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Notations

We use the standard (Bourbaki) notations: ND f0;1;2; : : :g, ZD ring of integers, RD field
of real numbers, CD field of complex numbers, Fp D Z=pZD field of p elements, p a
prime number. Given an equivalence relation, Œ�� denotes the equivalence class containing �.
A family of elements of a set A indexed by a second set I , denoted .ai /i2I , is a function
i 7! ai WI ! A. We sometimes write jS j for the number of elements in a finite set S .

Throughout, k is an algebraically closed field. Unadorned tensor products are over k. For
a k-algebra R and k-module M , we often write MR for R˝M . The dual Homk-linear.E;k/

of a finite-dimensional k-vector space E is denoted by E_.
All rings will be commutative with 1, and homomorphisms of rings are required to map

1 to 1.
We use Gothic (fraktur) letters for ideals:

a b c m n p q A B C M N P Q
a b c m n p q A B C M N P Q

Finally

X def
D Y X is defined to be Y , or equals Y by definition;

X � Y X is a subset of Y (not necessarily proper, i.e., X may equal Y );
X � Y X and Y are isomorphic;
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism).

A reference “Section 3m” is to Section m in Chapter 3; a reference “3.45 ” is to this
item in chapter 3; a reference “(67)” is to (displayed) equation 67 (usually given with a page
reference unless it is nearby).

Prerequisites

The reader is assumed to be familiar with the basic objects of algebra, namely, rings, modules,
fields, and so on.
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There is almost nothing left to discover in geometry.
Descartes, March 26, 1619

QUESTION: If we try to explain to a layman what algebraic geometry is, it seems to me that
the title of the old book of Enriques is still adequate: Geometrical Theory of Equations . . . .
GROTHENDIECK: Yes! but your “layman” should know what a system of algebraic equations
is. This would cost years of study to Plato.
QUESTION: It should be nice to have a little faith that after two thousand years every good
high school graduate can understand what an affine scheme is . . .

From the notes of a lecture series that Grothendieck gave at SUNY at Buffalo in the
summer of 1973 (in 167 pages, Grothendieck manages to cover very little).
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Introduction

I believe that you should begin by getting a solid foundation
in what I call “elementary algebraic geometry,” that is, the
theory of “Serre varieties” as defined in FAC. I think that
at the beginning you should should strictly limit yourself to
varieties over an algebraically closed field (but of arbitrary
characteristic).
Dieudonné, Letter to Ribenboim, 1972.

Just as the starting point of linear algebra is the study of the solutions of systems of
linear equations,

nX
jD1

aijXj D bi ; i D 1; : : : ;m; (1)

the starting point for algebraic geometry is the study of the solutions of systems of polynomial
equations,

fi .X1; : : : ;Xn/D 0; i D 1; : : : ;m; fi 2 kŒX1; : : : ;Xn�:

One immediate difference between linear equations and polynomial equations is that theo-
rems for linear equations don’t depend on which field k you are working over,1 but those for
polynomial equations depend on whether or not k is algebraically closed and (to a lesser
extent) whether k has characteristic zero.

A better description of algebraic geometry is that it is the study of polynomial functions
and the spaces on which they are defined (algebraic varieties), just as topology is the study
of continuous functions and the spaces on which they are defined (topological spaces),
differential topology the study of infinitely differentiable functions and the spaces on which
they are defined (differentiable manifolds), and so on:

algebraic geometry regular (polynomial) functions algebraic varieties

topology continuous functions topological spaces

differential topology differentiable functions differentiable manifolds

complex analysis analytic (power series) functions complex manifolds.

The approach adopted in this course makes plain the similarities between these different
areas of mathematics. Of course, the polynomial functions form a much less rich class than
the others, but by restricting our study to polynomials we are able to do calculus over any

1For example, suppose that the system (1) has coefficients aij 2 k and that K is a field containing k. Then
(1) has a solution in kn if and only if it has a solution in Kn, and the dimension of the space of solutions is the
same for both fields.
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10 INTRODUCTION

field: we simply define
d

dX

X
aiX

i
D

X
iaiX

i�1:

Moreover, calculations with polynomials are easier than with more general functions.
Consider a nonzero differentiable function f .x;y;z/. In calculus, we learn that the

equation
f .x;y;z/D C (2)

defines a surface S in R3, and that the tangent plane to S at a point P D .a;b;c/ has
equation2 �

@f

@x

�
P

.x�a/C

�
@f

@y

�
P

.y�b/C

�
@f

@z

�
P

.z� c/D 0: (3)

The inverse function theorem says that a differentiable map ˛WS ! S 0 of surfaces is a local
isomorphism at a point P 2 S if it maps the tangent plane at P isomorphically onto the
tangent plane at P 0 D ˛.P /.

Now consider a nonzero polynomial f .x;y;z/ with coefficients in a field k. In these
notes, we shall learn that the equation (2) defines a surface in k3, and we shall use the
equation (3) to define the tangent space at a point P on the surface. However, and this is
one of the essential differences between algebraic geometry and the other fields, the inverse
function theorem doesn’t hold in algebraic geometry. One other essential difference is that
1=X is not the derivative of any rational function of X , and nor is Xnp�1 in characteristic
p ¤ 0 — these functions cannot be integrated in the field of rational functions k.X/.

These notes form a basic first course on algebraic geometry. Throughout, we require the
ground field to be algebraically closed in order to be able to concentrate on the geometry.
Additional chapters, treating more advanced topics, can be found on my website.

The approach to algebraic geometry taken in these notes

In differential geometry it is important to define differentiable manifolds abstractly, i.e., not
simply as submanifolds of some Euclidean space. For example, it is difficult even to make
sense of a statement such as “the Gauss curvature of a surface is intrinsic to the surface but
the principal curvatures are not” without the abstract notion of a surface.

Until the mid 1940s, algebraic geometry was concerned only with algebraic subvarieties
of affine or projective space over algebraically closed fields. Then, in order to give substance
to his proof of the congruence Riemann hypothesis for curves and abelian varieties, Weil
was forced to develop a theory of algebraic geometry for “abstract” algebraic varieties over
arbitrary fields,3 but his “foundations” are unsatisfactory in two major respects:

˘ Lacking a sheaf theory, his method of patching together affine varieties to form abstract
varieties is clumsy.4

˘ His definition of a variety over a base field k is not intrinsic; specifically, he fixes some
large “universal” algebraically closed field ˝ and defines an algebraic variety over k
to be an algebraic variety over ˝ together with a k-structure.

2Think of S as a level surface for the function f , and note that the equation is that of a plane through
.a;b;c/ perpendicular to the gradient vector .Of /P of f at P .

3Weil, André. Foundations of algebraic geometry. American Mathematical Society, Providence, R.I. 1946.
4Nor did Weil use the Zariski topology in 1946.
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In the ensuing years, several attempts were made to resolve these difficulties. In 1955,
Serre resolved the first by borrowing ideas from complex analysis and defining an algebraic
variety over an algebraically closed field to be a topological space with a sheaf of functions
that is locally affine.5 Then, in the late 1950s Grothendieck resolved all such difficulties by
developing the theory of schemes.

In these notes, we follow Grothendieck except that, by working only over a base field,
we are able to simplify his language by considering only the closed points in the underlying
topological spaces. In this way, we hope to provide a bridge between the intuition given by
advanced calculus and the abstractions of scheme theory.

5Serre, Jean-Pierre. Faisceaux algébriques cohérents. Ann. of Math. (2) 61, (1955). 197–278, commonly
referred to as FAC.





CHAPTER 1
Preliminaries from commutative

algebra

Algebraic geometry and commutative algebra are closely intertwined. For the most part, we
develop the necessary commutative algebra in the context in which it is used. However, in
this chapter, we review some basic definitions and results from commutative algebra.

a. Rings and ideals

Basic definitions

Let A be a ring. A subring of A is a subset that contains 1A and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together with a
homomorphism iB WA! B . A homomorphism of A-algebras B! C is a homomorphism
of rings 'WB! C such that '.iB.a//D iC .a/ for all a 2 A.

Elements x1; : : : ;xn of an A-algebra B are said to generate it if every element of B can
be expressed as a polynomial in the xi with coefficients in iB.A/, i.e., if the homomorphism
of A-algebras AŒX1; : : : ;Xn�! B acting as iA on A and sending Xi to xi is surjective.

When A � B and x1; : : : ;xn 2 B , we let AŒx1; : : : ;xn� denote the A-subalgebra of B
generated by the xi .

A ring homomorphism A! B is said to be of finite-type, and B is a finitely generated
A-algebra if B is generated by a finite set of elements as an A-algebra.

A ring homomorphism A! B is finite, and B is a finite1 A-algebra, if B is finitely
generated as an A-module.

Let k be a field, and let A be a k-algebra. When 1A¤ 0 in A, the map k!A is injective,
and we can identify k with its image, i.e., we can regard k as a subring of A. When 1A D 0
in a ring A, then A is the zero ring, i.e., AD f0g.

A ring is an integral domain if it is not the zero ring and if ab D 0 implies that aD 0 or
b D 0; in other words, if ab D ac and a¤ 0, then b D c.

For a ring A, A� is the group of elements of A with inverses (the units in the ring).

Ideals

Let A be a ring. An ideal a in A is a subset such that

1The term “module-finite” is also used.
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14 1. PRELIMINARIES FROM COMMUTATIVE ALGEBRA

(a) a is a subgroup of A regarded as a group under addition;

(b) a 2 a, r 2 A) ra 2 a:

The ideal generated by a subset S of A is the intersection of all ideals a containing S — it
is easy to see that this is in fact an ideal, and that it consists of all finite sums of the formP
risi with ri 2A, si 2 S . The ideal generated by the empty set is the zero ideal f0g. When

S D fs1; s2; : : :g, we write .s1; s2; : : :/ for the ideal it generates.
Let a and b be ideals in A. The set faCb j a 2 a; b 2 bg is an ideal, denoted by aCb.

The ideal generated by fab j a 2 a; b 2 bg is denoted by ab. Clearly ab consists of all finite
sums

P
aibi with ai 2 a and bi 2 b, and if a D .a1; : : : ;am/ and b D .b1; : : : ;bn/, then

abD .a1b1; : : : ;aibj ; : : : ;ambn/. Note that

ab� a\b: (4)

The kernel of a homomorphism A!B is an ideal in A. Conversely, for any ideal a in A,
the set of cosets of a in A forms a ring A=a, and a 7! aCa is a homomorphism 'WA!A=a
whose kernel is a. The map b 7! '�1.b/ is a one-to-one correspondence between the ideals
of A=a and the ideals of A containing a.

An ideal p is prime if p¤A and ab 2 p) a 2 p or b 2 p. Thus p is prime if and only if
A=p is nonzero and has the property that

ab D 0 H) aD 0 or b D 0;

i.e., A=p is an integral domain. Note that if p is prime and a1 � � �an 2 p, then at least one of
the ai 2 p.

An ideal m in A is maximal if it is maximal among the proper ideals of A. Thus m is
maximal if and only if A=m is nonzero and has no proper nonzero ideals, and so is a field.
Note that

m maximal H) m prime.

The ideals of A�B are all of the form a� b with a and b ideals in A and B . To see
this, note that if c is an ideal in A�B and .a;b/ 2 c, then .a;0/ D .1;0/.a;b/ 2 c and
.0;b/D .0;1/.a;b/ 2 c. Therefore, cD a�b with

aD fa j .a;0/ 2 cg; bD fb j .0;b/ 2 cg:

Ideals a and b in A are coprime (or relatively prime) if aCbD A. Assume that a and b
are coprime, and let a 2 a and b 2 b be such that aCb D 1. For x;y 2 A, let z D ayCbx;
then

z � bx � x moda

z � ay � ymodb;

and so the canonical map
A! A=a�A=b (5)

is surjective. Clearly its kernel is a\b, which contains ab. Let c 2 a\b; then

c D c1D caC cb 2 ab:

Hence, (5) is surjective with kernel ab. This statement extends to finite collections of ideals.
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THEOREM 1.1 (CHINESE REMAINDER THEOREM). Let a1; : : : ;an be ideals in a ring A.
If ai is coprime to aj whenever i ¤ j , then the canonical map

A! A=a1� � � ��A=an (6)

is surjective, with kernel
Q

ai D
T

ai .

PROOF. We have proved the statement for nD 2, and we use induction to extend it to n > 2.
For i � 2, there exist elements ai 2 a1 and bi 2 ai such that

ai Cbi D 1:

The product
Q
i�2.ai Cbi / lies in a1Ca2 � � �an and equals 1, and so

a1Ca2 � � �an D A:

Therefore,

A=a1 � � �an D A=a1 � .a2 � � �an/
' A=a1�A=a2 � � �an by the nD 2 case
' A=a1�A=a2� � � ��A=an by induction. 2

We let spec.A/ denote the set of prime ideals in a ring A and spm.A/ the set of maximal
ideals.

Noetherian rings

PROPOSITION 1.2. The following three conditions on a ring A are equivalent:

(a) every ideal in A is finitely generated;

(b) every ascending chain of ideals a1 � a2 � �� � eventually becomes constant, i.e.,
am D amC1 D �� � for some m;

(c) every nonempty set of ideals in A has a maximal element.

PROOF. (a) H) (b): Let a1 � a2 � �� � be an ascending chain of ideals. Then
S

ai is an
ideal, and hence has a finite set fa1; : : : ;ang of generators. For some m, all the ai belong to
am, and then

am D amC1 D �� � D
S

ai :

(b) H) (c): Let ˙ be a nonempty set of ideals in A. If ˙ has no maximal element,
then the axiom of dependent choice2 implies that there exists an infinite strictly ascending
chain of ideals in ˙ , contradicting (b).

(c) H) (a): Let a be an ideal, and let ˙ be the set of finitely generated ideals contained
in a. Then ˙ is nonempty because it contains the zero ideal, and so it contains a maximal
element cD .a1; : : : ;ar/. If c¤ a, then there exists an a 2 aX c, and .a1; : : : ;ar ;a/ will be
a finitely generated ideal in a properly containing c. This contradicts the definition of c, and
so cD a. 2

2This says the following: let R be a binary relation on a nonempty set X , and suppose that, for each a in X ,
there exists a b such that aRb; then there exists a sequence .an/n2N of elements of X such that anRanC1 for
all n. This axiom is strictly weaker than the axiom of choice (q.v. Wikipedia).



16 1. PRELIMINARIES FROM COMMUTATIVE ALGEBRA

A ring A is noetherian if every nonempty set of ideals has a maximal element. Applying
this to the set of proper ideals containing a fixed ideal, we see that every proper ideal in a
noetherian ring is contained in a maximal ideal. This last assertion is, in fact, true for all
rings, but the proof for non-noetherian rings requires Zorn’s lemma (CA 2.2).

A ring A is said to be local if it has exactly one maximal ideal m. Because every nonunit
is contained in a maximal ideal, for a local ring A� D AXm.

PROPOSITION 1.3 (NAKAYAMA’S LEMMA). Let A be a local ring with maximal ideal m,
and let M be a finitely generated A-module.

(a) If M DmM , then M D 0:

(b) If N is a submodule of M such that M DN CmM , then M DN .

PROOF. (a) Suppose that M ¤ 0. Choose a minimal set of generators fe1; : : : ; eng, n � 1,
for M , and write

e1 D a1e1C�� �Canen; ai 2m.

Then
.1�a1/e1 D a2e2C�� �Canen

and, as .1�a1/ is a unit, e2; : : : ; en generate M , contradicting the minimality of the set.
(b) The hypothesis implies that M=N Dm.M=N/, and so M=N D 0. 2

Now let A be a local noetherian ring with maximal ideal m. Then m is an A-module, and
the action of A on m=m2 factors through k def

D A=m.

COROLLARY 1.4. Elements a1; : : : ;an of m generate m as an ideal if and only if their
residues modulo m2 span m=m2 as a vector space over k. In particular, the minimum
number of generators for the maximal ideal is equal to the dimension of the vector space
m=m2.

PROOF. If a1; : : : ;an generate m, it is obvious that their residues span m=m2. Conversely,
suppose that their residues span m=m2, so that m D .a1; : : : ;an/Cm2. Because A is
noetherian, m is finitely generated, and Nakayama’s lemma shows that mD .a1; : : : ;an/. 2

DEFINITION 1.5. Let A be a noetherian ring.

(a) The height ht.p/ of a prime ideal p in A is the greatest length d of a chain of distinct
prime ideals

pD pd � pd�1 � �� � � p0: (7)

(b) The Krull dimension of A is supfht.p/ j p a prime ideal in Ag.

Thus, the Krull dimension of a noetherian ring A is the supremum of the lengths of
chains of prime ideals in A (the length of a chain is the number of gaps). For example, a
field has Krull dimension 0, and conversely an integral domain of Krull dimension 0 is a
field. The height of every nonzero prime ideal in a principal ideal domain is 1, and so such a
ring has Krull dimension 1 (provided it is not a field).

The height of every prime ideal in a noetherian ring is finite, but the Krull dimension
of the ring may be infinite because it may contain a sequence of prime ideals p1;p2;p3; : : :
such that ht.pi / tends to infinity (CA, p. 13).

DEFINITION 1.6. A local noetherian ring of Krull dimension d is said to be regular if its
maximal ideal can be generated by d elements.
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It follows from Corollary 1.4 that a local noetherian ring is regular if and only if its Krull
dimension is equal to the dimension of the vector space m=m2.

LEMMA 1.7. In a noetherian ring, every set of generators for an ideal contains a finite
generating subset.

PROOF. Let a be an ideal in a noetherian ring A, and let S be a set of generators for a. An
ideal maximal among those generated by a finite subset of S must contain every element of
S (otherwise it wouldn’t be maximal), and so equals a. 2

In the proof of the next theorem, we use that a polynomial ring over a noetherian ring is
noetherian (see Theorem 2.8).

THEOREM 1.8 (KRULL INTERSECTION THEOREM). LetA be a noetherian local ring with
maximal ideal m; then

T
n�1m

n D f0g:

PROOF. Let a1; : : : ;ar generate m. Then mn consists of all finite sumsX
i1C���CirDn

ci1���ira
i1
1 � � �a

ir
r ; ci1���ir 2 A:

In other words, mn consists of the elements of A of the form g.a1; : : : ;ar/ for some homo-
geneous polynomial g.X1; : : : ;Xr/ 2 AŒX1; : : : ;Xr � of degree n. Let Sm denote the set of
homogeneous polynomials f of degree m such that f .a1; : : : ;ar/ 2

T
n�1m

n, and let a
be the ideal in AŒX1; : : : ;Xr � generated by the set

S
mSm. According to the lemma, there

exists a finite set ff1; : : : ;fsg of elements of
S
mSm that generates a. Let di D degfi , and

let d D maxdi . Let b 2
T
n�1m

n; then b 2 mdC1, and so b D f .a1; : : : ;ar/ for some
homogeneous polynomial f of degree d C1. By definition, f 2 SdC1 � a, and so

f D g1f1C�� �Cgsfs

for some gi 2 AŒX1; : : : ;Xr �. As f and the fi are homogeneous, we can omit from each gi
all terms not of degree degf �degfi , since these terms cancel out. Thus, we may choose the
gi to be homogeneous of degree degf �degfi D d C1�di > 0. Then gi .a1; : : : ;ar/ 2m,
and so

b D f .a1; : : : ;ar/D
X

i
gi .a1; : : : ;ar/ �fi .a1; : : : ;ar/ 2m �

\
n�1

mn:

Thus,
T

mn Dm �
T

mn, and Nakayama’s lemma implies that
T

mn D 0. 2

ASIDE 1.9. Let A be the ring of germs of analytic functions at 0 2 R (see p. 60 for the notion
of a germ of a function). Then A is a noetherian local ring with maximal ideal mD .x/, and mn

consists of the functions f that vanish to order n at x D 0. The theorem says (correctly) that only
the zero function vanishes to all orders at 0. By contrast, the function e�1=x

2
shows that the Krull

intersection theorem fails for the ring of germs of infinitely differentiable functions at 0 (this ring is
not noetherian).

b. Rings of fractions

A multiplicative subset of a ring A is a subset S with the property:

1 2 S; a;b 2 S H) ab 2 S:
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Define an equivalence relation on A�S by

.a;s/� .b; t/ ” u.at �bs/D 0 for some u 2 S:

Write a
s

or a=s for the equivalence class containing .a;s/, and define addition and multipli-
cation of equivalence classes in the way suggested by the notation:

a
s
C
b
t
D

atCbs
st

; a
s
b
t
D

ab
st
:

It is easy to check that these do not depend on the choices of representatives for the equiva-
lence classes, and that we obtain in this way a ring

S�1AD
na
s
j a 2 A; s 2 S

o
and a ring homomorphism a 7! a

1
WA! S�1A, whose kernel is

fa 2 A j saD 0 for some s 2 Sg:

For example, if A is an integral domain an 0 … S , then a 7! a
1

is injective, but if 0 2 S , then
S�1A is the zero ring.

Write i for the homomorphism a 7! a
1
WA! S�1A.

PROPOSITION 1.10. The pair .S�1A;i/ has the following universal property: every ele-
ment s 2 S maps to a unit in S�1A, and any other homomorphism ˛WA! B with this
property factors uniquely through i ,

A S�1A

B

i

˛
ˇ9Š

PROOF. If ˇ exists,

s a
s
D a H) ˇ.s/ˇ.a

s
/D ˇ.a/ H) ˇ.a

s
/D ˛.a/˛.s/�1;

and so ˇ is unique. Define
ˇ.a
s
/D ˛.a/˛.s/�1:

Then

a
c
D

b
d
H) s.ad �bc/D 0 some s 2 S H) ˛.a/˛.d/�˛.b/˛.c/D 0

because ˛.s/ is a unit in B , and so ˇ is well-defined. It is obviously a homomorphism. 2

As usual, this universal property determines the pair .S�1A;i/ uniquely up to a unique
isomorphism.

When A is an integral domain and S D AXf0g, F D S�1A is the field of fractions
of A, which we denote F.A/. In this case, for any other multiplicative subset T of A not
containing 0, the ring T �1A can be identified with the subring fa

t
2 F j a 2 A, t 2 Sg of F .

We shall be especially interested in the following examples.
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EXAMPLE 1.11. Let h 2 A. Then Sh D f1;h;h2; : : :g is a multiplicative subset of A, and
we let Ah D S�1h A. Thus every element of Ah can be written in the form a

hm , a 2 A, and

a
hm D

b
hn ” hN .ahn�bhm/D 0; some N:

If h is nilpotent, then Ah D 0, and if A is an integral domain with field of fractions F and
h¤ 0, then Ah is the subring of F of elements of the form a

hm , a 2 A, m 2 N:

EXAMPLE 1.12. Let p be a prime ideal in A. Then Sp D AXp is a multiplicative subset of
A, and we let Ap D S

�1
p A. Thus each element of Ap can be written in the form a

c
, c … p, and

a
c
D

b
d
” s.ad �bc/D 0, some s … p:

The subset mD fa
s
j a 2 p; s … pg is a maximal ideal in Ap, and it is the only maximal ideal,

i.e., Ap is a local ring.3 When A is an integral domain with field of fractions F , Ap is the
subring of F consisting of elements expressible in the form a

s
, a 2 A, s … p.

LEMMA 1.13. For every ring A and h 2 A, the map
P
aiX

i 7!
P ai

hi defines an isomor-
phism

AŒX�=.1�hX/
'
�! Ah:

PROOF. If hD 0, both rings are zero, and so we may suppose that h¤ 0. Let x be the class
of X in the quotient ring AŒX�=.1�hX/. Then AŒx� is generated by x subject to the relation
1D hx, and so h is a unit. Let ˛WA! B be a homomorphism of rings such that ˛.h/ is
a unit in B . The homomorphism

P
aiX

i 7!
P
˛.ai /˛.h/

�i WAŒX�! B factors through
AŒx� because 1�hX 7! 1�˛.h/˛.h/�1 D 0, and, because ˛.h/ is a unit in B , this is the
unique extension of ˛ to AŒx�. Therefore AŒx� has the same universal property as Ah, and
so the two are (uniquely) isomorphic by an isomorphism that fixes elements of A and makes
h�1 correspond to x. 2

Let S be a multiplicative subset of a ring A, and let S�1A be the corresponding ring of
fractions. Any ideal a in A, generates an ideal S�1a in S�1A. If a contains an element of S ,
then S�1a contains a unit, and so is the whole ring. Thus some of the ideal structure of A is
lost in the passage to S�1A, but, as the next proposition shows, much is retained.

PROPOSITION 1.14. Let S be a multiplicative subset of the ring A. The map

p 7! S�1pD .S�1A/p

is a bijection from the set of prime ideals of A disjoint from S to the set of prime ideals of
S�1A with inverse q 7!(inverse image of q in A).

PROOF. For an ideal b of S�1A, let bc denote the inverse image of b in A, and for an ideal
a of A, let ae D .S�1A/a denote the ideal in S�1A generated by the image of a.

For an ideal b of S�1A, certainly, b � bce. Conversely, if a
s
2 b, a 2 A, s 2 S , then

a
1
2 b, and so a 2 bc . Thus a

s
2 bce, and so bD bce.

For an ideal a of A, certainly a� aec . Conversely, if a 2 aec , then a
1
2 ae , and so a

1
D
a0

s

for some a0 2 a, s 2 S . Thus, t .as�a0/D 0 for some t 2 S , and so ast 2 a. If a is a prime
ideal disjoint from S , this implies that a 2 a: for such an ideal, aD aec .

3First check m is an ideal. Next, if m D Ap, then 1 2 m; but if 1 D a
s for some a 2 p and s … p, then

u.s�a/D 0 some u … p, and so ua D us … p, which contradicts a 2 p. Finally, m is maximal because every
element of Ap not in m is a unit.
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If b is prime, then certainly bc is prime. For any ideal a of A, S�1A=ae ' NS�1.A=a/,
where NS is the image of S in A=a. If a is a prime ideal disjoint from S , then NS�1.A=a/ is
a subring of the field of fractions of A=a, and is therefore an integral domain. Thus, ae is
prime.

We have shown that p 7! pe and q 7! qc are inverse bijections between the prime ideals
of A disjoint from S and the prime ideals of S�1A. 2

LEMMA 1.15. Let m be a maximal ideal of a ring A, and let nDmAm. For all n, the map

aCmn 7! a
1
CnnWA=mn! Am=n

n (8)

is an isomorphism. Moreover, it induces isomorphisms

mr=mn! nr=nn

for all r < n.

PROOF. The second statement follows from the first, because of the exact commutative
diagram .r < n/:

0 mr=mn A=mn A=mr 0

0 nr=nn Am=n
n Am=n

r 0:

' '

Let S D AXm. Then Am D S
�1A and nn D mnAm D

˚
b
s
2 Am j b 2 m

n; s 2 S
	
. In

order to show that the map (8) is injective, it suffices to show that

a
1
D

b
s

with a 2 A; b 2mn; s 2 S H) a 2mn.

But if a
1
D

b
s

, then tas D tb 2 mn for some t 2 S , and so tas D 0 in A=mn. The only
maximal ideal in A containing mm is m (because m0 �mm H) m0 �m/, and so the only
maximal ideal in A=mn is m=mn. As st is not in m=mn, it must be a unit in A=mn, and as
staD 0 in A=mn, a must be 0 in A=mn, i.e., a 2mn:

We now prove that the map (8) is surjective. Let a
s
2Am, a 2A, s 2 S . Because the only

maximal ideal of A containing mn is m, no maximal ideal contains both s and mn. It follows
that .s/Cmn D A. Therefore, there exist b 2 A and q 2 mn such that sbCq D 1 in A. It
follows that s is invertible in Am=n

n, and so a
s

is the unique element of this ring such that
s a
s
D a. As s.ba/CqaD a, the image of ba in Am=n

n also has this property and therefore
equals a

s
in Am=n

n. 2

PROPOSITION 1.16. In a noetherian ring, only 0 lies in all powers of all maximal ideals.

PROOF. Let a be an element of a noetherian ring A. If a ¤ 0, then fb 2 A j ba D 0g is a
proper ideal, and so is contained in some maximal ideal m. Then a

1
is nonzero in Am, and so

a
1
… .mAm/

n for some n (by the Krull intersection theorem 1.8), which implies that a …mn

(by 1.15). 2

NOTES. For more on rings of fractions, see CA �5.
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Modules of fractions

Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an
equivalence relation on M �S by

.m;s/� .n; t/ ” u.tm� sn/D 0 for some u 2 S:

Write m
s

for the equivalence class containing .m;s/, and define addition and scalar multipli-
cation by the rules:

m
s
C
n
t
D

mtCns
st

; a
s
m
t
D

am
st
; m;n 2M; s; t 2 S; a 2 A:

It is easily checked that these do not depend on the choices of representatives for the
equivalence classes, and that we obtain in this way an S�1A-module

S�1M D fm
s
jm 2M; s 2 Sg

and a homomorphism m 7! m
1
WM

iS
�! S�1M of A-modules whose kernel is

fa 2M j saD 0 for some s 2 Sg:

PROPOSITION 1.17. The elements of S act invertibly on S�1M , and every homomorphism
from M to an A-module N with this property factors uniquely through iS ,

M S�1M

N:

iS

9Š

PROOF. Similar to the proof of 1.10. 2

PROPOSITION 1.18. The functor M  S�1M is exact. In other words, if the sequence of
A-modules

M 0
˛
�!M

ˇ
�!M 00

is exact, then so also is the sequence of S�1A-modules

S�1M 0
S�1˛
����! S�1M

S�1ˇ
����! S�1M 00:

PROOF. Because ˇı˛D 0, we have 0DS�1.ˇı˛/DS�1ˇıS�1˛. Therefore Im.S�1˛/�
Ker.S�1ˇ/. For the reverse inclusion, let m

s
2 Ker.S�1ˇ/, where m 2M and s 2 S . Then

ˇ.m/
s
D 0 and so, for some t 2 S , we have tˇ.m/D 0. Then ˇ.tm/D 0, and so tmD ˛.m0/

for some m0 2M 0. Now

m
s
D

tm
ts
D

˛.m0/
ts
2 Im.S�1˛/: 2

PROPOSITION 1.19. Let A be a ring, and let M be an A-module. The canonical map

M !
Y
fMm jm a maximal ideal in Ag

is injective.
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PROOF. Let m 2M map to zero in all Mm. The annihilator aD fa 2 A j amD 0g of m
is an ideal in A. Because m maps to zero Mm, there exists an s 2 AXm such that smD 0.
Therefore a is not contained in m. Since this is true for all maximal ideals m, aD A, and so
it contains 1. Now mD 1mD 0. 2

COROLLARY 1.20. An A-module M D 0 if Mm D 0 for all maximal ideals m in A.

PROOF. Immediate consequence of the lemma. 2

PROPOSITION 1.21. Let A be a ring. A sequence of A-modules

M 0
˛
�!M

ˇ
�!M 00 (*)

is exact if and only if
M 0m

˛m
�!Mm

˛m
�!M 00m (**)

is exact for all maximal ideals m.

PROOF. The necessity is a special case of Proposition 1.18. For the sufficiency, let N D
Ker.ˇ/= Im.˛/. Because the functor M  Mm is exact,

Nm D Ker.ˇm/= Im.˛m/:

If (**) is exact for all m, then Nm D 0 for all m, and so N D 0 (by 1.20). But this means
that (*) is exact. 2

COROLLARY 1.22. A homomorphism M !N of A-modules is injective (resp. surjective)
if and only if Mm!Nm is injective (resp. surjective) for all maximal ideals m:

PROOF. Apply the proposition to 0!M !N (resp. M !N ! 0). 2

Direct limits

A directed set is a pair .I;�/ consisting of a set I and a preorder4 � on I such that for all
i;j 2 I , there exists a k 2 I with i;j � k.

Let .I;�/ be a directed set, and let A be a ring. A direct system of A-modules indexed
by .I;�/ is a family .Mi /i2I of A-modules together with a family .˛ij WMi !Mj /i�j of

A-linear maps such that ˛ii D idMi
and ˛j

k
ı˛ij D ˛

i
k

all i � j � k.5 An A-module M
together with A-linear maps ˛i WMi !M such that ˛i D ˛j ı˛ij for all i � j is the direct
limit of the system .Mi ;˛

j
i / if

(a) M D
S
i2I ˛

i .Mi /, and

(b) mi 2Mi maps to zero in M if and only if it maps to zero in Mj for some j � i .

Direct limits of A-algebras are defined similarly.

PROPOSITION 1.23. For every multiplicative subset S of A, S�1A' lim
�!

Ah, where h runs
over the elements of S (partially ordered by division).

4A preorder is a reflexive transitive binary relation.
5Regard I as a category with Hom.a;b/ empty unless a � b, in which case it contains a single element.

Then a direct system is a functor from I to the category of A-modules.
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PROOF. When hjh0, say, h0 D hg, there is a canonical homomorphism a
h
7!

ag
h0
WAh !

Ah0 , and so the rings Ah form a direct system indexed by the set S . When h 2 S , the
homomorphism A! S�1A extends uniquely to a homomorphism a

h
7!

a
h
WAh! S�1A

(1.10), and these homomorphisms are compatible with the maps in the direct system. Now it
is easy to see that S�1A satisfies the conditions to be the direct limit of the Ah. 2

c. Unique factorization

Let A be an integral domain. An element a of A is irreducible if it is not zero, not a unit,
and admits only trivial factorizations, i.e.,

aD bc H) b or c is a unit.

An element a is said to be prime if .a/ is a prime ideal, i.e.,

ajbc H) ajb or ajc.

An integral domain A is called a unique factorization domain (or a factorial domain)
if every nonzero nonunit in A can be written as a finite product of irreducible elements in
exactly one way up to units and the order of the factors: Principal ideal domains, for example,
Z and kŒX�, are unique factorization domains,

PROPOSITION 1.24. Let A be an integral domain, and let a be an element of A that is
neither zero nor a unit. If a is prime, then a is irreducible, and the converse holds when A is
a unique factorization domain.

PROOF. Assume that a is prime. If a D bc, then a divides bc and so a divides b or c.
Suppose the first, and write b D aq. Now aD bc D aqc, which implies that qc D 1 because
A is an integral domain, and so c is a unit. Therefore a is irreducible.

For the converse, assume that a is irreducible and that A is a unique factorization domain.
If ajbc, then

bc D aq, some q 2 A:

On writing each of b, c, and q as a product of irreducible elements, and using the uniqueness
of factorizations, we see that a differs from one of the irreducible factors of b or c by a unit.
Therefore a divides b or c. 2

COROLLARY 1.25. Let A be an integral domain. If A is a unique factorization domain,
then every prime ideal of height 1 is principal.

PROOF. Let p be a prime ideal of height 1. Then p contains a nonzero element, and hence
an irreducible element a. We have p� .a/� .0/. As .a/ is prime and p has height 1, we
must have pD .a/. 2

PROPOSITION 1.26. Let A be an integral domain in which every nonzero nonunit element
is a finite product of irreducible elements. If every irreducible element of A is prime, then A
is a unique factorization domain.

PROOF. Suppose that
a1 � � �am D b1 � � �bn (9)



24 1. PRELIMINARIES FROM COMMUTATIVE ALGEBRA

with the ai and bi irreducible elements in A. As a1 is prime, it divides one of the bi , which
we may suppose to be b1. As b1 is irreducible, b1 D ua1 for some unit u. On cancelling a1
from both sides of (9), we obtain the equality

a2 � � �am D .ub2/b3 � � �bn:

Continuing in this fashion, we find that the two factorizations are the same up to units and
the order of the factors. 2

PROPOSITION 1.27 (GAUSS’S LEMMA). LetA be a unique factorization domain with field
of fractions F . If f .X/ 2 AŒX� factors into the product of two nonconstant polynomials
in F ŒX�, then it factors into the product of two nonconstant polynomials in AŒX�.

PROOF. Let f D gh in F ŒX�. For suitable c;d 2A, the polynomials g1 D cg and h1 D dh
have coefficients in A, and so we have a factorization

cdf D g1h1 in AŒX�.

If an irreducible element p of A divides cd , then, looking modulo .p/, we see that

0D g1 �h1 in .A=.p// ŒX�.

According to Proposition 1.24, .p/ is prime, and so .A=.p// ŒX� is an integral domain.
Therefore, p divides all the coefficients of at least one of the polynomials g1;h1, say g1, so
that g1 D pg2 for some g2 2 AŒX�. Thus, we have a factorization

.cd=p/f D g2h1 in AŒX�.

Continuing in this fashion, we can remove all the irreducible factors of cd , and so obtain a
factorization of f in AŒX�. 2

Let A be a unique factorization domain. A nonzero polynomial

f D a0Ca1XC�� �CamX
m

in AŒX� is said to be primitive if the coefficients ai have no common factor (other than units).
Every polynomial f in F ŒX� can be written f D c.f / �f1 with c.f / 2 F and f1 primitive.
The element c.f /, which is well-defined up to multiplication by a unit, is called the content
of f . Note that f 2 AŒX� if and only if c.f / 2 A.

LEMMA 1.28. The product of two primitive polynomials is primitive.

PROOF. Let

f D a0Ca1XC�� �CamX
m

g D b0Cb1XC�� �CbnX
n;

be primitive polynomials, and let p be an irreducible element of A. Let ai0 , i0 �m, be the
first coefficient of f not divisible by p, and let bj0

, j0 � n, the first coefficient of g not
divisible by p. Then all the terms in the sum

P
iCjDi0Cj0

aibj are divisible by p, except
ai0bj0

, which is not divisible by p. Therefore, p doesn’t divide the .i0Cj0/th-coefficient
of fg. We have shown that no irreducible element of A divides all the coefficients of fg,
which must therefore be primitive. 2
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PROPOSITION 1.29. Let A be a unique factorization domain with field of fractions F . For
polynomials f;g 2 F ŒX�,

c.fg/D c.f / � c.g/I

hence every factor in AŒX� of a primitive polynomial is primitive.

PROOF. Let f D c.f / �f1 and g D c.g/ �g1 with f1 and g1 primitive. Then

fg D c.f / � c.g/ �f1g1

with f1g1 primitive, and so c.fg/D c.f /c.g/. 2

COROLLARY 1.30. An element f 2 AŒX� is irreducible if and only if either
(a) f is constant, say f D a, with a an irreducible element of A, or

(b) f is a nonconstant primitive polynomial that is irreducible in F ŒX�.

PROOF. (: If f is as in (a) and f D gh in AŒX�, then g and h both lie in A and one must
be a unit in A, and hence a unit in AŒX�. If f is as in (b) and f D gh, then one of g or h
must be constant because otherwise f would be reducible in F ŒX�. If it is g that is constant,
then, because f is primitive, g must be a unit in A, hence in AŒX�.
): Let f 2 AŒX� be irreducible. If f is a constant polynomial, say f D a, then a is

obviously irreducible in A. If f nonconstant, then it must be primitive because otherwise
f D c.f / �f1 would be a nontrivial factorization in AŒX�. It must also be irreducible in
F ŒX�, because otherwise it would have a nontrivial factorization in AŒX� (by 1.27). 2

PROPOSITION 1.31. If A is a unique factorization domain, then so also is AŒX�.

PROOF. We shall check that A satisfies the conditions of Proposition 1.26.
Let f 2AŒX�, and write f D c.f /f1. Then c.f / is a product of irreducible elements in

A, and f1 is a product of irreducible primitive polynomials. This shows that f is a product
of irreducible elements in AŒX�.

Let a be an irreducible element of A. If a divides fg, then it divides c.fg/D c.f /c.g/.
As a is prime (1.24), it divides c.f / or c.g/, and hence also f or g.

Let f be an irreducible primitive polynomial in AŒX�. Then f is irreducible in F ŒX�,
and so if f divides the product gh of g;h 2 AŒX�, then it divides g or h in F ŒX�. Suppose
the first, and write f q D g with q 2 F ŒX�. Then c.q/D c.f /c.q/D c.f q/D c.g/ 2 A,
and so q 2 AŒX�. Therefore f divides g in AŒX�.

We have shown that every element of AŒX� is a product of irreducible elements and that
every irreducible element of AŒX� is prime, and so AŒX� is a unique factorization domain
(1.26). 2

Polynomial rings

Let k be a field. The elements of the polynomial ring kŒX1; : : : ;Xn� are finite sumsX
ca1���an

X
a1

1 � � �X
an
n ; ca1���an

2 k; aj 2 N;

with the obvious notions of equality, addition, and multiplication. In particular, the monomi-
als form a basis for kŒX1; : : : ;Xn� as a k-vector space.

The degree, deg.f /, of a nonzero polynomial f is the largest total degree of a monomial
occurring in f with nonzero coefficient. Since deg.fg/D deg.f /Cdeg.g/, kŒX1; : : : ;Xn�
is an integral domain and kŒX1; : : : ;Xn�� D k�. An element f of kŒX1; : : : ;Xn� is irre-
ducible if it is nonconstant and f D gh H) g or h is constant.
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THEOREM 1.32. The ring kŒX1; : : : ;Xn� is a unique factorization domain.

PROOF. Note that
kŒX1; : : : ;Xn�1�ŒXn�D kŒX1; : : : ;Xn�:

This simply says that every polynomial f in n symbolsX1; : : : ;Xn can be expressed uniquely
as a polynomial in Xn with coefficients in kŒX1; : : : ;Xn�1�,

f .X1; : : : ;Xn/D a0.X1; : : : ;Xn�1/X
r
nC�� �Car.X1; : : : ;Xn�1/:

Since, as we noted, kŒX� is a unique factorization domain, the theorem follows by induction
from Proposition 1.31. 2

COROLLARY 1.33. A nonzero proper principal ideal .f / in kŒX1; : : : ;Xn� is prime if and
only if f is irreducible.

PROOF. Special case of Proposition 1.24. 2

d. Integral dependence

Let A be a subring of a ring B . An element ˛ of B is said to be6 integral over A if it is a
root of a monic7 polynomial with coefficients in A, i.e., if it satisfies an equation

˛nCa1˛
n�1
C�� �Can D 0; ai 2 A:

If every element of B is integral over A, then B is said to be integral over A.
In the next proof, we shall need to apply a variant of Cramer’s rule: if x1; : : : ;xm is a

solution to the system of linear equations

mX
jD1

cijxj D 0; i D 1; : : : ;m;

with coefficients in a ring A, then

det.C / �xj D 0; j D 1; : : : ;m; (10)

where C is the matrix of coefficients. To prove this, expand out the left hand side of

det

0B@ c11 : : : c1j�1
P
i c1ixi c1jC1 : : : c1m

:::
:::

:::
:::

:::

cm1 : : : cmj�1
P
i cmixi cmjC1 : : : cmm

1CAD 0
using standard properties of determinants.

An A-module M is faithful if aM D 0, a 2 A, implies that aD 0.

PROPOSITION 1.34. Let A be a subring of a ring B . An element ˛ of B is integral over A
if and only if there exists a faithful AŒ˛�-submodule M of B that is finitely generated as an
A-module.

6More generally, if f WA!B is an A-algebra, an element ˛ of B is integral over A if it satisfies an equation

˛nCf .a1/˛
n�1
C�� �Cf .an/D 0; ai 2 A:

Thus, ˛ is integral over A if and only if it is integral over the subring f .A/ of B .
7A polynomial is monic if its leading coefficient is 1, i.e., f .X/DXnC terms of degree less than n.
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PROOF. )W Suppose that

˛nCa1˛
n�1
C�� �Can D 0; ai 2 A:

Then the A-submodule M of B generated by 1, ˛, ..., ˛n�1 has the property that ˛M �M ,
and it is faithful because it contains 1.
(W Let M be a faithful AŒ˛�-submodule of B admitting a finite set fe1; : : : ; eng of

generators as an A-module. Then, for each i ,

˛ei D
P
aij ej , some aij 2 A:

We can rewrite this system of equations as

.˛�a11/e1�a12e2�a13e3�� � � D 0

�a21e1C .˛�a22/e2�a23e3�� � � D 0

� � � D 0:

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s formula tells us that
det.C / �ei D 0 for all i . AsM is faithful and the ei generateM , this implies that det.C /D 0.
On expanding out the determinant, we obtain an equation

˛nC c1˛
n�1
C c2˛

n�2
C�� �C cn D 0; ci 2 A: 2

PROPOSITION 1.35. An A-algebra B is finite if it is generated as an A-algebra by a finite
set of elements each of which is integral over A.

PROOF. Suppose that B D AŒ˛1; : : : ;˛m� and that

˛
ni

i Cai1˛
ni�1
i C�� �Caini

D 0; aij 2 A; i D 1; : : : ;m.

Any monomial in the ˛idivisible by some ˛ni

i is equal (in B) to a linear combination of
monomials of lower degree. Therefore, B is generated as an A-module by the finite set of
monomials ˛r1

1 � � �˛
rm
m , 1� ri < ni . 2

COROLLARY 1.36. AnA-algebraB is finite if and only if it is finitely generated and integral
over A.

