with T = A".)

10.142. (a) Closed subschemes of complete schemes are complete.

(b) An algebraic scheme is complete if and only if its irreducible components are
complete.

(c) Products of complete schemes are complete.

(d) Letg: V — S be a regular map of algebraic varieties. If V' is complete, then (V)
is a complete closed subvariety of S. In particular,

i) ifo: V — Sis dominant and V is complete, then ¢ is surjective and S is
complete;

ii) complete subvarieties of algebraic varieties are closed.

(e) A regular map V — P! from a complete connected algebraic variety V is either
constant or surjective.

(f) The only regular functions on a complete connected algebraic variety are the
constant functions.

(g) The image of a regular map from a complete connected algebraic scheme to an
affine algebraic scheme is a point. The only complete affine algebraic schemes are
the finite schemes.

10.143. Projective algebraic schemes are complete.
10.144. Every quasi-finite map W — V with W complete is finite.

Proper morphisms

10.145. A regular map ¢ : V — S of algebraic schemes is proper if it is separated and
universally closed (i.e., for all regular maps T — S, the projectionmapq: VXgT —» T
is closed).

10.146. A finite map is proper.
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10.147. An algebraic scheme V is complete if and only if the map V' — Spm(k) is proper.
The base change of a proper map is proper. In particular, if 7 : V — S is proper, then
7~1(P) is a complete subscheme of V forall P € S.

10.148. If V — S is proper and S is complete, then V' is complete.

10.149. The inverse image of a complete algebraic scheme under a proper map is com-
plete.

10.150. Let ¢ : V' — S be a proper map. The image ¢Z of any complete algebraic
subscheme Z of V' is a complete algebraic subscheme of S.

10.151. Let A = P, , Aq be a graded ring such that
(a) asan Ao—algebrz_i, A is generated by A;, and
(b) for everyd > 0, A, is finitely generated as an A,-module.
A map 7 : Proj(A) — Spm(A,) is defined (to be added).

10.152. The map 7 : proj(A) — spm(A) is closed.

n. Restriction of the base field

Also called Weil restriction of scalars.
Let A be a finite k-algebra. A functor F from A-algebras to sets defines a functor

(F)ajk: Alg, — Set, R~ F(AQ®R).
If F is representable, is (F) 4 / also representable? We prove that it is in two cases.

PROPOSITION 10.153. IfF : Alg, — Set is represented by a finitely generated A-algebra,
then (F),y is represented by a finitely generated k-algebra.

PROOF. Let
A=ke, @ ---Dkey, e €A.

Consider first the case that F = A", so that F(R) = R" for all A-algebras R. For a
k-algebra R,
REAQR~Re, - @ Rey,

and so there is a bijection

(@h<i<n = (bij)1<i<n : R — R™
1<j<d

which sends (a;) to the family (b;;) defined by the equations

d .
a; = Zj:l bijej, i=1,..,n. (6)

The bijection is natural in R, and shows that (F) 4/, ~ A" (the isomorphism depends
only on the choice of the basis e, ..., €4).

If F is represented by a finitely generated A-algebra, then F is a closed subfunctor of
A" for some n. Therefore (F),/y is a closed subfunctor of (A") 4/ & A" and so (F) 4 Jk
is represented by a quotient of k[T, ..., Ty, ]
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Alternatively, suppose that F is the subfunctor of A" defined by a polynomial
fXq,...,X,) in A[X], ..., X,]. On substituting

d
Xi = Zj:l leej

into f, we obtain a polynomial g(Y, Y1, ..., Y,,q) With the property that

f(al, ey an) =0 & g(bll’ b12, ey bnd) =0

when the a and b are related by (6). The polynomial g has coefficients in A, but we can
write it (uniquely) as a sum

g=gie; + - +gqeq, & € K[Y11, Y12, 0, Vgl
Clearly,
g(bu, b12a et bnd) =0 & gi(bll’ b125 ey bnd) =0fori= 1,.., d,

and so (F) i is isomorphic to the subfunctor of A"d defined by the polynomials g1, ..., £4.
This argument extends in an obvious way to the case that F is the subfunctor of A"
defined by a finite set of polynomials. o

PROPOSITION 10.154. Let V be an algebraic scheme over A such that every finite subset of
|V'| is contained in an open affine subscheme (e.g., V quasi-projective). Then (V) 5 is an
algebraic scheme over k.