PROOF. (: Immediate consequence of 1.35.
): We may replace A with its image in B . Then B is a faithful AŒ˛�-module for all

˛ 2 B (because 1B 2 B), and so 1.34 shows that every element of B is integral over A. As
B is finitely generated as an A-module, it is certainly finitely generated as an A-algebra. 2

PROPOSITION 1.37. Consider rings A� B � C . If B is integral over A and C is integral
over B , then C is integral over A.

PROOF. Let 
 2 C . Then

nCb1


n�1
C�� �Cbn D 0

for some bi 2 B . Now AŒb1; : : : ;bn� is finite over A (see 1.35), and AŒb1; : : : ;bn�Œ
� is finite
over AŒb1; : : : ;bn�, and so it is finite over A. Therefore 
 is integral over A by 1.34. 2

THEOREM 1.38. Let A be a subring of a ring B . The elements of B integral over A form
an A-subalgebra of B .
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PROOF. Let ˛ and ˇ be two elements ofB integral overA. ThenAŒ˛;ˇ� is finitely generated
as an A-module (1.35). It is stable under multiplication by ˛˙ˇ and ˛ˇ and it is faithful
as an AŒ˛˙ˇ�-module and as an AŒ˛ˇ�-module (because it contains 1A). Therefore 1.34
shows that ˛˙ˇ and ˛ˇ are integral over A. 2

DEFINITION 1.39. Let A be a subring of the ring B . The integral closure of A in B is the
subring of B consisting of the elements integral over A.

PROPOSITION 1.40. Let A be an integral domain with field of fractions F , and let ˛ be an
element of some field containing F . If ˛ is algebraic over F , then there exists a d 2 A such
that d˛ is integral over A.

PROOF. By assumption, ˛ satisfies an equation

˛mCa1˛
m�1
C�� �Cam D 0; ai 2 F:

Let d be a common denominator for the ai , so that dai 2 A for all i , and multiply through
the equation by dm:

.d˛/mCa1d.d˛/
m�1
C�� �Camd

m
D 0:

As a1d; : : : ;amdm 2 A, this shows that d˛ is integral over A. 2

COROLLARY 1.41. Let A be an integral domain and let E be an algebraic extension of the
field of fractions of A. Then E is the field of fractions of the integral closure of A in E.

PROOF. In fact, the proposition shows that every element of E is a quotient ˇ=d with ˇ
integral over A and d 2 A. 2

DEFINITION 1.42. An integral domain A is said to be integrally closed if it is equal to its
integral closure in its field of fractions F , i.e., if

˛ 2 F; ˛ integral over A H) ˛ 2 A:

An integrally closed integral domain is called an integrally closed domain or normal domain.

PROPOSITION 1.43. Unique factorization domains are integrally closed.

PROOF. Let A be a unique factorization domain, and let a=b be an element of its field of
fractions. If a=b … A, then b divisible by some prime element p not dividing a. If a=b is
integral over A, then it satisfies an equation

.a=b/nCa1.a=b/
n�1
C�� �Can D 0; ai 2 A:

On multiplying through by bn, we obtain the equation

anCa1a
n�1bC�� �Canb

n
D 0:

The element p then divides every term on the left except an, and hence divides an. Since it
doesn’t divide a, this is a contradiction. 2
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Let F � E be fields, and let ˛ 2 E be algebraic over F . The minimal polynomial of
˛ over F is the monic polynomial of smallest degree in F ŒX� having ˛ as a root. If f is
the minimal polynomial of ˛, then the homomorphism X 7! ˛WF ŒX�! F Œ˛� defines an
isomorphism F ŒX�=.f /! F Œ˛�, i.e., F Œx�' F Œ˛�, x$ ˛.

PROPOSITION 1.44. Let A be an integrally closed domain, and let E be a finite extension
of the field of fractions F of A. An element of E is integral over A if and only if its minimal
polynomial over F has coefficients in A.

PROOF. Let ˛ 2E be integral over A, so that

˛mCa1˛
m�1
C�� �Cam D 0; some ai 2 A; m > 0.

Let f .X/ be the minimal polynomial of ˛ over F , and let ˛0 be a conjugate of ˛, i.e., a root
of f in some splitting field of f . Then f is also the minimal polynomial of ˛0 over F , and
so (see above), there is an F -isomorphism

� WF Œ˛�! F Œ˛0�; �.˛/D ˛0:

On applying � to the above equation we obtain the equation

˛0mCa1˛
0m�1

C�� �Cam D 0;

which shows that ˛0 is integral over A. As the coefficients of f are polynomials in the
conjugates of ˛, it follows from (1.38) that the coefficients of f .X/ are integral over A.
They lie in F , and A is integrally closed, and so they lie in A. This proves the “only if” part
of the statement, and the “if” part is obvious. 2

COROLLARY 1.45. Let A� F �E be as in the proposition, and let ˛ be an element of E
integral over A. Then NmE=F .˛/ 2 A, and ˛ divides NmE=F .˛/ in AŒ˛�.

PROOF. Let
f .X/DXmCa1X

m�1
C�� �Cam

be the minimal polynomial of ˛ over F . Then Nm.˛/D .�1/mnanm, where nD ŒEWF Œ˛��
(FT 5.45), and so Nm.˛/ 2 A. Because f .˛/D 0,

0D an�1m .˛mCa1˛
m�1
C�� �Cam/

D ˛.an�1m ˛m�1C�� �Can�1m am�1/C .�1/
mnNm.˛/;

and so ˛ divides NmE=F .˛/ in AŒ˛�. 2

COROLLARY 1.46. Let A be an integrally closed domain with field of fractions F , and
let f .X/ be a monic polynomial in AŒX�. Then every monic factor of f .X/ in F ŒX� has
coefficients in A.

PROOF. It suffices to prove this for an irreducible monic factor g of f in F ŒX�. Let ˛ be a
root of g in some extension field of F . Then g is the minimal polynomial of ˛. As ˛ is a
root of f , it is integral over A, and so g has coefficients in A. 2

PROPOSITION 1.47. Let A� B be rings, and let A0 be the integral closure of A in B . For
any multiplicative subset S of A, S�1A0 is the integral closure of S�1A in S�1B .
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PROOF. Let b
s
2 S�1A0 with b 2 A0 and s 2 S . Then

bnCa1b
n�1
C�� �Can D 0

for some ai 2 A, and so �
b
s

�n
C
a1
s

�
b
s

�n�1
C�� �C

an
sn
D 0:

Therefore b=s is integral over S�1A. This shows that S�1A0 is contained in the integral
closure of S�1B .

For the converse, let b=s (b 2 B , s 2 S ) be integral over S�1A. Then�
b
s

�n
C
a1
s1

�
b
s

�n�1
C�� �C

an
sn
D 0:

for some ai 2 A and si 2 S . On multiplying this equation by sns1 � � �sn, we find that
s1 � � �snb 2 A

0, and therefore that b
s
D

s1���snb
ss1���sn

2 S�1A0. 2

COROLLARY 1.48. Let A� B be rings, and let S be a multiplicative subset of A. If A is
integrally closed in B , then S�1A is integrally closed in S�1B .

PROOF. Special case of the proposition in which A0 D A. 2

PROPOSITION 1.49. The following conditions on an integral domain A are equivalent:

(a) A is integrally closed;

(b) Ap is integrally closed for all prime ideals p;

(c) Am is integrally closed for all maximal ideals m.

PROOF. The implication (a))(b) follows from 1.48, and (b))(c) is obvious. It remains
to prove (c))(a). If c is integral over A, then it is integral over each Am, and hence lies in
each Am. It follows that the ideal consisting of the a 2 A such that ac 2 A is not contained
in any maximal ideal m, and therefore equals A. Hence 1 � c 2 A. 2

Let E=F be a finite extension of fields. Then

.˛;ˇ/ 7! TrE=F .˛ˇ/WE �E! F (11)

is a symmetric bilinear form on E regarded as a vector space over F .

LEMMA 1.50. If E=F is separable, then the trace pairing (11) is nondegenerate.

PROOF. Let ˇ1; :::;ˇm be a basis for E as an F -vector space. We have to show that the
discriminant det.Tr.ˇi ǰ // of the trace pairing is nonzero. Let �1; :::;�m be the distinct
F -homomorphisms of E into some large Galois extension ˝ of F . Recall (FT 5.45) that

TrL=K .ˇ/D �1ˇC� � �C�mˇ (12)

By direct calculation, we have

det.Tr.ˇi ǰ //D det.
P
k �k.ˇi ǰ // (by 12)

D det.
P
k �k.ˇi / ��k. ǰ //

D det.�k.ˇi // �det.�k. ǰ //
D det.�k.ˇi //2:
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Suppose that det.�i ǰ /D 0. Then there exist c1; :::; cm 2˝ such thatX
i

ci�i . ǰ /D 0 all j:

By linearity, it follows that
P
i ci�i .ˇ/D 0 for all ˇ 2 E, but this contradicts Dedekind’s

theorem on the independence of characters (FT 5.14). 2

PROPOSITION 1.51. Let A be an integrally closed domain with field of fractions F , and let
B be the integral closure of A in a separable extension E of F of degree m. There exist free
A-submodules M and M 0 of E such that

M � B �M 0. (13)

If A is noetherian, then B is a finite A-algebra.

PROOF. Let fˇ1; :::;ˇmg be a basis for E over F . According to Proposition 1.40, there
exists a d 2 A such that d �ˇi 2 B for all i . Clearly fd �ˇ1; : : : ;d �ˇmg is still a basis for E
as a vector space over F , and so we may assume to begin with that each ˇi 2 B . Because
the trace pairing is nondegenerate, there is a dual basis fˇ01; :::;ˇ

0
mg of E over F with the

property that Tr.ˇi �ˇ0j /D ıij for all i;j . We shall show that

Aˇ1CAˇ2C�� �CAˇm � B � Aˇ
0
1CAˇ

0
2C�� �CAˇ

0
m:

Only the second inclusion requires proof. Let ˇ 2 B . Then ˇ can be written uniquely as a
linear combination ˇ D

P
bjˇ
0
j of the ˇ0j with coefficients bj 2 F , and we have to show

that each bj 2 A. As ˇi and ˇ are in B , so also is ˇ �ˇi , and so Tr.ˇ �ˇi / 2 A (1.44). But

Tr.ˇ �ˇi /D Tr.
X
j

bjˇ
0
j �ˇi /D

X
j

bj Tr.ˇ0j �ˇi /D
X
j

bj � ıij D bi :

Hence bi 2 A.
If A is Noetherian, then M 0 is a Noetherian A-module, and so B is finitely generated as

an A-module. 2

LEMMA 1.52. Let A be a subring of a fieldK. IfK is integral over A, then A is also a field.

PROOF. Let a be a nonzero element of A. Then a�1 2K, and it is integral over A:

.a�1/nCa1.a
�1/n�1C�� �Can D 0; ai 2 A:

On multiplying through by an�1, we find that

a�1Ca1C�� �Cana
n�1
D 0;

from which it follows that a�1 2 A. 2

THEOREM 1.53 (GOING-UP THEOREM). Let A� B be rings with B integral over A.

(a) For every prime ideal p of A, there is a prime ideal q of B such that q\AD p.

(b) Let pD q\A; then p is maximal if and only if q is maximal.
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PROOF. (a) If S is a multiplicative subset of a ring A, then the prime ideals of S�1A are in
one-to-one correspondence with the prime ideals of A not meeting S (see 1.14). It therefore
suffices to prove (a) afterA andB have been replaced by S�1A and S�1B , where S DA�p.
Thus we may assume that A is local, and that p is its unique maximal ideal. In this case, for
all proper ideals b of B , b\A� p (otherwise b� A 3 1/. To complete the proof of (a), we
shall show that for all maximal ideals n of B , n\AD p.

Consider B=n � A=.n\A/. Here B=n is a field, which is integral over its subring
A=.n\A/, and n\A will be equal to p if and only if A=.n\A/ is a field. This follows
from Lemma 1.52.

(b) The ring B=q contains A=p, and it is integral over A=p. If q is maximal, then Lemma
1.52 shows that p is also. For the converse, note that any integral domain integral over
a field is a field because it is a union of integral domains finite over the field, which are
automatically fields (left multiplication by an element is injective, and hence surjective,
being a linear map of a finite-dimensional vector space). 2

COROLLARY 1.54. Let A� B be rings with B integral over A. Let p� p0 be prime ideals
of A, and let q be a prime ideal of B such that q\AD p. Then there exists a prime ideal q0

of B containing q and such that q0\AD p0,

B q � q0

A p � p0:

PROOF. We have A=p� B=q, and B=q is integral over A=p. According to the (1.53), there
exists a prime ideal q00 in B=q such that q00\ .A=p/D p0=p. The inverse image q0 of q00 in B
has the required properties. 2

ASIDE 1.55. Let A be a noetherian integral domain, and let B be the integral closure of A in a finite
extension E of the field of fractions F of A. Is B always a finite A-algebra? When A is integrally
closed and E is separable over F , or A is a finitely generated k-algebra, then the answer is yes (1.51,
8.3). However, in 1935, Akizuki found an example of a noetherian integral domain whose integral
closure in its field of fractions is not finite (according to Matsumura 1986, finding the example cost
him a year’s hard struggle). F.K. Schmidt found another example at about the same time.8

e. Tensor Products

Tensor products of modules

Let A be a ring, and let M , N , and P be A-modules. A map �WM �N ! P of A-modules
is said to be A-bilinear if

�.xCx0;y/D �.x;y/C�.x0;y/; x;x0 2M; y 2N

�.x;yCy0/D �.x;y/C�.x;y0/; x 2M; y;y0 2N

�.ax;y/D a�.x;y/; a 2 A; x 2M; y 2N

�.x;ay/D a�.x;y/; a 2 A; x 2M; y 2N;

i.e., if � is A-linear in each variable.

8For a discussion of the examples Akizuki and Schmidt and generalizations, see Olberding, Bruce, One-
dimensional bad Noetherian domains. Trans. Amer. Math. Soc. 366 (2014), no.8, 4067–4095.
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An A-module T together with an A-bilinear map

�WM �N ! T

is called the tensor product of M and N over A if it has
the following universal property: every A-bilinear map

�0WM �N ! T 0

factors uniquely through �.

M �N T

T 0:

�

�0
9Š linear

As usual, the universal property determines the tensor product uniquely up to a unique
isomorphism. We write it M ˝AN . Note that

HomA-bilinear.M �N;T /' HomA-linear.M ˝AN;T /:

CONSTRUCTION

LetM andN be A-modules, and let A.M�N/ be the free A-module with basisM �N . Thus
each element A.M�N/ can be expressed uniquely as a finite sumX

ai .xi ;yi /; ai 2 A; xi 2M; yi 2N:

Let P be the submodule of A.M�N/ generated by the following elements

.xCx0;y/� .x;y/� .x0;y/; x;x0 2M; y 2N

.x;yCy0/� .x;y/� .x;y0/; x 2M; y;y0 2N

.ax;y/�a.x;y/; a 2 A; x 2M; y 2N

.x;ay/�a.x;y/; a 2 A; x 2M; y 2N;

and define
M ˝AN D A

.M�N/=P:

Write x˝y for the class of .x;y/ in M ˝AN . Then

.x;y/ 7! x˝yWM �N !M ˝AN

isA-bilinear — we have imposed the fewest relations necessary to ensure this. Every element
of M ˝AN can be written as a finite sum9X

ai .xi ˝yi /; ai 2 A; xi 2M; yi 2N;

and all relations among these symbols are generated by the following relations

.xCx0/˝y D x˝yCx0˝y

x˝ .yCy0/D x˝yCx˝y0

a.x˝y/D .ax/˝y D x˝ay:

The pair .M ˝AN;.x;y/ 7! x˝y/ has the correct universal property because any bilinear
map �0WM �N ! T 0 defines an A-linear map A.M�N/ ! T 0, which factors through
A.M�N/=K, and gives a commutative triangle.

9“An element of the tensor product of two vector spaces is not necessarily a tensor product of two vectors,
but sometimes a sum of such. This might be considered a mathematical shenanigan but if you start with the
state vectors of two quantum systems it exactly corresponds to the notorious notion of entanglement which so
displeased Einstein.” Georges Elencwajg on mathoverflow.net.
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Tensor products of algebras

Let A and B be k-algebras. A k-algebra C together with homomorphisms i WA! C and
j WB! C is called the tensor product of A and B if it has the following universal property:
for every pair of homomorphisms (of k-algebras) ˛WA!R and ˇWB!R, there is a unique
homomorphism 
 WC !R such that 
 ı i D ˛ and 
 ıj D ˇ:

A C B

R:

i

˛ 
9Š

j

ˇ

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by
this property. We write it A˝k B . Note that

Homk.A˝k B;R/' Homk.A;R/�Homk.B;R/

(homomorphisms of k-algebras).

CONSTRUCTION

Form the tensor product A˝k B of A and B regarded as k-vector spaces. There is a
multiplication map A˝k B �A˝k B! A˝k B for which

.a˝b/.a0˝b0/D aa0˝bb0.

This makes A˝k B into a ring, and the homomorphism

c 7! c.1˝1/D c˝1D 1˝ c

makes it into a k-algebra. The maps

a 7! a˝1WA! C and b 7! 1˝bWB! C

are homomorphisms, and they make A˝kB into the tensor product of A and B in the above
sense.

EXAMPLE 1.56. The algebra B , equipped with the given map k! B and the identity map
B! B , has the universal property characterizing k˝k B , so k˝k B ' B . In terms of the
constructive definition of tensor products, the isomorphism is c˝b 7! cbWk˝k B! B .

EXAMPLE 1.57. The ring kŒX1; : : : ;Xm;XmC1; : : : ;XmCn�, equipped with the obvious
inclusions

kŒX1; : : : ;Xm� ,! kŒX1; : : : ;XmCn�  - kŒXmC1; : : : ;XmCn�

is the tensor product of kŒX1; : : : ;Xm� and kŒXmC1; : : : ;XmCn�. To verify this we only have
to check that, for every k-algebra R, the map

Homk-alg.kŒX1; : : : ;XmCn�;R/! Homk-alg.kŒX1; : : :�;R/�Homk-alg.kŒXmC1; : : :�;R/

induced by the inclusions is a bijection. But this map can be identified with the obvious
bijection

RmCn!Rm�Rn:

In terms of the constructive definition of tensor products, the isomorphism is

f ˝g 7! fgWkŒX1; : : : ;Xm�˝k kŒXmC1; : : : ;XmCn�! kŒX1; : : : ;XmCn�.
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REMARK 1.58. (a) If .b˛/ is a family of generators (resp. basis) for B as a k-vector space,
then .1˝b˛/ is a family of generators (resp. basis) for A˝k B as an A-module.

(b) Let k ,!˝ be fields. Then

˝˝k kŒX1; : : : ;Xn�'˝Œ1˝X1; : : : ;1˝Xn�'˝ŒX1; : : : ;Xn�:

If AD kŒX1; : : : ;Xn�=.g1; : : : ;gm/, then

˝˝k A'˝ŒX1; : : : ;Xn�=.g1; : : : ;gm/:

(c) If A and B are algebras of k-valued functions on sets S and T respectively, then
.f ˝g/.x;y/D f .x/g.y/ realizes A˝k B as an algebra of k-valued functions on S �T .

f. Transcendence bases

We review the theory of transcendence bases. For the proofs, see Chapter 9 of FT.

1.59. Elements ˛1; :::;˛n of a k-algebra A are said to be algebraically dependent over k
there exists a nonzero polynomial f .X1; :::;Xn/ 2 kŒX1; :::;Xn� such that f .˛1; :::;˛n/D 0.
Otherwise, the ˛i are said to be algebraically independent over k.

Now let ˝ be a field containing k.

1.60. For a subset A of ˝, we let k.A/ denote the smallest subfield of ˝ containing k and
A. For example, if AD fx1; : : : ;xmg, then k.A/ consists of the quotients f .x1;:::;xmg

g.x1;:::;xmg
with

f;g 2 kŒX1; : : : ;Xm�. A subset B of ˝ is algebraically dependent on A if each element of
B is algebraic over k.A/.

1.61 (FUNDAMENTAL THEOREM). LetADf˛1; :::;˛mg andB Dfˇ1; :::;ˇng be two sub-
sets of ˝. Assume that

(a) A is algebraically independent (over k), and

(b) A is algebraically dependent on B (over k).
Then m� n.

The reader should note the similarity of this to the statement in linear algebra with
“algebraically” replaced by “linearly”.

1.62. A transcendence basis for ˝ over k is an algebraically independent set A such that
˝ is algebraic over k.A/:

1.63. Assume that there is a finite subset A�˝ such that ˝ is algebraic over k.A/. Then
(a) every maximal algebraically independent subset of ˝ is a transcendence basis;

(b) every subset A minimal among those such that ˝ is algebraic over k.A/ is a transcen-
dence basis;

(c) all transcendence bases for ˝ over k have the same finite number of elements (called
the transcendence degree, tr degk˝, of ˝ over k).

1.64. Let k � L�˝ be fields. Then

tr degk˝ D tr degkLC tr degL˝.

More precisely, if A is a transcendence basis for L=k and B is a transcendence basis for
˝=L, then A[B is a transcendence basis for ˝=k.
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Exercises

1-1. Let k be an infinite field (not necessarily algebraically closed). Show that an f 2
kŒX1; : : : ;Xn� that is identically zero on kn is the zero polynomial (i.e., has all its coefficients
zero).

1-2. Find a minimal set of generators for the ideal

.XC2Y;3XC6Y C3Z;2XC4Y C3Z/

in kŒX;Y;Z�. What standard algorithm in linear algebra will allow you to answer this
question for any ideal generated by homogeneous linear polynomials? Find a minimal set of
generators for the ideal

.XC2Y C1;3XC6Y C3XC2;2XC4Y C3ZC3/:

1-3. A ring A is said to be normal if Ap is a normal integral domain for all prime ideals
p in A. Show that a noetherian ring is normal if and only if it is a finite product of normal
integral domains.

1-4. Prove the statement in 1.64.



CHAPTER 2
Algebraic Sets

a. Definition of an algebraic set

An algebraic subset V.S/ of kn is the set of common zeros of some collection S of
polynomials in kŒX1; : : : ;Xn�,

V.S/D f.a1; : : : ;an/ 2 k
n
j f .a1; : : : ;an/D 0 all f 2 Sg:

We refer to V.S/ as the zero set of S . Note that

S � S 0 H) V.S/� V.S 0/I

— more equations means fewer solutions.
Recall that the ideal a generated by a set S consists of the finite sumsX

figi ; fi 2 kŒX1; : : : ;Xn�; gi 2 S:

Such a sum
P
figi is zero at every point at which the gi are all zero, and so V.S/� V.a/,

but the reverse conclusion is also true because S � a. Thus V.S/D V.a/ — the zero set of
S is the same as the zero set of the ideal generated by S . Therefore the algebraic subsets of
kn can also be described as the zero sets of ideals in kŒX1; : : : ;Xn�.

An empty set of polynomials imposes no conditions, and so V.;/D kn. Therefore kn is
an algebraic subset. It is also the zero set of the zero ideal .0/. We write An for kn regarded
as an algebraic set.

Examples

2.1. If S is a set of homogeneous linear equations,

ai1X1C�� �CainXn D 0; i D 1; : : : ;m;

then V.S/ is a subspace of kn. If S is a set of nonhomogeneous linear equations,

ai1X1C�� �CainXn D di ; i D 1; : : : ;m;

then V.S/ is either empty or is the translate of a subspace of kn.

37
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2.2. If S consists of the single equation

Y 2 DX3CaXCb; 4a3C27b2 ¤ 0;

then V.S/ is an elliptic curve. For example,

Y 2 DX3C1 Y 2 DX.X2�1/

We generally visualize algebraic sets as though the field k were R, i.e., we draw the real
locus of the curve. However, this can be misleading — see the examples 4.11 and 4.17
below.

2.3. If S consists of the single equation

Z2 DX2CY 2;

then V.S/ is a cone.

2.4. A nonzero constant polynomial has no zeros, and so the empty set is algebraic.

2.5. The proper algebraic subsets of k are the finite subsets, because a polynomial f .X/ in
one variable X has only finitely many roots.

2.6. Some generating sets for an ideal will be more useful than others for determining what
the algebraic set is. For example, the ideal

aD .X2CY 2CZ2�1; X2CY 2�Y; X �Z/

can be generated by1

X �Z; Y 2�2Y C1; Z2�1CY:

The middle polynomial has (double) root 1, from which it follows that V.a/ consists of the
single point .0;1;0/.

b. The Hilbert basis theorem

In our definition of an algebraic set, we didn’t require the set S of polynomials to be finite,
but the Hilbert basis theorem shows that, in fact, every algebraic set is the zero set of a finite
set of polynomials. More precisely, the theorem states that every ideal in kŒX1; : : : ;Xn� can
be generated by a finite set of elements, and we have already observed that a set of generators
of an ideal has the same zero set as the ideal.

1This is, in fact, a Gröbner basis for the ideal.
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THEOREM 2.7 (HILBERT BASIS THEOREM). The ring kŒX1; : : : ;Xn� is noetherian.

As we noted in the proof of 1.32,

kŒX1; : : : ;Xn�D kŒX1; : : : ;Xn�1�ŒXn�:

Thus an induction argument shows that the theorem follows from the next statement.

THEOREM 2.8. If A is noetherian, then so also is AŒX�.

PROOF. We shall show that every ideal in AŒX� is finitely generated. Recall that for a
polynomial

f .X/D a0X
r
Ca1X

r�1
C�� �Car ; ai 2 A; a0 ¤ 0;

a0 is called the leading coefficient of f .
Let a be a proper ideal in AŒX�, and let a.i/ denote the set of elements of A that occur

as the leading coefficient of a polynomial in a of degree i (we also include 0). Clearly, a.i/
is an ideal in A, and a.i/� a.iC1/ because, if cX i C�� � 2 a, then X.cX i C�� �/ 2 a.

Let b be an ideal of AŒX� contained in a. Then b.i/� a.i/, and if equality holds for all
i , then bD a. To see this, let f be a polynomial in a. Because b.degf /D a.degf /, there
exists a g 2 b such that deg.f �g/ < deg.f /. In other words, f D gCf1 with g 2 b and
deg.f1/ < deg.f /. Similarly, f1D g1Cf2 with g1 2 b and deg.f2/ < deg.f1/. Continuing
in this fashion, we find that f D gCg1Cg2C�� � 2 b..

As A is noetherian, the sequence

a.1/� a.2/� �� � � a.i/� �� �

eventually becomes constant, say a.d/D a.dC1/D : : : (and then a.d/ contains the leading
coefficient of every polynomial in a). For each i � d , there exists a finite generating set
fai1;ai2; : : : ;aini

g of a.i/, and for each .i;j /, there exists an fij 2 a with leading coefficient
aij . The ideal b of AŒX� generated by the (finitely many) fij is contained in a and has the
property that b.i/D a.i/ for all i . Therefore bD a, and a is finitely generated. 2

ASIDE 2.9. One may ask how many elements are needed to generate a given ideal a in kŒX1; : : : ;Xn�,
or, what is not quite the same thing, how many equations are needed to define a given algebraic set V .
For nD 1, the ring kŒX� is a principal ideal domain, which means that every ideal is generated by a
single element. Also, if V is a linear subspace of kn, then linear algebra shows that it is the zero set
of n�dim.V / polynomials. All one can say in general, is that at least n�dim.V / polynomials are
needed to define V (see 3.45), but often more are required. Determining exactly how many is an area
of active research — see 3.55.

c. The Zariski topology

Recall that, for ideals a and b in kŒX1; : : : ;Xn�,

a� b H) V.a/� V.b/.

PROPOSITION 2.10. There are the following relations:

(a) V.0/D kn; V.kŒX1; : : : ;Xn�/D ;I

(b) V.ab/D V.a\b/D V.a/[V.b/I

(c) V.
P
i2I ai /D

T
i2I V.ai / for every family of ideals .ai /i2I .
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PROOF. (a) This is obvious.
(b) Note that

ab� a\b� a;b H) V.ab/� V.a\b/� V.a/[V.b/:

For the reverse inclusions, observe that if a … V.a/[V.b/, then there exist f 2 a, g 2 b
such that f .a/¤ 0, g.a/¤ 0; but then .fg/.a/¤ 0, and so a … V.ab/.

(c) Recall that, by definition,
P

ai consists of all finite sums of the form
P
fi , fi 2 ai .

Thus (c) is obvious. 2

Proposition 2.10 shows that the algebraic subsets of An satisfy the axioms to be the
closed subsets for a topology on An: both the whole space and the empty set are algebraic;
a finite union of algebraic sets is algebraic; an arbitrary intersection of algebraic sets is
algebraic. Thus, there is a topology on An for which the closed subsets are exactly the
algebraic subsets — this is called the Zariski topology on An. The induced topology on a
subset V of An is called the Zariski topology on V .

The Zariski topology has many strange properties, but it is nevertheless of great impor-
tance. For the Zariski topology on k, the closed subsets are just the finite sets and the whole
space, and so the topology is not Hausdorff (in fact, there are no disjoint nonempty open
subsets at all). We shall see in 2.68 below that the proper closed subsets of k2 are finite
unions of points and curves. Note that the Zariski topologies on C and C2 are much coarser
(have fewer open sets) than the complex topologies.

d. The Hilbert Nullstellensatz

We wish to examine the relation between the algebraic subsets of An and the ideals of
kŒX1; : : : ;Xn� more closely, but first we must answer the question of when a collection S of
polynomials has a common zero, i.e., when the system of equations

g.X1; : : : ;Xn/D 0; g 2 S;

is “consistent”. Obviously, equations

gi .X1; : : : ;Xn/D 0; i D 1; : : : ;m

are inconsistent if there exist fi 2 kŒX1; : : : ;Xn� such that
P
figi D 1, i.e., if 12 .g1; : : : ;gm/

or, equivalently, .g1; : : : ;gm/ D kŒX1; : : : ;Xn�. The next theorem provides a converse to
this.

THEOREM 2.11 (HILBERT NULLSTELLENSATZ). 2 Every proper ideal a in kŒX1; : : : ;Xn�
has a zero in kn.

A point P D .a1; : : : ;an/ in kn defines a homomorphism “evaluate at P ”

kŒX1; : : : ;Xn�! k; f .X1; : : : ;Xn/ 7! f .a1; : : : ;an/;

whose kernel contains a ifP 2V.a/. Conversely, from a homomorphism 'WkŒX1; : : : ;Xn�!

k of k-algebras whose kernel contains a, we obtain a point P in V.a/, namely,

P D .'.X1/; : : : ;'.Xn//:

2Nullstellensatz = zero-points-theorem.
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Thus, to prove the theorem, we have to show that there exists a k-algebra homomorphism
kŒX1; : : : ;Xn�=a! k.

Since every proper ideal is contained in a maximal ideal (see p. 16), it suffices to prove
this for a maximal ideal m. Then K def

D kŒX1; : : : ;Xn�=m is a field, and it is finitely generated
as an algebra over k (with generators X1Cm; : : : ;XnCm/. To complete the proof, we must
show that K D k. The next lemma accomplishes this.

In the next lemma, we need to allow k to be arbitrary in order to make the induction
in the proof work. We shall also need to use that kŒX� has infinitely many distinct monic
irreducible polynomials. When k is infinite, the polynomials X � a, a 2 k, are distinct
and irreducible. When k is finite, we can adapt Euclid’s argument: if p1; : : : ;pr are monic
irreducible polynomials in kŒX�, then p1 � � �pr C 1 is divisible by a monic irreducible
polynomial distinct from p1; : : : ;pr .

LEMMA 2.12 (ZARISKI’S LEMMA). Let k � K be fields, not necessarily algebraically
closed. If K is finitely generated as an algebra over k, then K is algebraic over k. (Hence
K D k if k is algebraically closed.)

In other words, if K is finitely generated as a ring over k, then it is finitely generated as
a module.

PROOF. We shall prove this by induction on r , the minimum number of elements required
to generate K as a k-algebra. The case r D 0 being trivial, we may suppose that

K D kŒx1; : : : ;xr �; r � 1:

If K is not algebraic over k, then at least one xi , say x1, is not algebraic over k. Then, kŒx1�
is a polynomial ring in one symbol over k, and its field of fractions k.x1/ is a subfield of
K. Clearly K is generated as a k.x1/-algebra by x2; : : : ;xr , and so the induction hypothesis
implies that x2; : : : ;xr are algebraic over k.x1/. From 1.40, we see that there exists a
c 2 kŒx1� such that cx2; : : : ; cxr are integral over kŒx1�.

Let f 2 k.x1/. Then f 2K D kŒx1; : : : ;xr � and so, for a sufficiently large N , cNf 2
kŒx1; cx2; : : : ; cxr �. Therefore cNf is integral over kŒx1� by 1.38, which implies that
cNf 2 kŒx1� because kŒx1� is integrally closed in k.x1/ (1.43). But this contradicts the fact
that that kŒx1� has infinitely many distinct monic irreducible polynomials that can occur as
the denominator of an f in k.x1/. 2

e. The correspondence between algebraic sets and radical ideals

The ideal attached to a subset of kn

For a subset W of kn, we write I.W / for the set of polynomials that are zero on W :

I.W /D ff 2 kŒX1; : : : ;Xn� j f .P /D 0 all P 2W g:

Clearly, it is an ideal in kŒX1; : : : ;Xn�. There are the following relations:
(a) V �W H) I.V /� I.W /I

(b) I.;/D kŒX1; : : : ;Xn�; I.kn/D 0I

(c) I.
S
Wi /D

T
I.Wi /.

Only the statement I.kn/D 0 is (perhaps) not obvious. It says that every nonzero polynomial
in kŒX1; : : : ;Xn� is nonzero at some point of kn. This is true for any infinite field k (see
Exercise 1-1). Alternatively, it follows from the strong Hilbert Nullstellensatz (2.19 below).
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EXAMPLE 2.13. Let P be the point .a1; : : : ;an/, and let

mP D .X1�a1; : : : ;Xn�an/.

Clearly I.P /�mP , but mP is a maximal ideal, because “evaluation at .a1; : : : ;an/” defines
an isomorphism

kŒX1; : : : ;Xn�=.X1�a1; : : : ;Xn�an/! k:

As I.P / is a proper ideal, it must equal mP :

PROPOSITION 2.14. LetW be a subset of kn. Then VI.W / is the smallest algebraic subset
of kn containing W . In particular, VI.W /DW if W is an algebraic set.

PROOF. Certainly VI.W / is an algebraic set containing W . Let V D V.a/ be another
algebraic set containing W . Then a� I.W /, and so V.a/� VI.W /. 2

Radicals of ideals

The radical of an ideal a in a ring A is

rad.a/ def
D ff j f r 2 a, some r 2 Ng:

PROPOSITION 2.15. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad.rad.a//D rad.a/.

PROOF. (a) If a 2 rad.a/, then clearly fa 2 rad.a/ for all f 2A. Suppose that a;b 2 rad.a/,
with say ar 2 a and bs 2 a. When we expand .aCb/rCs using the binomial theorem, we
find that every term has a factor ar or bs , and so lies in a.

(b) If ar 2 rad.a/, then ars D .ar/s 2 a for some s. 2

An ideal is said to be radical if it equals its radical. Thus a is radical if and only if the
ring A=a is reduced, i.e., without nonzero nilpotent elements. Since integral domains are
reduced, prime ideals (a fortiori, maximal ideals) are radical. Note that rad.a/ is radical
(2.15b), and hence is the smallest radical ideal containing a.

If a and b are radical, then a\b is radical, but aCb need not be: consider, for example,
aD .X2�Y / and bD .X2CY /; they are both prime ideals in kŒX;Y �, but X2 2 aC b,
X … aCb. (See 2.22 below.)

The strong Nullstellensatz

For a polynomial f and point P 2 kn, f r.P /D f .P /r . Therefore f r is zero on the same
set as f , and it follows that the ideal I.W / is radical for every subset W � kn. In particular,
IV.a/� rad.a/. The next theorem states that these two ideals are equal.

THEOREM 2.16 (STRONG NULLSTELLENSATZ). For every ideal a in kŒX1; : : : ;Xn�,

IV.a/D rad.a/I

in particular, IV.a/D a if a is a radical ideal.
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PROOF. We have already noted that IV.a/ � rad.a/. For the reverse inclusion, we have
to show that if a polynomial h vanishes on V.a/, then hN 2 a for some N > 0. We may
assume h¤ 0. Let g1; : : : ;gm generate a, and consider the system of mC 1 equations in
nC1 symbols, �

gi .X1; : : : ;Xn/ D 0; i D 1; : : : ;m;

1�Yh.X1; : : : ;Xn/ D 0:

If .a1; : : : ;an;b/ satisfies the first m equations, then .a1; : : : ;an/ 2 V.a/; consequently,
h.a1; : : : ;an/ D 0, and .a1; : : : ;an;b/ doesn’t satisfy the last equation. Therefore, the
equations are inconsistent, and so, according to the original Nullstellensatz, there exist
fi 2 kŒX1; : : : ;Xn;Y � such that

1D

mX
iD1

fi �gi CfmC1 � .1�Yh/

(in the ring kŒX1; : : : ;Xn;Y �). On applying the homomorphism�
Xi 7!Xi
Y 7! h�1

WkŒX1; : : : ;Xn;Y �! k.X1; : : : ;Xn/

to the above equality, we obtain the identity

1D

mX
iD1

fi .X1; : : : ;Xn;h
�1/ �gi .X1; : : : ;Xn/ (*)

in k.X1; : : : ;Xn/. Clearly

fi .X1; : : : ;Xn;h
�1/D

polynomial in X1; : : : ;Xn
hNi

for someNi . LetN be the largest of theNi . On multiplying (*) by hN we obtain an equation

hN D

mX
iD1

(polynomial in X1; : : : ;Xn/ �gi .X1; : : : ;Xn/;

which shows that hN 2 a. 2

COROLLARY 2.17. The map a 7! V.a/ defines a one-to-one correspondence between the
set of radical ideals in kŒX1; : : : ;Xn� and the set of algebraic subsets of kn; its inverse is I .

PROOF. We know that IV.a/D a if a is a radical ideal (2.16), and that VI.W /DW if W
is an algebraic set (2.14). Therefore, I and V are inverse bijections. 2

COROLLARY 2.18. The radical of an ideal in kŒX1; : : : ;Xn� is equal to the intersection of
the maximal ideals containing it.

PROOF. Let a be an ideal in kŒX1; : : : ;Xn�. Because maximal ideals are radical, every
maximal ideal containing a also contains rad.a/, and so

rad.a/�
\
m�a

m.
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For each P D .a1; : : : ;an/ 2 kn, the ideal mP D .X1�a1; : : : ;Xn�an/ is maximal in
kŒX1; : : : ;Xn�, and

f 2mP ” f .P /D 0

(see 2.13). Thus
mP � a ” P 2 V.a/.

If f 2mP for all P 2 V.a/, then f is zero on V.a/, and so f 2 IV.a/D rad.a/. We have
shown that

rad.a/�
\

P2V.a/

mP �
\
m�a

m.
2

Remarks

2.19. Because V.0/D kn,

I.kn/D IV.0/D rad.0/D 0I

in other words, only the zero polynomial is zero on the whole of kn. In fact, this holds
whenever k is infinite (Exercise 1-1).

2.20. The one-to-one correspondence in Corollary 2.17 is order reversing. Therefore the
maximal proper radical ideals correspond to the minimal nonempty algebraic sets. But
the maximal proper radical ideals are simply the maximal ideals in kŒX1; : : : ;Xn�, and the
minimal nonempty algebraic sets are the one-point sets. As

I..a1; : : : ;an//D .X1�a1; : : : ;Xn�an/

(see 2.13), this shows that the maximal ideals of kŒX1; : : : ;Xn� are exactly the ideals .X1�
a1; : : : ;Xn�an/ with .a1; : : : ;an/ 2 kn.

2.21. The algebraic set V.a/ is empty if and only if aD kŒX1; : : : ;Xn� (Nullstellensatz,
2.11).

2.22. LetW andW 0 be algebraic sets. AsW \W 0 is the largest algebraic subset contained
in both W and W 0, I.W \W 0/ must be the smallest radical ideal containing both I.W / and
I.W 0/:

I.W \W 0/D rad.I.W /CI.W 0//:

For example, let W D V.X2 � Y / and W 0 D

V.X2CY /; then

I.W \W 0/D rad.X2;Y /D .X;Y /

(assuming characteristic ¤ 2/. Note that W \
W 0 D f.0;0/g, but when realized as the intersec-
tion of Y DX2 and Y D�X2, it has “multiplicity
2”.

•

V (X2 − Y )

V (X2 + Y )

2.23. Let P be the set of subsets of kn and let Q be the set of subsets of kŒX1; : : : ;Xn�.
Then I WP !Q and V WQ! P define a simple Galois correspondence between P and Q
(see FT 7.19). It follows that I and V define a one-to-one correspondence between I .P/
and V .Q/. But the strong Nullstellensatz shows that I .P/ consists exactly of the radical
ideals, and (by definition) V .Q/ consists of the algebraic subsets. Thus we recover Corollary
2.17.
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ASIDE 2.24. The algebraic subsets of An capture only part of the ideal theory of kŒX1; : : : ;Xn�
because two ideals with the same radical correspond to the same algebraic subset. There is a finer
notion of an algebraic scheme over k for which the closed algebraic subschemes of An are in
one-to-one correspondence with the ideals in kŒX1; : : : ;Xn� (see Chapter 11 on my website).

f. Finding the radical of an ideal

Typically, an algebraic set V is defined by a finite set of polynomials fg1; : : : ;gsg, and we
need to find I.V /D rad.g1; : : : ;gs/.

PROPOSITION 2.25. A polynomial h 2 rad.a/ if and only if 1 2 .a;1�Yh/ (the ideal in
kŒX1; : : : ;Xn;Y � generated by the elements of a and 1�Yh).

PROOF. We saw that 1 2 .a;1� Yh/ implies h 2 rad.a/ in the course of proving 2.16.
Conversely, from the identities

1D Y NhN C .1�Y NhN /D Y NhN C .1�Yh/ � .1CYhC�� �CY N�1hN�1/

we see that, if hN 2 a, then 1 2 aC .1�Yh/. 2

Given a set of generators of an ideal, there is an algorithm for deciding whether or not
a polynomial belongs to the ideal, and hence an algorithm for deciding whether or not a
polynomial belongs to the radical of the ideal. There are even algorithms for finding a set of
generators for the radical. These algorithms have been implemented in the computer algebra
systems CoCoA and Macaulay 2.

g. Properties of the Zariski topology

We now examine more closely the Zariski topology on An and on an algebraic subset of An.
Proposition 2.14 says that, for a subset W of An, VI.W / is the closure of W , and 2.17 says
that there is a one-to-one correspondence between the closed subsets of An and the radical
ideals of kŒX1; : : : ;Xn�. Under this correspondence, the closed subsets of an algebraic set V
correspond to the radical ideals of kŒX1; : : : ;Xn� containing I.V /.

PROPOSITION 2.26. Let V be an algebraic subset of An.

(a) The points of V are closed for the Zariski topology.

(b) Every ascending chain of open subsets U1 � U2 � � � � of V eventually becomes
constant. Equivalently, every descending chain of closed subsets of V eventually
becomes constant.

(c) Every open covering of V has a finite subcovering.

PROOF. (a) We have seen that f.a1; : : : ;an/g is the algebraic set defined by the ideal .X1�
a1; : : : ;Xn�an/.

(b) We prove the second statement. A sequence V1 � V2 � �� � of closed subsets of V
gives rise to a sequence of radical ideals I.V1/ � I.V2/ � : : :, which eventually becomes
constant because kŒX1; : : : ;Xn� is noetherian.

(c) Given an open covering of V , let U be the collection of open subsets of V that
can be expressed as a finite union of sets in the covering. If U does not contain V , then
every element of U is properly contained in another element, and so there exists an infinite
ascending chain of sets in U (axiom of dependent choice), contradicting (b). 2
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A topological space whose points are closed is said to be T1; the condition means
that, for any pair of distinct points, each has an open neighbourhood not containing the
other. A topological space having the property (b) is said to be noetherian. The condition
is equivalent to the following: every nonempty set of closed subsets of V has a minimal
element. A topological space having property (c) is said to be quasicompact (by Bourbaki at
least; others call it compact, but Bourbaki requires a compact space to be Hausdorff). The
proof of (c) shows that every noetherian space is quasicompact. Since an open subset of a
noetherian space is again noetherian, it is also quasicompact.

h. Decomposition of an algebraic set into irreducible algebraic
sets

A topological space is said to be irreducible if it is not the union of two proper closed subsets.
Equivalent conditions: every pair of nonempty open subsets has nonempty intersection;
every nonempty open subset is dense. By convention, the empty space is not irreducible.
Obviously, every nonempty open subset of an irreducible space is irreducible.

In a Hausdorff topological space, any two points have disjoint open neighbourhoods.
Therefore, the only irreducible Hausdorff spaces are those consisting of a single point.

PROPOSITION 2.27. An algebraic set W is irreducible if and only if I.W / is prime.

PROOF. Let W be an irreducible algebraic set, and let fg 2 I.W / — we have to show
that either f or g is in I.W /. At each point of W , either f is zero or g is zero, and so
W � V.f /[V.g/. Hence

W D .W \V.f //[ .W \V.g//:

As W is irreducible, one of these sets, say W \V.f /, must equal W . But then f 2 I.W /.
Let W be an algebraic set such that I.W / is prime, and let W D V.a/[V.b/ with a and

b radical ideals — we have to show that W equals V.a/ or V.b/. The ideal a\b is radical,
and V.a\b/D V.a/[V.b/ (2.10); hence I.W /D a\b. If W ¤ V.a/, then there exists an
f 2 aX I.W /. Let g 2 b. Then fg 2 a\bD I.W /, and so g 2 I.W / (because I.W / is
prime). We conclude that b� I.W /, and so V.b/� V.I.W //DW . 2

SUMMARY 2.28. There are one-to-one correspondences,

radical ideals in kŒX1; : : : ;Xn�$ algebraic subsets of An

prime ideals in kŒX1; : : : ;Xn� $ irreducible algebraic subsets of An

maximal ideals in kŒX1; : : : ;Xn� $ one-point sets of An:

EXAMPLE 2.29. Let f 2 kŒX1; : : : ;Xn�. We saw (1.32) that kŒX1; : : : ;Xn� is a unique
factorization domain, and so .f / is a prime ideal if and only if f is irreducible (1.33). Thus

f is irreducible H) V.f / is irreducible.

On the other hand, suppose f factors as

f D
Y
f
mi

i ; fi distinct irreducible polynomials.
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Then
.f / D

T�
f
mi

i

� �
f
mi

i

�
distinct ideals

rad.f / D
T
.fi / .fi / distinct prime ideals

V.f / D
S
V.fi / V .fi / distinct irreducible algebraic sets.

LEMMA 2.30. Let W be an irreducible topological space. If W DW1[ : : :[Wr with each
Wi closed, then W is equal to one of the Wi .

PROOF. When r D 2, the statement is the definition of “irreducible”. Suppose that r > 2.
Then W D W1[ .W2[ : : :[Wr/, and so W D W1 or W D .W2[ : : :[Wr/; if the latter,
then W DW2 or W3[ : : :[Wr , etc. 2

PROPOSITION 2.31. Let V be a noetherian topological space. Then V is a finite union of
irreducible closed subsets, V D V1[ : : :[Vm. If the decomposition is irredundant in the
sense that there are no inclusions among the Vi , then the Vi are uniquely determined up to
order.

PROOF. Suppose that V cannot be written as a finite union of irreducible closed subsets.
Then, because V is noetherian, there will be a nonempty closed subset W of V that is
minimal among those that cannot be written in this way. But W itself cannot be irreducible,
and so W D W1 [W2, with W1 and W2 proper closed subsets of W . Because W was
minimal, each Wi is a finite union of irreducible closed subsets. Hence W is also, which is a
contradiction.

Suppose that
V D V1[ : : :[Vm DW1[ : : :[Wn

are two irredundant decompositions of V . Then Vi D
S
j .Vi \Wj /, and so, because Vi is

irreducible, Vi D Vi \Wj for some j . Consequently, there is a function f W f1; : : : ;mg !
f1; : : : ;ng such that Vi � Wf .i/ for each i . Similarly, there is a function gW f1; : : : ;ng !
f1; : : : ;mg such that Wj � Vg.j / for each j . Since Vi � Wf .i/ � Vgf .i/, we must have
gf .i/ D i and Vi D Wf .i/; similarly fg D id. Thus f and g are bijections, and the
decompositions differ only in the numbering of the sets. 2

The Vi given uniquely by the proposition are called the irreducible components of V .
They are exactly the maximal irreducible closed subsets of V .3 In Example 2.29, the V.fi /
are the irreducible components of V.f /.

An algebraic set with two irreducible components.
3In fact, they are exactly the maximal irreducible subsets of V because the closure of an irreducible subset

is also irreducible.
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COROLLARY 2.32. The radical of an ideal a in kŒX1; : : : ;Xn� is a finite intersection of
prime ideals, a D p1\ : : :\ pn. If there are no inclusions among the pi , then the pi are
uniquely determined up to order (and they are exactly the minimal prime ideals containing
a).

PROOF. Write V.a/ as a union of its irreducible components, V.a/ D
Sn
iD1Vi , and let

pi D I.Vi /. Then rad.a/D p1\ : : :\pn because they are both radical ideals and

V.rad.a//D V.a/D
[
V.pi /

2.10b
D V.

\
i
p/:

The uniqueness similarly follows from the proposition. 2

Remarks

2.33. An irreducible topological space is connected, but a connected topological space
need not be irreducible. For example, V.X1X2/ is the union of the coordinate axes in A2,
which is connected but not irreducible. An algebraic subset V of An is disconnected if and
only if there exist radical ideals a and b such that V is the disjoint union of V.a/ and V.b/,
that is, �

V D V.a/[V.b/D V.a\b/ ” a\bD I.V /
; D V.a/\V.b/D V.aCb/ ” aCbD kŒX1; : : : ;Xn�:

Note that then

kŒV �'
kŒX1; : : : ;Xn�

a
�
kŒX1; : : : ;Xn�

b

(Chinese remainder theorem, 1.1).

2.34. A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

2.35. In kŒX1; : : : ;Xn�, a principal ideal .f / is radical if and only if f is square-free, in
which case f is a product of distinct irreducible polynomials, f D f1 : : :fr , and .f / D
.f1/\ : : :\ .fr/.

2.36. In a noetherian ring, every proper ideal a has a decomposition into primary ideals:
aD

T
qi (see CA �19). For radical ideals, this becomes a simpler decomposition into prime

ideals, as in the corollary. For an ideal .f / with f D
Q
f
mi

i , the primary decomposition is
the decomposition .f /D

T
.f

mi

i / in Example 2.29.

i. Regular functions; the coordinate ring of an algebraic set

Let V be an algebraic subset of An, and let I.V /D a. The coordinate ring of V is

kŒV � def
D kŒX1; : : : ;Xn�=a.

This is a finitely generated k-algebra. It is reduced (because a is radical), but not necessarily
an integral domain.

An f 2 kŒX1; : : : ;Xn� defines a function

P 7! f .P /WV ! k:
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Functions of this form are said to be regular. Two polynomials f;g 2 kŒX1; : : : ;Xn� define
the same regular function on V if and only if they define the same element of kŒV �, and so
kŒV � is the ring of regular functions on V . The coordinate function

xi WV ! k; .a1; : : : ;an/ 7! ai

is regular, and kŒV �D kŒx1; : : : ;xn�. In other words, the coordinate ring of an algebraic set
V is the k-algebra generated by the coordinate functions on V .

For an ideal b in kŒV �, set

V.b/D fP 2 V j f .P /D 0, all f 2 bg

— it is a closed subset of V . Let W D V.b/. The quotient maps

kŒX1; : : : ;Xn�� kŒV �D
kŒX1; : : : ;Xn�

a
� kŒW �D

kŒV �

b

send a regular function on kn to its restriction to V and then to its restriction to W .
Write � for the quotient map kŒX1; : : : ;Xn�� kŒV �. Then b 7! ��1.b/ is a bijection

from the set of ideals of kŒV � to the set of ideals of kŒX1; : : : ;Xn� containing a, under which
radical, prime, and maximal ideals correspond to radical, prime, and maximal ideals (because
each of these conditions can be checked on the quotient ring, and kŒX1; : : : ;Xn�=��1.b/'
kŒV �=b). Clearly

V.��1.b//D V.b/;

and so b 7! V.b/ is a bijection from the set of radical ideals in kŒV � to the set of algebraic
sets contained in V .

Now 2.28 holds for ideals in kŒV � and algebraic subsets of V ,

radical ideals in kŒV �$ algebraic subsets of V

prime ideals in kŒV � $ irreducible algebraic subsets of V

maximal ideals in kŒV � $ one-point sets of V:

Moreover (see 2.33), the decompositions of a closed subset W of V into a disjoint union of
closed subsets correspond to pairs of radical ideals a;b 2 kŒV � such that

kŒW �D kŒV �=a\b' kŒV �=a�kŒV �=b:

For h 2 kŒV �, set
D.h/D fa 2 V j h.a/¤ 0g:

It is an open subset of V , because its complement is the closed set V..h//. It is empty if and
only if h is zero (2.19).

PROPOSITION 2.37. The sets D.h/, h 2 kŒV �, are a base for the topology on V , i.e., each
D.h/ is open, and every open set is a (finite) union of this form.

PROOF. We have already observed that D.h/ is open. Every open subset U � V is the
complement of a set of the form V.b/, with b an ideal in kŒV �. If f1; : : : ;fm generate b, then
U D

S
D.fi /. 2
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The D.h/ are called the basic (or principal) open subsets of V . We sometimes write Vh
for D.h/. Note that

D.h/�D.h0/ ” V.h/� V.h0/

” rad..h//� rad..h0//

” hr 2 .h0/ some r

” hr D h0g, some g:

Some of this should look familiar: if V is a topological space, then the zero set of a
family of continuous functions f WV ! R is closed, and the set where a continuous function
is nonzero is open.

Let V be an irreducible algebraic set. Then I.V / is a prime ideal, and so kŒV � is an
integral domain. Let k.V / be its field of fractions — k.V / is called the function field of V
or the field of rational functions on V .

j. Regular maps

Let W � km and V � kn be algebraic sets. Let xi denote the i th coordinate function

.b1; : : : ;bn/ 7! bi WV ! k

on V . The i th component of a map 'WW ! V is

'i D xi ı'.

Thus, ' is the map

P 7! '.P /D .'1.P /; : : : ;'n.P //WW ! V � kn:

DEFINITION 2.38. A continuous map 'WW ! V of algebraic sets is regular if each of its
components 'i is a regular function.

As the coordinate functions generate kŒV �, a continuous map ' is regular if and only if f ı'
is a regular function onW for every regular function f on V . Thus a regular map 'WW ! V

of algebraic sets defines a homomorphism f 7! f ı'WkŒV �! kŒW � of k-algebras, which
we sometimes denote by '�.

k. Hypersurfaces; finite and quasi-finite maps

A hypersurface in AnC1 is the algebraic set H defined by a single nonzero nonconstant
polynomial,

H W f .T1; : : : ;Tn;X/D 0.

We examine the regular map H ! An defined by the projection

.t1; : : : ; tn;x/ 7! .t1; : : : ; tn/:

We can write f in the form

f D a0X
m
Ca1X

m�1
C�� �Cam; ai 2 kŒX1; : : : ;Xm�; a0 ¤ 0; m 2 N:
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We assume thatm¤ 0, i.e., thatX occurs in f (otherwise,H is a cylinder over a hypersurface
in An). The fibre of the map H !An over .t1; : : : ; tn/ 2 kn is the set of points .t1; : : : ; tn; c/
such that c is a root of the polynomial

a0.t/X
m
Ca1.t/X

m�1
C�� �Cam.t/; ai .t/

def
D ai .t1; : : : ; tn/ 2 k:

Suppose first that a0 2 k, so that a0.t/ is a nonzero constant independent of t . Then the
fibre over t consists of the roots of the polynomial

a0X
m
Ca1.t/X

m�1
C�� �Cam.t/; (14)

in kŒX�. Counting multiplicities, there are exactly m of these. More precisely, let D be the
discriminant of the polynomial

a0X
m
Ca1X

m�1
C�� �Cam:

Then D 2 kŒX1; : : : ;Xm�, and the fibre has exactly m points over the open subset D ¤ 0,
and fewer then m points over the closed subset D D 0.4 We can picture it schematically as
follows (mD 3):

H

An

Now drop the condition that a0 is constant. For certain t , the degree of (14) may drop,
which means that some roots have “disappeared off to infinity”. Consider, for example,
f .T;X/ D TX � 1; for each t ¤ 0, there is one point .t;1=t/, but there is no point with
t D 0 (see the figure p. 71). Worse, for certain t all coefficients may be zero, in which case
the fibre is a line. There is a nested collection of closed subsets of An such that the number
of points in the fibre (counting multiplicities) drops as you pass to a smaller subset, except
that over the smallest subset the fibre may be a full line.

DEFINITION 2.39. Let 'WW ! V be a regular map of algebraic subsets, and let '�WkŒV �!
kŒW � be the map f 7! f ı'.

(a) The map ' is dominant if '.W / is dense in V .

(b) The map ' is quasi-finite if '�1.P / is finite for all P 2 V .

(c) The map ' is finite if kŒW � is a finite kŒV �-algebra.

As we shall see (8.28), finite maps are indeed quasi-finite.
As kŒW � is finitely generated as a k-algebra, a fortiori as a kŒV �-algebra, to say that

kŒW � is a finite kŒV �-algebra means that it is integral over kŒV � (1.36).
The mapH !An considered above is finite if and only if a0 is constant, and quasi-finite

if and only if the polynomials a0; : : : ;am have no common zero in kn.

4I’m ignoring the possibility that D is identically zero. Then the open set where D ¤ 0 is empty. This case
occurs when the characteristic is p ¤ 0, and f is a polynomial in T1; : : : ;Tn; and Xp .
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PROPOSITION 2.40. A regular map 'WW ! V is dominant if and only if '�WkŒV �! kŒW �

is injective.

PROOF. Let f 2 kŒV �. If the image of ' is dense, then

f ı' D 0 H) f D 0:

On the other hand, if the image of ' is not dense, then its closure Z is a proper closed subset
of V , and so there exists a nonzero regular function f zero on Z. Then f ı' D 0. 2

PROPOSITION 2.41. A dominant finite map is surjective.

PROOF. Let 'WW ! V be dominant and finite. Then '�WkŒV �! kŒW � is injective, and
kŒW � is integral over the image of kŒV �. According to the going-up theorem (1.53), for every
maximal ideal m of kŒV � there exists a maximal ideal n of kŒW � such that mD n\kŒV �.
Because of the correspondence between points and maximal ideals, this implies that ' is
surjective. 2

l. Noether normalization theorem

Let H be a hypersurface in AnC1. We show that, after a linear change of coordinates, the
projection map .x1; : : : ;xnC1/ 7! .x1; : : : ;xn/WAnC1! An defines a finite map H ! An.

PROPOSITION 2.42. Let
H W f .X1; : : : ;XnC1/D 0

be a hypersurface in AnC1. There exist c1; : : : ; cn 2 k such that the mapH !An defined by

.x1; : : : ;xnC1/ 7! .x1� c1xnC1; : : : ;xn� cnxnC1/

is finite.

PROOF. Let c1; : : : ; cn 2 k. In terms of the coordinates x0i D xi � cixnC1, the hyperplane
H is the zero set of

f .X1C c1XnC1; : : : ;XnC cnXnC1;XnC1/D a0X
m
nC1Ca1X

m�1
nC1 C�� � :

The next lemma shows that the ci can be chosen so that a0 is a nonzero constant. This
implies that the map H ! An defined by .x1; : : : ;xnC1/ 7! .x01; : : : ;x

0
n/ is finite. 2

LEMMA 2.43. Let k be an infinite field (not necessarily algebraically closed), and let
f 2 kŒX1; : : : ;Xn;T �. There exist c1; : : : ; cn 2 k such that

f .X1C c1T; : : : ;XnC cnT;T /D a0T
m
Ca1T

m�1
C�� �Cam

with a0 2 k� and all ai 2 kŒX1; : : : ;Xn�.

PROOF. Let F be the homogeneous part of highest degree of f and let r D deg.F /. Then

F.X1C c1T; : : : ;XnC cnT;T /D F.c1; : : : ; cn;1/T
r
C terms of degree< r in T ,

because the polynomial F.X1C c1T; : : : ;XnC cnT;T / is still homogeneous of degree r
in X1; : : : ;Xn;T , and so the coefficient of the monomial T r can be obtained by setting
each Xi equal to zero in F and T to 1. As F.X1; : : : ;Xn;T / is a nonzero homogeneous
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polynomial, F.X1; : : : ;Xn;1/ is a nonzero polynomial, and so we can choose the ci so that
F.c1; : : : ; cn;1/¤ 0 (Exercise 1-1). Now

f .X1C c1T; : : : ;XnC cnT;T /D F.c1; : : : ; cn;1/T
r
C terms of degree< r in T;

with F.c1; : : : ; cn;1/ 2 k�, as required. 2

In fact, every algebraic set V admits a finite surjective map to Ad for some d .

THEOREM 2.44. Let V be an algebraic set. For some natural number d , there exists a finite
surjective map 'WV ! Ad .

This follows from the next statement applied to A D kŒV �: the regular functions
x1; : : : ;xd define a map V ! Ad , which is finite and surjective because kŒx1; : : : ;xd �! A

is finite and injective.

THEOREM 2.45 (NOETHER NORMALIZATION THEOREM). Let A be a finitely generated
k-algebra. There exist elements x1; : : : ;xd 2 A that are algebraically independent over k,
and such that A is finite over kŒx1; : : : ;xd �.

It is not necessary to assume thatA is reduced in Theorem 2.45, nor that k is algebraically
closed, although the proof we give requires it to be infinite (for the general proof, see CA
8.1).

Let A D kŒx1; : : : ;xn�. We prove the theorem by induction on n. If the xi are alge-
braically independent, there is nothing to prove. Otherwise, the next lemma shows that
A is finite over a subring B D kŒy1; : : : ;yn�1�. By induction, B is finite over a subring
C D kŒz1; : : : ; zd � with z1; : : : ; zd algebraically independent, and A is finite over C .

LEMMA 2.46. Let AD kŒx1; : : : ;xn� be a finitely generated k-algebra, and let fx1; : : : ;xd g
be a maximal algebraically independent subset of fx1; : : : ;xng. If n > d , then there exist
c1; : : : ; cd 2 k such that A is finite over kŒx1� c1xn; : : : ;xd � cdxn;xdC1; : : : ;xn�1�.

PROOF. By assumption, the set fx1; : : : ;xd ;xng is algebraically dependent, and so there
exists a nonzero f 2 kŒX1; : : : ;Xd ;T � such that

f .x1; : : : ;xd ;xn/D 0: (15)

Because fx1; : : : ;xd g is algebraically independent, T occurs in f , and so

f .X1; : : : ;Xd ;T /D a0T
m
Ca1T

m�1
C�� �Cam

with ai 2 kŒX1; : : : ;Xd �, a0 ¤ 0, and m> 0.
If a0 2 k, then (15) shows that xn is integral over kŒx1; : : : ;xd �. Hence x1; : : : ;xn are

integral over kŒx1; : : : ;xn�1�, and so A is finite over kŒx1; : : : ;xn�1�.
If a0 … k, then, for a suitable choice of .c1; : : : ; cd / 2 k, the polynomial

g.X1; : : : ;Xd ;T /
def
D f .X1C c1T; : : : ;Xd C cdT;T /

takes the form
g.X1; : : : ;Xd ;T /D bT

r
Cb1T C�� �Cbr

with b 2 k� (see 2.43). As

g.x1� c1xn; : : : ;xd � cdxn;xn/D 0 (16)

this shows that xn is integral over kŒx1 � c1xn; : : : ;xd � cdxn�, and so A is finite over
kŒx1� c1xn; : : : ;xd � cdxn;xdC1; : : : ;xn�1� as before. 2
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Remarks

2.47. For an irreducible algebraic subset V of An, the above argument can be modified to
prove the following more precise statement:

Let x1; : : : ;xn be the coordinate functions on V ; after possibly renumbering
the coordinates, we may suppose that fx1; : : : ;xd g is a maximal algebraically
independent subset of fx1; : : : ;xng; then there exist cij 2 k such that the map

.x1; : : : ;xn/ 7!

�
x1�

nX
jDdC1

c1jxj ; : : : ;xd �

nX
jDdC1

cdjxj

�
WAn! Ad

induces a finite surjective map V ! Ad :
Indeed, Lemma 2.46 shows that there exist c1; : : : ; cn 2 k such that kŒV � is finite over
kŒx1 � c1xn; : : : ;xd � cdxn;xdC1; : : : ;xn�1�. Now fx1; : : : ;xd g is algebraically depen-
dent on fx1 � c1xn; : : : ;xd � cdxng. If the second set were not algebraically indepen-
dent, we could drop one of its elements, but this would contradict 1.61. Therefore fx1�
c1xn; : : : ;xd �cdxng is a maximal algebraically independent subset of fx1�c1xn; : : : ;xd �
cdxn;xdC1; : : : ;xn�1g and we can repeat the argument.

m. Dimension

The dimension of a topological space

Let V be a noetherian topological space whose points are closed.

DEFINITION 2.48. The dimension of V is the supremum of the lengths of the chains

V0 � V1 � �� � � Vd

of distinct irreducible closed subsets (the length of the displayed chain is d ).

2.49. Let V1; : : : ;Vm be the irreducible components of V . Then (obviously)

dim.V /Dmax i .dim.Vi //:

2.50. Assume that V is irreducible, and letW be a proper closed subspace of V . Then every
chain W0 �W1 � �� � in W extends to a chain V �W0 � �� � , and so dim.W /C1� dim.V /.
If dim.V / <1, then dim.W / < dim.V /.

Thus an irreducible topological space V has dimension 0 if and only if it is a point; it
has dimension � 1 if and only if every proper closed subset is a point; and, inductively, V
has dimension � n if and only if every proper closed subset has dimension � n�1.

The dimension of an algebraic set

DEFINITION 2.51. The dimension of an algebraic set is its dimension as a topological
space.

Because of the correspondence between the prime ideals in kŒV � and irreducible closed
subsets of V ,

dim.V /D Krull dimension of kŒV �:
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Note that, if V1; : : : ;Vm are the irreducible components of V , then

dimV Dmax
i

dim.Vi /:

When the Vi all have the same dimension d , we say that V has pure dimension d . A
one-dimensional algebraic set is called a curve; a two-dimensional algebraic set is called a
surface; and an n-dimensional algebraic set is called an n-fold.

Let V be an irreducible algebraic set andW an algebraic subset of V . IfW is irreducible,
then its codimension in V is

codimV W D dimV �dimW:

Dimension and transcendent degree

THEOREM 2.52. Let V be an irreducible algebraic set. Then

dim.V /D tr degkk.V /:

The proof will occupy the rest of this subsection.
Let A be an arbitrary commutative ring. Let x 2A, and let Sfxg denote the multiplicative

subset of A consisting of the elements of the form

xn.1�ax/; n 2 N; a 2 A:

The boundary Afxg of A at x is defined to be the ring of fractions S�1
fxg
A.

We write dim.A/ for the Krull dimension of A.

PROPOSITION 2.53. Let A be a ring and let n 2 N. Then

dim.A/� n ” for all x 2 A, dim.Afxg/� n�1:

PROOF. We shall use (1.14) that there is a one-to-one correspondence between the prime
ideals of S�1A and the prime ideals of A disjoint from S . We begin with two observations.

(a) For every x 2 A and maximal ideal m � A, m\Sfxg ¤ ;. Indeed, if x 2 m, then
certainly x 2 m\Sfxg. On the other hand, if x … m, then it is invertible modulo m,
and so there exists an a 2 A such that 1�ax 2m (hence also m\Sfxg).

(b) Let m be a maximal ideal, and let p be a prime ideal contained in m; for every
x 2 mX p, we have p\Sfxg D ;. Indeed, if xn.1� ax/ 2 p, then 1� ax 2 p (as
x … p/; hence 1�ax 2m, and so 1 2m, which is a contradiction.

Statement (a) shows that every chain of prime ideals beginning with a maximal ideal is
shortened when passing from A to Afxg, while statement (b) shows that a maximal chain of
length n is shortened only to n�1 when x is chosen appropriately. From this, the proposition
is follows. 2

PROPOSITION 2.54. Let A be an integral domain, and let k be a subfield of A. Then

dim.A/� tr degkF.A/;

where F.A/ is the field of fractions of A.
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PROOF. If tr degkF.A/D1, there is nothing to prove, and so we suppose that trdegkF.A/D
n 2N. We argue by induction on n. We can replace k with its algebraic closure in A without
changing trdegkF.A/.

Let x 2 A. If x … k, then it is transcendental over k, and so

tr degk.x/F.A/D n�1

by 1.64; since k.x/ � Afxg, this implies (by induction) that dim.Afxg/ � n� 1. If x 2 k,
then 0D 1�x�1x 2 Sfxg, and so Afxg D 0; again dim.Afxg/� n�1. We deduce from 2.53
that dim.A/� n. 2

COROLLARY 2.55. The polynomial ring kŒX1; : : : ;Xn� has Krull dimension n.

PROOF. The existence of the sequence of prime ideals

.X1; : : : ;Xn/� .X1; : : : ;Xn�1/� �� � � .X1/� .0/

shows that kŒX1; : : : ;Xn� has Krull dimension at least n. Now 2.54 completes the proof. 2

COROLLARY 2.56. Let A be an integral domain and let k be a subfield of A. If A is finitely
generated as a k-algebra, then

tr degkF.A/D dim.A/:

PROOF. According to the Noether normalization theorem (2.45), A is integral over a poly-
nomial subring kŒx1; : : : ;xn�. Clearly n D tr degkF.A/. The going up theorem (1.54),
implies that a chain of prime ideals in kŒx1; : : : ;xn� lifts to a chain in A, and so dim.A/�
dim.kŒx1; : : : ;xn�/D n. Now 2.54 shows that dim.A/D n. 2

COROLLARY 2.57. Let V be an irreducible algebraic set. Then V has dimension n if and
only if there exists a finite surjective map V ! An.

PROOF. The d in Theorem 2.44 is the dimension of V . 2

ASIDE 2.58. In linear algebra, we justify saying that a vector space V has dimension n by proving
that its elements are parametrized by n-tuples. It is not true in general that the points of an algebraic
set of dimension n are parametrized by n-tuples. All we can say is Corollary 2.57.

ASIDE 2.59. The inequality in Proposition 2.54 may be strict; for example, AD k.x/ has dimension
0 but its field of fractions k.x/ has transcendence degree 1 over k. It is possible to deduce 2.54 from
2.56 — see mo79959.

NOTES. The above proof of 2.55 is based on that in Coquand and Lombardi, Amer. Math. Monthly
112 (2005), no. 9, 826–829.

Examples

EXAMPLE 2.60. Let V DAn. Then k.V /D k.X1; : : : ;Xn/, which has transcendence basis
X1; : : : ;Xn over k, and so dim.V /D n.
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EXAMPLE 2.61. If V is a linear subspace of kn (or a translate of a linear subspace), then
the dimension of V as an algebraic set is the same as its dimension in the sense of linear
algebra — in fact, kŒV � is canonically isomorphic to kŒXi1 ; : : : ;Xid �, where the Xij are the
“free” variables in the system of linear equations defining V .

More specifically, let c be an ideal in kŒX1; : : : ;Xn� generated by linear forms `1; : : : ; `r ,
which we may assume to be linearly independent. Let Xi1 ; : : : ;Xin�r

be such that

f`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
g

is a basis for the linear forms in X1; : : : ;Xn. Then

kŒX1; : : : ;Xn�=c' kŒXi1 ; : : : ;Xin�r
�:

This is obvious if the forms are X1; : : : ;Xr . In the general case, because fX1; : : : ;Xng
and f`1; : : : ; `r ;Xi1 ; : : : ;Xin�r

g are both bases for the linear forms, each element of one set
can be expressed as a linear combination of the elements of the other. Therefore,

kŒX1; : : : ;Xn�D kŒ`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
�;

and so

kŒX1; : : : ;Xn�=cD kŒ`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
�=c

' kŒXi1 ; : : : ;Xin�r
�:

EXAMPLE 2.62. If W is a proper algebraic subset of an irreducible algebraic set V , then
dim.W / < dim.V / (see 2.50).

EXAMPLE 2.63. Every nonempty algebraic set contains a point, which is a closed irre-
ducible subset. Therefore an irreducible algebraic set has dimension 0 if and only if it
consists of a single point.

EXAMPLE 2.64. A hypersurface in An has dimension n�1. It suffices to prove this for an
irreducible hypersurface H . Such an H is the zero set of an irreducible polynomial f (see
2.29). Let

kŒx1; : : : ;xn�D kŒX1; : : : ;Xn�=.f /; xi DXi C .f /;

and let k.x1; : : : ;xn/ be the field of fractions of kŒx1; : : : ;xn�. As f is not the zero polyno-
mial, some Xi , say, Xn, occurs in it. Then Xn occurs in every nonzero multiple of f , and so
no nonzero polynomial in X1; : : : ;Xn�1 belongs to .f /. This means that x1; : : : ;xn�1 are
algebraically independent. On the other hand, xn is algebraic over k.x1; : : : ;xn�1/, and so
fx1; : : : ;xn�1g is a transcendence basis for k.x1; : : : ;xn/ over k. (Alternatively, use 2.57.)

EXAMPLE 2.65. Let F.X;Y / and G.X;Y / be nonconstant polynomials with no common
factor. Then V.F.X;Y // has dimension 1 by 2.64, and so V.F.X;Y //\V.G.X;Y // must
have dimension zero; it is therefore a finite set.

PROPOSITION 2.66. Let W be a closed set of codimension 1 in an algebraic set V ; if kŒV �
is a unique factorization domain, then I.W /D .f / for some f 2 kŒV �.

PROOF. Let W1; : : : ;Ws be the irreducible components of W ; then I.W /D
T
I.Wi /, and

so if we can prove I.Wi / D .fi /, then I.W / D .f1 � � �fr/. Thus we may suppose that
W is irreducible. Let pD I.W /; it is a prime ideal, and it is not zero because otherwise
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dim.W /D dim.V /. Therefore it contains an irreducible polynomial f . From (1.33) we
know .f / is prime. If .f /¤ p , then we have

p� .f /� .0/ (distinct prime ideals)

and hence

W D V.p/� V.f /� V (distinct irreducible closed subsets).

But then (2.62)
dim.W / < dim.V .f // < dimV ,

which contradicts the hypothesis. 2

COROLLARY 2.67. The closed sets of codimension 1 in An are exactly the hypersurfaces.

PROOF. Combine 2.64 and 2.66. 2

EXAMPLE 2.68. We classify the irreducible algebraic sets V of A2. If V has dimension
2, then (by 2.62) it can’t be a proper subset of A2, so it is A2. If V has dimension 1, then
V D V.f /, where f is any irreducible polynomial in I.V / (see 2.66 and its proof). Finally,
if V has dimension zero, then it is a point. Correspondingly, the following is a complete list
of the prime ideals in kŒX;Y �:

.0/; .f / with f irreducible, .X �a;Y �b/ with a;b 2 k:

Exercises

2-1. Find I.W /, where W D .X2;XY 2/. Check that it is the radical of .X2;XY 2/.

2-2. Identify kmn with the set ofm�nmatrices, and let r 2N. Show that the set of matrices
with rank � r is an algebraic subset of kmn.

2-3. Let V D f.t; t2; : : : ; tn/ j t 2 kg. Show that V is an algebraic subset of kn, and that
kŒV �� kŒX� (polynomial ring in one variable). (Assume k has characteristic zero.)

2-4. Let f1; : : : ;fm 2QŒX1; : : : ;Xn�. If the fi have no common zero in C, prove that there
exist g1; : : : ;gm 2QŒX1; : : : ;Xn� such that f1g1C�� �Cfmgm D 1. (Hint: linear algebra).

2-5. Let k �K be algebraically closed fields, and let a be an ideal in kŒX1; : : : ;Xn�. Show
that if f 2KŒX1; : : : ;Xn� vanishes on V.a/, then it vanishes on VK.a/. Deduce that the zero
set V.a/ of a in kn is dense in the zero set VK.a/ of a in Kn. [Hint: Choose a basis .ei /i2I
for K as a k-vector space, and write f D

P
eifi (finite sum) with fi 2 kŒX1; : : : ;Xn�.]

2-6. Let A and B be (not necessarily commutative) Q-algebras of finite dimension over
Q, and let Qal be the algebraic closure of Q in C. Show that if there exists a C-algebra
homomorphism C˝QA! C˝QB , then there exists a Qal-algebra homomorphism Qal˝Q
A!Qal˝QB . (Hint: The proof takes only a few lines.)

2-7. Let A be finite dimensional k-algebra, where k is an infinite field, and let M and N be
A-modules. Show that if kal˝kM and kal˝kN are isomorphic kal˝k A-modules, then
M and N are isomorphic A-modules.

2-8. Show that the subset f.z;ez/ j z 2 Cg is not an algebraic subset of C2.



CHAPTER 3
Affine Algebraic Varieties

In this chapter, we define the structure of a ringed space on an algebraic set. In this way, we
are led to the notion of an affine algebraic variety — roughly speaking, this is an algebraic set
with no preferred embedding into An. This is in preparation for Chapter 5, where we define
an algebraic variety to be a ringed space that is a finite union of affine algebraic varieties
satisfying a natural separation axiom.

a. Sheaves

Let k be a field (in this section 3a, k need not be algebraically closed).

DEFINITION 3.1. Let V be a topological space, and suppose that, for every open subset U
of V we have a set OV .U / of functions U ! k. Then U  OV .U / is a sheaf of k-algebras
if the following statements hold for every open U in V :

(a) OV .U / is a k-subalgebra of the algebra of all k-valued functions on U , i.e., OV .U /
contains the constant functions and, if f;g lie in OV .U /, then so also do f Cg and
fg;

(b) the restriction of an f in OV .U / to an open subset U 0 of U is in OV .U 0/I
(c) a function f WU ! k lies in OV .U / if there exists an open covering U D

S
i2I Ui of

U such that f jUi 2OV .Ui / for all i 2 I .

In other words, OV is a sheaf if, for allU , OV .U / is a k-subalgebra and a function f WU ! k

lies in OV .U / if and only if every point P of U has a neighbourhood UP such that f jUP
lies in OV .UP / (so the condition for f to lie in OV .U / is local).

Note that, for disjoint open subsetsUi of V , condition (c) says that OV .U /'
Q
iOV .Ui /.

Examples

3.2. Let V be a topological space, and for each open subset U of V let OV .U / be the set
of all continuous real-valued functions on U . Then OV is a sheaf of R-algebras.

3.3. Recall that a function f WU ! R on an open subset U of Rn is said to be smooth (or
infinitely differentiable) if its partial derivatives of all orders exist and are continuous. Let
V be an open subset of Rn, and for each open subset U of V , let OV .U / be the set of all
smooth functions on U . Then OV is a sheaf of R-algebras.

59
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3.4. Recall that a function f WU ! C on an open subset U of Cn, is said to be analytic (or
holomorphic) if it is described by a convergent power series in a neighbourhood of each
point of U . Let V be an open subset of Cn, and for each open subset U of V , let OV .U / be
the set of all analytic functions on U . Then OV is a sheaf of C-algebras.

3.5. Let V be a topological space, and, for each open subset U of V , let OV .U / be the
set of all constant functions U ! k. If V is not connected, then OV is not a sheaf: let U1
and U2 be disjoint open subsets of V , and let f be the function on U1[U2 that takes the
constant value 0 on U1 and the constant value 1 on U2; then f is not in OV .U1[U2/, and
so condition (3.1c) fails. When “constant” is replaced with “locally constant”, OV becomes
a sheaf of k-algebras (in fact, the smallest such sheaf).

3.6. Let V be a topological space, and, for each open subset U of V , let OV .U / be the set
of all functions U ! k. The OV is a sheaf of k-algebras. By definition, all our sheaves of
k-algebras are subsheaves of this one.

b. Ringed spaces

A pair .V;OV / consisting of a topological space V and a sheaf of k-algebras on V will be
called a k-ringed space (or just a ringed space when the k is understood). For historical
reasons, we sometimes write � .U;OV / for OV .U / and call its elements the sections of OV
over U .

Let .V;OV / be a k-ringed space. For each open subset U of V , the restriction OV to
the collection of open subsets of U is a sheaf of k-algebras on U .

Let .V;OV / be a k-ringed space, and let P 2 V . A germ of a function at P is an
equivalence class of pairs .U;f / with U an open neighbourhood of P and f 2 OV .U /;
two pairs .U;f / and .U 0;f 0/ are equivalent if the functions f and f 0 agree on some open
neighbourhood of P in U \U 0. The germs of functions at P form a k-algebra OV;P , called
the stalk of OV at P . In other words,

OV;P D lim
�!

OV .U / (direct limit over open neighbourhoods U of P ).

In the interesting cases, OV;P is a local ring with maximal ideal mP the set of germs that
are zero at P . We often write OP for OV;P .

EXAMPLE 3.7. Let OV be the sheaf of holomorphic functions on V D C, and let c 2 C.
A power series

P
n�0an.z� c/

n, an 2 C, is said to be convergent if it converges on some
open neighbourhood of c. The set of such power series is a C-algebra, and I claim that it is
canonically isomorphic to the stalk OV;c of OV at c.

To prove this, let f be a holomorphic function on a neighbourhood U of c. Then f
has a unique power series expansion f D

P
an.z� c/

n in some (possibly smaller) open
neighbourhood of c (Cartan 19631, II 2.6). Moreover, another holomorphic function f 0 on a
neighbourhood U 0 of c defines the same power series if and only if f and f 0 agree on some
neighbourhood of c contained in U \U 0 (ibid. I, 4.3). Thus we have a well-defined injective
map from the ring of germs of holomorphic functions at c to the ring of convergent power
series, which is obviously surjective.

1Cartan, Henri. Elementary theory of analytic functions of one or several complex variables. Hermann,
Paris; Addison-Wesley; 1963.
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c. The ringed space structure on an algebraic set

Let V be an algebraic subset of kn. Recall that the basic open subsets of V are those of the
form

D.h/D fQ j h.Q/¤ 0g; h 2 kŒV �:

A pair g;h 2 kŒV � with h¤ 0 defines a function

Q 7!
g.Q/

h.Q/
WD.h/! k.

A function on an open subset of V is regular if it is locally of this form. More formally:

DEFINITION 3.8. Let U be an open subset of V . A function f WU ! k is regular at P 2U
if there exist g;h 2 kŒV � with h.P /¤ 0 such that f .Q/D g.Q/=h.Q/ for all Q in some
neighbourhood of P . A function f WU ! k is regular if it is regular at every P 2 U .

Let OV .U / denote the set of regular functions on an open subset U of V .

PROPOSITION 3.9. The map U  OV .U / is a sheaf of k-algebras on V .

PROOF. We have to check the conditions of (3.1).
(a) Clearly, a constant function is regular. Suppose f and f 0 are regular on U , and let

P 2 U . By assumption, there exist g;g0;h;h0 2 kŒV �, with h.P /¤ 0¤ h0.P / such that f
and f 0 agree with g

h
and g 0

h0
respectively on a neighbourhood U 0 of P . Then f Cf 0 agrees

with gh0Cg 0h
hh0

on U 0, and so f Cf 0 is regular at P . Similarly, ff 0 agrees with gg 0

hh0
on U 0,

and so is regular at P .
(b,c) The definition is local. 2

We next determine OV .U / when U is a basic open subset of V .

LEMMA 3.10. Let g;h 2 kŒV � with h¤ 0. The function

P 7! g.P /=h.P /mWD.h/! k

is zero if and only if and only if ghD 0 in kŒV �.

PROOF. If g=hm is zero onD.h/, then gh is zero on V because h is zero on the complement
of D.h/. Therefore gh is zero in kŒV �. Conversely, if ghD 0, then g.P /h.P /D 0 for all
P 2 V , and so g.P /D 0 for all P 2D.h/. 2

Let kŒV �h denote the ring kŒV � with h inverted (see 1.11). The lemma shows that
the map kŒV �h!OV .D.h// sending g=hm to the regular function P 7! g.P /=h.P /m is
well-defined and injective.

PROPOSITION 3.11. The above map kŒV �h!OV .D.h// is an isomorphism of k-algebras.

PROOF. It remains to show that every regular function f on D.h/ arises from an element of
kŒV �h. By definition, we know that there is an open covering D.h/D

S
Vi and elements

gi , hi 2 kŒV � with hi nowhere zero on Vi such that f jVi D
gi

hi
. We may assume that each

set Vi is basic, say, Vi DD.ai / for some ai 2 kŒV �. By assumption D.ai /�D.hi /, and so
aNi D hig

0
i for some N 2 N and g0i 2 kŒV � (see p. 50). On D.ai /,

f D
gi

hi
D
gig
0
i

hig
0
i

D
gig
0
i

aNi
:
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Note that D.aNi /DD.ai /. Therefore, after replacing gi with gig0i and hi with aNi , we can
assume that Vi DD.hi /.

We now have thatD.h/D
S
D.hi / and that f jD.hi /D

gi

hi
. BecauseD.h/ is quasicom-

pact, we can assume that the covering is finite. As gi

hi
D

gj

hj
on D.hi /\D.hj /DD.hihj /,

hihj .gihj �gjhi /D 0, i.e., hih2j gi D h
2
i hjgj (*)

— this follows from Lemma 3.10 if hihj ¤ 0 and is obvious otherwise. Because D.h/DS
D.hi /D

S
D.h2i /,

V..h//D V..h21; : : : ;h
2
m//;

and so h lies in rad.h21; : : : ;h
2
m/: there exist ai 2 kŒV � such that

hN D

mX
iD1

aih
2
i : (**)

for some N . I claim that f is the function on D.h/ defined by
P
aigihi

hN :

Let P be a point of D.h/. Then P will be in one of the D.hi /, say D.hj /. We have the
following equalities in kŒV �:

h2j

mX
iD1

aigihi
.�/
D

mX
iD1

aigjh
2
i hj

.��/
D gjhjh

N .

But f jD.hj /D
gj

hj
, i.e., f hj and gj agree as functions on D.hj /. Therefore we have the

following equality of functions on D.hj /:

h2j

mX
iD1

aigihi D f h
2
j h
N :

Since h2j is never zero onD.hj /, we can cancel it, to find that, as claimed, the function f hN

on D.hj / equals that defined by
P
aigihi . 2

On taking hD 1 in the proposition, we see that the definition of a regular function on V
in this section agrees with that in Section 2i.

COROLLARY 3.12. For every P 2 V , there is a canonical isomorphism OP ! kŒV �mP
,

where mP is the maximal ideal I.P /.

PROOF. In the definition of the germs of a sheaf at P , it suffices to consider pairs .f;U /
with U lying in a some basis for the neighbourhoods of P , for example, the basis provided
by the basic open subsets. Therefore,

OP D lim
�!

h.P /¤0

� .D.h/;OV /
(3.11)
' lim
�!
h…mP

kŒV �h
(1.23)
' kŒV �mP

:

2
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Remarks

3.13. Let V be an algebraic set and let P be a point on V . Proposition 1.14 shows that there
is a one-to-one correspondence between the prime ideals of kŒV � contained in mP and the
prime ideals of OP . In geometric terms, this says that there is a one-to-one correspondence
between the irreducible closed subsets of V passing through P and the prime ideals in OP .
The irreducible components of V passing through P correspond to the minimal prime ideals
in OP . The ideal p corresponding to an irreducible closed subset Z consists of the elements
of OP represented by a pair .U;f / with f jZ\U D 0.

3.14. The local ring OV;P is an integral domain if P lies on a single irreducible component
of V . As OV;P depends only on .U;OV jU/ for U an open neighbourhood of P , we may
suppose that V itself is irreducible, in which case the statement follows from 3.12. On the
other hand, if P lies on more than one irreducible component of V , then OP contains more
than one minimal prime ideal 3.13, and so the ideal .0/ can’t be prime.

3.15. Let V be an algebraic subset of kn, and let AD kŒV �. Propositions 2.37 and 3.11
allow us to describe .V;OV / purely in terms of A:
˘ V is the set of maximal ideals in A.
˘ For each f 2 A, let D.f /D fm j f … mg; the topology on V is that for which the

sets D.f / form a base.
˘ For f 2 Ah and m 2D.h/, let f .m/ denote the image of f in Ah=mAh ' k; in this

way Ah becomes identified with a k-algebra of functions D.h/! k, and OV is the
unique sheaf of k-valued functions on V such that � .D.h/;OV /D Ah for all h 2 A.