PROOF. We use two obvious facts: (a) if U is an open subfunctor of F, then (U) 4/ is an
open subfunctor of (F) 4 i; (b) if F is local (see 10.86), then (F) 4/ is local. Let U be an
open affine subscheme of V. Then (U) 4 is an open subfunctor of (V) 4, and it is an
affine scheme over k by (10.153. It remains to show that a finite number of the functors
(U)a/x cover (V) 4k (10.86).

Letd = [A: k], and let |V|d be the topological product of d copies |V|. By assump-
tion, the sets U¢ with U open affine in |V/| cover |V|d. As |V|d is quasi-compact, a finite
collection Uy, ..., U,, cover |V|d.

Let U be the union of the subfunctors (U;) 4/ 0f (V)4/k- It is an open subfunctor
of (V) /1, and s0 if U # (V) 4k, then U(K) # (V)4 (K) for some field K containing
k. ApointQ € (V)A/K (K) is an A-morphism Spm(A ® K) — V. The image of |Q| is
contained in a subset of |V| with at most d elements, and so Q factors through some U;.
Therefore (V)4 /x = J(Upa k- O

o. Galois descent

10.155. Let Q D k be an extension of fields, and letI" = Aut(Q/k). Assume that Q! = k.
This is true, for example, if Q is a Galois extension of k. Then the functor V « Q ®, V
from vector spaces over k to vector spaces over Q equipped with a continuous action of
I' is an equivalence of categories.

10.156. Let V be an algebraic scheme over a field k, and let V! = V}, for some field
k’ containing k. Let W’ be a closed subscheme of V’. There exists at most one closed
subscheme W of V such that W, = W’ (as a subscheme of V).
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Let I' = Aut(k’/k), and assume that k’" = k. Then W’ arises from an algebraic
subscheme of V if and only if it is stable under the action of I" on V/. When V and W’
are affine, say, V = Spm(A4) and W’ = Spm(A4y/a), to say that W’ is stable under the
action of I means that a is stable under the action of I on Ay = A ® k’. More generally,
it means that the ideal defining W’ in Oy is stable under the action of I on Oy.

Let k’ = k%P, An algebraic subvariety W’ of V' is stable under the action of I" on V'
if and only if the set W’(k”) is stable under the action of I" on V' (k').

10.157. Let V and W be algebraic schemes over k with W separated, and let V' =V,

and W’ = Wy, for some field k’ containing k. Let ¢’ : V' — W’ be a regular map.
Because W' is separated, the graph I’ o of ¢’ is closed in V x W, and so we can apply
(10.156) to it. We deduce:

o There exists at most one regular map ¢ : V — W such that ¢’ = ¢;,.

o LetI' = Aut(k’/k), and assume that k" = k. Then ¢’ : V' — W' arises from
a regular map over k if and only if its graph is stable under the action of I" on
VIx W'

o Letk’ = k%P, and assume that V and W are algebraic varieties. Then ¢’ arises
from a regular map over k if and only if the map

@'(k"): V(K" — W(k")
commutes with the actions of I" on V(k’) and W(k’).

See my article, Descent for algebraic schemes, arXiv:2406.05550.

p- Schemes in general

In this chapter, we have studied schemes of finite type over a base field. In the 1950s
(if not earlier), it became clear that one needed to consider schemes over more general
base rings. For example, the study of algebraic schemes over Q and their reductions to
algebraic schemes over the finite fields [F, amounts to the study of algebraic schemes
over Z. This suggested attaching a geometric object to every commutative ring, not just
those finitely generated over a field. Unfortunately, the map A — spm A is not functorial
in this wider context: if ¢ : A — B is a homomorphism of rings, then the inverse image
¢~ !(m) of a maximal ideal m of B need not be maximal — consider for example the
inclusion Z < Q. Thus one is forced to replace spm(A) with spec(A), the set of all
prime ideals in A. One then attaches a locally ringed space Spec(A) to A, and defines
an affine scheme to be any locally ringed space isomorphic to Spec(A) for some ring
A. A scheme is a locally ringed space that admits an open covering by affine schemes.
A scheme over a ring A is a scheme V equipped with a morphism V' — Spec(A). This
point of view was developed with great vigour by Grothendieck and his associates in the
1960s (see the seminars SGA and the treatise EGA).