3.16. When V is irreducible, all the rings attached to it can be identified with subrings of
its function field k.V /. For example,

� .D.h/;OV /D
n
g

hN 2 k.V /
ˇ̌
g 2 kŒV �; N 2 N

o
OP D

n
g
h
2 k.V /

ˇ̌
h.P /¤ 0

o
� .U;OV /D

\
P2U

OP
D

\
� .D.hi /;OV / if U D

[
D.hi /:

Note that every element of k.V / defines a function on some dense open subset of V .
Following tradition, we call the elements of k.V / rational functions on V .2

Examples

3.17. The ring of regular functions on An is kŒX1; : : : ;Xn�. For a nonzero polynomial
h.X1; : : : ;Xn/, the ring of regular functions on D.h/ isn

g

hN 2 k.X1; : : : ;Xn/
ˇ̌̌
g 2 kŒX1; : : : ;Xn�; N 2 N

o
:

For a point P D .a1; : : : ;an/, the local ring at P is

OP D
˚
g
h
2 k.X1; : : : ;Xn/ j h.P /¤ 0

	
D kŒX1; : : : ;Xn�.X1�a1;:::;Xn�an/;

and its maximal ideal consists of those g=h with g.P /D 0:
2The terminology is similar to that of “meromorphic function”, which is also not a function on the whole

space.
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3.18. Let U D A2Xf.0;0/g. It is an open subset of A2, but it is not a basic open subset
because its complement f.0;0/g has dimension 0, and therefore can’t be of the form V..f //

(see 2.64). Since U DD.X/[D.Y /, the ring of regular functions on U is

� .U;OA2/D kŒX;Y �X \kŒX;Y �Y

(intersection inside k.X;Y /). Thus, a regular function f on U can be expressed

f D
g.X;Y /

XN
D
h.X;Y /

YM
:

We may assume that X − g and Y − h. On multiplying through by XNYM , we find that

g.X;Y /YM D h.X;Y /XN :

Because X doesn’t divide the left hand side, it can’t divide the right hand side either, and so
N D 0. Similarly, M D 0, and so f 2 kŒX;Y �. We have shown that every regular function
on U extends uniquely to a regular function on A2:

� .U;OA2/D kŒX;Y �D � .A2;OA2/:

d. Morphisms of ringed spaces

A morphism of k-ringed spaces .V;OV /! .W;OW / is a continuous map 'WV !W such
that

f 2OW .U / H) f ı' 2OV .'�1U/
for all open subsets U of W . Then, for every pair of open subsets U �W and U 0 � V with
'.U 0/� U , we get a homomorphism of k-algebras

f 7! f ı'WOW .U 0/!OV .U /;

and these homomorphisms are compatible with restriction to smaller open subsets. Some-
times we write '�.f / for f ı'. A morphism of ringed spaces is an isomorphism if it is
bijective and its inverse is also a morphism of ringed spaces (in particular, it is a homeomor-
phism).

If U is an open subset of V , then the inclusion U ,! V is a morphism of k-ringed spaces
.U;OV jU/! .V;OV /.

A morphism of ringed spaces maps germs of functions to germs of functions. More
precisely, a morphism 'W.V;OV /! .W;OW / induces a k-algebra homomorphism

OW;'.P /!OV;P

for each P 2 V , which sends the germ represented by .U;f / to the germ represented by
.'�1.U /;f ı '/. In the interesting cases, OV;P is a local ring with maximal ideal mP
consisting of the germs represented by pairs .U;f / with f .P /D 0. Therefore, the homo-
morphism OW ;'.P /!OV;P defined by ' maps m'.P / into mP : it is a local homomorphism
of local rings.
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Examples

3.19. Let V and W be topological spaces endowed with their sheaves OV and OW of
continuous real valued functions (3.2). Every continuous map 'WV !W is a morphism of
ringed structures .V;OV /! .W;OW /.

3.20. Let V andW be open subsets of Rn and Rm respectively, and let xi be the coordinate
function .a1; : : : ;an/ 7! ai WV ! R. Recall from advanced calculus that a map

'WV !W � Rm

is said to be smooth if each of its component functions 'i
def
D xi ı'WV ! R is smooth. If

' is smooth, then f ı' is smooth for every smooth function f WW ! R. Since a similar
statement is true for functions f on open subsets of W , we see that a continuous map
'WV !W is smooth if and only if it is a morphism of the associated ringed spaces (3.3).

3.21. Same as 3.20, but replace R with C and “smooth” with “analytic”.

e. Affine algebraic varieties

We have just seen that every algebraic set V � kn gives rise to a k-ringed space .V;OV /. A
k-ringed space isomorphic to one of this form is called an affine algebraic variety over k.
We usually denote an affine algebraic variety .V;OV / by V .

Let .V;OV / and .W;OW / be affine algebraic varieties. A map 'WV !W is regular
(or a morphism of affine algebraic varieties) if it is a morphism of k-ringed spaces. With
these definitions, the affine algebraic varieties become a category. We usually shorten “affine
algebraic variety” to “affine variety”.

In particular, the regular functions define the structure of an affine variety on every
algebraic set. We usually regard An as an affine variety. The affine varieties we have
constructed so far have all been embedded in An. We now explain how to construct affine
varieties with no preferred embedding.

An affine k-algebra is a reduced finitely generated k-algebra. For such an algebra A,
there exist xi 2 A such that AD kŒx1; : : : ;xn�, and the kernel of the homomorphism

Xi 7! xi WkŒX1; : : : ;Xn�! A

is a radical ideal. Therefore 2.18 implies that the intersection of the maximal ideals in A is 0.
Moreover, 2.12 implies that, for every maximal ideal m� A, the map k! A! A=m is an
isomorphism. Thus we can identify A=m with k. For f 2 A, we write f .m/ for the image
of f in A=mD k, i.e., f .m/D f (mod m/. This allows us to identify elements of A with
functions spm.A/! k.

We attach a ringed space .V;OV / to A by letting V be the set of maximal ideals in A.
For f 2 A, let

D.f /D fm j f .m/¤ 0g D fm j f …mg:

Since D.fg/DD.f /\D.g/, there is a topology on V for which the D.f / form a base. A
pair of elements g;h 2 A, h¤ 0, defines a function

m 7!
g.m/

h.m/
WD.h/! k:

For U an open subset of V , we define OV .U / to be the set of functions f WU ! k that are
of this form in some neighbourhood of each point of U .
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PROPOSITION 3.22. The pair .V;OV / is an affine algebraic variety with � .D.h/;OV /'
Ah for each h 2 AXf0g.

PROOF. Represent A as a quotient kŒX1; : : : ;Xn�=aD kŒx1; : : : ;xn�. Then .V;OV / is iso-
morphic to the k-ringed space attached to the algebraic set V.a/ (see 3.15). 2

We write spm.A/ for the topological space V , and Spm.A/ for the k-ringed space
.V;OV /.
ASIDE 3.23. We have attached to an affine k-algebra A an affine variety whose underlying topologi-
cal space is the set of maximal ideals in A. It may seem strange to be describing a topological space
in terms of maximal ideals in a ring, but the analysts have been doing this for more than 70 years.
Gel’fand and Kolmogorov in 19393 proved that if S and T are compact topological spaces, and the
rings of real-valued continuous functions on S and T are isomorphic (just as rings), then S and T are
homeomorphic. The proof begins by showing that, for such a space S , the map

P 7!mP
def
D ff WS ! R j f .P /D 0g

is one-to-one correspondence between the points in the space and maximal ideals in the ring.

f. The category of affine algebraic varieties

For each affine k-algebra A, we have an affine variety Spm.A/, and conversely, for each
affine variety .V;OV /, we have an affine k-algebra kŒV �D � .V;OV /. We now make this
correspondence into an equivalence of categories.

Let ˛WA! B be a homomorphism of affine k-algebras. For every h 2 A, ˛.h/ is
invertible in B˛.h/, and so the homomorphism A!B!B˛.h/ extends to a homomorphism

g

hm
7!

˛.g/

˛.h/m
WAh! B˛.h/:

For every maximal ideal n of B , mD ˛�1.n/ is maximal in A because A=m! B=nD k is
an injective map of k-algebras which implies that A=mD k. Thus ˛ defines a map

'WspmB! spmA; '.n/D ˛�1.n/Dm:

For mD ˛�1.n/D '.n/, we have a commutative diagram:

A B

A=m B=n:

˛

'

Recall that the image of an element f of A in A=m' k is denoted f .m/. Therefore, the
commutativity of the diagram means that, for f 2 A,

f .'.n//D ˛.f /.n/, i.e., f ı' D ˛ ıf: (*)

Since '�1D.f /DD.f ı'/ (obviously), it follows from (*) that

'�1.D.f //DD.˛.f //;

3On rings of continuous functions on topological spaces, Doklady 22, 11-15. See also Allen Shields, Banach
Algebras, 1939–1989, Math. Intelligencer, Vol 11, no. 3, p15.
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and so ' is continuous.
Let f be a regular function on D.h/, and write f D g=hm, g 2 A. Then, from (*) we

see that f ı' is the function on D.˛.h// defined by ˛.g/=˛.h/m. In particular, it is regular,
and so f 7! f ı' maps regular functions on D.h/ to regular functions on D.˛.h//. It
follows that f 7! f ı' sends regular functions on any open subset of spm.A/ to regular
functions on the inverse image of the open subset. Thus ˛ defines a morphism of ringed
spaces Spm.B/! Spm.A/.

Conversely, by definition, a morphism of 'W.V;OV /! .W;OW / of affine algebraic
varieties defines a homomorphism of the associated affine k-algebras kŒW �! kŒV �. Since
these maps are inverse, we have shown:

PROPOSITION 3.24. For all affine algebras A and B ,

Homk-alg.A;B/
'
!Mor.Spm.B/;Spm.A//I

for all affine varieties V and W ,

Mor.V;W /
'
! Homk-alg.kŒW �;kŒV �/:

In terms of categories, Proposition 3.24 can be restated as:

PROPOSITION 3.25. The functor A SpmA is a (contravariant) equivalence from the
category of affine k-algebras to the category of affine algebraic varieties over k, with
quasi-inverse .V;OV / � .V;OV /.

g. Explicit description of morphisms of affine varieties

PROPOSITION 3.26. Let V � km and W � kn be algebraic subsets. The following condi-
tions on a continuous map 'WV !W are equivalent:

(a) ' is a morphism of ringed spaces .V;OV /! .W;OW /;
(b) the components '1; : : : ;'m of ' are regular functions on V ;

(c) f 2 kŒW � H) f ı' 2 kŒV �.

PROOF. (a) H) (b). By definition 'i D yi ı', where yi is the coordinate function

.b1; : : : ;bn/ 7! bi WW ! k:

Hence this implication follows directly from the definition of a regular map.
(b) H) (c). The map f 7! f ı' is a k-algebra homomorphism from the ring of all

functions W ! k to the ring of all functions V ! k, and (b) says that the map sends the
coordinate functions yi on W into kŒV �. Since the yigenerate kŒW � as a k-algebra, this
implies that it sends kŒW � into kŒV �.

(c) H) (a). The map f 7! f ı' is a homomorphism ˛WkŒW �! kŒV �. It therefore
defines a map spm.kŒV �/! spm.kŒW �/, and it remains to show that this coincides with '
when we identify spm.kŒV �/ with V and spm.kŒW �/ with W . Let P 2 V , let QD '.P /,
and let mP and mQ be the ideals of elements of kŒV � and kŒW � that are zero at P and Q
respectively. Then, for f 2 kŒW �,

˛.f / 2mP ” f .'.P //D 0 ” f .Q/D 0 ” f 2mQ:

Therefore ˛�1.mP /DmQ, which is what we needed to show. 2
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The equivalence of (a) and (b) means that 'WV !W is a regular map of algebraic sets
(in the sense of Chapter 2) if and only if it is a regular map of the associated affine algebraic
varieties.

Now consider equations

Y1 D f1.X1; : : : ;Xm/

: : :

Yn D fn.X1; : : : ;Xm/:

On the one hand, they define a regular map 'WAm! An, namely,

.a1; : : : ;am/ 7! .f1.a1; : : : ;am/; : : : ;fn.a1; : : : ;am//:

On the other hand, they define a homomorphism ˛WkŒY1; : : : ;Yn�! kŒX1; : : : ;Xm� of k-
algebras, namely, that sending Yi to fi .X1; : : : ;Xm/. This map coincides with g 7! g ı',
because

˛.g/.P /D g.: : : ;fi .P /; : : :/D g.'.P //:

Now consider closed subsets V.a/�Am and V.b/�An with a and b radical ideals. I claim
that ' maps V.a/ into V.b/ if and only if ˛.b/� a. Indeed, suppose '.V.a//� V.b/, and
let g 2 b; for Q 2 V.a/,

˛.g/.Q/D g.'.Q//D 0;

and so ˛.g/ 2 IV.a/D a. Conversely, suppose ˛.b/� a, and let P 2 V.a/; for f 2 b,

f .'.P //D ˛.f /.P /D 0;

and so '.P / 2 V.b/. When these conditions hold, ' is the morphism of affine varieties
V.a/! V.b/ corresponding to the homomorphism kŒY1; : : : ;Yn�=b! kŒX1; : : : ;Xm�=a
defined by ˛.

Thus, we see that the regular maps

V.a/! V.b/

are all of the form

P 7! .f1.P /; : : : ;fn.P //; fi 2 kŒX1; : : : ;Xm�:

In particular, they all extend to regular maps Am! An.

Examples of regular maps

3.27. Let R be a k-algebra. To give a k-algebra homomorphism kŒX�!R is the same as
giving an element (the image of X under the homomorphism):

Homk-alg.kŒX�;R/'R:

Therefore
Mor.V;A1/

3.24
' Homk-alg.kŒX�;kŒV �/' kŒV �:

In other words, the regular maps V ! A1 are simply the regular functions on V (as we
would hope).
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3.28. Let A0 D Spmk. Then A0 consists of a single point and � .A0;OA0/D k. Every
map A0! V from A0 to an affine variety, sends A0 to a point of V , and so Mor.A0;V /' V .
Alternatively,

Mor.A0;V /' Homk-alg.kŒV �;k/' V;

where the last map sends ˛WkŒV �! k to the point corresponding to the maximal ideal
Ker.˛/.

3.29. Consider the regular map t 7! .t2; t3/WA1! A2. This is
bijective onto its image,

V W Y 2 DX3;

but it is not an isomorphism onto its image because the inverse
map is not regular. In view of 3.25, to prove this it suffices to
show that t 7! .t2; t3/ does not induce an isomorphism on the
rings of regular functions. We have kŒA1� D kŒT � and kŒV � D
kŒX;Y �=.Y 2�X3/D kŒx;y�. The map on rings is

x 7! T 2; y 7! T 3; kŒx;y�! kŒT �;

which is injective, but its image is kŒT 2;T 3� ¤ kŒT �. In fact,
kŒx;y� is not integrally closed: .y=x/2 � x D 0, and so .y=x/
is integral over kŒx;y�, but y=x … kŒx;y� (it maps to T under the
inclusion k.x;y/ ,! k.T //.

3.30. Let k have characteristic p ¤ 0, and consider the regular map

.a1; : : : ;an/ 7! .a
p
1 ; : : : ;a

p
n /WA

n
! An:

This is a bijection, but it is not an isomorphism because the corresponding map on rings,

Xi 7!X
p
i WkŒX1; : : : ;Xn�! kŒX1; : : : ;Xn�;

is not surjective.
This is the famous Frobenius map. Take k to be the algebraic closure of Fp , and write F

for the map. Recall that for each m� 1 there is a unique subfield Fpm of k of degree m over
Fp, and that its elements are the solutions of Xp

m

DX (FT 4.23). The fixed points of Fm

are precisely the points of An with coordinates in Fpm . Let f .X1; : : : ;Xn/ be a polynomial
with coefficients in Fpm , say,

f D
X

ci1���inX
i1
1 � � �X

in
n ; ci1���in 2 Fpm :

If f .a1; : : : ;an/D 0, then

0D
�X

c˛a
i1
1 � � �a

in
n

�pm

D

X
c˛a

pmi1
1 � � �ap

min
n ;

and so f .ap
m

1 ; : : : ;a
pm

n /D 0. Here we have used that the binomial theorem takes the simple
form .XCY /p

m

DXp
m

CY p
m

in characteristic p. Thus Fm maps V.f / into itself, and
its fixed points are the solutions of

f .X1; : : : ;Xn/D 0

in Fpm .
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ASIDE 3.31. In one of the most beautiful pieces of mathematics of the second half of the twentieth
century, Grothendieck defined a cohomology theory (étale cohomology) and proved a fixed point
formula that allowed him to express the number of solutions of a system of polynomial equations
with coordinates in Fpm as an alternating sum of traces of operators on finite-dimensional vector
spaces, and Deligne used this to obtain very precise estimates for the number of solutions. See my
article The Riemann hypothesis over finite fields: from Weil to the present day and my notes Lectures
on Étale Cohomology.

h. Subvarieties

Let A be an affine k-algebra. For any ideal a in A, we define

V.a/D fP 2 spm.A/ j f .P /D 0 all f 2 ag

D fm maximal ideal in A j a�mg:

This is a closed subset of spm.A/, and every closed subset is of this form.
Now let a be a radical ideal in A, so that A=a is again reduced. Corresponding to the

homomorphism A! A=a, we get a regular map

Spm.A=a/! Spm.A/:

The image is V.a/, and spm.A=a/! V.a/ is a homeomorphism. Thus every closed subset
of spm.A/ has a natural ringed structure making it into an affine algebraic variety. We call
V.a/ with this structure a closed subvariety of V:

PROPOSITION 3.32. Let .V;OV / be an affine variety and let h be a nonzero element of
kŒV �. Then

.D.h/;OV jD.h//' Spm.Ah/I

in particular, it is an affine variety.

PROOF. The map A! Ah defines a morphism spm.Ah/! spm.A/. The image is D.h/,
and it is routine (using (1.13)) to verify the rest of the statement. 2

If V D V.a/� An, then

.a1; : : : ;an/ 7! .a1; : : : ;an;h.a1; : : : ;an/
�1/WD.h/! AnC1;

defines an isomorphism of D.h/ onto V.a;1�hXnC1/. For example, there is an isomor-
phism of affine varieties

a 7! .a;1=a/WA1Xf0g ! V � A2;
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with V equal to the subvariety XY D 1 of A2,

XY = 1

By an open affine (subset) U of an affine algebraic variety V , we mean an open subset
U such that .U;OV jU/ is an affine algebraic variety. Thus, the proposition says that, for
all nonzero h 2 � .V;OV /, the open subset of V , where h is nonzero is an open affine. An
open affine subset of an irreducible affine algebraic variety V is irreducible with the same
dimension as V (2.52).

REMARK 3.33. We have seen that all closed subsets and all basic open subsets of an affine
variety V are again affine varieties with their natural ringed structure, but this is not true for
all open subsets of V . For an open affine subset U , the natural map U ! spm� .U;OV / is
a bijection. However, for

U def
D A2Xf.0;0/g DD.X/[D.Y /� A2;

we know that � .U;OA2/ D kŒX;Y � (see 3.18), but U ! spmkŒX;Y � is not a bijection,
because the ideal .X;Y / is not in the image. Clearly .U;OA2 jU/ is a union of affine
algebraic varieties, and in Chapter 5 we shall recognize it as a (nonaffine) algebraic variety.

i. Properties of the regular map Spm.˛/

PROPOSITION 3.34. Let ˛WA! B be a homomorphism of affine k-algebras, and let

'WSpm.B/! Spm.A/

be the corresponding morphism of affine varieties.

(a) The image of ' is dense for the Zariski topology if and only if ˛ is injective.

(b) The morphism ' is an isomorphism from Spm.B/ onto a closed subvariety of Spm.A/
if and only if ˛ is surjective.

PROOF. (a) Let f 2 A. If the image of ' is dense, then

f ı' D 0 H) f D 0:
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On the other hand, if the image of ' is not dense, then the closure of its image is a proper
closed subset of Spm.A/, and so there is a nonzero function f 2 A that is zero on it. Then
f ı' D 0. (See 2.40.)

(b) If ˛ is surjective, then it defines an isomorphism A=a! B , where a is the kernel
of ˛. This induces an isomorphism of Spm.B/ with its image in Spm.A/. The converse
follows from the description of the closed subvarieties of Spm.A/ in the last section. 2

A regular map 'WV ! W of affine algebraic varieties is said to be a dominant if its
image is dense in W . The proposition then says that:

' is dominant ” f 7! f ı'W� .W;OW /! � .V;OV / is injective.

A regular map 'WV !W of affine algebraic varieties is said to be a closed immersion if
it is an isomorphism of V onto a closed subvariety of W . The proposition then says that

' is a closed immersion ” f 7! f ı'W� .W;OW /! � .V;OV / is surjective.

j. Affine space without coordinates

Let E be a vector space over k of dimension n. The set A.E/ of points of E has a natural
structure of an algebraic variety: the choice of a basis for E defines a bijection A.E/! An,
and the inherited structure of an affine algebraic variety on A.E/ is independent of the choice
of the basis (because the bijections defined by two different bases differ by an automorphism
of An).

We now give an intrinsic definition of the affine variety A.E/. Let V be a finite-
dimensional vector space over a field k. The tensor algebra of V is

T �V D
M
i�0

V ˝i D k˚V ˚ .V ˝V /˚ .V ˝V ˝V /˚�� �

with multiplication defined by

.v1˝�� �˝vi / � .v
0
1˝�� �˝v

0
j /D v1˝�� �˝vi ˝v

0
1˝�� �˝v

0
j :

It is a noncommutative k-algebra, and the choice of a basis e1; : : : ; en for V defines an
isomorphism

e1 � � �ei 7! e1˝�� �˝ ei Wkfe1; : : : ; eng ! T �.V /

to T �V from the k-algebra of noncommuting polynomials in the symbols e1; : : : ; en.
The symmetric algebra S�.V / of V is defined to be the quotient of T �V by the two-

sided ideal generated by the elements

v˝w�w˝v; v;w 2 V:

This algebra is generated as a k-algebra by commuting elements (namely, the elements
of V D V ˝1), and so is commutative. The choice of a basis e1; : : : ; en for V defines an
isomorphism

e1 � � �ei 7! e1˝�� �˝ ei WkŒe1; : : : ; en�! S�.V /

to S�.V / from the commutative polynomial ring in the symbols e1; : : : ; en. This shows
that S�.V / is an affine k-algebra. The pair .S�.V /; i/ consisting of S�.V / and the natural
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k-linear map i WV ! S�.V / has the following universal property: every k-linear map V !A

from V into a k-algebra A extends uniquely to a k-algebra homomorphism S�.V /! A:

V S�.V /

A:

i

k-linear 9Š k-algebra (17)

As usual, this universal property determines the pair .S�.V /; i/ uniquely up to a unique
isomorphism.

We now define A.E/ to be Spm.S�.E_//, where E_ is the dual vector space. For an
affine k-algebra A,

Mor.Spm.A/;A.E//' Homk-algebra.S
�.E_/;A/ .3.24/

' Homk-linear.E
_;A/ .17/

'E˝k A .linear algebra/:

In particular,
A.E/.k/'E:

Moreover, the choice of a basis e1; : : : ; en for E determines a (dual) basis f1; : : : ;fn of E_,
and hence an isomorphism of k-algebras kŒf1; : : : ;fn�! S�.E_/. The map of algebraic
varieties defined by this homomorphism is the isomorphism

A.E/! An

whose map on the underlying sets is the isomorphism E! kn defined by the basis of E.

k. Birational equivalence

Recall that if V is irreducible, then kŒV � is an integral domain, and we write k.V / for its
field of fractions. If U is an open affine subvariety of V , then kŒV �� kŒU �� k.V /, and so
k.V / is also the field of fractions of kŒU �.

DEFINITION 3.35. Two irreducible affine algebraic varieties over k are birationally equiv-
alent if their function fields are isomorphic over k.

PROPOSITION 3.36. Irreducible affine varieties V and W are birationally equivalent if and
only if there exist open affine subvarieties UV and UW of V and W respectively such that
UV � UW .

PROOF. Let V andW be birationally equivalent irreducible affine varieties, and letAD kŒV �
and B D kŒW �. We use the isomorphism to identify k.V / and k.W /. This allows us to
suppose that A and B have a common field of fractions K. Let x1; : : : ;xn generate B as
k-algebra. As K is the field of fractions of A, there exists a d 2 A such that dxi 2 A for all
i ; then B � Ad . The same argument shows that there exists an e 2 B such that Ad � Be.
Now

B � Ad � Be H) Be � Ade � .Be/e D Be;

and so Ade D Be. This shows that the open subvarieties D.de/ � V and D.e/ �W are
isomorphic. We have proved the “only if” part, and the “if” part is obvious. 2



74 3. AFFINE ALGEBRAIC VARIETIES

THEOREM 3.37. Every irreducible affine algebraic variety of dimension d is birationally
equivalent to a hypersurface in AdC1.

PROOF. Let V be an irreducible variety of dimension d . According to (3.38) below, there
exist rational functions x1; : : : ;xdC1 on V such that k.V / D k.x1; : : : ;xd ;xdC1/. Let
f 2 kŒX1; : : : ;XdC1� be an irreducible polynomial satisfied by the xi , and let H be the
hypersurface f D 0. Then k.V /� k.H/ and so V and H are birationally equivalent. 2

We review some definitions from FT, Chapter 2. Let F be a field. A polynomial
f 2 F ŒX� is separable if it has no multiple roots. Equivalent condition: gcd.f; df

dX
/D 1.

When f is irreducible, this just says that df
dX
¤ 0 because deg df

dX
< degf . An element

of an algebraic extension E of F is separable over F if its minimal polynomial over F is
separable, and E is separable over F if all its elements are separable over F .

PROPOSITION 3.38. Let ˝ be a finitely generated field extension of k of transcendence
degree d . If k is perfect, then there exist x1; : : : ;xdC1 2˝ such that ˝ D k.x1; : : : ;xdC1/.
After renumbering, fx1; : : : ;xd g will be a transcendence basis for ˝ over k and xdC1 will
be separable over k.x1; : : : ;xd /.

PROOF. Let ˝ D k.x1; : : : ;xn/. After renumbering, we may suppose that x1; : : : ;xd are
algebraically independent, hence a transcendence basis (1.63).

If F has characteristic zero, then xdC1; : : : ;xn are separable over k.x1; : : :xd /, and
so the primitive element theorem (FT 5.1) shows that there exists a y 2 ˝ for which
˝ D k.x1; : : : ;xd ;y/.

Thus, we may suppose that k has characteristic p ¤ 0. Because k is perfect, every
polynomial in Xp1 ; : : : ;X

p
n with coefficients in k is a pth power in kŒX1; : : : ;Xn�:X

ai1���inX
i1p
1 : : :X inpn D

�X
a

1
p

i1���in
X
i1
1 : : :X

in
n

�p
: (18)

Let .x1; : : : ;xn/ be a generating set for ˝ over k with the fewest elements. We shall as-
sume that n > d C1 and obtain a contradiction. As before, we may suppose that x1; : : : ;xd
are algebraically independent. Then f .x1; : : : ;xdC1/ D 0 for some nonzero irreducible
polynomial f .X1; : : : ;XdC1/ with coefficients in k. Not all polynomials @f=@Xi are zero,
for otherwise f would be a polynomial in Xp1 ; : : : ;X

p

dC1
, and hence a pth power. After

renumbering, we may suppose that @f=@XdC1 ¤ 0. Now xdC1 is separably algebraic
over k.x1; : : : ;xd / and xdC2 is algebraic over k.x1; : : : ;xdC1/ (hence over k.x1; : : : ;xd /).
According to the primitive element theorem (FT 5.1), there exists a y 2 ˝ such that
k.x1; : : : ;xdC2/ D k.x1; : : : ;xd ;y/. Now ˝ D k.x1; : : : ;xd ;y;xdC3; : : : ;xn/, contradict-
ing the minimality of n.

We have shown that ˝ D k.z1; : : : ; zdC1/ for some zi 2˝. The argument in the last
paragraph shows that, after renumbering, zdC1 will be separably algebraic over k.z1; : : : ; zd /,
and this implies that fz1; : : : ; zd g is a transcendence basis for ˝ over k (1.63). 2

l. Noether Normalization Theorem

DEFINITION 3.39. The dimension of an affine algebraic variety is the dimension of the
underlying topological space (2.48).

DEFINITION 3.40. A regular map 'WW ! V of affine algebraic varieties is finite if the
map '�WkŒV �! kŒW � makes kŒW � a finite kŒV �-algebra.
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THEOREM 3.41. Let V be an affine algebraic variety of dimension n. Then there exists a
finite map V ! An.

PROOF. Immediate consequence of (2.45). 2

m. Dimension

By definition, the dimension d of an affine variety V is the maximum length of a chain

V0 � V1 � �� �

of distinct closed irreducible affine subvarieties. In this section, we prove that it is the length
of every maximal chain of such subvarieties.

THEOREM 3.42. Let V be an irreducible affine variety, and let f be a nonzero regular
function on V . If f has a zero in V , then its zero set is of pure codimension 1.

The Noether normalization theorem allows us to deduce this from the special case V D An,
proved in 2.64.

PROOF. 4Let Z1; : : : ;Zn be the irreducible components of V.f /. We have to show that
dimZi D dimV �1 for each i . There exists a point P 2Zi not contained in any other Zj .
Because the Zj are closed, there exists an open affine neighbourhood U of P in V not
meeting any Zj with j ¤ i . Now V.f jU/DZi \U , which is irreducible. Therefore, on
replacing V with U , we may assume that V.f / is irreducible.

As V.f / is irreducible, the radical of .f / is a prime ideal p in kŒV �. According to the
Noether normalization theorem (2.45), there exists an inclusion kŒAd � ,! kŒV � realizing
kŒV � as a finite kŒAd �-algebra. Let f0 D Nmk.V /=k.Ad /f . Then f0 2 kŒAd � and f divides
f0 in kŒV � (see 1.45). Hence f0 2 .f /� p, and so rad.f0/� p\kŒAd �. We claim that, in
fact,

rad.f0/D p\kŒAd �.

Let g 2 p\ kŒAd �. Then g 2 p def
D rad.f /, and so gm D f h for some h 2 kŒV �, m 2 N.

Taking norms, we find that

gme D Nm.f h/D f0 �Nm.h/ 2 .f0/;

where e D Œk.V / W k.An/�, and so g 2 rad.f0/, as claimed.
The inclusion kŒAd � ,! kŒV � therefore induces an inclusion

kŒAd �= rad.f0/ ,! kŒV �=p:

This makes kŒV �=p into a finite algebra over kŒAd �= rad.f0/, and so the fields of fractions
of these two k-algebras have the same transcendence degree:

dimV.p/D dimV.f0/:

Clearly f ¤ 0) f0 ¤ 0, and f0 2 p) f0 is nonconstant. Therefore dimV.f0/D d �1
by (2.64). 2

4This proof was found by John Tate.



76 3. AFFINE ALGEBRAIC VARIETIES

We can restate Theorem 3.42 as follows: let V be a closed irreducible subvariety of An
and let F 2 kŒX1; : : : ;Xn�; then

V \V.F /D

8<:
V if F is identically zero on V
; if F has no zeros on V
pure codimension 1 otherwise.

COROLLARY 3.43. Let V be an irreducible affine variety, and let Z be a maximal proper
irreducible closed subset of V . Then dim.Z/D dim.V /�1.

PROOF. Because Z is a proper closed subset of V , there exists a nonzero regular function
f on V vanishing on Z. Let V.f / be the zero set of f in V . Then Z � V.f /� V , and Z
must be an irreducible component of V.f / for otherwise it wouldn’t be maximal in V . Thus
Theorem 3.42 shows that dimZ D dimV �1. 2

COROLLARY 3.44. Let V be an irreducible affine variety. Every maximal (i.e., nonrefin-
able) chain

V D V0 � V1 � �� � � Vd (19)

of distinct irreducible closed subsets of V has length d D dim.V /.

PROOF. The last set Vd must be a point and each Vi must be maximal in Vi�1, and so, from
3.43, we find that

dimV0 D dimV1C1D dimV2C2D �� � D dimVd Cd D d: 2

COROLLARY 3.45. Let V be an irreducible affine variety, and let f1; : : : ;fr be regular
functions on V . Every irreducible component Z of V.f1; : : :fr/ has codimension at most r :

codim.Z/� r:

For example, if the fi have no common zero on V , so that V.f1; : : : ;fr/ is empty, then
there are no irreducible components, and the statement is vacuously true.

PROOF. We use induction on r . BecauseZ is an irreducible closed subset of V.f1; : : : ;fr�1/,
it is contained in some irreducible componentZ0 of V.f1; : : :fr�1/. By induction, codim.Z0/�
r �1. Also Z is an irreducible component of Z0\V.fr/ because

Z �Z0\V.fr/� V.f1; : : : ;fr/

and Z is a maximal irreducible closed subset of V.f1; : : : ;fr/. If fr vanishes identically on
Z0, then Z DZ0 and codim.Z/D codim.Z0/� r �1; otherwise, the theorem shows that Z
has codimension 1 in Z0, and codim.Z/D codim.Z0/C1� r . 2

EXAMPLE 3.46. In the setting of 3.45, the components of V.f1; : : : ;fr/ need not all have
the same dimension, and it is possible for all of them to have codimension < r without any
of the fi being redundant. For example, let V be the cone

X1X4�X2X3 D 0

in A4. Then V.X1/\V is the union of two planes:

V.X1/\V D f.0;0;�;�/g[f.0;�;0;�/g:
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Both of these have codimension 1 in V (as required by 3.42). Similarly, V.X2/\V is the
union of two planes,

V.X2/\V D f.0;0;�;�/g[f.�;0;�;0/g:

However V.X1;X2/\V consists of a single plane f.0;0;�;�/g: it still has codimension 1
in V , but it requires both X1 and X2 to define it.

PROPOSITION 3.47. Let Z be an irreducible closed subvariety of codimension r in an
affine variety V . Then there exist regular functions f1; : : : ;fr on V such that Z is an
irreducible component of V.f1; : : : ;fr/ and all irreducible components of V.f1; : : : ;fr/
have codimension r .

PROOF. We know that there exists a chain of irreducible closed subsets

V �Z1 � �� � �Zr DZ

with codim Zi D i . We shall show that there exist f1; : : : ;fr 2 kŒV � such that, for all
s � r , Zs is an irreducible component of V.f1; : : : ;fs/ and all irreducible components of
V.f1; : : : ;fs/ have codimension s.

We prove this by induction on s. For s D 1, take any f1 2 I.Z1/, f1 ¤ 0, and apply
Theorem 3.42. Suppose f1; : : : ;fs�1 have been chosen, and let Y1;Y2; : : : ;Ym, be the
irreducible components of V.f1; : : : ;fs�1/, numbered so that Zs�1 D Y1. We seek an
element fs that is identically zero on Zs but is not identically zero on any Yi — for such
an fs , all irreducible components of Yi \V.fs/ will have codimension s, and Zs will be an
irreducible component of Y1\V.fs/. But no Yi is contained in Zs because Zs has smaller
dimension than Yi , and so I.Zs/ is not contained in any of the ideals I.Yi /. Now the prime
avoidance lemma (see below) tells us that there exist an fs 2 I.Zs/X

�S
i I.Yi /

�
, and this is

the function we want. 2

LEMMA 3.48 (PRIME AVOIDANCE LEMMA). If an ideal a of a ring A is not contained in
any of the prime ideals p1; : : : ;pr , then it is not contained in their union.

PROOF. We may assume that none of the prime ideals pi is contained in a second, because
then we could omit it. For a fixed i , choose an fi 2 aXpi and, for each j ¤ i , choose an
fj 2 pj Xpi . Then hi

def
D
Qr
jD1fj lies in each pj with j ¤ i and a, but not in pi (here we

use that pi is prime). The element
Pr
iD1hi is therefore in a but not in any pi . 2

EXAMPLE 3.49. When V is an affine variety whose coordinate ring is a unique factorization
domain, every closed subset Z of codimension 1 is of the form V.f / for some f 2 kŒV �
(see 2.66). The condition that kŒV � be a unique factorization domain is definitely needed.
Again consider the cone,

V WX1X4�X2X3 D 0

in A4 and let Z and Z0 be the planes

Z D f.�;0;�;0/g Z0 D f.0;�;0;�/g:

Then Z\Z0 D f.0;0;0;0/g, which has codimension 2 in Z0. If Z D V.f / for some regular
function f on V , then V.f jZ0/D f.0; : : : ;0/g, which has codimension 2, in violation of
3.42. Thus Z is not of the form V.f /, and so

kŒX1;X2;X3;X4�=.X1X4�X2X3/

is not a unique factorization domain.
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Restatement in terms of affine algebras

We restate some of these results in terms of affine algebras.

3.50. Theorem 3.42 says the following: let A be an affine k-algebra; if A is an integral
domain and f 2 A is neither zero nor a unit, then every prime ideal p minimal among those
containing .f / has height 1 (principal ideal theorem).

3.51. Corollary 3.44 says the following: let A be an affine k-algebra; if A is integral
domain, then every maximal chain

pd � pd�1 � �� � � p0

of distinct prime ideals has length equal to the Krull dimension of A. In particular, every
maximal ideal in A has height dim.A/.

3.52. Let A be an affine k-algebra; if A is an integral domain and every prime ideal of
height 1 in A is principal, then A is a unique factorization domain. In order to prove this, it
suffices to show that every irreducible element f of A is prime (1.26). Let p be minimal
among the prime ideals containing .f /. According to 3.50, p has height 1, and so it is
principal, say pD .g/. As .f /� .g/, f D gq for some q 2 A. Because f is irreducible, q
is a unit, and so .f /D .g/D p — the element f is prime.

3.53. Proposition 3.47 says the following: let A be an affine k-algebra, and let p be a prime
ideal in A. If p has height r , then there exist elements f1; : : : ;fr 2 A such that p is minimal
among the prime ideals containing .f1; : : : ;fr/.

ASIDE 3.54. Statements 3.50 and 3.53 are true for all noetherian rings (CA 21.3, 21.8). However,
3.51 may fail. For example, as we noted on p. 16 a noetherian ring may have infinite Krull dimension.
Moreover, a noetherian ring may have finite Krull dimension d without all of its maximal ideals
having height d . For example, let AD RŒX�, where R D kŒt �.t/ is a discrete valuation ring with
maximal ideal .t/. The Krull dimension of A is 2, and .t;X/ � .t/ � .0/ is a maximal chain of
prime ideals, but the ideal .tX �1/ is maximal (because A=.tX �1/'Rt , see 1.13) and of height 1
(because it is in kŒt;X� and A is obtained from kŒt;X� by inverting the elements of kŒt �X .t/).

ASIDE 3.55. Proposition 3.47 shows that a curve C in A3 is an irreducible component of V.f1;f2/
for some f1, f2 2 kŒX;Y;Z�. In fact C D V.f1;f2;f3/ for suitable polynomials f1;f2, and f3 —
this is an exercise in Shafarevich 1994 (I 6, Exercise 8; see also Hartshorne 1977, I, Exercise 2.17).
Apparently, it is not known whether two polynomials always suffice to define a curve in A3 — see
Kunz 1985, p136.5 The union of two skew lines in P3 can’t be defined by two polynomials (ibid.
p. 140), but it is unknown whether all connected curves in P3 can be defined by two polynomials.
Macaulay (the man, not the program) showed that for every r � 1, there is a curve C in A3 such that
I.C / requires at least r generators (see the same exercise in Hartshorne for a curve whose ideal can’t
be generated by 2 elements).6

5Kunz, Ernst Introduction to commutative algebra and algebraic geometry. Birkhäuser Boston, Inc., Boston,
MA

6In 1882 Kronecker proved that every algebraic subset in Pn can be cut out by nC1 polynomial equations.
In 1891 Vahlen asserted that the result was best possible by exhibiting a curve in P3 which he claimed was not
the zero locus of 3 equations. It was only 50 years later, in 1941, that Perron gave 3 equations defining Vahlen’s
curve, thus refuting Vahlen’s claim which had been accepted for half a century. Finally, in 1973 Eisenbud and
Evans proved that n equations always suffice to describe (set-theoretically) an algebraic subset of Pn (mo35468
Georges Elencwajg).
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In general, a closed variety V of codimension r in An (resp. Pn/ is said to be a set-theoretic com-
plete intersection if there exist r polynomials fi 2 kŒX1; : : : ;Xn� (resp. homogeneous polynomials
fi 2 kŒX0; : : : ;Xn�/ such that

V D V.f1; : : : ;fr /:

Such a variety is said to be an ideal-theoretic complete intersection if the fi can be chosen so that
I.V /D .f1; : : : ;fr /. Chapter V of Kunz’s book is concerned with the question of when a variety
is a complete intersection. Obviously there are many ideal-theoretic complete intersections, but
most of the varieties one happens to be interested in turn out not to be. For example, no abelian
variety of dimension> 1 is an ideal-theoretic complete intersection (being an ideal-theoretic complete
intersection imposes constraints on the cohomology of the variety, which are not fulfilled in the case
of abelian varieties).

Let P be a point on an irreducible variety V �An. Then 3.47 shows that there is a neighbourhood
U of P in An and functions f1; : : : ;fr on U such that U \V D V.f1; : : : ;fr / (zero set in U/. Thus
U \V is a set-theoretic complete intersection in U . One says that V is a local complete intersection
at P 2 V if there is an open affine neighbourhood U of P in An such that the ideal I.V \U/ can be
generated by r regular functions on U . Note that

ideal-theoretic complete intersection) local complete intersection at all p:

It is not difficult to show that a variety is a local complete intersection at every nonsingular point (cf.
4.36).

Exercises

3-1. Show that a map between affine varieties can be continuous for the Zariski topology
without being regular.

3-2. Let V D Spm.A/, and let Z D Spm.A=a/� Spm.A/. Show that a function f on an
open subset U of Z is regular if and only if, for each P 2 U , there exists a regular function
f 0 on an open neighbourhood U 0 of P in V such that f and f 0 agree on U 0\U .

3-3. Find the image of the regular map

.x;y/ 7! .x;xy/WA2! A2

and verify that it is neither open nor closed.

3-4. Show that the circle X2CY 2 D 1 is isomorphic (as an affine variety) to the hyperbola
XY D 1, but that neither is isomorphic to A1. (Assume char.k/¤ 2:/

3-5. Let C be the curve Y 2 DX2CX3, and let ' be the regular map

t 7! .t2�1; t.t2�1//WA1! C:

Is ' an isomorphism?





CHAPTER 4
Local Study

Geometry is the art of drawing correct conclusions
from incorrect figures. (La géométrie est l’art de
raisonner juste sur des figures fausses.)
Descartes

In this chapter, we examine the structure of an affine algebraic variety near a point. We
begin with the case of a plane curve, since the ideas in the general case are the same but the
proofs are more complicated.

a. Tangent spaces to plane curves

Consider the curve V in the plane defined by a nonconstant polynomial F.X;Y /,

V W F.X;Y /D 0:

We assume that F.X;Y / has no multiple factors, so that .F.X;Y // is a radical ideal and
I.V /D .F.X;Y //. We can factor F into a product of irreducible polynomials, F.X;Y /DQ
Fi .X;Y /, and then V D

S
V.Fi / expresses V as a union of its irreducible components

(see 2.29). Each component V.Fi / has dimension 1 (by 2.64) and so V has pure dimension
1.

If F.X;Y / itself is irreducible, then

kŒV �D kŒX;Y �=.F.X;Y //D kŒx;y�

is an integral domain. Moreover, if F ¤ X � c, then x is transcendental over k and y
is algebraic over k.x/, and so x is a transcendence basis for k.V / over k. Similarly, if
F ¤ Y � c, then y is a transcendence basis for k.V / over k.

Let .a;b/ be a point on V . If we were doing calculus, we would say that the tangent
space at P D .a;b/ is defined by the equation

@F

@X
.a;b/.X �a/C

@F

@Y
.a;b/.Y �b/D 0: (20)

This is the equation of a line unless both @F
@X
.a;b/ and @F

@Y
.a;b/ are zero, in which case it is

the equation of a plane.
We are not doing calculus, but we can define @

@X
and @

@Y
by

@

@X

�X
aijX

iY j
�
D

X
iaijX

i�1Y j ;
@

@Y

�X
aijX

iY j
�
D

X
jaijX

iY j�1,

81
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and make the same definition.

DEFINITION 4.1. The tangent space TPV to V at P D .a;b/ is the algebraic subset defined
by equation (20).

If @F
@X
.a;b/ and @F

@Y
.a;b/ are not both zero, then TP .V / is a line through .a;b/, and we

say that P is a nonsingular or smooth point of V . Otherwise, TP .V / has dimension 2, and
we say that P is singular or multiple. The curve V is said to be nonsingular or smooth if
all its points are nonsingular.

Examples

For each of the following examples, the reader is invited to sketch the curve. Assume that
char.k/¤ 2;3.

4.2. XmCY m D 1. The tangent space at .a;b/ is given by the equation

mam�1.X �a/Cmbm�1.Y �b/D 0:

All points on the curve are nonsingular unless the characteristic of k divides m, in which
case XmCY m�1 has multiple factors,

XmCY m�1DXm0pCY m0p�1D .Xm0CY m0 �1/p:

4.3. Y 2DX3 (sketched in 4.12 below). The tangent space at .a;b/ is given by the equation

�3a2.X �a/C2b.Y �b/D 0:

The only singular point is .0;0/.

4.4. Y 2 DX2.XC1/ (sketched in 4.10 below). Here again only .0;0/ is singular.

4.5. Y 2 D X3CaXCb. In 2.2 we sketched two nonsingular examples of such curves,
and in 4.10 and 4.11 we sketch two singular examples. The singular points of the curve are
the common zeros of the polynomials

Y 2�X3�aX �b; 2Y; 3X2Ca,

which consist of the points .c;0/ with c a common zero of

X3CaXCb; 3X2Ca.

As 3X2C a is the derivative of X3C aX C b, we see that V is singular if and only if
X3CaXCb has a multiple root.

4.6. V D V.FG/ where FG has no multiple factors (so F and G are coprime). Then
V D V.F /[V.G/, and a point .a;b/ is singular if and only if it is

˘ a singular point of V.F /,

˘ a singular point of V.G/, or

˘ a point of V.F /\V.G/.

This follows immediately from the product rule:

@.FG/

@X
D F �

@G

@X
C
@F

@X
�G;

@.FG/

@Y
D F �

@G

@Y
C
@F

@Y
�G:
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The singular locus

PROPOSITION 4.7. The nonsingular points of a plane curve form a dense open subset of
the curve.

PROOF. Let V D V.F /, where F is a nonconstant polynomial in kŒX;Y � without multiple
factors. It suffices to show that the nonsingular points form a dense open subset of each
irreducible component of V , and so we may assume that V (hence F ) is irreducible. It
suffices to show that the set of singular points is a proper closed subset. Since it is the set of
common zeros of the polynomials

F ;
@F

@X
;

@F

@Y
;

it is obviously closed. It will be proper unless @F=@X and @F=@Y are both identically
zero on V , and hence both multiples of F , but, as they have lower degree than F , this is
impossible unless they are both zero. Clearly @F=@X D 0 if and only if F is a polynomial in
Y (k of characteristic zero) or is a polynomial in Xp and Y (k of characteristic p/. A similar
remark applies to @F=@Y . Thus if @F=@X and @F=@Y are both zero, then F is constant
(characteristic zero) or a polynomial in Xp, Y p, and hence a pth power (characteristic p,
see (18)). These are contrary to our assumptions. 2

Thus the singular points form a proper closed subset, called the singular locus.

ASIDE 4.8. In common usage, “singular” means uncommon or extraordinary as in “he spoke with
singular shrewdness”. Thus the proposition says that singular points (mathematical sense) are singular
(usual sense).

b. Tangent cones to plane curves

A polynomial F.X;Y / can be written (uniquely) as a finite sum

F D F0CF1CF2C�� �CFmC�� � (21)

with each Fm a homogeneous polynomial of degree m. The term F1 will be denoted F` and
called the linear form of F , and the first nonzero term on the right of (21) (the homogeneous
summand of F of least degree) will be denoted F� and called the leading form of F .

If P D .0;0/ is on the curve V defined by F , then F0 D 0 and (21) becomes

F D aXCbY Chigher degree terms,

and the equation of the tangent space is

aXCbY D 0:

DEFINITION 4.9. Let F.X;Y / be a polynomial without square factors, and let V be the
curve defined by F . If .0;0/ 2 V , then the geometric tangent cone to V at .0;0/ is the zero
set of F�. The tangent cone is the pair .V .F�/;kŒX;Y �=F�/. To obtain the tangent cone at
any other point, translate to the origin, and then translate back.

Note that the geometric tangent cone at a point on a curve always has dimension 1.
While the tangent space tells you whether a point is nonsingular or not, the tangent cone also
gives you information on the nature of a singularity.
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In general we can factor F� as

F�.X;Y /D cX
r0

Y
i
.Y �aiX/

ri :

Then degF� D
P
ri is called the multiplicity of the singularity, multP .V /. A multiple point

is ordinary if its tangents are nonmultiple, i.e., ri D 1 all i . An ordinary double point is
called a node. There are many names for special types of singularities — see any book,
especially an old book, on algebraic curves.

Examples

The following examples are adapted from Walker, Robert J., Algebraic Curves. Princeton
Mathematical Series, vol. 13. Princeton University Press, Princeton, N. J., 1950 (reprinted
by Dover 1962).

4.10. F.X;Y / D X3CX2 �Y 2. The tangent cone at
.0;0/ is defined by Y 2�X2. It is the pair of lines Y D˙X ,
and the singularity is a node.

4.11. F.X;Y / D X3 �X2 �Y 2. The origin is an iso-
lated point of the real locus. It is again a node, but the
tangent cone is defined by Y 2CX2, which is the pair of
lines Y D˙iX . In this case, the real locus of the tangent
cone is just the point (0,0).

4.12. F.X;Y / D X3 � Y 2. Here the origin is a cusp.
The tangent cone is defined by Y 2, which is the X-axis
(doubled).

4.13. F.X;Y /D 2X4� 3X2Y CY 2� 2Y 3CY 4. The
origin is again a double point, but this time it is a tacnode.
The tangent cone is again defined by Y 2.

4.14. F.X;Y / D X4 C X2Y 2 � 2X2Y � XY 2 � Y 2.
The origin is again a double point, but this time it is a
ramphoid cusp. The tangent cone is again defined by Y 2.
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4.15. F.X;Y /D .X2CY 2/2C3X2Y �Y 3. The origin
is an ordinary triple point. The tangent cone is defined
by 3X2Y �Y 3, which is the triple of lines Y D 0, Y D
˙
p
3X .

4.16. F.X;Y /D .X2CY 2/3�4X2Y 2. The origin has
multiplicity 4. The tangent cone is defined by 4X2Y 2,
which is the union of the X and Y axes, each doubled.

4.17. F.X;Y / D X6�X2Y 3�Y 5. The tangent cone
is defined by X2Y 3CY 5, which consists of a triple line
Y 3 D 0 and a pair of lines Y D˙iX .

ASIDE 4.18. Note that the real locus of the algebraic curve in 4.17 is smooth even though the curve
itself is singular. Another example of such a curve is Y 3C2X2Y �X4 D 0. This is singular at .0;0/,
but its real locus is the image of R under the analytic map t 7! .t3C2t; t.t3C2//, which is injective,
proper, and immersive, and hence an embedding into R2 with closed image. See Milnor, J., Singular
points of complex hypersurfaces. PUP, 1968, or mo98366 (Elencwajg).

c. The local ring at a point on a curve

PROPOSITION 4.19. Let P be a point on a plane curve V , and let m be the correspond-
ing maximal ideal in kŒV �. If P is nonsingular, then dimk.m=m2/ D 1, and otherwise
dimk.m=m2/D 2.

PROOF. Assume first that P D .0;0/. Then mD .x;y/ in kŒV �D kŒX;Y �=.F.X;Y //D
kŒx;y�. Note that m2 D .x2;xy;y2/, and

m=m2 D .X;Y /=.m2CF.X;Y //D .X;Y /=.X2;XY;Y 2;F .X;Y //:

In this quotient, every element is represented by a linear polynomial cxC dy, and the
only relation is F`.x;y/D 0. Clearly dimk.m=m2/D 1 if F` ¤ 0, and dimk.m=m2/D 2
otherwise. Since F` D 0 is the equation of the tangent space, this proves the proposition in
this case.

The same argument works for an arbitrary point .a;b/ except that one uses the variables
X 0 DX �a and Y 0 D Y �b; in essence, one translates the point to the origin. 2

We explain what the condition dimk.m=m2/D 1 means for the local ring OP D kŒV �m.
Let n be the maximal ideal mkŒV �m of this local ring. The map m! n induces an isomor-
phism m=m2! n=n2 (see 1.15), and so we have

P nonsingular ” dimkm=m
2
D 1 ” dimk n=n

2
D 1:

Nakayama’s lemma (1.3) shows that the last condition is equivalent to n being a principal
ideal. As OP has Krull dimension one (2.64), for its maximal ideal to be principal means
that it is a regular local ring of dimension 1 (see 1.6). Thus, for a point P on a curve,

P nonsingular ” OP regular.
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PROPOSITION 4.20. Every regular local ring of dimension one is a principal ideal domain.

PROOF. Let A be such a ring, and let mD .�/ be its maximal ideal. According to the Krull
intersection theorem (1.8),

T
r�0m

r D .0/. Let a be a proper nonzero ideal in A. As a is
finitely generated, there exists an r 2 N such that a� mr but a 6� mrC1. Therefore, there
exists an aD c�r 2 a such that a …mrC1. The second condition implies that c …m, and so
it is a unit. Therefore .�r/D .a/� a� .�r/, and so aD .�r/Dmr . We have shown that
all ideals in A are principal.

By assumption, there exists a prime ideal p properly contained in m. Then A=p is an
integral domain. As � … p, it is not nilpotent in A=p, and hence not nilpotent in A.

Let a and b be nonzero elements of A. There exist r;s 2N such that a 2mr XmrC1 and
b 2 ms XmsC1. Then a D u�r and b D v�s with u and v units, and ab D uv�rCs ¤ 0.
Hence A is an integral domain. 2

It follows from the elementary theory of principal ideal domains that the following
conditions on a principal ideal domain A are equivalent:

(a) A has exactly one nonzero prime ideal;

(b) A has exactly one prime element up to associates;

(c) A is local and is not a field.
A ring satisfying these conditions is called a discrete valuation ring.

THEOREM 4.21. A point P on a plane algebraic curve is nonsingular if and only if OP is
regular, in which case it is a discrete valuation ring.

PROOF. The statement summarizes the above discussion. 2

d. Tangent spaces to algebraic subsets of Am

Before defining tangent spaces at points of an algebraic subset of Am we review some
terminology from linear algebra (which should be familiar from advanced calculus).

LINEAR ALGEBRA

For a vector space km, let Xi be the i th coordinate function a 7! ai . Thus X1; : : : ;Xm is the
dual basis to the standard basis for km. A linear form

P
aiXi can be regarded as an element

of the dual vector space .km/_ D Hom.km;k/.
Let AD .aij / be an n�m matrix. It defines a linear map ˛Wkm! kn, by0B@a1:::

am

1CA 7! A

0B@a1:::
am

1CAD
0B@
Pm
jD1a1jaj

:::Pm
jD1anjaj

1CA :
Write X1; : : : ;Xm for the coordinate functions on km and Y1; : : : ;Yn for the coordinate

functions on kn. Then

Yi ı˛ D

mX
jD1

aijXj :

This says that the i th coordinate of ˛.a/ is
mX
jD1

aij .Xj a/D
mX
jD1

aijaj :
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TANGENT SPACES

DEFINITION 4.22. Let V � km be an algebraic subset of km, and let a D I.V /. The
tangent space Ta.V / to V at a point aD .a1; : : : ;am/ of V is the subspace of the vector
space with origin a cut out by the linear equations

mX
iD1

@F

@Xi

ˇ̌̌̌
a
.Xi �ai /D 0; F 2 a. (22)

In other words, Ta.Am/ is the vector space of dimension m with origin a, and Ta.V / is
the subspace of Ta.Am/ defined by the equations (22).

Write .dXi /a for .Xi � ai /; then the .dXi /a form a basis for the dual vector space
Ta.Am/_ to Ta.Am/ — in fact, they are the coordinate functions on Ta.Am/_. As in
advanced calculus, we define the differential of a polynomial F 2 kŒX1; : : : ;Xm� at a by the
equation:

.dF /a D

mX
iD1

@F

@Xi

ˇ̌̌̌
a
.dXi /a:

It is again a linear form on Ta.Am/. In terms of differentials, Ta.V / is the subspace of
Ta.Am/ defined by the equations:

.dF /a D 0; F 2 a: (23)

I claim that, in (22) and (23), it suffices to take the F to lie in a generating subset for a. The
product rule for differentiation shows that if G D

P
j HjFj , then

.dG/a D
X
j

Hj .a/ � .dFj /aCFj .a/ � .dHj /a:

If F1; : : : ;Fr generate a and a 2 V.a/, so that Fj .a/D 0 for all j , then this equation becomes

.dG/a D
X
j

Hj .a/ � .dFj /a:

Thus .dF1/a; : : : ; .dFr/a generate the k-vector space f.dF /a j F 2 ag.

DEFINITION 4.23. A point a on an algebraic set V is nonsingular (or smooth) if it lies on
a single irreducible component W of V and the dimension of the tangent space at a is equal
to the dimension of W ; otherwise it is singular (or multiple).

Thus, a point a on an irreducible algebraic set V is nonsingular if and only if dimTa.V /D

dimV . As in the case of plane curves, a point on V is nonsingular if and only if it lies on a
single irreducible component of V , and is nonsingular on it.

Let aD .F1; : : : ;Fr/, and let

J D Jac.F1; : : : ;Fr/D
�
@Fi

@Xj

�
D

0BB@
@F1

@X1
; : : : ; @F1

@Xm

:::
:::

@Fr

@X1
; : : : ; @Fr

@Xm

1CCA :
Then the equations defining Ta.V / as a subspace of Ta.Am/ have matrix J.a/. Therefore,
linear algebra shows that

dimk Ta.V /Dm� rankJ.a/;
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and so a is nonsingular if and only if the rank of Jac.F1; : : : ;Fr/.a/ is equal to m�dim.V /.
For example, if V is a hypersurface, say I.V /D .F.X1; : : : ;Xm//, then

Jac.F /.a/D
�
@F

@X1
.a/; : : : ;

@F

@Xm
.a/
�
;

and a is nonsingular if and only if not all of the partial derivatives @F
@Xi

vanish at a.
We can regard J as a matrix of regular functions on V . For each r ,

fa 2 V j rankJ.a/� rg

is closed in V , because it is the set where certain determinants vanish. Therefore, there
is an open subset U of V on which rankJ.a/ attains its maximum value, and the rank
jumps on closed subsets. Later (4.37) we shall show that the maximum value of rankJ.a/ is
m�dimV , and so the nonsingular points of V form a nonempty open subset of V .

e. The differential of a regular map

Consider a regular map

'WAm! An; a 7! .P1.a1; : : : ;am/; : : : ;Pn.a1; : : : ;am//:

We think of ' as being given by the equations

Yi D Pi .X1; : : : ;Xm/; i D 1; : : : ;n:

It corresponds to the map of rings '�WkŒY1; : : : ;Yn�! kŒX1; : : : ;Xm� sending Yi toPi .X1; : : : ;Xm/,
i D 1; : : : ;n.

Let a 2 Am, and let bD '.a/. Define .d'/aWTa.Am/! Tb.An/ to be the map such that

.dYi /b ı .d'/a D
X @Pi

@Xj

ˇ̌̌̌
a
.dXj /a;

i.e., relative to the standard bases, .d'/a is the map with matrix

Jac.P1; : : : ;Pn/.a/D

0BB@
@P1

@X1
.a/; : : : ; @P1

@Xm
.a/

:::
:::

@Pn

@X1
.a/; : : : ; @Pn

@Xm
.a/

1CCA :
For example, suppose aD .0; : : : ;0/ and bD .0; : : : ;0/, so that Ta.Am/D km and Tb.An/D
kn, and

Pi D

mX
jD1

cijXj C .higher terms), i D 1; : : : ;n:

Then Yi ı .d'/a D
P
j cijXj , and the map on tangent spaces is given by the matrix .cij /,

i.e., it is simply t 7! .cij /t.
Let F 2 kŒX1; : : : ;Xm�. We can regard F as a regular map Am!A1, whose differential

will be a linear map

.dF /aWTa.Am/! Tb.A1/; bD F.a/:

When we identify Tb.A1/ with k, we obtain an identification of the differential of F (F
regarded as a regular map) with the differential of F (F regarded as a regular function).
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LEMMA 4.24. Let 'WAm!An be as at the start of this subsection. If ' maps V D V.a/�
km into W D V.b/� kn, then .d'/a maps Ta.V / into Tb.W /, bD '.a/.

PROOF. We are given that
f 2 b) f ı' 2 a;

and have to prove that

f 2 b) .df /b ı .d'/a is zero on Ta.V /:

The chain rule holds in our situation:

@f

@Xi
D

nX
jD1

@f

@Yj

@Yj

@Xi
; Yj D Pj .X1; : : : ;Xm/; f D f .Y1; : : : ;Yn/:

If ' is the map given by the equations

Yj D Pj .X1; : : : ;Xm/; j D 1; : : : ;n;

then the chain rule implies

d.f ı'/a D .df /b ı .d'/a; bD '.a/:

Let t 2 Ta.V /; then
.df /b ı .d'/a.t/D d.f ı'/a.t/;

which is zero if f 2 b because then f ı' 2 a. Thus .d'/a.t/ 2 Tb.W /. 2

We therefore get a map .d'/aWTa.V /! Tb.W /. The usual rules from advanced calculus
hold. For example,

.d /b ı .d'/a D d. ı'/a; bD '.a/:

f. Tangent spaces to affine algebraic varieties

The definition (4.22) of the tangent space at a point on an algebraic set uses the embedding
of the algebraic set into An. In this section, we give an intrinsic definition of the tangent
space at a point of an affine algebraic variety that makes clear that it depends only on the
local ring at the point.

Dual numbers

For an affine algebraic variety V and a k-algebra R (not necessarily an affine k-algebra), we
define V.R/ to be Homk-alg.kŒV �;R/. For example, if V � An and aD I.V /, then

V.R/D f.a1; : : : ;an/ 2R
n
j f .a1; : : : ;an/D 0 for all f 2 ag:

A homomorphism R! S of k-algebras defines a map V.R/! V.S/ of sets.
The ring of dual numbers is kŒ"� def

D kŒX�=.X2/, where " D X C .X2/. Thus kŒ"� D
k˚k" as a k-vector space, and

.aCb"/.a0Cb0"/D aa0C .ab0Ca0b/"; a;b;a0;b0 2 k:

Note that there is a k-algebra homomorphism " 7! 0WkŒ"�! k.
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DEFINITION 4.25. Let P be a point on an affine algebraic variety V over k. The tangent
space to V at P is

TP .V /D fP
0
2 V.kŒ"�/ j P 0 7! P under V.kŒ"�/! V.k/g:

Thus an element of TP .V / is a homomorphism of k-algebras ˛WkŒV �! kŒ"� whose

composite with kŒ"�
"7!0
�! k is the point P . To say that kŒV �! k is the point P means that

its kernel is mP , and so mP D ˛
�1.."//.

PROPOSITION 4.26. Let V be an algebraic subset of An, and let V 0 D .V;OV / be V
equipped with its canonical structure of an affine algebraic variety. Let P 2 V . Then

TP .V / (as defined in 4.22)' TP .V 0/ (as defined in 4.25).

PROOF. Let I.V /D a and let P D .a1; : : : ;an/. On rewriting a polynomial F.X1; : : : ;Xn/
in terms of the variables Xi �ai , we obtain the (trivial Taylor) formula,

F.X1; : : : ;Xn/D F.a1; : : : ;an/C
X @F

@Xi

ˇ̌̌̌
a
.Xi �ai /CR

with R a finite sum of products of at least two terms .Xi �ai /.
According to 4.25, TP .V 0/ consists of the elements aC"b of kŒ"�n D kn˚kn" lying in

V.kŒ"�/. Let F 2 a. On setting Xi equal to ai C "bi in the above formula, we obtain:

F.a1C "b1; : : : ;anC "bn/D "

�X @F

@Xi

ˇ̌̌̌
a
bi

�
:

Thus, .a1C "b1; : : : ;anC "bn/ lies in V.kŒ"�/ if and only if .b1; : : : ;bn/ 2 Ta.V /. 2

We can restate this as follows. Let V be an affine algebraic variety, and let P 2 V .
Choose an embedding V ,! An, and let P map to .a1; : : : ;an/. Then the point

.a1; : : : ;an/C .b1; : : : ;bn/"

of An.kŒ"�/ is an element of TP .V / (definition 4.25) if and only if .b1; : : : ;bn/ is an element
of TP .V / (definition 4.22).

PROPOSITION 4.27. Let V be an affine variety, and let P 2 V . There is a canonical
isomorphism

TP .V /' Hom.OP ;kŒ"�/ (local homomorphisms of local k-algebras).

PROOF. By definition, an element of TP .V / is a homomorphism ˛WkŒV �! kŒ"� such that
˛�1.."//D mP . Therefore ˛ maps elements of kŒV �XmP into .kŒ"�X ."//D kŒ"��, and
so ˛ extends (uniquely) to a homomorphism ˛0WOP ! kŒ"�. By construction, ˛0 is a local
homomorphism of local k-algebras, and clearly every such homomorphism arises in this
way from an element of TP .V /. 2
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Derivations

DEFINITION 4.28. Let A be a k-algebra and M an A-module. A k-derivation is a map
DWA!M such that

(a) D.c/D 0 for all c 2 k;

(b) D.f Cg/DD.f /CD.g/;

(c) D.fg/D f �DgCg �Df (Leibniz’s rule).

Note that the conditions imply that D is k-linear (but not A-linear). We write Derk.A;M/

for the k-vector space of all k-derivations A!M .
For example, let A be a local k-algebra with maximal ideal m, and assume that A=mD k.

For f 2 A, let f .m/ denote the image of f in A=m. Then f �f .m/ 2m, and the map

f 7! df def
D f �f .m/ modm2

is a k-derivation A!m=m2 because, mod m2,

0D .f �f .m//.g�g.m//

D�fgCf .m/g.m/Cf � .g�g.m//Cg.f �f .m//

D�d.fg/Cf �dgCg �df:

PROPOSITION 4.29. Let .A;m/ be as above. There are canonical isomorphisms

Homlocal k-algebra.A;kŒ"�/! Derk.A;k/! Homk-linear.m=m
2;k/:

PROOF. The composite k
c 7!c
���!A

f 7!f .m/
������! k is the identity map, and so, when regarded as

k-vector space, A decomposes into

AD k˚m; f $ .f .m/;f �f .m//:

Let ˛WA! kŒ"� be a local homomorphism of k-algebras, and write ˛.a/D a0CD˛.a/".
Because ˛ is a homomorphism of k-algebras, a0 D a.m/. We have

˛.ab/D .ab/0CD˛.ab/"; and

˛.a/˛.b/D .a0CD˛.a/"/.b0CD˛.b/"/D a0b0C .a0D˛.b/Cb0D˛.a//":

On comparing these expressions, we see that D˛ satisfies Leibniz’s rule, and therefore is a
k-derivation A! k. Conversely, if DWA! k is a k-derivation, then

˛Wa 7! a.m/CD.a/"

is a local homomorphism of k-algebras A! kŒ"�, and all such homomorphisms arise in this
way.

A derivation DWA! k is zero on k and on m2 (by Leibniz’s rule). It therefore defines
a k-linear map m=m2! k. Conversely, a k-linear map m=m2! k defines a derivation by
composition

A
f 7!df
�����!m=m2! k: 2
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Tangent spaces and differentials

We now summarize the above discussion in the context of affine algebraic varieties.

4.30. Let V be an affine algebraic variety, and let P be a point on V . Write mP for the
corresponding maximal ideal in kŒV � and nP for the maximal ideal mPOV;P in the local
ring at P . There are canonical isomorphisms

TP .V / Derk.kŒV �;k/ Homk-linear.mP =m
2
P ;k/

Homlocal k-algebra.OP ;kŒ"�/ Derk.OP ;k/ Homk-linear.nP =n
2
P ;k/:

(24)

In the middle term on the top row, kŒV � acts on k through kŒV �! kŒV �=mP ' k,1 and on
the bottom row OP acts on k through OP !OP =nP ' k. The maps have the following
descriptions.

(a) By definition, TP .V / is the fibre of V.kŒ"�/! V.k/ over P . To give an element of
TP .V / amounts to giving a homomorphism ˛WkŒV �! kŒ"� such that ˛�1.."//DmP .

(b) The homomorphism ˛ in (a) can be decomposed,

˛.f /D f .mP /˚D˛.f /"; f 2 kŒV �, f .mP / 2 k, D˛.f / 2 k:

The mapD˛ is a k-derivation kŒV �! k, andD˛ induces a k-linear map mP =m
2
P ! k.

(c) The homomorphism ˛WkŒV �! kŒ"� in (a) extends uniquely to a local homomorphism
OP ! kŒ"�. Similarly, a k-derivation kŒV �! k extends uniquely to a k-derivation
OP ! k.

(d) The two right hand groups are related through the isomorphism mP =m
2
P ! nP =n

2
P

of (1.15).

4.31. A regular map 'WV ! W defines a map
'.kŒ"�/WV.kŒ"�/! W.kŒ"�/. If Q D '.P /, then ' maps
the fibre over P to the fibre over Q, i.e., it defines a map

d'WTP .V /! TQ.W /:

This map of tangent spaces is called the differential of ' at
P .

TP .V / TQ.W /

V.kŒ"�/ W.kŒ"�/

V .k/ W.k/

d'

'

"7!0 "7!0

'

(a) When V and W are embedded as closed subvarieties of An, d' has the description in
p. 89.

(b) As a map Hom.OP ;kŒ"�/! Hom.OQ;kŒ"�/, d' is induced by '�WOQ!OP .

(c) As a map Hom.mP =m2P ;k/!Hom.mQ=m2Q;k/, d' is induced by the map mQ=m2Q!
mP =m

2
P defined by '�WkŒW �! kŒV �.

EXAMPLE 4.32. Let E be a finite dimensional vector space over k. Then

To.A.E//'E:

ASIDE 4.33. A map Spm.kŒ"�/! V should be thought of as a curve in V but with only the first
infinitesimal structure retained. Thus, the descriptions of the tangent space provided by the terms in
the top row of (24) correspond to the three standard descriptions of the tangent space in differential
geometry (Wikipedia: TANGENT SPACE).

1Thus, Derk.kŒV �;k/ depends on P .
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g. Tangent cones

Let V be an algebraic subset of km, and let a D I.V /. Assume that P D .0; : : : ;0/ 2 V .
Define a� to be the ideal generated by the polynomials F� for F 2 a, where F� is the leading
form of F (see p. 83). The geometric tangent cone at P , CP .V / is V.a�/, and the tangent
cone is the pair .V .a�/;kŒX1; : : : ;Xn�=a�/. Obviously, CP .V /� TP .V /.

CAUTION. If a is principal, say aD .F /, then a� D .F�/, but if aD .F1; : : : ;Fr/, then it
need not be true that a� D .F1�; : : : ;Fr�/. Consider for example aD .XY;XZCZ.Y 2�
Z2//. One can show that this is an intersection of prime ideals, and hence is radical. As the
polynomial

YZ.Y 2�Z2/D Y � .XZCZ.Y 2�Z2//�Z � .XY /

lies in a and is homogeneous, it lies in a�, but it is not in the ideal generated by XY , XZ. In
fact, a� is the ideal generated by

XY; XZ; YZ.Y 2�Z2/:

Let A be a local ring with maximal ideal n. The associated graded ring is

gr.A/D
M

i�0
ni=niC1:

Note that if AD Bm and nDmA, then gr.A/D
L

mi=miC1 (because of 1.15).

PROPOSITION 4.34. The map kŒX1; : : : ;Xn�=a� ! gr.OP / sending the class of Xi in
kŒX1; : : : ;Xn�=a� to the class of Xi in gr.OP / is an isomorphism.

PROOF. Let m be the maximal ideal in kŒX1; : : : ;Xn�=a corresponding to P . Then

gr.OP /D
X

mi=miC1

D

X
.X1; : : : ;Xn/

i=.X1; : : : ;Xn/
iC1
Ca\ .X1; : : : ;Xn/

i

D

X
.X1; : : : ;Xn/

i=.X1; : : : ;Xn/
iC1
Cai ;

where ai is the homogeneous piece of a� of degree i (that is, the subspace of a� consisting
of homogeneous polynomials of degree i ). But

.X1; : : : ;Xn/
i=.X1; : : : ;Xn/

iC1
Cai D i th homogeneous piece of kŒX1; : : : ;Xn�=a�: 2

For an affine algebraic variety V and P 2 V , we define the geometric tangent cone
CP .V / of V at P to be Spm.gr.OP /red/, where gr.OP /red is the quotient of gr.OP / by its
nilradical, and we define the tangent cone to be .CP .V /;gr.OP //.

As in the case of a curve, the dimension of the geometric tangent cone at P is the same
as the dimension of V (because the Krull dimension of a noetherian local ring is equal to
that of its graded ring). Moreover, gr.OP / is a polynomial ring in dimV variables if and
only if OP is regular. Therefore, P is nonsingular (see below) if and only if gr.OP / is a
polynomial ring in d variables, in which case CP .V /D TP .V /.

A regular map 'WV !W sending P toQ induces a homomorphism gr.OQ/! gr.OP /,
and hence a map CP .V /! CQ.V / of the geometric tangent cones.

CAUTION. The map on the rings kŒX1; : : : ;Xn�=a� defined by a map of algebraic varieties
is not the obvious one, i.e., it is not necessarily induced by the same map on polynomial
rings as the original map. To see what it is, it is necessary to use Proposition 4.34, i.e., it is
necessary to work with the rings gr.OP /.
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h. Nonsingular points; the singular locus

DEFINITION 4.35. A point P on an affine algebraic variety V is said to be nonsingular
or smooth if it lies on a single irreducible component W of V and dimTP .V /D dimW ;
otherwise the point is said to be singular. A variety is nonsingular if all of its points are
nonsingular. The set of singular points of a variety is called its singular locus.

Thus, on an irreducible variety V of dimension d ,

P is nonsingular ” dimk TP .V /D d ” dimk.nP =n
2
P /D d .

PROPOSITION 4.36. Let V be an irreducible variety of dimension d , and let P be a non-
singular point on V . Then there exist d regular functions f1; : : : ;fd defined in an open
neighbourhood U of P such that P is the only common zero of the fi on U .

PROOF. Suppose that P is nonsingular. Let f1; : : : ;fd generate the maximal ideal nP in
OP . Then f1; : : : ;fd are all defined on some open affine neighbourhood U of P , and I
claim that P is an irreducible component of the zero set V.f1; : : : ;fd / of f1; : : : ;fd in U . If
not, there will be some irreducible component Z ¤ P of V.f1; : : : ;fd / passing through P .
Write Z D V.p/ with p a prime ideal in kŒU �. Because V.p/� V.f1; : : : ;fd / and because
Z contains P and is not equal to it, we have

.f1; : : : ;fd /� p¤mP (ideals in kŒU �/:

On passing to the local ring OP D kŒU �mP
, we find (using 1.14) that

.f1; : : : ;fd /� pOP ¤ nP (ideals in OP /:

This contradicts the assumption that the fi generate nP . Hence P is an irreducible compo-
nent of V.f1; : : : ;fd /. On removing the remaining irreducible components of V.f1; : : : ;fd /
from U , we obtain an open neighbourhood of P with the required property. 2

Let P be a point on an irreducible variety V , and let f1; : : : ;fr generate the maximal
ideal nP in OP . The proof of the proposition shows that P is an irreducible component
of V.f1; : : : ;fr/, and so r � d (see 3.45). Nakayama’s lemma (1.3) shows that f1; : : : ;fr
generate nP if and only if their images in nP =n

2
P span it. Thus dimTP .V / � dimV , with

equality if and only if P is nonsingular.
A point P on V is nonsingular if and only if there exists an open affine neighbourhood U

of P and functions f1; : : :fd on U such that .f1; : : : ;fd / is the ideal of all regular functions
on U zero at P .

THEOREM 4.37. The set of nonsingular points of an affine algebraic variety is dense and
open.

PROOF. Let V be an irreducible component of the variety. It suffices to show that the
singular locus of V is a proper closed subset.2

2Let V1; : : : ;Vr be the irreducible components of V . Then Vi \ .
T
j¤i Vj / is a proper closed subset of Vi .

We show that .Vi /sing is a proper closed subset of Vi . It follows that Vi \Vsing is the union of two proper closed
subsets of Vi , and so it is proper and closed in Vi . Hence the points of Vi that are nonsingular on V form a
nonempty open (hence dense) subset of Vi .
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We first show that it is closed. We may suppose that V D V.a/ � An. Let P1; : : : ;Pr
generate a. Then the singular locus is the zero set of the ideal generated by the .n�d/�
.n�d/ minors of the matrix

Jac.P1; : : : ;Pr/.a/D

0BB@
@P1

@X1
.a/ : : : @P1

@Xn
.a/

:::
:::

@Pr

@X1
.a/ : : : @Pr

@Xn
.a/

1CCA ;
which is closed.

We now show that the singular locus is not equal to V . According to 3.36 and 3.37 some
nonempty open affine subset of V is isomorphic to a nonempty open affine subset of an
irreducible hypersurface in AdC1, and so we may suppose that V itself is an irreducible
hypersurface in AdC1, say, equal to the zero set of the nonconstant irreducible polynomial
F.X1; : : : ;XdC1/. By 2.64, dimV D d . The singular locus is the set of common zeros of
the polynomials

F ;
@F

@X1
; : : : ;

@F

@XdC1
;

and so it will be proper unless the polynomials @F=@Xi are identically zero on V . As
in the proof of 4.7, if @F=@Xi is identically zero on V.F /, then it is the zero polyno-
mial, and so F is a polynomial in X1; : : : ;Xi�1;XiC1; : : :XdC1 (characteristic zero) or in
X1; : : : ;X

p
i ; : : : ;XdC1 (characteristic p). Therefore, if the singular locus equals V , then

F is constant (characteristic 0) or a pth power (characteristic p), which contradicts the
hypothesis. 2

COROLLARY 4.38. If V is irreducible, then

dimV D min
P2V

dimTP .V /.

PROOF. By definition dimTP .V / � dimV , with equality if and only if P is nonsingular.
As there exists a nonsingular P , dimV is the minimum value of dimTP .V /. 2

This formula can be useful in computing the dimension of a variety.

COROLLARY 4.39. An irreducible algebraic variety is nonsingular if and only if the tangent
spaces TP .V /, P 2 V , have constant dimension.

PROOF. The constant dimension is the dimension of V , and so all points are nonsingular.2

COROLLARY 4.40. Every variety on which a group acts transitively by regular maps is
nonsingular.

PROOF. The group must act by isomorphisms, and so the tangent spaces have constant
dimension. 2

In particular, every group variety (see p. 109) is nonsingular.
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Examples

4.41. For the surface Z3 D XY , the only singular point is .0;0;0/. The tangent cone at
.0;0;0/ has equation XY D 0, and so it is the union of two planes intersecting in the z-axis.

4.42. For the surface V WZ3 D X2Y , the singular locus is the line X D 0D Z (and the
singularity at .0;0/ is very bad: for example, it lies in the singular set of the singular set.3

The intersection of the surface with the surface Y D c is the cuspidal curve X2 DZ3=c:

0.1 0.5 1 2 y

4.43. Let V be the union of the coordinate axes in A3, and let W be the zero set of
XY.X �Y / in A2. Each of V andW is a union of three lines meeting at the origin. Are they
isomorphic as algebraic varieties? Obviously, the origin o is the only singular point on V or
W . An isomorphism V !W would have to send the singular point o to the singular point o
and map To.V / isomorphically onto To.W /. But V D V.XY;YZ;XZ/, and so To.V / has
dimension 3, whereas ToW has dimension 2. Therefore, V and W are not isomorphic.

i. Nonsingularity and regularity

THEOREM 4.44. Let P be a point on an irreducible variety V . Every generating set for the
maximal ideal nP of OP has at least d elements, and there exists a generating set with d
elements if and only if P is nonsingular.

PROOF. If f1; : : : ;fr generate nP , then the proof of 4.36 shows that P is an irreducible
component of V.f1; : : : ;fr/ in some open neighbourhood U of P . Therefore 3.45 shows
that 0� d � r , and so r � d . The rest of the statement has already been noted. 2

COROLLARY 4.45. A point P on an irreducible variety is nonsingular if and only if OP is
regular.

PROOF. This is a restatement of the second part of the theorem. 2

According to CA 22.3, a regular local ring is an integral domain. If P lies on two
irreducible components of a V , then OP is not an integral domain (3.14), and so OP is not
regular. Therefore, the corollary holds also for reducible varieties.

3In fact, it belongs to the worst class of singularities (sx2848895, KReiser).



j. Examples of tangent spaces 97

j. Examples of tangent spaces

The description of the tangent space in terms of dual numbers is particularly convenient
when our variety is given to us in terms of its points functor. For example, let Mn be the set
of n�n matrices, and let I be the identity matrix. Write e for I when it is to be regarded as
the identity element of GLn.

4.46. A matrix I C "A has inverse I � "A in Mn.kŒ"�/, and so lies in GLn.kŒ"�/. In fact,

Te.GLn/D fI C "A j A 2Mng

'Mn.k/:

4.47. On expanding det.I C "A/ as a sum of signed products and using that "2 D 0, we
find that

det.I C "A/D I C "trace.A/:

Hence

Te.SLn/D fI C "A j trace.A/D 0g

' fA 2Mn.k/ j trace.A/D 0g:

4.48. Assume that the characteristic¤ 2, and let On be the orthogonal group:

On D fA 2 GLn j Atr
�AD I g:

(Atr denotes the transpose of A). This is the group of matrices preserving the quadratic form
X21C�� �CX

2
n . The determinant defines a surjective regular homomorphism detWOn!f˙1g,

whose kernel is defined to be the special orthogonal group SOn. For I C "A 2Mn.kŒ"�/,

.I C "A/tr � .I C "A/D I C "Atr
C "A;

and so

Te.On/D Te.SOn/D fI C "A 2Mn.kŒ"�/ j A is skew-symmetricg

' fA 2Mn.k/ j A is skew-symmetricg:

ASIDE 4.49. On the tangent space Te.GLn/'Mn of GLn, there is a bracket operation

ŒM;N � def
DMN �NM

which makes Te.GLn/ into a Lie algebra. For any closed algebraic subgroup G of GLn, Te.G/ is
stable under the bracket operation on Te.GLn/ and is a sub-Lie-algebra of Mn, which we denote
Lie.G/. The Lie algebra structure on Lie.G/ is independent of the embedding of G into GLn (in fact,
it has an intrinsic definition in terms of left invariant derivations), and G 7! Lie.G/ is a functor from
the category of linear group varieties to that of Lie algebras.

This functor is not fully faithful, for example, every étale homomorphism G! G0 defines an
isomorphism Lie.G/! Lie.G0/, but it is nevertheless very useful.

Assume that k has characteristic zero. A connected algebraic group G is said to be semisimple
if it has no closed connected solvable normal subgroup (except feg). Such a group G may have a
finite nontrivial centre Z.G/, and we call two semisimple groups G and G0 locally isomorphic if
G=Z.G/�G0=Z.G0/. For example, SLn is semisimple, with centre �n, the set of diagonal matrices
diag.�; : : : ; �/, �n D 1, and SLn =�n D PSLn. A Lie algebra is semisimple if it has no commutative
ideal (except f0g). One can prove that

G is semisimple ” Lie.G/ is semisimple;

and the map G 7! Lie.G/ defines a one-to-one correspondence between the set of local isomorphism
classes of semisimple algebraic groups and the set of isomorphism classes of Lie algebras. The
classification of semisimple algebraic groups can be deduced from that of semisimple Lie algebras
and a study of the finite coverings of semisimple algebraic groups — this is quite similar to the
relation between Lie groups and Lie algebras.
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Exercises

4-1. Find the singular points, and the tangent cones at the singular points, for each of

(a) Y 3�Y 2CX3�X2C3Y 2XC3X2Y C2XY I

(b) X4CY 4�X2Y 2 (assume that the characteristic is not 2).

4-2. Let V �An be an irreducible affine variety, and let P be a nonsingular point on V . Let
H be a hyperplane in An (i.e., the subvariety defined by a linear equation

P
aiXi D d with

not all ai zero) passing through P but not containing TP .V /. Show that P is a nonsingular
point on each irreducible component of V \H on which it lies. (Each irreducible component
has codimension 1 in V — you may assume this.) Give an example with H � TP .V / and
P singular on V \H . Must P be singular on V \H if H � TP .V /?

4-3. Given a smooth point on a variety and a tangent vector at the point, show that there
is a smooth curve passing through the point with the given vector as its tangent vector (see
mo111467).

4-4. Let P and Q be points on varieties V and W . Show that

T.P;Q/.V �W /D TP .V /˚TQ.W /:

4-5. For each n, show that there is a curve C and a point P on C such that the tangent
space to C at P has dimension n (hence C can’t be embedded in An�1 ).

4-6. Let I be the n�n identity matrix, and let J be the matrix
�
0 I

�I 0

�
. The symplectic

group Spn is the group of 2n�2n matrices A with determinant 1 such that Atr �J �AD J .
(It is the group of matrices fixing a nondegenerate skew-symmetric form.) Find the tangent
space to Spn at its identity element, and also the dimension of Spn.

4-7. Find a regular map ˛WV !W which induces an isomorphism on the geometric tangent
cones CP .V /! C˛.P /.W / but is not étale at P .

4-8. Show that the cone X2CY 2 D Z2 is a normal variety, even though the origin is
singular (characteristic¤ 2). See p. 174.

4-9. Let V D V.a/ � An. Suppose that a¤ I.V /, and for a 2 V , let T 0a be the subspace
of Ta.An/ defined by the equations .df /a D 0, f 2 a. Clearly, T 0a � Ta.V /, but need they
always be different?

4-10. LetW be a finite-dimensional k-vector space, and letRW D k˚W endowed with the
k-algebra structure for whichW 2D 0. Let V be an affine algebraic variety over k. Show that
the elements of V.RW /

def
DHomk-algebra.kŒV �;RW / are in natural one-to-one correspondence

with the pairs .P; t/ with P 2 V and t 2W ˝TP .V / (cf. Mumford, Lectures on curves . . . ,
1966, p25).



CHAPTER 5
Algebraic Varieties

An algebraic variety is a ringed space that is locally isomorphic to an affine algebraic variety,
just as a topological manifold is a ringed space that is locally isomorphic to an open subset
of Rn. We require both to satisfy a separation axiom.

a. Algebraic prevarieties

As motivation, recall the following definitions.

DEFINITION 5.1. (a) A topological manifold of dimension n is a ringed space .V;OV /
such that V is Hausdorff and every point of V has an open neighbourhood U for which
.U;OV jU/ is isomorphic to the ringed space of continuous functions on an open subset of
Rn (cf. 3.2).

(b) A differentiable manifold of dimension n is a ringed space such that V is Hausdorff
and every point of V has an open neighbourhood U for which .U;OV jU/ is isomorphic to
the ringed space of smooth functions on an open subset of Rn (cf. 3.3).

(c) A complex manifold of dimension n is a ringed space such that V is Hausdorff and
every point of V has an open neighbourhood U for which .U;OV jU/ is isomorphic to the
ringed space of holomorphic functions on an open subset of Cn (cf. 3.4).

These definitions are easily seen to be equivalent to the more classical definitions in
terms of charts and atlases.1 Often one imposes additional conditions on V , for example,
that it be connected or that it have a countable base of open subsets.

DEFINITION 5.2. An algebraic prevariety over k is a k-ringed space .V;OV / such that V
is quasicompact and every point of V has an open neighbourhood U for which .U;OV jU/
is isomorphic to the ringed space of regular functions on an algebraic set over k.

Thus, a ringed space .V;OV / is an algebraic prevariety over k if there exists a finite open
covering V D

S
Vi such that .Vi ;OV jVi / is an affine algebraic variety over k for all i . An

algebraic variety will be defined to be an algebraic prevariety satisfying a certain separation
condition.

An open subsetU of an algebraic prevariety V such that .U , OV jU/ is an affine algebraic
variety is called an open affine (subvariety) in V . Because V is a finite union of open
affines, and in each open affine the open affines (in fact the basic open subsets) form a base
for the topology, it follows that the open affines form a base for the topology on V .

1Provided the latter are stated correctly, which is frequently not the case.
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Let .V;OV / be an algebraic prevariety, and let U be an open subset of V . The functions
f WU ! k lying in � .U;OV / are called regular. Note that if .Ui / is an open covering of
V by affine varieties, then f WU ! k is regular if and only if f jUi \U is regular for all
i (by 3.1(c)). Thus understanding the regular functions on open subsets of V amounts to
understanding the regular functions on the open affine subvarieties and how these subvarieties
fit together to form V .

EXAMPLE 5.3. (Projective space). Let Pn denote knC1Xforiging modulo the equivalence
relation

.a0; : : : ;an/� .b0; : : : ;bn/ ” .a0; : : : ;an/D .cb0; : : : ; cbn/ some c 2 k�:

Thus the equivalence classes are the lines through the origin in knC1 (with the origin omitted).
Write .a0W : : : W an/ for the equivalence class containing .a0; : : : ;an/. For each i , let

Ui D f.a0 W : : : W ai W : : : W an/ 2 Pn j ai ¤ 0g:

Then Pn D
S
Ui , and the map

.a0W : : : Wan/ 7!
�
a0

ai
; : : : ; bai

ai
; : : : ; an

ai

�
WUi

ui
�! An

(the term ai=ai is omitted) is a bijection. In Chapter 6 we shall show that there is a unique
structure of a (separated) algebraic variety on Pn for which each Ui is an open affine
subvariety of Pn and each map ui is an isomorphism of algebraic varieties.

b. Regular maps

In each of the examples (5.1a,b,c), a morphism of manifolds (continuous map, smooth map,
holomorphic map respectively) is just a morphism of ringed spaces. This motivates the
following definition.