There is a natural functor V'« V* from the category of algebraic schemes over a
field k in our sense to the category of schemes of finite-type over k in the sense of EGA,
which gives an equivalence of categories. Under the equivalence, algebraic varieties over
k correspond to the geometrically-reduced separated schemes of finite-type over k. To
construct the underlying set of V* from that of V, one only has to add one point p, for
each irreducible closed subset Z of V' of dimension > 0. In other words, |V*| is the set of
irreducible closed subsets of |V|. For an open subset U of V, let U* denote the subset of
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V* containing the points of U together with the points p; such that U n Z is nonempty.
Then U — U* is a bijection from the set of open subsets of I onto the set of open subsets
of V* with inverse U* — V N U*. The closure of {p,}is Z, and so the map V — V*
identifies V' with the set of closed points of V*. Define I'(U*, Oy+) = I'(U, Oy/) for each
open subset U of V. Note that the topologies (families of open subsets) and sheaves of V'
and V* are the same — only the underlying sets differ. For a closed irreducible subset Z

of V, the local ring Oy~ ,,, = li_r)nU 20 I'(U, Oy). The inverse functor is even easier to
’ n.

describe: simply omit the nonclosed points from the base space.”

Every aspiring algebraic and (especially) arithmetic geometer needs to learn the basic
theory of schemes, and for this I recommend reading Chapters II and III of Hartshorne
1997.

Comparison with algebraic schemes in the sense of EGA

10.158. In the language of EGA, we are ignoring the nonclosed points in our algebraic
schemes. In other words, we are working with ultraschemes rather than schemes (EGA
I, Appendice). For schemes of finite type over a field k (i.e., algebraic over k), we provide
a short dictionary. Note that, in a finitely generated k-algebra, every prime ideal is an
intersection of maximal ideals (Nullstellensatz 10.21), so the maximal ideals determine
the prime ideals.

(a) Let V be an algebraic scheme over k in the sense of EGA, and let V|, be the set
of closed points in V with the induced topology. The map S — S NV, is an
isomorphism from the lattice of closed (resp. open, constructible) subsets of V'
to the lattice of similar subsets of V. In particular, V is connected if and only if
V, is connected. To recover V from V), add a point z for each irreducible closed
subset Z of V, not already a point; the point z lies in an open subset U if and only
if U N Z is nonempty. Thus the ringed spaces (V, Oy) and (V, Oy |V,,) have the
same lattice of open subsets and the same k-algebra for each open subset; they
differ only in the underlying sets. See EGA 1V, §10.

(b) Let V be an algebraic scheme over k in the sense of EGA. Then V is normal (resp.
regular) in the sense of EGA if and only if Oy, ;, is normal (resp. regular) for all closed
points v of V. Moreover, V is smooth over k, i.e., the morphism Spec(V') — Spec(k)
is smooth, if and only if V. is regular, which again is a condition on the closed
points.

(c) Morphisms of algebraic schemes over k map closed points to closed points. The
functor (V, Oy) w (Vy, Oy|V,) is an equivalence from the category of algebraic
schemes over k to the category of ultraschemes over k.

(d) Letp: V — W be a morphism of algebraic schemes over k in the sense of EGA.
Then

o ¢ is surjective if and only if it is surjective on closed points (use (a) and that
@ maps constructible sets to constructible sets);

’Some authors call a geometrically reduced scheme of finite-type over a field a variety. Despite
their similarity, it is important to distinguish such schemes from varieties (in the sense of these notes).
For example, if W and W’ are subvarieties of a variety, their intersection in the sense of schemes need
not be reduced, and so may differ from their intersection in the sense of varieties. For example, if
W = V(a) c A" and W’ = V(a’) c A" with a and o radical, then the intersection W and W’ in
the sense of schemes is Spec k[ X}, ..., X, 1/(a,a’) while their intersection in the sense of varieties is
Speck[X, ..., X, ]/rad(a, a’).
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¢ g is quasi-finite if and only if ¢~!(w) is finite for all closed points w of W;
¢ gisflatifand only if O ) = Oy, is flat for all closed points v of V;

o @ is smooth if and only if it is flat and its closed fibres are smooth.

See Demazure and Gabriel 1970, p. 95-96, 6.5-6.10.
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