Let .V;OV / and .W;OW / be algebraic prevarieties. A map 'WV ! W is said to be
regular if it is a morphism of k-ringed spaces. In other words, a continuous map 'WV !W

is regular if f 7! f ı' sends a regular function on an open subset U of W to a regular
function on '�1.U /. A composite of regular maps is again regular (this is a general fact
about morphisms of ringed spaces).

Note that we have three categories:

(affine varieties)� (algebraic prevarieties)� (ringed spaces).

Each subcategory is full, i.e., the morphisms Mor.V;W / are the same in the three categories.

PROPOSITION 5.4. Let .V;OV / and .W;OW / be prevarieties, and let 'WV ! W be a
continuous map (of topological spaces). Let W D

S
Wj be a covering of W by open affines,

and let '�1.Wj /D
S
Vj i be a covering of '�1.Wj / by open affines. Then ' is regular if

and only if its restrictions
'jVj i WVj i !Wj

are regular for all i;j .

PROOF. We assume that ' satisfies this condition, and prove that it is regular. Let f be a
regular function on an open subset U of W . Then f jU \Wj is regular for each Wj (sheaf
condition 3.1(b)), and so f ı'j'�1.U /\Vj i is regular for each j; i (this is our assumption).
It follows that f ı' is regular on '�1.U / (sheaf condition 3.1(c)). Thus ' is regular. The
converse is even easier. 2
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ASIDE 5.5. A differentiable manifold of dimension n is locally isomorphic to an open subset of
Rn. In particular, all manifolds of the same dimension are locally isomorphic. This is not true for
algebraic varieties, for two reasons:

(a) We are not assuming our varieties are nonsingular (see Chapter 4).
(b) The inverse function theorem fails in our context: a regular map that induces

an isomorphism on the tangent space at a point P need not induce an isomorphism in a neighbourhood
of P . However, see 5.55 below.

c. Algebraic varieties

In the study of topological manifolds, the Hausdorff condition eliminates such bizarre
possibilities as the line with the origin doubled in which a sequence tending to the origin has
two limits (see 5.10 below).

It is not immediately obvious how to impose a separation axiom on our algebraic varieties,
because even affine algebraic varieties are not Hausdorff. The key is to restate the Hausdorff
condition. Intuitively, the significance of this condition is that it prevents a sequence in
the space having more than one limit. Thus a continuous map into the space should be
determined by its values on a dense subset, i.e., if '1 and '2 are continuous maps Z! V

that agree on a dense subset U ofZ, then they should agree on the whole ofZ.2 Equivalently,
the set where two continuous maps '1;'2WZ� U agree should be closed. Surprisingly,
affine varieties have this property, provided '1 and '2 are required to be regular maps.

LEMMA 5.6. Let '1;'2WZ� V regular maps of affine algebraic varieties. The subset of
Z on which '1 and '2 agree is closed.

PROOF. There are regular functions xi on V such that P 7! .x1.P /; : : : ;xn.P // identifies
V with a closed subset of An (take the xi to be any set of generators for kŒV � as a k-algebra).
Now xi ı'1 and xi ı'2 are regular functions on Z, and the set where '1 and '2 agree isTn
iD1V.xi ı'1�xi ı'2/, which is closed. 2

DEFINITION 5.7. An algebraic prevariety V is said to be separated if it satisfies the follow-
ing additional condition:

Separation axiom: for every pair of regular maps '1;'2WZ� V with Z an
affine algebraic variety, the set fz 2Z j '1.z/D '2.z/g is closed in Z.

An algebraic variety over k is a separated algebraic prevariety over k.3

PROPOSITION 5.8. Let '1 and '2 be regular maps Z� V from an algebraic prevariety Z
to a separated prevariety V . The subset of Z on which '1 and '2 agree is closed.

PROOF. Let W be the set on which '1 and '2 agree. For any open affine U of Z, W \U is
the subset of U on which '1jU and '2jU agree, and so W \U is closed. This implies that
W is closed because Z is a finite union of open affines. 2

2Let z 2 Z, and let z D limun with un 2 U . Then '1.z/ D lim'1.un/ because '1 is continuous, and
lim'1.un/D lim'2.un/D '2.z/.

3These are sometimes called “algebraic varieties in the sense of FAC” (Serre, Jean-Pierre. Faisceaux
algébriques cohérents. Ann. of Math. (2) 61, (1955). 197–278; �34). In Grothendieck’s language, they are
separated and reduced schemes of finite type over k (assumed to be algebraically closed), except that we omit
the nonclosed points; cf. EGA IV, 10.10. Some authors use a more restrictive definition — they may require a
variety to be connected, irreducible, or quasi-projective — usually because their foundations do not allow for a
more flexible definition.
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EXAMPLE 5.9. The open subspace U D A2Xf.0;0/g of A2 becomes an algebraic variety
when endowed with the sheaf OA2 jU (cf. 3.33).

A subvariety of an affine variety is said to be quasi-affine. For example, A2Xf.0;0/g is
quasi-affine but not affine.

EXAMPLE 5.10. (The affine line with the origin doubled.)4 Let V1 and V2 be copies of A1.
Let V � D V1tV2 (disjoint union), and give it the obvious topology. Define an equivalence
relation on V � by

x (in V1/� y (in V2/ ” x D y and x ¤ 0:

Let V be the quotient space V D V �=� with the quotient topology (a set is open if and only
if its inverse image in V � is open):

�

�

Then V1 and V2 are open subspaces of V , V D V1[V2, and V1\V2 D A1�f0g. Define a
function on an open subset to be regular if its restriction to each Vi is regular. This makes V
into a prevariety, but not a variety: it fails the separation axiom because the two maps

A1 D V1 ,! V �; A1 D V2 ,! V �

agree exactly on A1�f0g, which is not closed in A1.

Let Vark denote the category of algebraic varieties over k and regular maps. The
functor A Spm.A/ is a fully faithful contravariant functor Affk! Vark , and defines an
equivalence of the first category with the subcategory of the second whose objects are the
affine algebraic varieties.

5.11. When V is irreducible, all the rings attached to it have a common field of fractions
k.V / (see p. 113 below). Moreover,

OP D fg=h 2 k.V / j h.P /¤ 0g
OV .U /D

\
fOV .U 0/ j U 0 � U , U 0 open affineg

D

\
fOP j P 2 U g:

d. Maps from varieties to affine varieties

Let .V;OV / be an algebraic variety, and let ˛WA! � .V;OV / be a homomorphism from an
affine k-algebraA to the k-algebra of regular functions on V . For any P 2 V , f 7! ˛.f /.P /

is a k-algebra homomorphism A! k, and so its kernel '.P / is a maximal ideal in A. In
this way, we get a map

'WV ! spm.A/

which is easily seen to be regular. Conversely, from a regular map 'WV ! Spm.A/, we get
a k-algebra homomorphism f 7! f ı'WA! � .V;OV /. Since these maps are inverse, we
have proved the following result.

4This is the algebraic analogue of the standard example of a non Hausdorff topological space. Let R�
denote the real line with the origin removed but with two points a ¤ b added. The topology is generated by
the open intervals in R together with the sets of the form .u;0/[fag[ .0;v/ and .u;0/[fbg[ .0;v/, where
u < 0 < v. Then X is not Hausdorff because a and b cannot be separated by disjoint open sets. Every sequence
that converges to a also converges to b; for example, 1=n converges to both a and b.
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PROPOSITION 5.12. For an algebraic variety V and an affine k-algebra A, there is a canon-
ical one-to-one correspondence

Mor.V;Spm.A//' Homk-algebra.A;� .V;OV //:

Let V be an algebraic variety such that � .V;OV / is an affine k-algebra. The proposition
shows that the regular map 'WV ! Spm.� .V;OV // defined by id� .V;OV / has the following
universal property: every regular map from V to an affine algebraic variety U factors
uniquely through ':

V Spm.� .V;OV //

U:

'

9Š

CAUTION 5.13. For a nonaffine algebraic variety V , � .V;OV / need not be finitely gener-
ated as a k-algebra.

e. Subvarieties

Let .V;OV / be an algebraic variety over k.

Open subvarieties

Let U be an open subset of V . Then U is a union of open affines, and it follows that
.U;OV jU/ is a variety, called an open subvariety of V . A regular map 'WW ! V is an open
immersion if '.W / is open in V and ' defines an isomorphism W ! '.W / of varieties.

Closed subvarieties

LetZ be a closed subset of V . A function f on an open subset U ofZ is regular if, for every
P 2 U , there exists a germ .U 0;f 0/ of a regular function at P on V such that f 0jU 0\U D
f jU 0\U . This defines a ringed structure OZ on Z. To show that .Z;OZ/ is a variety it
suffices to check that, for every open affine U � V , the ringed space .U \Z;OZ jU \Z/
is an affine algebraic variety, but this is only an exercise (Exercise 3-2 to be precise). Such
a pair .Z;OZ/ is called a closed subvariety of V . A regular map 'WW ! V is a closed
immersion if '.W / is closed in V and ' defines an isomorphism W ! '.W / of varieties.

Subvarieties

A subset W of a topological space V is said to be locally closed if every point P in W has
an open neighbourhood U in V such that W \U is closed in U . Equivalent conditions:
W is the intersection of an open and a closed subset of V ; W is open in its closure. A
locally closed subsetW of a variety V acquires a natural structure as a variety: write it as the
intersection W D U \Z of an open and a closed subset; Z is a variety, and W (being open
in Z/ therefore acquires the structure of a variety. This structure on W has the following
characterization: the inclusion map W ,! V is regular, and a map 'WV 0 ! W with V 0

a variety is regular if and only if it is regular when regarded as a map into V . With this
structure, W is called a subvariety of V . A regular map 'WW ! V is an immersion if it
induces an isomorphism of W onto a subvariety of V . Every immersion is the composite of
an open immersion with a closed immersion (in both orders).
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Application

PROPOSITION 5.14. A prevariety V is separated if and only if two regular maps from a
prevariety to V agree on the whole prevariety whenever they agree on a dense subset of it.

PROOF. If V is separated, then the set on which a pair of regular maps '1;'2WZ� V agree
is closed, and so must be the whole of the Z.

Conversely, consider a pair of maps '1;'2WZ� V , and let S be the subset of Z on
which they agree. We assume that V has the property in the statement of the proposition, and
show that S is closed. Let NS be the closure of S in Z. According to the above discussion,
NS has the structure of a closed prevariety of Z and the maps '1j NS and '2j NS are regular.

Because they agree on a dense subset of NS they agree on the whole of NS , and so S D NS is
closed. 2

f. Prevarieties obtained by patching

PROPOSITION 5.15. Suppose that the set V is a finite union V D
S
i2I Vi of subsets Vi and

that each Vi is equipped with ringed space structure. Assume that the following “patching”
condition holds:

for all i;j , Vi \Vj is open in both Vi and Vj and OVi
jVi \Vj DOVj

jVi \Vj .
Then there is a unique structure of a ringed space on V for which

(a) each inclusion Vi ,! V is a homeomorphism of Vi onto an open set, and

(b) for each i 2 I , OV jVi DOVi
.

If every Vi is an algebraic prevariety, then so also is V , and to give a regular map from
V to a prevariety W amounts to giving a family of regular maps 'i WVi ! W such that
'i jVi \Vj D 'j jVi \Vj :

PROOF. One checks easily that the subsets U � V such that U \Vi is open for all i are the
open subsets for a topology on V satisfying (a), and that this is the only topology to satisfy
(a). Define OV .U / to be the set of functions f WU ! k such that f jU \Vi 2OVi

.U \Vi /

for all i . Again, one checks easily that OV is a sheaf of k-algebras satisfying (b), and that it
is the only such sheaf.

For the final statement, if each .Vi ;OVi
/ is a finite union of open affines, so also

is .V;OV /. Moreover, to give a map 'WV ! W amounts to giving a family of maps
'i WVi !W such that 'i jVi \Vj D 'j jVi \Vj (obviously), and ' is regular if and only 'jVi
is regular for each i . 2

Clearly, the Vi may be separated without V being separated (see, for example, 5.10).
In 5.29 below, we give a condition on an open affine covering of a prevariety sufficient to
ensure that the prevariety is separated.

g. Products of varieties

Let V and W be objects in a category C. A triple

.V �W; pWV �W ! V; qWV �W !W /
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is said to be the product of V and W if it has the following universal property: for every pair
of morphisms Z! V , Z!W in C, there exists a unique morphism Z! V �W making
the diagram

Z

V V �W W

9Š

p q

commute. In other words, the triple is a product if the map

' 7! .p ı';q ı'/WHom.Z;V �W /! Hom.Z;V /�Hom.Z;W /

is a bijection. The product, if it exists, is uniquely determined up to a unique isomorphism
by its universal property.

For example, the product of two sets (in the category of sets) is the usual cartesian
product of the sets, and the product of two topological spaces (in the category of topological
spaces) is the product of the underlying sets endowed with the product topology.

We shall show that products exist in the category of algebraic varieties. Suppose, for the
moment, that V �W exists. For any prevariety Z, Mor.A0;Z/ is the underlying set of Z;
more precisely, for any z 2Z, the map A0!Z with image z is regular, and these are all
the regular maps (cf. 3.28). Thus, from the definition of products we have

(underlying set of V �W /'Mor.A0;V �W /
'Mor.A0;V /�Mor.A0;W /
' (underlying set of V /� (underlying set of W /:

Hence, our problem can be restated as follows: given two prevarieties V and W , define on
the set V �W the structure of a prevariety such that

(a) the projection maps p;qWV �W � V;W are regular, and

(b) a map 'WT ! V �W of sets (with T an algebraic prevariety) is regular if its compo-
nents p ı';q ı' are regular.

There can be at most one such structure on the set V �W .

Products of affine varieties

EXAMPLE 5.16. Let a and b be ideals in kŒX1; : : : ;Xm� and kŒXmC1; : : : ;XmCn� respec-
tively, and let .a;b/ be the ideal in kŒX1; : : : ;XmCn� generated by the elements of a and b.
Then there is an isomorphism

f ˝g 7! fgW
kŒX1; : : : ;Xm�

a
˝k

kŒXmC1; : : : ;XmCn�

b
!
kŒX1; : : : ;XmCn�

.a;b/
:

Again this comes down to checking that the natural map

Homk-alg.kŒX1; : : : ;XmCn�=.a;b/;R/

Homk-alg.kŒX1; : : : ;Xm�=a;R/�Homk-alg.kŒXmC1; : : : ;XmCn�=b;R/

is a bijection. But the three sets are respectively
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V.a;b/D zero set of .a;b/ in RmCn;
V .a/D zero set of a in Rm;
V .b/D zero set of b in Rn;

and so this is obvious.

The tensor product of two k-algebras A and B has the universal property to be a product
in the category of k-algebras, but with the arrows reversed. Because of the category anti-
equivalence (3.25), this shows that Spm.A˝k B/ will be the product of SpmA and SpmB
in the category of affine algebraic varieties once we have shown that A˝k B is an affine
k-algebra.

PROPOSITION 5.17. Let A and B be k-algebras with A finitely generated.

(a) If A and B are reduced, then so also is A˝k B .

(b) If A and B are integral domains, then so also is A˝k B .

PROOF. Let ˛ 2 A˝k B . Then ˛ D
Pn
iD1ai ˝bi , some ai 2 A, bi 2 B . If one of the bj

is a linear combination of the remaining bi , say, bn D
Pn�1
iD1 cibi , ci 2 k, then, using the

bilinearity of˝, we find that

˛ D

n�1X
iD1

ai ˝bi C

n�1X
iD1

cian˝bi D

n�1X
iD1

.ai C cian/˝bi :

Thus we can suppose that in the original expression of ˛, the bi are linearly independent
over k.

Now assume A and B to be reduced, and suppose that ˛ is nilpotent. Let m be a maximal
ideal of A. From a 7! NaWA! A=mD k we obtain homomorphisms

a˝b 7! Na˝b 7! NabWA˝k B! k˝k B
'
! B:

The image
P
Naibi of ˛ under this homomorphism is a nilpotent element of B , and hence

is zero (because B is reduced). As the bi are linearly independent over k, this means that
the Nai are all zero. Thus, the ai lie in all maximal ideals m of A, and so are zero (see 2.18).
Hence ˛ D 0, and we have shown that A˝k B is reduced.

Now assume that A and B are integral domains, and let ˛, ˛0 2 A˝k B be such that
˛˛0D 0. As before, we can write ˛D

P
ai˝bi and ˛0D

P
a0i˝b

0
i with the sets fb1;b2; : : :g

and fb01;b
0
2; : : :g each linearly independent over k. For each maximal ideal m of A, we know

.
P
Naibi /.

P
Na0ib
0
i /D 0 in B , and so either .

P
Naibi /D 0 or .

P
Na0ib
0
i /D 0. Thus either all

the ai 2m or all the a0i 2m. This shows that

spm.A/D V.a1; : : : ;am/[V.a01; : : : ;a
0
n/:

As spm.A/ is irreducible (see 2.27), it follows that spm.A/ equals either V.a1; : : : ;am/ or
V.a01; : : : ;a

0
n/. In the first case ˛ D 0, and in the second ˛0 D 0. 2

REMARK 5.18. The proof of 5.17 fails when k is not algebraically closed, because then
A=m may be a finite extension of k over which the bi become linearly dependent (see
sx599391). The following examples show that the statement of 5.17 also fails in this case.

(a) Suppose that k is nonperfect of characteristic p, so that there exists an element ˛ in
an algebraic closure of k such that ˛ … k but ˛p 2 k. Let k0 D kŒ˛�, and let ˛p D a. Then
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.˛˝1�1˝˛/¤ 0 in k0˝k k0 (in fact, the elements ˛i˝˛j , 0� i;j � p�1, form a basis
for k0˝k k0 as a k-vector space), but

.˛˝1�1˝˛/p D .a˝1�1˝a/

D .1˝a�1˝a/ .because a 2 k/

D 0:

Thus k0˝k k0 is not reduced, even though k0 is a field.
(b) Let K be a finite separable extension of k and let ˝ be a second field containing k.

By the primitive element theorem (FT 5.1),

K D kŒ˛�D kŒX�=.f .X//;

for some ˛ 2K and its minimal polynomial f .X/. Assume that ˝ is large enough to split
f , say, f .X/D

Q
i .X �˛i / with ˛i 2˝. Because K=k is separable, the ˛i are distinct,

and so

˝˝kK '˝ŒX�=.f .X// (1.58(b))

'

Y
˝ŒX�=.X �˛i /; (1.1)

which is not an integral domain. For example,

C˝RC' CŒX�=.X � i/�CŒX�=.XC i/' C�C:

The proposition allows us to make the following definition.

DEFINITION 5.19. The product of the affine varieties V and W is

.V �W;OV�W /D Spm.kŒV �˝k kŒW �/

with the projection maps p;qWV �W ! V;W defined by the homomorphisms

f 7! f ˝1WkŒV �! kŒV �˝k kŒW �

g 7! 1˝gWkŒW �! kŒV �˝k kŒW �:

PROPOSITION 5.20. Let V and W be affine varieties.

(a) The variety .V �W;OV�W / is the product of .V;OV / and .W;OW / in the category
of affine algebraic varieties; in particular, the set V �W is the product of the sets V
and W and p and q are the projection maps.

(b) If V and W are irreducible, then so also is V �W .

PROOF. (a) As noted at the start of the subsection, the first statement follows from 5.17(a),
and the second statement then follows by the argument on p. 105.

(b) This follows from 5.17(b) and 2.27. 2

COROLLARY 5.21. Let V andW be affine varieties. For every prevariety T , a map 'WT !
V �W is regular if p ı' and q ı' are regular.

PROOF. If p ı' and q ı' are regular, then 5.20 implies that ' is regular when restricted to
any open affine of T , which implies that it is regular on T . 2
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The corollary shows that V �W is the product of V andW in the category of prevarieties
(hence also in the categories of varieties).

EXAMPLE 5.22. (a) It follows from 1.57 that AmCn endowed with the projection maps

Am
p
 AmCn

q
! An;

�
p.a1; : : : ;amCn/D .a1; : : : ;am/

q.a1; : : : ;amCn/D .amC1; : : : ;amCn/;

is the product of Am and An.
(b) It follows from 5.16 that

V.a/
p
 V.a;b/

q
! V.b/

is the product of V.a/ and V.b/.

CAUTION. When V and W have dimension > 0, the topology on V �W is strictly finer
than product topology. For example, for the product topology on A2 D A1 �A1, every
proper closed subset is contained in a finite union of vertical and horizontal lines, whereas
A2 has many more closed subsets (see 2.68).

If V is affine, then the diagonal in V �V is closed for the Zariski topology. Therefore, if
the Zariski topology on V �V is equal to the product topology, then V is Hausdorff. We
deduce that the Zariski topology on V �V is the product topology if and only if V is finite.

Products in general

We now define the product of two algebraic prevarieties V and W .
Write V as a union of open affines V D

S
Vi , and note that V can be regarded as the

variety obtained by patching the .Vi ;OVi
/; in particular, this covering satisfies the patching

condition (5.15). Similarly, write W as a union of open affines W D
S
Wj . Then

V �W D
[
Vi �Wj

and the .Vi �Wj ;OVi�Wj
/ satisfy the patching condition. Therefore, we can define .V �

W;OV�W / to be the variety obtained by patching the .Vi �Wj ;OVi�Wj
/.

PROPOSITION 5.23. With the sheaf of k-algebras OV�W just defined, V �W becomes the
product of V and W in the category of prevarieties. In particular, the structure of prevariety
on V �W defined by the coverings V D

S
Vi and W D

S
Wj are independent of the

coverings.

PROOF. Let T be a prevariety, and let 'WT ! V �W be a map of sets such that p ı' and
q ı' are regular. Then 5.21 implies that the restriction of ' to '�1.Vi �Wj / is regular. As
these open sets cover T , this shows that ' is regular. 2

PROPOSITION 5.24. If V and W are separated, then so also is V �W .

PROOF. Let '1;'2 be two regular maps U ! V �W . The set where '1;'2 agree is the
intersection of the sets where p ı'1;p ı'2 and q ı'1;q ı'2 agree, which is closed. 2

PROPOSITION 5.25. If V and W are connected, then so also is V �W .
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PROOF. For v0 2 V , we have continuous maps

W ' v0�W V �W:
closed

Similarly, for w0 2W , we have continuous maps

V ' V �w0 V �W:
closed

The images of V and W in V �W intersect in .v0;w0/ and are connected, which shows
that .v0;w/ and and .v;w0/ lie in the same connected component of V �W for all v 2 V
and w 2W . Since v0 and w0 were arbitrary, this shows that any two points lie in the same
connected component. 2

Group varieties

A group variety is an algebraic variety G together with a group structure defined by regular
maps

mWG�G!G; invWG!G; eW A0!G.

A homomorphism of group varieties is a regular map that is also a homomorphism of groups.
The algebraic variety,8̂<̂

:
SLn D Spm

kŒX11;X12; : : : ;Xnn�

.det.Xij /�1//

SLn.k/D fM 2Mn.k/ j detM D 1g

becomes a group variety when endowed with its usual group structures. Matrix multiplication

.aij / � .bij /D .cij /; cij D
Pn
lD1ailblj ;

is given by polynomials, and Cramer’s rule gives an explicit expression of the entries of A�1

as polynomials in the entries of A. The only affine group varieties of dimension 1 over k are

Gm D SpmkŒX;X�1� and Ga D SpmkŒX�:

Every finite group N can be made into a group variety by setting

N D Spm.A/

with A the k-algebra of all maps f WN ! k.

h. The separation axiom revisited

By way of motivation, consider a topological space V and the diagonal �� V �V , � def
D

.x;x/ j x 2 V . If � is closed for the product topology, then every pair of points .x;y/ …�
has an open neighbourhood U �U 0 such that .U �U 0/\� D ¿. In other words, if x
and y are distinct points in V , then there are open neighbourhoods U and U 0 of x and y
respectively such that U \U 0 D¿. Thus V is Hausdorff. Conversely, if V is Hausdorff, the
reverse argument shows that � is closed.

For a variety V , we let �D�V (the diagonal) be the subset f.v;v/ j v 2 V g of V �V .
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PROPOSITION 5.26. An algebraic prevariety V is separated if and only if �V is closed.5

PROOF. We shall use the criterion 5.8: V is separated if and only if, for every pair of regular
maps '1;'2WZ� V , the subset of Z on which '1 and '2 agree is closed.

Suppose that �V is closed. The map

.'1;'2/WZ! V �V; z 7! .'1.z/;'2.z//

is regular because its components '1 and '2 are regular (see p. 105). In particular, it is
continuous, and so .'1;'2/�1.�V / is closed, but this is exactly the subset on which '1 and
'2 agree.

Conversely, �V is the set on which the two projection maps V �V ! V agree, and so it
is closed if V is separated. 2

COROLLARY 5.27. For any prevariety V , the diagonal is a locally closed subset of V �V .

PROOF. Let P 2 V , and let U be an open affine neighbourhood of P . Then U �U is an
open neighbourhood of .P;P / in V �V , and �V \ .U �U/ D �U , which is closed in
U �U because U is separated (5.6). 2

Thus �V is always a subvariety of V �V , and it
is closed if and only if V is separated. The graph
�' of a regular map 'WV !W is defined to be

f.v;'.v// 2 V �W j v 2 V g:

V

Γϕ

v

W

ϕ(v) (v, ϕ(v))

COROLLARY 5.28. For any morphism 'WV ! W of prevarieties, the graph �' of ' is
locally closed in V �W , and it is closed if W is separated. The map v 7! .v;'.v// is an
isomorphism of V onto �' (as algebraic prevarieties).

PROOF. The map
.v;w/ 7! .'.v/;w/WV �W !W �W

is regular because its composites with the projections are ' and idW which are regular.
In particular, it is continuous, and as �' is the inverse image of �W under this map, this
proves the first statement. The second statement follows from the fact that the regular map
�' ,! V �W

p
! V is an inverse to v 7! .v;'.v//WV ! �' . 2

THEOREM 5.29. The following three conditions on a prevariety V are equivalent:

(a) V is separated;

(b) for every pair of open affines U and U 0 in V , U \U 0 is an open affine, and the map

f ˝g 7! f jU\U 0 �gjU\U 0 WkŒU �˝k kŒU
0�! kŒU \U 0�

is surjective;

5Recall that the topology on V �V is not the product topology. Thus the statement does not contradict the
fact that V is not Hausdorff.
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(c) the condition in (b) holds for the sets in some open affine covering of V .

PROOF. Let U and U 0 be open affines in V . We shall prove that
(i) if � is closed then U \U 0 affine,
(ii) when U \U 0 is affine,

.U �U 0/\� is closed ” kŒU �˝k kŒU
0�! kŒU \U 0� is surjective:

Assume (a); then these statements imply (b). Assume that (b) holds for the sets in an
open affine covering .Ui /i2I of V . Then .Ui �Uj /.i;j /2I�I is an open affine covering of
V �V , and�V \ .Ui �Uj / is closed in Ui �Uj for each pair .i;j /, which implies (a). Thus,
the statements (i) and (ii) imply the theorem.

Proof of (i): The graph of the inclusion U \U 0 ,! V is the subset .U �U 0/\� of
.U \U 0/�V: If�V is closed, then .U �U 0/\�V is a closed subvariety of an affine variety,
and hence is affine. Now 5.28 implies that U \U 0 is affine.

Proof of (ii): Assume that U \U 0 is affine. Then

.U �U 0/\�V is closed in U �U 0

” v 7! .v;v/WU \U 0! U �U 0 is a closed immersion

” kŒU �U 0�! kŒU \U 0� is surjective (3.34).

Since kŒU �U 0�D kŒU �˝k kŒU 0�, this completes the proof of (ii). 2

In more down-to-earth terms, condition (b) says that U \U 0 is affine and every regular
function on U \U 0 is a sum of functions of the form P 7! f .P /g.P / with f and g regular
functions on U and U 0.

EXAMPLE 5.30. (a) Let V D P1, and let U0 and U1 be the standard open subsets (see
5.3). Then U0\U1 D A1 X f0g, and the maps on rings corresponding to the inclusions
U0\U1 ,! Ui are

f .X/ 7! f .X/WkŒX�! kŒX;X�1�

f .X/ 7! f .X�1/WkŒX�! kŒX;X�1�:

Thus the sets U0 and U1 satisfy the condition in (b).
(b) Let V be A1 with the origin doubled (see 5.10), and let U and U 0 be the upper and

lower copies of A1 in V . Then U \U 0 is affine, but the maps on rings corresponding to the
inclusions U0\U1 ,! Ui are

X 7!X WkŒX�! kŒX;X�1�

X 7!X WkŒX�! kŒX;X�1�:

Thus the sets U0 and U1 fail the condition in (b).
(c) Let V be A2 with the origin doubled, and let U and U 0 be the upper and lower copies

of A2 in V . Then U \U 0 is not affine (see 3.33).

i. Fibred products

Let 'WV ! S and  WW ! S be regular maps of algebraic varieties. The set

V �S W
def
D f.v;w/ 2 V �W j '.v/D  .w/g
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is closed in V �W; because it is the set where ' ıp and  ı q agree, and so it has a
canonical structure of an algebraic variety (see p. 103). The algebraic variety V �S W is
called the fibred product of V and W over S . Note that if S consists of a single point, then
V �S W D V �W .

Write '0 for the map .v;w/ 7! wWV �S W !W and  0 for the map .v;w/ 7! vWV �S
W ! V . We then have a commutative diagram:

V �S W W

V S:

'0

 0  

'

The system .V �S W;'
0; 0/ has the following universal property: for any regular maps

˛WT !V , ˇWT !W such that '˛D ˇ, there is a unique regular map .˛;ˇ/WT !V �SW

such that the following diagram

T

V �S W W

V S

ˇ

˛

.˛;ˇ/

'0

 0  

'

commutes. In other words,

Hom.T;V �S W /' Hom.T;V /�Hom.T;S/Hom.T;W /:

Indeed, there is a unique such map of sets, namely, t 7! .˛.t/;ˇ.t//, which is regular because
it is as a map into V �W .

The map '0 in the above diagrams is called the base change of ' with respect to  .
For any point P 2 S , the base change of 'WV ! S with respect to P ,! S is the map
'�1.P /! P induced by ', which is called the fibre of V over P .

EXAMPLE 5.31. If f WV ! S is a regular map and U is a subvariety of S , then V �S U is
the inverse image of U in V .

Notes

5.32. Since a tensor product of rings A˝RB has the opposite universal property to that of
a fibred product, one might hope that

Spm.A/�Spm.R/ Spm.B/ ‹‹D Spm.A˝RB/:

This is true if A˝RB is an affine k-algebra, but in general it may have nonzero nilpotent
elements. For example, let k have characteristic p, let R D kŒX�, and consider the kŒX�-
algebras �

kŒX�! k; X 7! a

kŒX�! kŒX�; X 7!Xp:
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Then
A˝RB ' k˝kŒXp� kŒX�' kŒX�=.X

p
�a/;

which contains the nilpotent element x�a
1
p .

The correct statement is

Spm.A/�Spm.R/ Spm.B/' Spm.A˝RB=N/; (25)

where N is the ideal of nilpotent elements in A˝R B . To prove this, note that for any
algebraic variety T ,

Mor.T;Spm.A˝RB=N//' Hom.A˝RB=N;OT .T // (5.12)
' Hom.A˝RB;OT .T //
' Hom.A;OT .T // �

Hom.R;OT .T //
Hom.B;OT .T //

'Mor.T;Spm.A// �
Mor.T;Spm.R//

Mor.T;Spm.B// .5.12).

For the second isomorphism we used that the ring OT .T / is reduced, and for the third
isomorphism, we used the universal property of A˝RB .

5.33. Fibred products may differ depending on whether we are working in the category of
algebraic varieties or algebraic schemes. For example,

Spec.A/�Spec.R/ Spec.B/' Spec.A˝RB/

in the category of schemes. Consider the map x 7! x2WA1
'
�! A1 (see 5.49). The fi-

bre '�1.a/ consists of two points if a ¤ 0, and one point if a D 0. Thus '�1.0/ D
Spm.kŒX�=.X//. However, the scheme-theoretic fibre is Spec.kŒX�=.X2//, which reflects
the fact that 0 is “doubled” in the fibre over 0.

5.34. Fibred products exist also for prevarieties. In this case, V �SW is only locally closed
in V �W .

j. Dimension

Recall p. 46 that, in an irreducible topological space, every nonempty open subset is dense
and irreducible.

Let V be an irreducible algebraic variety V , and let U and U 0 be nonempty open affines
in V . Then U \U 0 is also a nonempty open affine (5.29), which is dense in U , and so the
restriction map OV .U /!OV .U \U 0/ is injective. Therefore

kŒU �� kŒU \U 0�� k.U /;

where k.U / is the field of fractions of kŒU �, and so k.U / is also the field of fractions of
kŒU \U 0� and of kŒU 0�. Thus, attached to V there is a field k.V /, called the function field
of V or the field of rational functions on V , which is the field of fractions of kŒU � for
any open affine U in V . The dimension of V is defined to be the transcendence degree
of k.V / over k. Note the dim.V / D dim.U / for any open subset U of V . In particular,
dim.V /D dim.U / for U an open affine in V . It follows that some of the results in �2 carry
over — for example, if Z is a proper closed subvariety of V , then dim.Z/ < dim.V /.
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PROPOSITION 5.35. Let V and W be irreducible varieties. Then

dim.V �W /D dim.V /Cdim.W /:

PROOF. We may suppose V and W to be affine. Write

kŒV �D kŒx1; : : : ;xm�

kŒW �D kŒy1; : : : ;yn�;

where the x and y have been chosen so that fx1; : : : ;xd g and fy1; : : : ;yeg are maximal alge-
braically independent sets of elements of kŒV � and kŒW �. Then fx1; : : : ;xd g and fy1; : : : ;yeg
are transcendence bases of k.V / and k.W / (see 1.63), and so dim.V /D d and dim.W /D e.
Now6

kŒV �W � def
D kŒV �˝k kŒW �� kŒx1; : : : ;xd �˝k kŒy1; : : : ;ye�;

which is a polynomial ring in the symbols x1˝1; : : : ;xd˝1;1˝y1; : : : ;1˝ye (see 1.57). In
particular, the elements x1˝1; : : : ;xd˝1;1˝y1; : : : ;1˝ye are algebraically independent in
kŒV �˝k kŒW �. Obviously kŒV �W � is generated as a k-algebra by the elements xi˝1, 1˝
yj , 1� i �m, 1� j � n, and all of them are algebraic over kŒx1; : : : ;xd �˝k kŒy1; : : : ;ye�.
Thus the transcendence degree of k.V �W / is d C e. 2

We extend the definition of dimension to an arbitrary variety V as follows. An algebraic
variety is a finite union of noetherian topological spaces, and so is noetherian. Consequently
(see 2.31), V is a finite union V D

S
Vi of its irreducible components, and we define

dim.V /Dmaxdim.Vi /. When all the irreducible components of V have dimension n; V is
said to be pure of dimension n (or to be of pure dimension n).

PROPOSITION 5.36. Let V and W be closed subvarieties of An; for any (nonempty) irre-
ducible component Z of V \W ,

dim.Z/� dim.V /Cdim.W /�nI

that is,
codim.Z/� codim.V /C codim.W /:

PROOF. In the course of the proof of Theorem 5.29, we saw that V \W is isomorphic to
�\ .V �W /, and this is defined by the n equations Xi D Yi in V �W . Thus the statement
follows from 3.45. 2

REMARK 5.37. (a) The subvariety�
X2CY 2 DZ2

Z D 0

of A3 is the curve X2CY 2 D 0, which is the pair of lines Y D˙iX if k D C; in particular,
the codimension is 2. Note however, that real locus is f.0;0/g, which has codimension 3.
Thus, Proposition 5.36 becomes false if one looks only at real points (and the pictures we
draw can mislead).

6In general, it is not true that if M 0 and N 0 are R-submodules of M and N , then M 0˝R N 0 is an R-
submodule of M ˝RN . However, this is true if R is a field, because then M 0 and N 0 will be direct summands
of M and N , and tensor products preserve direct summands.
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(b) Proposition 5.36 becomes false if An is replaced by an arbitrary affine variety.
Consider for example the affine cone V

X1X4�X2X3 D 0:

It contains the planes,

Z WX2 D 0DX4I Z D f.�;0;�;0/g

Z0 WX1 D 0DX3I Z0 D f.0;�;0;�/g

and Z\Z0 D f.0;0;0;0/g. Because V is a hypersurface in A4, it has dimension 3, and each
of Z and Z0 has dimension 2. Thus

codimZ\Z0 D 3— 1C1D codimZC codimZ0:

The proof of 5.36 fails because the diagonal in V �V cannot be defined by 3 equations
(it takes the same 4 that define the diagonal in A4) — the diagonal is not a set-theoretic
complete intersection.

k. Dominant maps

As in the affine case, a regular map 'WV !W is said to be dominant if the image of ' is
dense in W . Suppose V and W are irreducible. If V 0 and W 0 are open affine subsets of V
and W such that '.V 0/�W 0, then 3.34 implies that the map f 7! f ı'WkŒW 0�! kŒV 0� is
injective. Therefore it extends to a map on the fields of fractions, k.W /! k.V /, and this
map is independent of the choice of V 0 and W 0.

l. Rational maps; birational equivalence

Loosely speaking, a rational map from a variety V to a variety W is a regular map from a
dense open subset of V to W , and a birational map is a rational map admitting a rational
inverse.

Let V and W be varieties over k, and consider pairs .U;'U /, where U is a dense open
subset of V and 'U is a regular map U !W . Two such pairs .U;'U / and .U 0;'U 0/ are
said to be equivalent if 'U and 'U 0 agree on U \U 0. An equivalence class of pairs is called
a rational map 'WV Ü W . A rational map ' is said to be defined at a point v of V if
v 2 U for some .U;'U / 2 '. The set U1 of v at which ' is defined is open, and there is
a regular map '1WU1!W such that .U1;'1/ 2 ' — clearly, U1 D

S
.U;'U /2'

U and we
can define '1 to be the regular map such that '1jU D 'U for all .U;'U / 2 '. Hence, in the
equivalence class, there is always a pair .U;'U / with U largest (and U is called “the open
subvariety on which ' is defined”).

PROPOSITION 5.38. Let V and V 0 be irreducible varieties over k. A regular map 'WU 0!
U from an open subset U 0 of V 0 onto an open subset U of V defines a k-algebra homomor-
phism k.V /! k.V 0/, and every such homomorphism arises in this way.

PROOF. The first part of the statement is obvious, so let k.V / ,! k.V 0/ be a k-algebra
homomorphism. We identify k.V / with a subfield of k.V 0/. Let U (resp. U 0) be an open
affine subset of V (resp. U 0). Let kŒU � D kŒx1; : : : ;xm�. Each xi 2 k.V 0/, which is the
field of fractions of kŒU 0�, and so there exists a nonzero d 2 kŒU 0� such that dxi 2 kŒU 0�
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for all i . After inverting d , i.e., replacing U 0 with basic open subset, we may suppose that
kŒU � � kŒU 0�. Thus, the inclusion k.V / ,! k.V 0/ is induced by a dominant regular map
'WU 0! U . According to Theorem 9.1 below, the image of ' contains an open subset U0 of
U . Now '�1.U0/

'
�! U0 is the required map. 2

A rational (or regular) map 'WV Ü W is birational if there exists a rational map
'0WWÜ V such that '0 ı' D idV and ' ı'0 D idW as rational maps. Two varieties V and
V 0 are birationally equivalent if there exists a birational map from one to the other. In this
case, there exist dense open subsets U and U 0 of V and V 0 respectively such that U � U 0.

PROPOSITION 5.39. Two irreducible varieties V and V 0 are birationally equivalent if and
only if their function fields are isomorphic over k.

PROOF. Assume that k.V /� k.V 0/. We may suppose that V and W are affine, in which
case the existence of U � U 0 is proved in 3.36. This proves the “if” part, and the “only if”
part is obvious. 2

PROPOSITION 5.40. Every irreducible algebraic variety of dimension d is birationally
equivalent to a hypersurface in AdC1.

PROOF. Let V be an irreducible variety of dimension d . According to Proposition 3.38, there
exist x1; : : : ;xd ;xdC1 2 k.V / such that k.V /D k.x1; : : : ;xd ;xdC1/. Let f 2 kŒX1; : : : ;XdC1�
be an irreducible polynomial satisfied by the xi , and let H be the hypersurface f D 0. Then
k.V /� k.H/. 2

m. Local study

Everything in Chapter 4, being local, extends mutatis mutandis, to general algebraic varieties.

5.41. The tangent space TP .V / at a point P on an algebraic variety V is the fibre of
V.kŒ"�/! V.k/ over P . There are canonical isomorphisms

TP .V /' Derk.OP ;k/' Homk-linear.nP =n
2
P ;k/;

where nP is the maximal ideal of OP .

5.42. A point P on an algebraic variety V is nonsingular (or smooth) if it lies on a single
irreducible component W and dimTP .V /D dimW . A point P is nonsingular if and only if
the local ring OP is regular. The singular points form a proper closed subvariety, called the
singular locus.

5.43. A variety is nonsingular (or smooth) if every point is nonsingular.

n. Étale maps

DEFINITION 5.44. A regular map 'WV !W of smooth varieties is étale at a point P of
V if the map .d'/P WTP .V /! T'.P /.W / is an isomorphism; ' is étale if it is étale at all
points of V .
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Examples

5.45. A regular map

'WAn! An, a 7! .P1.a1; : : : ;an/; : : : ;Pn.a1; : : : ;an//

is étale at a if and only if rankJac.P1; : : : ;Pn/.a/ D n, because the map on the tangent
spaces has matrix Jac.P1; : : : ;Pn/.a/. Equivalent condition: det

�
@Pi

@Xj
.a/
�
¤ 0.

5.46. Let V D Spm.A/ be an affine variety, and let f D
P
ciX

i 2 AŒX� be such that
AŒX�=.f .X// is reduced. Let W D Spm.AŒX�=.f .X///, and consider the map W ! V

corresponding to the inclusion A ,! AŒX�=.f /. Thus

AŒX�=.f / AŒX� W V �A1

A V

The points of W lying over a point a 2 V are the pairs .a;b/ 2 V �A1 such that b is a root
of
P
ci .a/X i . I claim that the map W ! V is étale at .a;b/ if and only if b is a simple root

of
P
ci .a/X i .

To see this, write AD kŒX1; : : : ;Xn�=a, aD .f1; : : : ;fr/, so that

AŒX�=.f /D kŒX1; : : : ;Xn�=.f1; : : : ;fr ;f /:

The tangent spaces toW and V at .a;b/ and a respectively are the null spaces of the matrices0BBBB@
@f1

@X1
.a/ : : : @f1

@Xn
.a/ 0

:::
:::

@fr

@X1
.a/ : : : @fr

@Xn
.a/ 0

@f
@X1

.a/ : : : @f
@Xn

.a/ @f
@X
.a;b/

1CCCCA
0BB@

@f1

@X1
.a/ : : : @f1

@Xn
.a/

:::
:::

@fr

@X1
.a/ : : : @fr

@Xn
.a/

1CCA
and the map T.a;b/.W /! Ta.V / is induced by the projection map knC1! kn omitting the
last coordinate. This map is an isomorphism if and only if @f

@X
.a;b/¤ 0, because then every

solution of the smaller set of equations extends uniquely to a solution of the larger set. But

@f

@X
.a;b/D

d.
P
i ci .a/X i /
dX

.b/;

which is zero if and only if b is a multiple root of
P
i ci .a/X i . The intuitive picture is that

W ! V is a finite covering with deg.f / sheets, which is ramified exactly at the points where
two or more sheets cross.

5.47. Consider a dominant map 'WW ! V of smooth affine varieties, corresponding to
a map A! B of rings. Suppose B can be written B D AŒY1; : : : ;Yn�=.P1; : : : ;Pn/ (same
number of polynomials as variables). A similar argument to the above shows that ' is étale
if and only if det

�
@Pi

@Xj
.a/
�

is never zero.

5.48. The example in 5.46 is typical; in fact every étale map is locally of this form, provided
V is normal, i.e., OP is a normal domain for all P 2 V . More precisely, let 'WW ! V
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be étale at P 2W , and assume V to be normal; then there exist a map '0WW 0! V 0 with
kŒW 0�D kŒV 0�ŒX�=.f .X//, and a commutative diagram

W U1 U 01 W 0

V U2 U 02 V 0

'

�

étale étale '0

�

with all the U open subvarieties and P 2 U1.

The failure of the inverse function theorem for the Zariski topology

5.49. In advanced calculus (or differential topology, or complex analysis), the inverse
function theorem says that a map ' that is étale at a point a is a local isomorphism there, i.e.,
there exist open neighbourhoods U and U 0 of a and '.a/ such that ' induces an isomorphism
U ! U 0. This is not true in algebraic geometry, at least not for the Zariski topology: a map
can be étale at a point without being a local isomorphism. Consider for example the map

'WA1Xf0g ! A1Xf0g; a 7! a2:

This is étale if the characteristic is¤ 2, because the Jacobian matrix is .2X/, which has rank
one for all X ¤ 0 (alternatively, it is of the form 5.46 with f .X/DX2�T , where T is the
coordinate function on A1, and X2� c has distinct roots for c ¤ 0). Nevertheless, I claim
that there do not exist nonempty open subsets U and U 0 of A1�f0g such that ' defines an
isomorphism U ! U 0. If there did, then ' would define an isomorphism kŒU 0�! kŒU �

and hence an isomorphism on the fields of fractions k.A1/! k.A1/. But on the fields of
fractions, ' defines the map k.X/! k.X/, X 7!X2, which is not an isomorphism.

5.50. Let V be the plane curve Y 2 D X and ' the map V ! A1, .x;y/ 7! x. Then ' is
2 W 1 except over 0, and so we may view it schematically as

|
0

V

A1

ϕ

However, when viewed as a Riemann surface, V.C/ consists of two sheets joined at a single
point O . As a point on the surface moves around O , it shifts from one sheet to the other.
Thus the true picture is more complicated. To get a section to ', it is necessary to remove a
line in C from 0 to infinity, which is not closed for the Zariski topology.
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It is not possible to fit the graph of the
complex curve Y 2 DX into 3-space,
but the picture at right is an early de-
piction of it (from Neumann, Carl,
Vorlesungen über Riemann’s theo-
rie der Abel’schen integrale, Leipzig:
Teubner, 1865).
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Étale maps of singular varieties

Using tangent cones, we can extend the notion of an étale morphism to singular varieties.
Obviously, a regular map ˛WV !W induces a homomorphism gr.O˛.P //! gr.OP /. We
say that ˛ is étale at P if this is an isomorphism. Note that then there is an isomorphism
of the geometric tangent cones CP .V /! C˛.P /.W /, but this map may be an isomorphism
without ˛ being étale at P . Roughly speaking, to be étale at P , we need the map on
geometric tangent cones to be an isomorphism and to preserve the “multiplicities” of the
components.

It is a fairly elementary result that a local homomorphism of local rings ˛WA! B

induces an isomorphism on the graded rings if and only if it induces an isomorphism on
the completions (Atiyah-MacDonald 1969, 10.23).7 Thus ˛WV !W is étale at P if and
only if the map OO˛.P /! OOP is an isomorphism. Hence 5.53 shows that the choice of a
local system of parameters f1; : : : ;fd at a nonsingular point P determines an isomorphism
OOP ! kŒŒX1; : : : ;Xd ��.

We can rewrite this as follows: let t1; : : : ; td be a local system of parameters at a
nonsingular point P ; then there is a canonical isomorphism OOP ! kŒŒt1; : : : ; td ��. For
f 2 OOP , the image of f 2 kŒŒt1; : : : ; td �� can be regarded as the Taylor series of f .

For example, let V D A1, and let P be the point a. Then t DX �a is a local parameter
at a, OP consists of quotients f .X/D g.X/=h.X/ with h.a/¤ 0, and the coefficients of
the Taylor expansion

P
n�0an.X �a/

n of f .X/ can be computed as in elementary calculus
courses: an D f .n/.a/=nŠ.

PROPOSITION 5.51. Let 'WW ! V be a map of irreducible affine varieties. If k.W / is a
finite separable extension of k.V /, then ' is étale on a nonempty open subvariety of W .

PROOF. After passing to open subvarieties, we may assume that W and V are nonsin-
gular, and that kŒW �D kŒV �ŒX�=.f .X//, where f .X/ is separable when considered as a
polynomial in k.V /. Now the statement follows from 5.46. 2

7Atiyah, M. F.; Macdonald, I. G., Introduction to commutative algebra. Addison-Wesley Publishing Co.,
1969.
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ASIDE 5.52. There is an old conjecture that every étale map 'WAn! An is an isomorphism. If we
write ' D .P1; : : : ;Pn/, then this becomes the statement:

if det
�
@Pi

@Xj
.a/
�

is never zero (for a 2 kn), then ' has an inverse.

The condition, det
�
@Pi

@Xj
.a/
�

never zero, implies that det
�
@Pi

@Xj

�
is a nonzero constant (by the Null-

stellensatz 2.11 applied to the ideal generated by det
�
@Pi

@Xj

�
). This conjecture, which is known as the

Jacobian conjecture, has not been settled even for k D C and nD 2, despite the existence of several
published proofs and innumerable announced proofs. It has caused many mathematicians a good deal
of grief. It is probably harder than it is interesting. See the Wikipedia: JACOBIAN CONJECTURE.

o. Étale neighbourhoods

Recall that a regular map ˛WW ! V is said to be étale at a nonsingular point P of W if the
map .d˛/P WTP .W /! T˛.P /.V / is an isomorphism.

Let P be a nonsingular point on a variety V of dimension d . A local system of
parameters at P is a family ff1; : : : ;fd g of germs of regular functions at P generating
the maximal ideal nP � OP . Equivalent conditions: the images of f1; : : : ;fd in nP =n

2
P

generate it as a k-vector space (see 1.4); or .df1/P ; : : : ; .dfd /P is a basis for the dual space
to TP .V /.

PROPOSITION 5.53. Let ff1; : : : ;fd g be a local system of parameters at a nonsingular point
P of V . Then there is a nonsingular open neighbourhood U of P such that f1;f2; : : : ;fd
are represented by pairs . Qf1;U /; : : : ; . Qfd ;U / and the map . Qf1; : : : ; Qfd /WU ! Ad is étale.

PROOF. Obviously, the fi are represented by regular functions Qfi defined on a single open
neighbourhood U 0 of P , which, because of 4.37, we can choose to be nonsingular. The map
˛D . Qf1; : : : ; Qfd /WU

0!Ad is étale at P , because the dual map to .d˛/a is .dXi /o 7! .d Qfi /a.
The next lemma then shows that ˛ is étale on an open neighbourhood U of P . 2

LEMMA 5.54. Let W and V be nonsingular varieties. If ˛WW ! V is étale at P , then it is
étale at all points in an open neighbourhood of P .

PROOF. The hypotheses imply that W and V have the same dimension d , and that their
tangent spaces all have dimension d . We may assume W and V to be affine, say W � Am
and V �An, and that ˛ is given by polynomialsP1.X1; : : : ;Xm/; : : : ;Pn.X1; : : : ;Xm/. Then
.d˛/aWTa.Am/! T˛.a/.An/ is a linear map with matrix

�
@Pi

@Xj
.a/
�

, and ˛ is not étale at a
if and only if the kernel of this map contains a nonzero vector in the subspace Ta.V / of
Ta.An/. Let f1; : : : ;fr generate I.W /. Then ˛ is not étale at a if and only if the matrix0BB@

@fi

@Xj
.a/

@Pi

@Xj
.a/

1CCA
has rank less than m. This is a polynomial condition on a, and so it fails on a closed subset
of W , which doesn’t contain P . 2

Let V be a nonsingular variety, and let P 2 V . An étale neighbourhood of a point P of
V is a pair .Q;� WU ! V / with � an étale map from a nonsingular variety U to V and Q a
point of U such that �.Q/D P .
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COROLLARY 5.55. Let V be a nonsingular variety of dimension d , and let P 2 V . There
is an open Zariski neighbourhood U of P and a map � WU ! Ad realizing .P;U / as an
étale neighbourhood of .0; : : : ;0/ 2 Ad .

PROOF. This is a restatement of the Proposition. 2

ASIDE 5.56. Note the similarity to the definition of a differentiable manifold: every point P on a
nonsingular variety of dimension d has an open neighbourhood that is also a “neighbourhood” of
the origin in Ad . There is a “topology” on algebraic varieties for which the “open neighbourhoods”
of a point are the étale neighbourhoods. Relative to this “topology”, any two nonsingular varieties
are locally isomorphic (this is not true for the Zariski topology). The “topology” is called the étale
topology — see my notes Lectures on Étale Cohomology.

The inverse function theorem (for the étale topology)

THEOREM 5.57 (INVERSE FUNCTION THEOREM). If a regular map of nonsingular vari-
eties 'WV !W is étale at P 2 V , then there exists a commutative diagram

V UP

W U'.P /

'

open

'0�

étale

with UP an open neighbourhood of P , Uf .P / an étale neighbourhood '.P /, and '0 an
isomorphism.

PROOF. According to 5.54, there exists an open neighbourhood U of P such that the
restriction 'jU of ' to U is étale. To get the above diagram, we can take UP D U , U'.P / to
be the étale neighbourhood 'jU WU !W of '.P /, and '0 to be the identity map. 2

The rank theorem

For vector spaces, the rank theorem says the following: let ˛WV !W be a linear map of
k-vector spaces of rank r ; then there exist bases for V and W relative to which ˛ has matrix�
Ir 0

0 0

�
. In other words, there is a commutative diagram

V W

km kn:

˛

� �

.x1;:::;xm/ 7!.x1;:::;xr ;0;:::/

A similar result holds locally for differentiable manifolds. In algebraic geometry, there is the
following weaker analogue.

THEOREM 5.58 (RANK THEOREM). Let 'WV !W be a regular map of nonsingular vari-
eties of dimensions m and n respectively, and let P 2 V . If rank.TP .'//D n, then there
exists a commutative diagram

UP U'.P /

Am An

'jUP

étale étale

.x1;:::;xm/ 7!.x1;:::;xn/
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in which UP and U'.P / are open neighbourhoods of P and '.P / respectively and the
vertical maps are étale.

PROOF. Choose a local system of parameters g1; : : : ;gn at '.P /, and let f1Dg1ı'; : : : ;fnD
gn ı '. Then df1; : : : ;dfn are linearly independent forms on TP .V /, and there exist
fnC1; : : : ;fm such df1; : : : ;dfm is a basis for TP .V /_. Then f1; : : : ;fm is a local sys-
tem of parameters at P . According to 5.54, there exist open neighbourhoods UP of P and
U'.P / of '.P / such that the maps

.f1; : : : ;fm/WUP ! Am

.g1; : : : ;gn/WU'.P /! An

are étale. They give the vertical maps in the above diagram. 2

ASIDE 5.59. Tangent vectors at a point P on a smooth manifold V can be defined to be certain
equivalence classes of curves through P (Wikipedia: TANGENT SPACE). For V D An, there is a
similar description with a curve taken to be a regular map from an open neighbourhood U of 0
in A1 to V . In the general case there is a map from an open neighbourhood of the point P in X
onto affine space sending P to 0 and inducing an isomorphism from tangent space at P to that at 0
(5.53). Unfortunately, the maps from U � A1 to An need not lift to X , and so it is necessary to allow
maps from smooth curves into X (pull-backs of the covering X ! An by the maps from U into An).
There is a description of the tangent vectors at a point P on a smooth algebraic variety V as certain
equivalence classes of regular maps from an étale neighbourhood U of 0 in A1 to V .

p. Smooth maps

DEFINITION 5.60. A regular map 'WV !W of nonsingular varieties is smooth at a point
P of V if .d'/P WTP .V /! T'.P /.W / is surjective; ' is smooth if it is smooth at all points
of V .

THEOREM 5.61. A map 'WV ! W is smooth at P 2 V if and only if there exist open
neighbourhoods UP and U'.P / of P and '.P / respectively such that 'jUP factors into

UP
étale
��!AdimV�dimW

�U'.P /
q
�! U'.P /:

PROOF. Certainly, if 'jUP factors in this way, it is smooth. Conversely, if ' is smooth at P ,
then we get a diagram as in the rank theorem. From it we get maps

UP ! Am�An U'.P /! U'.P /:

The first is étale, and the second is the projection of Am�n�U'.P / onto U'.P /. 2

COROLLARY 5.62. Let V and W be nonsingular varieties. If 'WV !W is smooth at P ,
then it is smooth on an open neighbourhood of V .

PROOF. In fact, it is smooth on the neighbourhood UP in the theorem. 2
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Separable maps

A transcendence basis S of an extension E � F of fields is separating if the algebraic
extensionE �F.S/ is separable. A finitely generated extensionE �F of fields is separable
if it admits a separating transcendence basis.

DEFINITION 5.63. A dominant map 'WW ! V of irreducible algebraic varieties is separa-
ble if k.W / is a separable extension of k.V /.

THEOREM 5.64. Let 'WW ! V be a map of irreducible varieties.

(a) If there exists a nonsingular point P of W such that 'P is nonsingular and .d'/P is
surjective, then ' is dominant and separable.

(b) Conversely if ' is dominant and separable, then the set of P 2W satisfying (a) is
open and dense.

PROOF. Replace W and V with their open subsets of nonsingular points. Then apply the
rank theorem. 2

q. Algebraic varieties as functors

Let R be an affine k-algebra, and let V be an algebraic variety. We define a point of V with
coordinates in R (or an R-point of V ) to be a regular map Spm.R/! V . For example, if
V D V.a/� An, then

V.R/D f.a1; : : : ;an/ 2R
n
j f .a1; : : : ;an/D 0 all f 2 ag;

which is what you should expect. In particular V.k/D V (as a set), i.e., V (as a set) can be
identified with the set of points of V with coordinates in k. Note that

.V �W /.R/D V.R/�W.R/

(property of a product).

CAUTION 5.65. If V is the union of two subvarieties, V D V1[V2, then it need not be true
that V.R/D V1.R/[V2.R/. For example, for any polynomial f .X1; : : : ;Xn/,

An DDf [V.f /;

where Df ' Spm.kŒX1; : : : ;Xn;T �=.1�Tf // and V.f / is the zero set of f , but

Rn ¤ fa 2Rn j f .a/ 2R�g[fa 2Rn j f .a/D 0g

in general.
In fact, it need not be true even when V1 and V2 are open in V . Indeed, this would

say that every regular map U ! V with U affine must factor through V1 or V2, which
is nonsense. For example, the variety V D A2 n f.0;0/g is the union of the open subsets
V1WX ¤ 0 and V2WY ¤ 0, but the affine subvariety U WXCY D 1 of V is not contained in
V1 or V2.
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THEOREM 5.66. A regular map 'WV !W of algebraic varieties defines a family of maps
of sets, '.R/WV.R/!W.R/, one for each affine k-algebra R, such that for every homo-
morphism ˛WR! S of affine k-algebras, rhe diagram

V.R/ W.R/

V.S/ W.S/

'.R/

V.˛/ V.ˇ/

'.S/

(*)

commutes. Every family of maps with this property arises from a unique morphism of
algebraic varieties.

Let Vark (resp. Affk) denote the category of algebraic varieties over k (resp. affine
algebraic varieties over k). For a variety V , let haff

V denote the functor sending an affine
variety T D Spm.R/ to V.R/D Hom.T;V /. We can restate Theorem 5.66 as follows.

THEOREM 5.67. The functor

V  haff
V WVark! Fun.Affk;Sets/

if fully faithful.

PROOF. For an algebraic variety V over k, let hV denote the functor

T  Hom.T;V /WVark! Set:

According to the Yoneda lemma (q.v. Wikipedia) the functor

V  hV WVark! Fun.Vark;Sets/

is fully faithful. Let ' be a morphism of functors haff
V ! haff

V 0 , and let T be an algebraic
variety. Let .Ui /i2I be a finite affine covering of T . Each intersection Ui \Uj is affine
(5.29), and so ' gives rise to a commutative diagram

0 hV .T /
Y

i
hV .Ui /

Y
i;j
hV .Ui \Uj //

0 hV 0.T /
Y

i
hV 0.Ui /

Y
i;j
hV 0.Ui \Uj //

'.Ui / '.Ui\Uj /

in which the pairs of maps are defined by the inclusions Ui \Uj ,! Ui ;Uj . As the rows
are exact (5.15, last sentence), this shows that 'V extends uniquely to a functor hV ! hV 0 ,
which (by the Yoneda lemma) arises from a unique regular map V ! V 0. 2

COROLLARY 5.68. To give an affine group variety is the same as giving a functorGWAffk!
Grp such that for some n and some finite set S of polynomials in kŒX1;X2; : : : ;Xn�, G is
isomorphic to the functor sending R to the set of zeros of S in Rn.

PROOF. Certainly an affine group variety defines such a functor. Conversely, the conditions
imply that G D hV for an affine algebraic variety V (unique up to a unique isomorphism).
The multiplication mapsG.R/�G.R/!G.R/ give a morphism of functors hV �hV ! hV .
As hV �hV ' hV�V (by definition of V �V ), we see that they arise from a regular map
V �V ! V . Similarly, the inverse map and the identity-element map are regular. 2
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It is not unusual for a variety to be most naturally defined in terms of its points functor.
For example:

SLnWR fM 2Mn.R/ j det.M/D 1g

GLnWR fM 2Mn.R/ j det.M/ 2R�g

GaWR .R;C/:

We now describe the essential image of h 7! hV WVark ! Fun.Affk;Sets/. The fibred
product of two maps ˛1WF1! F3, ˛2WF2! F3 of sets is the set

F1�F3
F2 D f.x1;x2/ j ˛1.x1/D ˛2.x2/g:

When F1;F2;F3 are functors and ˛1;˛2;˛3 are morphisms of functors, there is a functor
F D F1�F3

F2 such that

.F1�F3
F2/.R/D F1.R/�F3.R/F2.R/

for all affine k-algebras R.
To simplify the statement of the next proposition, we write U for hU when U is an affine

variety.

PROPOSITION 5.69. A functor F WAffk! Sets is in the essential image of Vark if and only
if there exists an affine variety U and a morphism U ! F such that

(a) the functor R def
D U �F U is a closed affine subvariety of U �U and the maps R� U

defined by the projections are open immersions;

(b) the set R.k/ is an equivalence relation on U.k/, and the map U.k/! F.k/ realizes
F.k/ as the quotient of U.k/ by R.k/.

PROOF. Let F D hV for V an algebraic variety. Choose a finite open affine covering
V D

S
Ui of V , and let U D

F
Ui . It is again an affine variety (Exercise 5-2). The functor

R is hU 0 , where U 0 is the disjoint union of the varieties Ui \Uj . These are affine (5.29), and
so U 0 is affine. As U 0 is the inverse image of �V in U �U , it is closed (5.26). This proves
(a), and (b) is obvious.

The converse is omitted for the present. 2

ASIDE 5.70. A variety V defines a functor R V.R/ from the category of all k-algebras to Sets.
Again, we call the elements of V.R/ the points of V with coordinates in R.

For example, if V is affine,

V.R/D Homk-algebra.kŒV �;R/:

More explicitly, if V � kn and I.V /D .f1; : : : ;fm/, then V.R/ is the set of solutions in Rn of the
system equations

fi .X1; : : : ;Xn/D 0; i D 1; : : : ;m:

Note that, when we allow R to have nilpotent elements, it is important to choose the fi to generate
I.V / (i.e., a radical ideal) and not just an ideal a such that V.a/D V .8

For a general variety V , we write V as a finite union of open affines V D
S
i Vi , and we define

V.R/ to be the set of families .˛i /i2I 2
Q
i2I Vi .R/ such that ˛i agrees with j̨ on Vi \Vj for all

i;j 2 I . This is independent of the choice of the covering, and agrees with the previous definition
when V is affine.

8Let a be an ideal in kŒX1; : : :�. IfA has no nonzero nilpotent elements, then every k-algebra homomorphism
kŒX1; : : :�! A that is zero on a is also zero on rad.a/, and so

Homk.kŒX1; : : :�=a;A/' Homk.kŒX1; : : :�=rad.a/;A/:

This is not true if A has nonzero nilpotents.
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The functor defined by A.E/ (see p. 72) is R R˝kE.

A criterion for a functor to arise from an algebraic prevariety

5.71. By a functor we mean a functor from the category of affine k-algebras to sets. A
subfunctor U of a functor X is open if, for all maps 'WhA!X , the subfunctor '�1.U / of
hA is defined by an open subvariety of Spm.A/. A family .Ui /i2I of open subfunctors of X
is an open covering of X if each Ui is open in X and X.K/D

S
Ui .K/ for every field K.

A functor X is local if, for all k-algebras R and all finite families .fi /i of elements of A
generating A as an ideal, the sequence of sets

X.R/!
Y

i
X.Rfi

/�
Y

i;j
X.Rfifj

/

is exact.
Let A1 denote the functor sending a k-algebra R to its underlying set. For a functor U ,

let O.U /D Hom.U;A1/ — it is a k-algebra.9 A functor U is affine if O.U / is an affine
k-algebra and the canonical map U ! hO.U / is an isomorphism. A local functor admitting
a finite covering by open affines is representable by an algebraic variety over k.

In the functorial approach to algebraic geometry, an algebraic prevariety over k is defined
to be a functor satisfying this criterion. See, for example, I, �1, 3.11, p. 13, of Demazure
and Gabriel, Groupes algébriques: géométrie algébrique, généralités, groupes commutatifs.
1970.

r. Rational and unirational varieties

DEFINITION 5.72. Let V be an algebraic variety over k.

(a) V is unirational if there exists a dominant rational map PnÜ V .

(b) V is rational if there exists a birational map PnÜ V:

In more down-to-earth terms, V is rational if k.V / is a pure transcendental extension of
k, and it is unirational if k.V / is contained in such an extension of k.

In 1876 (over C), Lüroth proved that every unirational curve is rational. For a proof over
any field, see FT 9.19. The Lüroth problem asks whether every unirational variety is rational.

Already for surfaces, this is a difficult problem. In characteristic zero, Castelnuovo and
Severi proved that all unirational surfaces are rational, but in characteristic p ¤ 0, Zariski
showed that some surfaces of the form

Zp D f .X;Y /;

while obviously unirational, are not rational. Surfaces of this form are now called Zariski
surfaces.

Fano attempted to find counter-examples to the Lüroth problem in dimension 3 among
the so-called Fano varieties, but none of his attempted proofs satisfies modern standards. In
1971-72, three examples of nonrational unirational three-folds were found. For a description
of them, and more discussion of the Lüroth problem in characteristic zero, see: Arnaud
Beauville, The Lüroth problem, arXiv:1507.02476.

9Actually, one needs to be more careful to ensure that O.U / is a set; for example, restrict U and A1 to the
category of k-algebras of the form kŒX0;X1; : : :�=a for a fixed family of symbols .Xi / indexed by N.
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A little history

In his first proof of the Riemann hypothesis for curves over finite fields, Weil made use of
the Jacobian variety of the curve, but initially he was not able to construct this as a projective
variety. This led him to introduce “abstract” algebraic varieties, neither affine nor projective
(in 1946). Weil first made use of the Zariski topology when he introduced fibre spaces into
algebraic geometry (in 1949). For more on this, see my article: The Riemann hypothesis
over finite fields: from Weil to the present day.

Exercises

5-1. Show that the only regular functions on P1 are the constant functions. [Thus P1 is
not affine. When k D C, P1 is the Riemann sphere (as a set), and one knows from complex
analysis that the only holomorphic functions on the Riemann sphere are constant. Since
regular functions are holomorphic, this proves the statement in this case. The general case is
easier.]

5-2. Let V be the disjoint union of algebraic varieties V1; : : : ;Vn. This set has an obvious
topology and ringed space structure for which it is an algebraic variety. Show that V is affine
if and only if each Vi is affine.

5-3. Show that an algebraic variety G equipped with a group structure is an algebraic group
if the map .x;y/ 7! x�1yWG�G!G is regular.

5-4. Let G be an algebraic group. Show:

(a) The neutral element e of G is contained in a unique irreducible component Gı of G,
which is also the unique connected component of G containing e.

(b) The subvariety Gı is a normal subgroup of G of finite index, and every algebraic
subgroup of G of finite index contains Gı.

5-5. Show that every subgroup variety of a group variety is closed.

5-6. Show that a prevariety V is separated if and only if it satisfies the following condition:
a regular map U XfP g ! V with U a curve and P a nonsingular point on U extends in at
most one way to a regular map U ! V .

5-7. Prove the final statement in 5.71.





CHAPTER 6
Projective Varieties

Recall (5.3) that we defined Pn to be the set of equivalence classes in knC1Xforiging for
the relation

.a0; : : : ;an/� .b0; : : : ;bn/ ” .a0; : : : ;an/D c.b0; : : : ;bn/ for some c 2 k�:

Let .a0 W : : : W an/ denote the equivalence class of .a0; : : : ;an/, and let � denote the map

knC1Xf.0; : : : ;0/g

�
! Pn:

Let Ui be the set of .a0 W : : : W an/ 2 Pn such that ai ¤ 0, and let ui be the bijection

.a0W : : : Wan/ 7!
�
a0

ai
; : : : ; bai

ai
; : : : ; an

ai

�
WUi

ui
�! An (ai

ai
omitted).

In this chapter, we show that Pn has a unique structure of an algebraic variety for which
these maps become isomorphisms of affine algebraic varieties. A variety isomorphic to
a closed subvariety of Pn is called a projective variety, and a variety isomorphic to a
locally closed subvariety of Pn is called a quasiprojective variety. Every affine variety is
quasiprojective, but not all algebraic varieties are quasiprojective. We study morphisms
between quasiprojective varieties.

Projective varieties are important for the same reason compact manifolds are important:
results are often simpler when stated for projective varieties, and the “part at infinity” often
plays a role, even when we would like to ignore it. For example, a famous theorem of Bezout
(see 6.37 below) says that a curve of degree m in the projective plane intersects a curve of
degree n in exactly mn points (counting multiplicities). For affine curves, one has only an
inequality.

a. Algebraic subsets of Pn

A polynomial F.X0; : : : ;Xn/ is said to be homogeneous of degree d if it is a sum of terms
ai0;:::;inX

i0
0 � � �X

in
n with i0C�� �C in D d ; equivalently,

F.tX0; : : : ; tXn/D t
dF.X0; : : : ;Xn/

for all t 2 k. The polynomials homogeneous of degree d form a subspace kŒX0; : : : ;Xn�d
of kŒX0; : : : ;Xn�, and

kŒX0; : : : ;Xn�D
M
d�0

kŒX0; : : : ;Xn�d I

129
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in other words, every polynomial F can be written uniquely as a sum F D
P
Fd with Fd

homogeneous of degree d .
Let P D .a0 W : : : W an/ 2 Pn. Then P also equals .ca0 W : : : W can/ for any c 2 k�, and

so we can’t speak of the value of a polynomial F.X0; : : : ;Xn/ at P . However, if F is
homogeneous, then F.ca0; : : : ; can/D cdF.a0; : : : ;an/, and so it does make sense to say
that F is zero or not zero at P . An algebraic set in Pn (or projective algebraic set) is the set
of common zeros in Pn of some set of homogeneous polynomials.

EXAMPLE 6.1. Consider the projective algebraic subset of P2 defined by the homogeneous
equation

E W Y 2Z DX3CaXZ2CbZ3. (26)

It consists of the points .x W y W 1/ on the affine curve E\U2

Y 2 DX3CaXCb

(see 2.2) together with the point “at infinity” .0 W 1 W 0/. Note that E\U1 is the affine curve

Z DX3CaXZ2CbZ3;

and that .0W1W0/ corresponds to the point .0;0/ on E\U1:

Z DX3CXZ2CZ3

As .0;0/ is nonsingular on E\U1, we deduce from (4.5) that E is nonsingular unless
X3CaXCb has a multiple root. A nonsingular curve of the form (26) is called an elliptic
curve.

An elliptic curve has a unique structure of a group variety for which the point at infinity
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is the zero:

P

Q

P CQ

When a;b 2 Q, we can speak of the zeros of (26) with coordinates in Q. They also form
a group E.Q/, which Mordell showed to be finitely generated. It is easy to compute the
torsion subgroup of E.Q/, but there is at present no known algorithm for computing the rank
of E.Q/. More precisely, there is an “algorithm” which works in practice, but which has
not been proved to always terminate after a finite amount of time. There is a very beautiful
theory surrounding elliptic curves over Q and other number fields, whose origins can be
traced back almost 1,800 years to Diophantus. (See my book on Elliptic Curves for all of
this.)

An ideal a� kŒX0; : : : ;Xn� is said to be graded or homogeneous if it contains with any
polynomial F all the homogeneous components of F , i.e., if

F 2 a H) Fd 2 a, all d:

It is straightforward to check that

˘ an ideal is graded if and only if it is generated by (a finite set of) homogeneous
polynomials;

˘ the radical of a graded ideal is graded;

˘ an intersection, product, or sum of graded ideals is graded.

For a graded ideal a, we let V.a/ denote the set of common zeros of the homogeneous
polynomials in a. Clearly

a� b H) V.a/� V.b/.

If F1; : : : ;Fr are homogeneous generators for a, then V.a/ is also the set of common zeros of
the Fi . Clearly every polynomial in a is zero on every representative of a point in V.a/. We
write V aff.a/ for the set of common zeros of a in knC1. It is a cone in knC1, i.e., together
with any point P it contains the line through P and the origin, and

V.a/D
V aff.a/Xf.0; : : : ;0/g

�
:

The sets V.a/ in Pn have similar properties to their namesakes in An.
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PROPOSITION 6.2. There are the following relations:

(a) V.0/D PnI V.a/D ; ” rad.a/� .X0; : : : ;Xn/I

(b) V.ab/D V.a\b/D V.a/[V.b/I

(c) V.
P

ai /D
T
V.ai /.

PROOF. For the second statement in (a), note that

V.a/D ; ” V aff.a/� f.0; : : : ;0/g

” rad.a/� .X0; : : : ;Xn/ (strong Nullstellensatz 2.16).

The remaining statements can be proved directly, as in (2.10), or by using the relation
between V.a/ and V aff.a/. 2

Proposition 6.2 shows that the projective algebraic sets are the closed sets for a topology
on Pn. This topology is called the Zariski topology on Pn.

IfC is a cone in knC1, then I.C / is a graded ideal in kŒX0; : : : ;Xn�: ifF.ca0; : : : ; can/D
0 for all c 2 k�, then X

d

Fd .a0; : : : ;an/ � c
d
D F.ca0; : : : ; can/D 0;

for infinitely many c, and so
P
Fd .a0; : : : ;an/X

d is the zero polynomial. For a subset S of
Pn, we define the affine cone over S in knC1 to be

C D ��1.S/[foriging

and we set
I.S/D I.C /.

Note that if S is nonempty and closed, then C is the closure of ��1.S/¤ ;, and that I.S/
is spanned by the homogeneous polynomials in kŒX0; : : : ;Xn� that are zero on S .

PROPOSITION 6.3. The maps V and I define inverse bijections between the set of algebraic
subsets of Pn and the set of proper graded radical ideals of kŒX0; : : : ;Xn�. An algebraic set
V in Pn is irreducible if and only if I.V / is prime; in particular, Pn is irreducible.

PROOF. Note that we have bijections

falgebraic subsets of Png fnonempty closed cones in knC1g

fproper graded radical ideals in kŒX0; : : : ;Xn�g

S 7!C

V I

Here the top map sends S to the affine cone over S , and the maps V and I are in the sense
of projective geometry and affine geometry respectively. The composite of any three of these
maps is the identity map, which proves the first statement because the composite of the top
map with I is I in the sense of projective geometry. Obviously, V is irreducible if and only
if the closure of ��1.V / is irreducible, which is true if and only if I.V / is a prime ideal. 2
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Note that the graded ideals .X0; : : : ;Xn/ and kŒX0; : : : ;Xn� are both radical, but

V.X0; : : : ;Xn/D ;D V.kŒX0; : : : ;Xn�/

and so the correspondence between irreducible subsets of Pn and radical graded ideals is not
quite one-to-one.

ASIDE 6.4. In English “homogeneous ideal” is more common than “graded ideal”, but we follow
Bourbaki, Alg, II, �11. A graded ring is a pair .S;.Sd /d2N/ consisting of a ring S and a family of
additive subgroups Sd such that (

S D
M

d2N
Sd

SdSe � SdCe , all d;e 2 N:

An ideal a in S is graded if and only if

aD
M

d2N
.a\Sd /;

this means that it is a graded submodule of .S;.Sd //. The quotient of a graded ring S by a graded
ideal a is a graded ring S=aD

L
d Sd=.a\Sd /.

b. The Zariski topology on Pn

For a graded polynomial F , let

D.F /D fP 2 Pn j F.P /¤ 0g:

Then, just as in the affine case, D.F / is open and the sets of this type form a base for the
topology of Pn. As in the opening paragraph of this chapter, we let Ui DD.Xi /.

To each polynomial f .X1; : : : ;Xn/, we attach the homogeneous polynomial of the same
degree

f �.X0; : : : ;Xn/DX
deg.f /
0 f

�
X1

X0
; : : : ; Xn

X0

�
;

and to each homogeneous polynomial F.X0; : : : ;Xn/, we attach the polynomial

F�.X1; : : : ;Xn/D F.1;X1; : : : ;Xn/:

PROPOSITION 6.5. Each subset Ui of Pn is open in the Zariski topology on Pn, and when
we endow it with the induced topology, the bijection

Ui $ An, .a0 W : : : W 1 W : : : W an/$ .a0; : : : ;ai�1;aiC1; : : : ;an/

becomes a homeomorphism.

PROOF. It suffices to prove this with i D 0. The set U0 DD.X0/, and so it is a basic open
subset in Pn. Clearly, for any homogeneous polynomial F 2 kŒX0; : : : ;Xn�,

D.F.X0; : : : ;Xn//\U0 DD.F.1;X1; : : : ;Xn//DD.F�/

and, for any polynomial f 2 kŒX1; : : : ;Xn�,

D.f /DD.f �/\U0:

Thus, under the bijection U0 $ An, the basic open subsets of An correspond to the in-
tersections with Ui of the basic open subsets of Pn, which proves that the bijection is a
homeomorphism. 2
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REMARK 6.6. It is possible to use this to give a different proof that Pn is irreducible. We
apply the criterion that a space is irreducible if and only if every nonempty open subset is
dense (see p. 46). Note that each Ui is irreducible, and that Ui \Uj is open and dense in
each of Ui and Uj (as a subset of Ui , it is the set of points .a0 W : : : W 1 W : : : W aj W : : : W an/
with aj ¤ 0/. Let U be a nonempty open subset of Pn; then U \Ui is open in Ui . For some
i , U \Ui is nonempty, and so must meet Ui \Uj . Therefore U meets every Uj , and so is
dense in every Uj . It follows that its closure is all of Pn.

c. Closed subsets of An and Pn

We identify An with U0, and examine the closures in Pn of closed subsets of An. Note that

Pn D AntH1; H1 D V.X0/:

With each ideal a in kŒX1; : : : ;Xn�, we associate the graded ideal a� in kŒX0; : : : ;Xn�
generated by ff � j f 2 ag. For a closed subset V of An, set V � D V.a�/ with aD I.V /.

With each graded ideal a in kŒX0;X1; : : : ;Xn], we associate the ideal a� in kŒX1; : : : ;Xn�
generated by fF� j F 2 ag. When V is a closed subset of Pn, we set V� D V.a�/ with
aD I.V /.

PROPOSITION 6.7. (a) Let V be a closed subset of An. Then V � is the closure of V in Pn,
and .V �/� D V . If V D

S
Vi is the decomposition of V into its irreducible components,

then V � D
S
V �i is the decomposition of V � into its irreducible components.

(b) Let V be a closed subset of Pn. Then V� D V \An, and if no irreducible component
of V lies in H1 or contains H1, then V� is a proper subset of An, and .V�/� D V .

PROOF. Straightforward. 2

Examples

6.8. For
V WY 2 DX3CaXCb;

we have
V �WY 2Z DX3CaXZ2CbZ3;

and .V �/� D V .

6.9. Let V D V.f1; : : : ;fm/; then the closure of V in Pn is the union of the irreducible
components of V.f �1 ; : : : ;f

�
m/ not contained in H1. For example, let

V D V.X1;X
2
1 CX2/D f.0;0/gI

then V.X0X1;X21CX0X2/ consists of the two points .1W0W0/ (the closure of V ) and .0W0W1/
(which is contained in H1).1

6.10. For V DH1 D V.X0/, we have V� D ;D V.1/ and .V�/� D ;¤ V .

1Of course, in this case aD .X1;X2/, a� D .X1;X2/, and V � D f.1W0W0/g, and so this example doesn’t
contradict the proposition.
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d. The hyperplane at infinity

It is often convenient to think of Pn as being An D U0 with a hyperplane added “at infinity”.
More precisely, we identify the set U0 with An; the complement of U0 in Pn is

H1 D f.0 W a1 W : : : W an/ 2 Png;

which can be identified with Pn�1.
For example, P1 DA1tH1 (disjoint union), with H1 consisting of a single point, and

P2 D A2[H1 with H1 a projective line. Consider the line

1CaX1CbX2 D 0

in A2. Its closure in P2 is the line

X0CaX1CbX2 D 0:

This line intersects the lineH1D V.X0/ at the point .0 W �b W a/, which equals .0 W 1 W �a=b/
when b ¤ 0. Note that �a=b is the slope of the line 1CaX1CbX2 D 0, and so the point at
which a line intersects H1 depends only on the slope of the line: parallel lines meet in one
point at infinity. We can think of the projective plane P2 as being the affine plane A2 with
one point added at infinity for each “direction” in A2.

Similarly, we can think of Pn as being An with one point added at infinity for each
direction in An — being parallel is an equivalence relation on the lines in An, and there is
one point at infinity for each equivalence class of lines.

We can replace U0 with Un in the above discussion, and write Pn D Un tH1 with
H1 D f.a0W : : : Wan�1W0/g, as in Example 6.1. Note that in this example the point at infinity
on the elliptic curve Y 2 DX3CaXCb is the intersection of the closure of any vertical line
with H1.

e. Pn is an algebraic variety

For each i , write Oi for the sheaf on Ui � Pn defined by the homeomorphism ui WUi ! An.

LEMMA 6.11. Let Uij D Ui \Uj ; then Oi jUij DOj jUij . When endowed with this sheaf;
Uij is an affine algebraic variety; moreover, � .Uij ;Oi / is generated as a k-algebra by the
functions .f jUij /.gjUij / with f 2 � .Ui ;Oi /, g 2 � .Uj ;Oj /.

PROOF. It suffices to prove this for .i;j /D .0;1/. All rings occurring in the proof will be
identified with subrings of the field k.X0;X1; : : : ;Xn/.

Recall that

U0 D f.a0 W a1 W : : : W an/ j a0 ¤ 0g; .a0 W a1 W : : : W an/$ .a1

a0
; a2

a0
; : : : ; an

a0
/ 2 An:

Let kŒX1

X0
; X2

X0
; : : : ; Xn

X0
� be the subring of k.X0;X1; : : : ;Xn/ generated by the quotients Xi

X0

— it is the polynomial ring in the n symbols X1

X0
; : : : ; Xn

X0
. An element f .X1

X0
; : : : ; Xn

X0
/ 2

kŒX1

X0
; : : : ; Xn

X0
� defines a map

.a0 W a1 W : : : W an/ 7! f .a1

a0
; : : : ; an

a0
/WU0! k;
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and in this way kŒX1

X0
; X2

X0
; : : : ; Xn

X0
� becomes identified with the ring of regular functions on

U0; and U0 with Spm
�
kŒX1

X0
; : : : ; Xn

X0
�
�

.
Next consider the open subset of U0;

U01 D f.a0 W : : : W an/ j a0 ¤ 0, a1 ¤ 0g:

It is D.X1

X0
/, and is therefore an affine subvariety of .U0;O0/. The inclusion U01 ,! U0

corresponds to the inclusion of rings kŒX1

X0
; : : : ; Xn

X0
� ,! kŒX1

X0
; : : : ; Xn

X0
; X0

X1
�. An element

f .X1

X0
; : : : ; Xn

X0
; X0

X1
/ of kŒX1

X0
; : : : ; Xn

X0
; X0

X1
� defines the function .a0 W : : : W an/ 7!f .a1

a0
; : : : ; an

a0
; a0

a1
/

on U01.
Similarly,

U1 D f.a0 W a1 W : : : W an/ j a1 ¤ 0g; .a0 W a1 W : : : W an/$ .a0

a1
; : : : ; an

a1
/ 2 An;

and we identifyU1 with Spm
�
kŒX0

X1
; X2

X0
; : : : ; Xn

X1
�
�

. A polynomial f .X0

X1
; : : : ; Xn

X1
/ in kŒX0

X1
; : : : ; Xn

X1
�

defines the map .a0 W : : : W an/ 7! f .a0

a1
; : : : ; an

a1
/WU1! k.

When regarded as an open subset of U1; U01 D D.X0

X1
/, and is therefore an affine

subvariety of .U1;O1/, and the inclusion U01 ,! U1 corresponds to the inclusion of rings
kŒX0

X1
; : : : ; Xn

X1
� ,! kŒX0

X1
; : : : ; Xn

X1
; X1

X0
�. An element f .X0

X1
; : : : ; Xn

X1
; X1

X0
/ of kŒX0

X1
; : : : ; Xn

X1
; X1

X0
�

defines the function .a0 W : : : W an/ 7! f .a0

a1
; : : : ; an

a1
; a1

a0
/ on U01.

The two subrings kŒX1

X0
; : : : ; Xn

X0
; X0

X1
� and kŒX0

X1
; : : : ; Xn

X1
; X1

X0
� of k.X0;X1; : : : ;Xn/ are

equal, and an element of this ring defines the same function on U01 regardless of which of
the two rings it is considered an element. Therefore, whether we regard U01 as a subvariety
of U0 or of U1 it inherits the same structure as an affine algebraic variety (3.15). This
proves the first two assertions, and the third is obvious: kŒX1

X0
; : : : ; Xn

X0
; X0

X1
� is generated by

its subrings kŒX1

X0
; : : : ; Xn

X0
� and kŒX0

X1
; X2

X1
; : : : ; Xn

X1
�. 2

PROPOSITION 6.12. There is a unique structure of an algebraic variety on Pn for which
each Ui is an open affine subvariety of Pn and each map ui is an isomorphism of algebraic
varieties. Moreover, Pn is separated.

PROOF. Endow each Ui with the structure of an affine algebraic variety for which ui is an
isomorphism. Then PnD

S
Ui , and the lemma shows that this covering satisfies the patching

condition 5.15, and so Pn has a unique structure of a ringed space for which Ui ,! Pn is a
homeomorphism onto an open subset of Pn and OPn jUi DOUi

. Moreover, because each
Ui is an algebraic variety, this structure makes Pn into an algebraic prevariety. Finally, the
lemma shows that Pn satisfies the condition 5.29(c) to be separated. 2

EXAMPLE 6.13. Let C be the plane projective curve

C WY 2Z DX3

and assume that char.k/¤ 2. For each a 2 k�, there is an automorphism

.x W y W z/ 7! .ax W y W a3z/WC
'a
�! C:

Patch two copies of C �A1 together along C � .A1 � f0g/ by identifying .P;a/ with
.'a.P /;a

�1/, P 2 C , a 2 A1Xf0g. One obtains in this way a singular surface that is not
quasiprojective (see Hartshorne 1977, Exercise 7.13). It is even complete — see below —
and so if it were quasiprojective, it would be projective. In Shafarevich 1994, VI 2.3, there
is an example of a nonsingular complete variety of dimension 3 that is not projective. It
is known that every irreducible separated curve is quasiprojective, and every nonsingular
complete surface is projective, and so these examples are minimal.
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f. The homogeneous coordinate ring of a projective variety

Recall (p. 114) that attached to each irreducible variety V , there is a field k.V / with the
property that k.V / is the field of fractions of kŒU � for any open affine U � V . We now
describe this field in the case that V D Pn. Recall that kŒU0�D kŒX1

X0
; : : : ; Xn

X0
�. We regard

this as a subring of k.X0; : : : ;Xn/, and wish to identify the field of fractions of kŒU0� as a
subfield of k.X0; : : : ;Xn/. Every nonzero F 2 kŒU0� can be written

F.X1

X0
; : : : ; Xn

X0
/D

F �.X0; : : : ;Xn/

X
deg.F /
0

with F � homogeneous of degree deg.F /, and it follows that the field of fractions of kŒU0� is

k.U0/D

�
G.X0; : : : ;Xn/

H.X0; : : : ;Xn/

ˇ̌̌̌
G, H homogeneous of the same degree

�
[f0g:

Write k.X0; : : : ;Xn/0 for this field (the subscript 0 is short for “subfield of elements of
degree 0”), so that k.Pn/D k.X0; : : : ;Xn/0. Note that for F D G

H
in k.X0; : : : ;Xn/0;

.a0 W : : : W an/ 7!
G.a0; : : : ;an/

H.a0; : : : ;an/
WD.H/! k,

is a well-defined function, which is obviously regular (look at its restriction to Ui /.
We now extend this discussion to any irreducible projective variety V . Such a V can

be written V D V.p/ with p a graded radical ideal in kŒX0; : : : ;Xn�, and we define the
homogeneous coordinate ring of V (with its given embedding) to be

khomŒV �D kŒX0; : : : ;Xn�=p.

Note that khomŒV � is the ring of regular functions on the affine cone over V ; therefore its
dimension is dim.V /C1: It depends, not only on V , but on the embedding of V into Pn,
i.e., it is not intrinsic to V . For example,

.a0 W a1/ 7! .a20 W a0a1 W a
2
1/WP

1 �
�! P2

is an isomorphism from P1 onto its image �.P1/WX0X2 D X21 (see 6.23 below), but
khomŒP1�D kŒX0;X1�, which is the affine coordinate ring of the smooth variety A2, whereas
khomŒ�.P1/�D kŒX0;X1;X2�=.X0X2�X21 /, which is the affine coordinate ring of the sin-
gular variety X0X2�X21 .

We say that a nonzero f 2 khomŒV � is homogeneous of degree d if it can be repre-
sented by a homogeneous polynomial F of degree d in kŒX0; : : : ;Xn�, and we say that 0 is
homogeneous of degree 0.

LEMMA 6.14. Each element of khomŒV � can be written uniquely in the form

f D f0C�� �Cfd

with fi homogeneous of degree i .

PROOF. Let F represent f ; then F can be written F DF0C�� �CFd with Fi homogeneous
of degree i ; when read modulo p, this gives a decomposition of f of the required type.
Suppose f also has a decomposition f D

P
gi , with gi represented by the homogeneous

polynomial Gi of degree i . Then F �G 2 p, and the homogeneity of p implies that
Fi �Gi D .F �G/i 2 p. Therefore fi D gi . 2
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It therefore makes sense to speak of homogeneous elements of kŒV �. For such an element
h, we define D.h/D fP 2 V j h.P /¤ 0g.

Since khomŒV � is an integral domain, we can form its field of fractions khom.V /. Define

khom.V /0 D
n g
h
2 khom.V /

ˇ̌̌
g and h homogeneous of the same degree

o
[f0g:

PROPOSITION 6.15. The field of rational functions on V is k.V / def
D khom.V /0.

PROOF. Consider V0
def
D U0\V . As in the case of Pn, we can identify kŒV0� with a subring

of khomŒV �, and then the field of fractions of kŒV0� becomes identified with khom.V /0. 2

g. Regular functions on a projective variety

Let V be an irreducible projective variety, and let f 2 k.V /. By definition, we can write
f D g

h
with g and h homogeneous of the same degree in khomŒV � and h ¤ 0. For any

P D .a0 W : : : W an/ with h.P /¤ 0,

f .P / def
D
g.a0; : : : ;an/

h.a0; : : : ;an/

is well-defined: if .a0; : : : ;an/ is replaced by .ca0; : : : ; can/, then both the numerator and
denominator are multiplied by cdeg.g/ D cdeg.h/.

We can write f in the form g
h

in many different ways,2 but if

f D
g

h
D
g0

h0
(in k.V /0),

then
gh0 D g0h (in khomŒV �)

and so
g.a0; : : : ;an/ �h

0.a0; : : : ;an/D g
0.a0; : : : ;an/ �h.a0; : : : ;an/:

Thus, if h0.P /¤ 0, the two representations give the same value for f .P /.

PROPOSITION 6.16. For each f 2 k.V / def
D khom.V /0, there is an open subset U of V ,

where f .P / is defined, and P 7! f .P / is a regular function on U ; every regular function
on an open subset of V arises from a unique element of k.V /.

PROOF. From the above discussion, we see that f defines a regular function on U DS
D.h/, where h runs over the denominators of expressions f D g

h
with g and h homoge-

neous of the same degree in khomŒV �.
Conversely, let f be a regular function on an open subset U of V , and let P 2 U . Then

P lies in the open affine subvariety V \Ui for some i , and so f coincides with the function
defined by some fP 2 k.V \Ui /D k.V / on an open neighbourhood of P . If f coincides
with the function defined by fQ 2 k.V / in a neighbourhood of a second point Q of U , then
fP and fQ define the same function on some open affine U 0, and so fP D fQ as elements
of kŒU 0�� k.V /. This shows that f is the function defined by fP on the whole of U . 2

2Unless khomŒV � is a unique factorization domain, there will be no preferred representation f D g
h

.
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REMARK 6.17. (a) The elements of k.V /D khom.V /0 should be regarded as the algebraic
analogues of meromorphic functions on a complex manifold; the regular functions on an open
subset U of V are the “meromorphic functions without poles” on U . [In fact, when k D C,
this is more than an analogy: a nonsingular projective algebraic variety over C defines a
complex manifold, and the meromorphic functions on the manifold are precisely the rational
functions on the variety. For example, the meromorphic functions on the Riemann sphere
are the rational functions in z.]

(b) We shall see presently (6.24) that, for any nonzero homogeneous h 2 khomŒV �, D.h/
is an open affine subset of V . The ring of regular functions on it is

kŒD.h/�D fg=hm j g homogeneous of degree mdeg.h/g[f0g:

We shall also see that the ring of regular functions on V itself is just k, i.e., any regular
function on an irreducible (connected will do) projective variety is constant. However, if U
is an open nonaffine subset of V , then the ring � .U;OV / of regular functions can be almost
anything — it needn’t even be a finitely generated k-algebra!

h. Maps from projective varieties

We describe the morphisms from a projective variety to another variety.

PROPOSITION 6.18. The map

� WAnC1Xforiging ! Pn, .a0; : : : ;an/ 7! .a0 W : : : W an/

is an open morphism of algebraic varieties. A map ˛WPn! V with V a prevariety is regular
if and only if ˛ ı� is regular.

PROOF. The restriction of � to D.Xi / is the projection

.a0; : : : ;an/ 7! .a0

ai
W : : : W an

ai
/WknC1XV.Xi /! Ui ;

which is the regular map of affine varieties corresponding to the map of k-algebras

k
h
X0

Xi
; : : : ; Xn

Xi

i
! kŒX0; : : : ;Xn�ŒX

�1
i �:

(In the first algebra Xj

Xi
is to be thought of as a single symbol.) It now follows from (5.4) that

� is regular.
Let U be an open subset of knC1Xforiging, and let U 0 be the union of all the lines

through the origin that meet U , that is, U 0 D ��1�.U /. Then U 0 is again open in knC1X
foriging, because U 0 D

S
cU , c 2 k�, and x 7! cx is an automorphism of knC1Xforiging.

The complement Z of U 0 in knC1Xforiging is a closed cone, and the proof of (6.3) shows
that its image is closed in Pn; but �.U / is the complement of �.Z/. Thus � sends open sets
to open sets.

The rest of the proof is straightforward. 2

Thus, the regular maps Pn! V are just the regular maps AnC1Xforiging! V factoring
through Pn (as maps of sets).
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REMARK 6.19. Consider polynomials F0.X0; : : : ;Xm/; : : : ;Fn.X0; : : : ;Xm/ of the same
degree. The map

.a0 W : : : W am/ 7! .F0.a0; : : : ;am/ W : : : W Fn.a0; : : : ;am//

obviously defines a regular map to Pn on the open subset of Pm, where not all Fi vanish,
that is, on the set

S
D.Fi /D PnXV.F1; : : : ;Fn/. Its restriction to any subvariety V of Pm

will also be regular. It may be possible to extend the map to a larger set by representing it by
different polynomials. Conversely, every such map arises in this way, at least locally. More
precisely, there is the following result.

PROPOSITION 6.20. Let V D V.a/ � Pm and W D V.b/ � Pn. A map 'WV ! W is
regular if and only if, for every P 2 V , there exist polynomials

F0.X0; : : : ;Xm/; : : : ;Fn.X0; : : : ;Xm/;

homogeneous of the same degree, such that

' ..b0 W : : : W bn//D .F0.b0; : : : ;bm/ W : : : W Fn.b0; : : : ;bm//

for all points .b0 W : : : W bm/ in some neighbourhood of P in V.a/.

PROOF. Straightforward. 2

EXAMPLE 6.21. We prove that the circleX2CY 2DZ2 is isomorphic to P1. This equation
can be rewritten .XC iY /.X � iY /DZ2, and so, after a change of variables, the equation
of the circle becomes C WXZ D Y 2. Define

'WP1! C , .a W b/ 7! .a2 W ab W b2/:

For the inverse, define

 WC ! P1 by
�
.a W b W c/ 7! .a W b/ if a¤ 0
.a W b W c/ 7! .b W c/ if b ¤ 0

:

Note that,

a¤ 0¤ b; ac D b2 H)
c

b
D
b

a

and so the two maps agree on the set where they are both defined. Clearly, both ' and  are
regular, and one checks directly that they are inverse.

i. Some classical maps of projective varieties

We list some of the classic maps.

HYPERPLANE SECTIONS AND COMPLEMENTS

6.22. Let LD
P
ciXi be a nonzero linear form in nC1 variables. Then the map

.a0 W : : : W an/ 7!

�
a0

L.a/
; : : : ;

an

L.a/

�
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is a bijection of D.L/ � Pn onto the hyperplane L.X0;X1; : : : ;Xn/ D 1 of AnC1, with
inverse

.a0; : : : ;an/ 7! .a0 W : : : W an/:

Both maps are regular — for example, the components of the first map are the regular
functions XjP

ciXi
. As V.L�1/ is affine, so also is D.L/, and its ring of regular functions

is kŒ X0P
ciXi

; : : : ; XnP
ciXi

�: In this ring, each quotient XjP
ciXi

is to be thought of as a single

symbol, and
P
cj

XjP
ciXi
D 1; thus it is a polynomial ring in n symbols; any one symbol

XjP
ciXi

for which cj ¤ 0 can be omitted.
For a fixed P D .a0W : : : Wan/ 2 Pn, the set of cD .c0W : : : W cn/ such that

Lc.P /
def
D

X
ciai ¤ 0

is a nonempty open subset of Pn (n > 0). Therefore, for any finite set S of points of Pn,

fc 2 Pn j S �D.Lc/g

is a nonempty open subset of Pn (because Pn is irreducible). In particular, S is contained in
an open affine subset D.Lc/ of Pn. Moreover, if S � V , where V is a closed subvariety of
Pn, then S � V \D.Lc/: any finite set of points of a projective variety is contained in an
open affine subvariety.

THE VERONESE MAP; HYPERSURFACE SECTIONS

6.23. Let
I D f.i0; : : : ; in/ 2 NnC1 j

X
ij Dmg:

Note that I indexes the monomials of degree m in nC1 variables. It has
�
mCn
m

�
elements3.

Write �n;m D
�
mCn
m

�
� 1, and consider the projective space P�n;m whose coordinates are

indexed by I ; thus a point of P�n;m can be written .: : : W bi0:::in W : : :/. The Veronese mapping
is defined to be

vWPn! P�n;m , .a0 W : : : W an/ 7! .: : : W bi0:::in W : : :/; bi0:::in D a
i0
0 : : :a

in
n :

In other words, the Veronese mapping sends an nC 1-tuple .a0W : : : W an/ to the set of
monomials in the ai of degree m. For example, when nD 1 and mD 2, the Veronese map is

P1! P2, .a0 W a1/ 7! .a20 W a0a1 W a
2
1/:

3This can be proved by induction on mCn. If m D 0 D n, then
�
0
0

�
D 1, which is correct. A general

homogeneous polynomial of degree m can be written uniquely as

F.X0;X1; : : : ;Xn/D F1.X1; : : : ;Xn/CX0F2.X0;X1; : : : ;Xn/

with F1 homogeneous of degree m and F2 homogeneous of degree m�1. But�
mCn
m

�
D
�
mCn�1
m

�
C
�
mCn�1
m�1

�
because they are the coefficients of Xm in

.XC1/mCn D .XC1/.XC1/mCn�1;

and this proves the induction.
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Its image is the curve �.P1/ WX0X2 DX21 , and the map

.b2;0 W b1;1 W b0;2/ 7!

�
.b2;0 W b1;1/ if b2;0 ¤ 1
.b1;1 W b0;2/ if b0;2 ¤ 0

is an inverse �.P1/! P1. (Cf. Example 6.22.)
When nD 1 and m is general, the Veronese map is

P1! Pm, .a0 W a1/ 7! .am0 W a
m�1
0 a1 W : : : W a

m
1 /:

I claim that, in the general case, the image of � is a closed subset of P�n;m and that �
defines an isomorphism of projective varieties �WPn! �.Pn/.

First note that the map has the following interpretation: if we regard the coordinates ai
of a point P of Pn as being the coefficients of a linear form LD

P
aiXi (well-defined up

to multiplication by nonzero scalar), then the coordinates of �.P / are the coefficients of the
homogeneous polynomial Lm with the binomial coefficients omitted.

As L¤ 0) Lm ¤ 0, the map � is defined on the whole of Pn, that is,

.a0; : : : ;an/¤ .0; : : : ;0/) .: : : ;bi0:::in ; : : :/¤ .0; : : : ;0/:

Moreover,L1¤ cL2)Lm1 ¤ cL
m
2 , because kŒX0; : : : ;Xn� is a unique factorization domain,

and so � is injective. It is clear from its definition that � is regular.
We shall see in the next chapter that the image of any projective variety under a regular

map is closed, but in this case we can prove directly that �.Pn/ is defined by the system of
equations:

bi0:::inbj0:::jn
D bk0:::kn

b`0:::`n
; ihCjh D khC`h, all h: (*)

Obviously Pn maps into the algebraic set defined by these equations. Conversely, let

Vi D f.: : : : W bi0:::in W : : :/ j b0:::0m0:::0 ¤ 0g:

Then �.Ui / � Vi and ��1.Vi /D Ui . It is possible to write down a regular map Vi ! Ui
inverse to �jUi : for example, define V0! Pn to be

.: : : W bi0:::in W : : :/ 7! .bm;0;:::;0 W bm�1;1;0;:::;0 W bm�1;0;1;0;:::;0 W : : : W bm�1;0;:::;0;1/:

Finally, one checks that �.Pn/�
S
Vi .

For any closed variety W � Pn, �jW is an isomorphism of W onto a closed subvariety
�.W / of �.Pn/� P�n;m .

6.24. The Veronese mapping has a very important property. If F is a nonzero homogeneous
form of degreem� 1, then V.F /� Pn is called a hypersurface of degreem and V.F /\W
is called a hypersurface section of the projective variety W . When m D 1, “surface” is
replaced by “plane”.

Now let H be the hypersurface in Pn of degree mX
ai0:::inX

i0
0 � � �X

in
n D 0,

and let L be the hyperplane in P�n;m defined byX
ai0:::inXi0:::in :
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Then �.H/D �.Pn/\L, i.e.,

H.a/D 0 ” L.�.a//D 0:

Thus for any closed subvariety W of Pn, � defines an isomorphism of the hypersurface
sectionW \H of V onto the hyperplane section �.W /\L of �.W /. This observation often
allows one to reduce questions about hypersurface sections to questions about hyperplane
sections.

As one example of this, note that � maps the complement of a hypersurface section of
W isomorphically onto the complement of a hyperplane section of �.W /, which we know
to be affine. Thus the complement of any hypersurface section of a projective variety is an
affine variety.

AUTOMORPHISMS OF Pn

6.25. An element AD .aij / of GLnC1 defines an automorphism of Pn:

.x0 W : : : W xn/ 7! .: : : W
P
aijxj W : : :/I

clearly it is a regular map, and the inverse matrix gives the inverse map. Scalar matrices act
as the identity map.

Let PGLnC1 D GLnC1 =k�I , where I is the identity matrix, that is, PGLnC1 is the
quotient of GLnC1 by its centre. Then PGLnC1 is the complement in P.nC1/2�1 of the
hypersurface det.Xij /D 0, and so it is an affine variety with ring of regular functions

kŒPGLnC1�D fF.: : : ;Xij ; : : :/=det.Xij /m j deg.F /Dm � .nC1/g[f0g:

It is an affine group variety.
The homomorphism PGLnC1! Aut.Pn/ is obviously injective. We sketch a proof that

it is surjective.4 Consider a hypersurface

H WF.X0; : : : ;Xn/D 0

in Pn and a line
LD f.ta0 W : : : W tan/ j t 2 kg

in Pn. The points of H \L are given by the solutions of

F.ta0; : : : ; tan/D 0,

which is a polynomial of degree � deg.F / in t unless L�H . Therefore, H \L contains
� deg.F / points, and it is not hard to show that for a fixed H and most L it will contain
exactly deg.F / points. Thus, the hyperplanes are exactly the closed subvarieties H of Pn
such that

(a) dim.H/D n�1;

(b) #.H \L/D 1 for all lines L not contained in H .
These are geometric conditions, and so any automorphism of Pn must map hyperplanes to
hyperplanes. But on an open subset of Pn, such an automorphism takes the form

.b0 W : : : W bn/ 7! .F0.b0; : : : ;bn/ W : : : W Fn.b0; : : : ;bn//;

where the Fi are homogeneous of the same degree d (see 6.20). Such a map will take
hyperplanes to hyperplanes if and only if d D 1.

4This is related to the fundamental theorem of projective geometry — see E. Artin, Geometric Algebra,
Interscience, 1957, Theorem 2.26.
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THE SEGRE MAP

6.26. This is the mapping

..a0 W : : : W am/; .b0 W : : : W bn// 7! ..: : : W aibj W : : ://WPm�Pn! PmnCmCn:

The index set for PmnCmCn is f.i;j / j 0 � i � m; 0 � j � ng. Note that if we interpret
the tuples on the left as being the coefficients of two linear forms L1 D

P
aiXi and

L2 D
P
bjYj , then the image of the pair is the set of coefficients of the homogeneous

form of degree 2, L1L2. From this observation, it is obvious that the map is defined on
the whole of Pm�Pn .L1 ¤ 0¤ L2) L1L2 ¤ 0/ and is injective. On any subset of the
form Ui �Uj it is defined by polynomials, and so it is regular. Again one can show that it
is an isomorphism onto its image, which is the closed subset of PmnCmCn defined by the
equations

wijwkl �wilwkj D 0

– see Shafarevich 1994, I 5.1. For example, the map

..a0 W a1/; .b0 W b1// 7! .a0b0 W a0b1 W a1b0 W a1b1/WP1�P1! P3

has image the hypersurface
H W WZ DXY:

The map
.w W x W y W z/ 7! ..w W y/;.w W x//

is an inverse on the set where it is defined. [Incidentally, P1 �P1 is not isomorphic to
P2, because in the first variety there are closed curves, e.g., two vertical lines, that don’t
intersect.]

If V and W are closed subvarieties of Pm and Pn, then the Segre map sends V �W
isomorphically onto a closed subvariety of PmnCmCn. Thus products of projective varieties
are projective.

The product P1�Pn contains many disjoint copies of Pn as closed subvarieties. There-
fore a finite disjoint union of copies of Pn is projective, which shows that a finite disjoint
union of projective varieties is projective.

There is an explicit description of the topology on Pm�Pn W the closed sets are the sets
of common solutions of families of equations

F.X0; : : : ;XmIY0; : : : ;Yn/D 0

with F separately homogeneous in the Xi and in the Yj .

PROJECTIONS WITH GIVEN CENTRE

6.27. Let L1; : : : ;Ln�d be linearly independent linear forms in nC 1 variables. Their
zero set E in knC1 has dimension d C 1, and so their zero set in Pn is a d -dimensional
linear space. Define � WPn�E! Pn�d�1 by �.a/D .L1.a/ W : : : W Ln�d .a//; such a map
is called a projection with centre E. If V is a closed subvariety disjoint from E, then �
defines a regular map V ! Pn�d�1. More generally, if F1; : : : ;Fr are homogeneous forms
of the same degree, and Z D V.F1; : : : ;Fr/, then a 7! .F1.a/ W : : : W Fr.a// is a morphism
Pn�Z! Pr�1.

By carefully choosing the centre E, it is possible to linearly project any smooth curve in
Pn isomorphically onto a curve in P3, and nonisomorphically (but bijectively on an open
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subset) onto a curve in P2 with only nodes as singularities.5 For example, suppose we have
a nonsingular curve C in P3. To project to P2 we need three linear forms L0, L1, L2 and
the centre of the projection is the point P0 where all forms are zero. We can think of the
map as projecting from the centre P0 onto some (projective) plane by sending the point P
to the point where P0P intersects the plane. To project C to a curve with only ordinary
nodes as singularities, one needs to choose P0 so that it doesn’t lie on any tangent to C , any
trisecant (line crossing the curve in 3 points), or any chord at whose extremities the tangents
are coplanar. See for example Samuel, P., Lectures on Old and New Results on Algebraic
Curves, Tata Notes, 1966.

Projecting a nonsingular variety in Pn to a lower dimensional projective space usually
introduces singularities. Hironaka proved that every singular variety arises in this way in
characteristic zero. See Chapter 8.

APPLICATION

PROPOSITION 6.28. Every finite set S of points of a quasiprojective variety V is contained
in an open affine subset of V .

PROOF. Regard V as a subvariety of Pn, let NV be the closure of V in Pn, and letZ D NV XV .
Because S \Z D ;, for each P 2 S there exists a homogeneous polynomial FP 2 I.Z/
such that FP .P /¤ 0. We may suppose that the FP have the same degree. An elementary
argument shows that some linear combination F of the FP , P 2 S , is nonzero at each P .
Then F is zero on Z, and so NV \D.F / is an open affine of V , but F is nonzero at each P ,
and so NV \D.F / contains S . 2

j. Maps to projective space

Under construction.

NOTES. There is no nonconstant map Pn! An. However, there is a surjective regular map AnC1X
f0/! Pn, namely, .x0; : : : ;xn/ 7! .x0W � � � Wxn). Somewhat surprisingly, there are surjective regular
maps An! Pn. Consider the map

.x0W : : : Wxn/ 7! .x20 W � � � Wx
2
n/WP

n
! Pn:

It is mW1 with m> 1 except over the points .0W � � � W1W � � � W0/. If H is a general hyperplane avoiding
these points, then PnXH � An still maps onto Pn. For example, when we take

H W x0C�� �Cxn D 0,

we obtain the surjective map

.x1; : : : ;xn/ 7! .x21 W � � � Wx
2
nW.1�x1�� � ��xn/

2/WAn! Pn:

k. Projective space without coordinates

Let E be a vector space over k of dimension n. The set P.E/ of lines through zero in E has
a natural structure of an algebraic variety: the choice of a basis for E defines a bijection
P.E/! Pn, and the inherited structure of an algebraic variety on P.E/ is independent of

5A nonsingular curve of degree d in P2 has genus .d�1/.d�2/2 . Thus, if g is not of this form, a curve of
genus g can’t be realized as a nonsingular curve in P2.

http://www.urbanfonts.com/blog/wp-content/uploads/2013/04/12.gif
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the choice of the basis (because the bijections defined by two different bases differ by an
automorphism of Pn). Note that in contrast to Pn, which has nC1 distinguished hyperplanes,
namely, X0 D 0; : : : ;Xn D 0, no hyperplane in P.E/ is distinguished.

l. The functor defined by projective space

Let R be a k-algebra. A submodule M of an R-module N is said to be a direct summand of
N if there exists another submoduleM 0 ofM (a complement ofM ) such thatN DM ˚M 0.
Let M be a direct summand of a finitely generated projective R-module N . Then M is also
finitely generated and projective, and so Mm is a free Rm-module of finite rank for every
maximal ideal m in R. If Mm is of constant rank r , then we say that M has rank r . See CA
�12.

Let
P n.R/D fdirect summands of rank 1 of RnC1g.

Then P n is a functor from k-algebras to sets. WhenK is a field, everyK-subspace ofKnC1

is a direct summand, and so Pn.K/ consists of the lines through the origin in KnC1.
Let Hi be the hyperplane Xi D 0 in knC1, and let

Pi .R/D fL 2 P
n.R/ j L˚HiR DR

nC1
g:

Let L 2 Pi .R/; then
ei D `C

X
j¤i

aj ej .

Now
L 7! .aj /j¤i WPi .R/! Ui .R/'R

n

is a bijection. These combine to give an isomorphism P n.R/! Pn.R/:

P n.R/
Y
0�i�n

Pi .R/
Y

0�i;j�n

Pi .R/\Pj .R/

Pn.R/
Y
0�i�n

Ui .R/
Y

0�i;j�n

Ui .R/\Uj .R/:

More generally, to give a regular map from a variety V to Pn is the same as giving
an isomorphism class of pairs .L;.s0; : : : ; sn// where L is an invertible sheaf on V and
s0; : : : ; sn are sections of L that generate it.

m. Grassmann varieties

Let E be a vector space over k of dimension n, and let Gd .E/ be the set of d -dimensional
subspaces of E. When d D 0 or n, Gd .E/ has a single element, and so from now on we
assume that 0 < d < n. Fix a basis for E, and let S 2Gd .E/. The choice of a basis for S
then determines a d �n matrix A.S/ whose rows are the coordinates of the basis elements.
Changing the basis for S multiplies A.S/ on the left by an invertible d �d matrix. Thus, the
family of d �d minors of A.S/ is determined up to multiplication by a nonzero constant,

and so defines a point P.S/ in P
�
n
d

�
�1.
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PROPOSITION 6.29. The map S 7! P.S/WGd .E/! P
�
n
d

�
�1 is injective, with image a

closed subset of P
�
n
d

�
�1.

We give the proof below. The maps P defined by different bases of E differ by an

automorphism of P
�
n
d

�
�1, and so the statement is independent of the choice of the basis

— later (6.34) we shall give a “coordinate-free description” of the map. The map realizes
Gd .E/ as a projective algebraic variety called the Grassmann variety of d -dimensional
subspaces of E.

EXAMPLE 6.30. The affine cone over a line in P3 is a two-dimensional subspace of k4.
Thus, G2.k4/ can be identified with the set of lines in P3. Let L be a line in P3, and let
xD .x0 W x1 W x2 W x3/ and yD .y0 W y1 W y2 W y3/ be distinct points on L. Then

P.L/D .p01 W p02 W p03 W p12 W p13 W p23/ 2 P5; pij
def
D

ˇ̌̌̌
xi xj
yi yj

ˇ̌̌̌
;

depends only on L. The map L 7! P.L/ is a bijection from G2.k
4/ onto the quadric

˘ WX01X23�X02X13CX03X12 D 0

in P5. For a direct elementary proof of this, see (9.41, 9.42) below.

REMARK 6.31. Let S 0 be a subspace of E of complementary dimension n� d , and let
Gd .E/S 0 be the set of S 2 Gd .V / such that S \S 0 D f0g. Fix an S0 2 Gd .E/S 0 , so that
E D S0˚S

0. For any S 2Gd .V /S 0 , the projection S ! S0 given by this decomposition is
an isomorphism, and so S is the graph of a homomorphism S0! S 0:

s 7! s0 ” .s; s0/ 2 S:

Conversely, the graph of any homomorphism S0! S 0 lies in Gd .V /S 0 . Thus,

Gd .V /S 0 � Hom.S0;S 0/� Hom.E=S 0;S 0/: (27)

The isomorphism Gd .V /S 0 � Hom.E=S 0;S 0/ depends on the choice of S0 — it is the
element ofGd .V /S 0 corresponding to 02Hom.E=S 0;S 0/. The decompositionE D S0˚S 0

gives a decomposition

End.E/D
�

End.S0/ Hom.S 0;S0/
Hom.S0;S 0/ End.S 0/

�
;

and the bijections (27) show that the group
�

1 0
Hom.S0;S

0/ 1

�
acts simply transitively on

Gd .E/S 0 .

REMARK 6.32. The bijection (27) identifiesGd .E/S 0 with the affine variety A.Hom.S0;S 0//
defined by the vector space Hom.S0;S 0/ (cf. p. 72). Therefore, the tangent space to Gd .E/
at S0,

TS0
.Gd .E//' Hom.S0;S 0/' Hom.S0;E=S0/: (28)

Since the dimension of this space doesn’t depend on the choice of S0, this shows thatGd .E/
is nonsingular (4.39).
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REMARK 6.33. Let B be the set of all bases of E. The choice of a basis for E identifies
B with GLn, which is the principal open subset of An2

where det ¤ 0. In particular,
B has a natural structure as an irreducible algebraic variety. The map .e1; : : : ; en/ 7!
he1; : : : ; ed iWB!Gd .E/ is a surjective regular map, and so Gd .E/ is also irreducible.

REMARK 6.34. The exterior algebra
V
E D

L
d�0

Vd
E of E is the quotient of the tensor

algebra by the ideal generated by all vectors e˝ e, e 2E. The elements of
Vd

E are called
(exterior) d -vectors:The exterior algebra of E is a finite-dimensional graded algebra over k
with

V0
E D k,

V1
E DE; if e1; : : : ; en form an ordered basis for V , then the

�
n
d

�
wedge

products
ei1 ^ : : :^ eid .i1 < � � �< id /

form an ordered basis for
Vd

E. In particular,
Vn

E has dimension 1. For a subspace S of
E of dimension d ,

Vd
S is the one-dimensional subspace of

Vd
E spanned by e1^ : : :^ed

for any basis e1; : : : ; ed of S . Thus, there is a well-defined map

S 7!
^d

S WGd .E/! P.
^d

E/ (29)

which the choice of a basis for E identifies with S 7! P.S/. Note that the subspace spanned
by e1; : : : ; en can be recovered from the line through e1^ : : :^ ed as the space of vectors v
such that v^ e1^ : : :^ ed D 0 (cf. 6.35 below).

FIRST PROOF OF PROPOSITION 6.29.

Fix a basis e1; : : : ; en of E, and let S0 D he1; : : : ; ed i and S 0 D hedC1; : : : ; eni. Order the

coordinates in P
�
n
d

�
�1 so that

P.S/D .a0W : : : W aij W : : : W : : :/;

where a0 is the left-most d �d minor of A.S/, and aij , 1� i � d , d < j � n, is the minor
obtained from the left-most d �d minor by replacing the i th column with the j th column.

Let U0 be the (“typical”) standard open subset of P
�
n
d

�
�1 consisting of the points with

nonzero zeroth coordinate. Clearly,6 P.S/ 2U0 if and only if S 2Gd .E/S 0 . We shall prove
the proposition by showing that P WGd .E/S 0 ! U0 is injective with closed image.

For S 2Gd .E/S 0 , the projection S ! S0 is bijective. For each i , 1� i � d , let

e0i D ei C
P
d<j�naij ej (30)

denote the unique element of S projecting to ei . Then e01; : : : ; e
0
d

is a basis for S . Conversely,
for any .aij / 2 kd.n�d/, the e0i defined by (30) span an S 2Gd .E/S 0 and project to the ei .
Therefore, S $ .aij / gives a one-to-one correspondence Gd .E/S 0 $ kd.n�d/ (this is a
restatement of (27) in terms of matrices).

Now, if S $ .aij /, then

P.S/D .1 W : : : W aij W : : : W : : : W fk.aij /W : : :/:

6If e 2 S 0\S is nonzero, we may choose it to be part of the basis for S , and then the left-most d �d
submatrix of A.S/ has a row of zeros. Conversely, if the left-most d �d submatrix is singular, we can change
the basis for S so that it has a row of zeros; then the basis element corresponding to the zero row lies in S 0\S .
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where fk.aij / is a polynomial in the aij whose coefficients are independent of S . Thus,
P.S/ determines .aij / and hence also S . Moreover, the image of P WGd .E/S 0 ! U0 is the
graph of the regular map

.: : : ;aij ; : : :/ 7! .: : : ;fk.aij /; : : :/WAd.n�d/! A
�
n
d

�
�d.n�d/�1

;

which is closed (5.28).

SECOND PROOF OF PROPOSITION 6.29.

An exterior d -vector v is said to be pure (or decomposable) if there exist vectors e1; : : : ; ed 2
V such that v D e1^ : : :^ ed . According to 6.34, the image of Gd .E/ in P.

Vd
E/ consists

of the lines through the pure d -vectors.

LEMMA 6.35. Let w be a nonzero d -vector and let

M.w/D fv 2E j v^w D 0gI

then dimkM.w/� d , with equality if and only if w is pure.

PROOF. Let e1; : : : ; em be a basis of M.w/, and extend it to a basis e1; : : : ; em; : : : ; en of V .
Write

w D
X

1�i1<:::<id

ai1:::id ei1 ^ : : :^ eid ; ai1:::id 2 k.

If there is a nonzero term in this sum in which ej does not occur, then ej ^w¤ 0. Therefore,
each nonzero term in the sum is of the form ae1^ : : :^ em^ : : :. It follows that m� d , and
mD d if and only if w D ae1^ : : :^ ed with a¤ 0. 2

For a nonzero d -vector w, let Œw� denote the line through w. The lemma shows that
Œw� 2Gd .E/ if and only if the linear map v 7! v^wWE 7!

VdC1
E has rank � n�d (in

which case the rank is n�d ). Thus Gd .E/ is defined by the vanishing of the minors of
order n�d C1 of this map. 7

Flag varieties

The discussion in the last subsection extends easily to chains of subspaces. Let d D
.d1; : : : ;dr/ be a sequence of integers with 0 < d1 < � � �< dr < n, and let Gd.E/ be the set
of flags

F W E �E1 � �� � �Er � 0 (31)
7In more detail, the map

w 7! .v 7! v^w/W
^d

E! Homk.E;
^dC1

E/

is injective and linear, and so defines an injective regular map

P.
^d

E/ ,! P.Homk.E;
^dC1

E//:

The condition rank� n�d defines a closed subset W of P.Homk.E;
VdC1E// (once a basis has been chosen

for E, the condition becomes the vanishing of the minors of order n�dC1 of a linear map E!
VdC1E), and

Gd .E/D P.
Vd E/\W:
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with Ei a subspace of E of dimension di . The map

Gd.E/
F 7!.E i /
������!

Q
i Gdi

.E/�
Q
i P.

Vdi E/

realizes Gd.E/ as a closed subset8
Q
iGdi

.E/, and so it is a projective variety, called a flag
variety. The tangent space toGd.E/ at the flag F consists of the families of homomorphisms

'i WEi !E=Ei ; 1� i � r; (32)

that are compatible in the sense that

'i jEiC1 � 'iC1 mod EiC1:

ASIDE 6.36. A basis e1; : : : ; en for E is adapted to the flag F if it contains a basis e1; : : : ; eji
for

each Ei . Clearly, every flag admits such a basis, and the basis then determines the flag. As in (6.33),
this implies that Gd.E/ is irreducible. Because GL.E/ acts transitively on the set of bases for E, it
acts transitively on Gd.E/. For a flag F , the subgroup P.F / stabilizing F is an algebraic subgroup
of GL.E/, and the map

g 7! gF0WGL.E/=P.F0/!Gd.E/

is an isomorphism of algebraic varieties. Because Gd.E/ is projective, this shows that P.F0/ is a
parabolic subgroup of GL.E/.

n. Bezout’s theorem

Let V be a hypersurface in Pn (that is, a closed subvariety of dimension n�1). For such a
variety, I.V /D .F.X0; : : : ;Xn// with F a homogenous polynomial without repeated factors.
We define the degree of V to be the degree of F .

The next theorem is one of the oldest, and most famous, in algebraic geometry.

THEOREM 6.37. Let C andD be curves in P2 of degreesm and n respectively. If C andD
have no irreducible component in common, then they intersect in exactlymn points, counted
with appropriate multiplicities.

PROOF. Decompose C and D into their irreducible components. Clearly it suffices to prove
the theorem for each irreducible component of C and each irreducible component of D. We
can therefore assume that C and D are themselves irreducible.

We know from 2.62 that C \D is of dimension zero, and so is finite. After a change of
variables, we can assume that a¤ 0 for all points .a W b W c/ 2 C \D.

Let F.X;Y;Z/ and G.X;Y;Z/ be the polynomials defining C and D, and write

F D s0Z
m
C s1Z

m�1
C�� �C sm; G D t0Z

n
C t1Z

n�1
C�� �C tn

with si and tj polynomials in X and Y of degrees i and j respectively. Clearly sm ¤ 0¤ tn,
for otherwise F and G would have Z as a common factor. Let R be the resultant of F and
G, regarded as polynomials in Z. It is a homogeneous polynomial of degree mn in X and

8For example, if ui is a pure di -vector and uiC1 is a pure diC1-vector, then it follows from (6.35) that
M.ui /�M.uiC1/ if and only if the map

v 7! .v^ui ;v^uiC1/WE!
^diC1

E˚
^diC1C1

E

has rank � n�di (in which case it has rank n�di ). Thus, Gd.E/ is defined by the vanishing of many minors.
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Y , or else it is identically zero. If the latter occurs, then for every .a;b/ 2 k2, F.a;b;Z/
and G.a;b;Z/ have a common zero, which contradicts the finiteness of C \D. Thus R
is a nonzero polynomial of degree mn. Write R.X;Y /D XmnR�.YX /, where R�.T / is a
polynomial of degree �mn in T D Y

X
.

Suppose first that degR� Dmn, and let ˛1; : : : ;˛mn be the roots of R� (some of them
may be multiple). Each such root can be written ˛i D bi

ai
, and R.ai ;bi /D 0. According to

7.28 this means that the polynomials F.ai ;bi ;Z/ and G.ai ;bi ;Z/ have a common root ci .
Thus .ai W bi W ci / is a point on C \D, and conversely, if .a W b W c/ is a point on C \D (so
a¤ 0/, then b

a
is a root of R�.T /. Thus we see in this case, that C \D has precisely mn

points, provided we take the multiplicity of .a W b W c/ to be the multiplicity of b
a

as a root of
R�.

Now suppose that R� has degree r < mn. Then R.X;Y / D Xmn�rP.X;Y /, where
P.X;Y / is a homogeneous polynomial of degree r not divisible by X . Obviously R.0;1/D
0, and so there is a point .0 W 1 W c/ in C \D, in contradiction with our assumption. 2

REMARK 6.38. The above proof has the defect that the notion of multiplicity has been too
obviously chosen to make the theorem come out right. It is possible to show that the theorem
holds with the following more natural definition of multiplicity. Let P be an isolated point
of C \D. There will be an affine neighbourhood U of P and regular functions f and g
on U such that C \U D V.f / and D\U D V.g/. We can regard f and g as elements
of the local ring OP , and clearly rad.f;g/D m, the maximal ideal in OP . It follows that
OP =.f;g/ is finite-dimensional over k, and we define the multiplicity of P in C \D to be
dimk.OP =.f;g//. For example, if C and D cross transversely at P , then f and g will form
a system of local parameters at P — .f;g/Dm — and so the multiplicity is one.

The attempt to find good notions of multiplicities in very general situations motivated
much of the most interesting work in commutative algebra in the second half of the twentieth
century.

o. Hilbert polynomials (sketch)

Recall that for a projective variety V � Pn,

khomŒV �D kŒX0; : : : ;Xn�=bD kŒx0; : : : ;xn�;

where bD I.V /. We observed that b is graded, and therefore khomŒV � is a graded ring:

khomŒV �D
M

m�0
khomŒV �m;

where khomŒV �m is the subspace generated by the monomials in the xi of degree m. Clearly
khomŒV �m is a finite-dimensional k-vector space.

THEOREM 6.39. There is a unique polynomial P.V;T / such that P.V;m/D dimk kŒV �m
for all m sufficiently large.

PROOF. Omitted. 2

EXAMPLE 6.40. For V D Pn, khomŒV � D kŒX0; : : : ;Xn�, and (see the footnote on page
141), dimkhomŒV �m D

�
mCn
n

�
D

.mCn/���.mC1/
nŠ

, and so

P.Pn;T /D
�
TCn
n

�
D
.T Cn/ � � �.T C1/

nŠ
:
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The polynomial P.V;T / in the theorem is called the Hilbert polynomial of V . Despite
the notation, it depends not just on V but also on its embedding in projective space.

THEOREM 6.41. Let V be a projective variety of dimension d and degree ı; then

P.V;T /D
ı

d Š
T d C terms of lower degree.

PROOF. Omitted. 2

The degree of a projective variety is the number of points in the intersection of the
variety and of a general linear variety of complementary dimension (see later).

EXAMPLE 6.42. Let V be the image of the Veronese map

.a0 W a1/ 7! .ad0 W a
d�1
0 a1 W : : : W a

d
1 /WP

1
! Pd :

Then khomŒV �m can be identified with the set of homogeneous polynomials of degree m �d
in two variables (look at the map A2! AdC1 given by the same equations), which is a
space of dimension dmC1, and so

P.V;T /D dT C1:

Thus V has dimension 1 (which we certainly knew) and degree d .

Macaulay knows how to compute Hilbert polynomials.
REFERENCES: Hartshorne 1977, I.7; Harris 1992, Lecture 13.

p. Dimensions

The results for affine varieties extend to projective varieties with one important simplification:
if V and W are projective varieties of dimensions r and s in Pn and r C s � n, then
V \W ¤ ;.

THEOREM 6.43. Let V D V.a/ � Pn be a projective variety of dimension � 1, and let
f 2 kŒX0; : : : ;Xn� be homogeneous, nonconstant, and … a; then V \V.f / is nonempty and
of pure codimension 1.

PROOF. Since the dimension of a variety is equal to the dimension of any dense open affine
subset, the only part that doesn’t follow immediately from 3.42 is the fact that V \V.f /
is nonempty. Let V aff.a/ be the zero set of a in AnC1 (that is, the affine cone over V /.
Then V aff.a/\V aff.f / is nonempty (it contains .0; : : : ;0/), and so it has codimension 1 in
V aff.a/. Clearly V aff.a/ has dimension � 2, and so V aff.a/\V aff.f / has dimension � 1.
This implies that the polynomials in a have a zero in common with f other than the origin,
and so V.a/\V.f /¤ ;. 2

COROLLARY 6.44. Let f1; : : : ;fr be homogeneous nonconstant elements of kŒX0; : : : ;Xn�;
and let Z be an irreducible component of V \V.f1; : : :fr/. Then codim.Z/ � r , and if
dim.V /� r , then V \V.f1; : : :fr/ is nonempty.

PROOF. Induction on r , as before. 2
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PROPOSITION 6.45. Let Z be an irreducible closed subvariety of V ; if codim.Z/ D r ,
then there exist homogeneous polynomials f1; : : : ;fr in kŒX0; : : : ;Xn� such that Z is an
irreducible component of V \V.f1; : : : ;fr/.

PROOF. Use the same argument as in the proof 3.47. 2

PROPOSITION 6.46. Every pure closed subvariety Z of Pn of codimension one is principal,
i.e., I.Z/D .f / for some f homogeneous element of kŒX0; : : : ;Xn�.

PROOF. Follows from the affine case. 2

COROLLARY 6.47. Let V and W be closed subvarieties of Pn; if dim.V /Cdim.W /� n,
then V \W ¤;, and every irreducible component of it has codim.Z/�codim.V /Ccodim.W /.

PROOF. Write V D V.a/ and W D V.b/, and consider the affine cones V 0 D V.a/ and
W 0 D V.b/ over them. Then

dim.V 0/Cdim.W 0/D dim.V /C1Cdim.W /C1� nC2:

As V 0\W 0 ¤;, V 0\W 0 has dimension � 1, and so it contains a point other than the origin.
Therefore V \W ¤ ;. The rest of the statement follows from the affine case. 2

PROPOSITION 6.48. Let V be a closed subvariety of Pn of dimension r < n; then there is a
linear projective variety E of dimension n� r �1 (that is, E is defined by rC1 independent
linear forms) such that E\V D ;.

PROOF. Induction on r . If r D 0, then V is a finite set, and the lemma below shows that
there is a hyperplane in knC1 not meeting V .

Suppose r > 0, and let V1; : : : ;Vs be the irreducible components of V . By assumption,
they all have dimension � r . The intersection Ei of all the linear projective varieties
containing Vi is the smallest such variety. The lemma below shows that there is a hyperplane
H containing none of the nonzero Ei ; consequently, H contains none of the irreducible
components Vi of V , and so each Vi \H is a pure variety of dimension� r�1 (or is empty).
By induction, there is an linear subvariety E 0 not meeting V \H . Take E DE 0\H . 2

LEMMA 6.49. Let W be a vector space of dimension d over an infinite field k, and let
E1; : : : ;Er be a finite set of nonzero subspaces of W . Then there is a hyperplane H in W
containing none of the Ei .

PROOF. Pass to the dual space V of W . The problem becomes that of showing V is not
a finite union of proper subspaces E_i . Replace each E_i by a hyperplane Hi containing
it. Then Hi is defined by a nonzero linear form Li . We have to show that

Q
Lj is not

identically zero on V . But this follows from the statement that a polynomial in n variables,
with coefficients not all zero, cannot be identically zero on kn (Exercise 1-1). 2

Let V and E be as in Proposition 6.48. If E is defined by the linear forms L0; : : : ;Lr
then the projection a 7! .L0.a/ W � � � W Lr.a// defines a map V ! Pr . We shall see later
that this map is finite, and so it can be regarded as a projective version of the Noether
normalization theorem.

In general, a regular map from a variety V to Pn corresponds to a line bundle on V
and a set of global sections of the line bundle. All line bundles on AnXforiging are trivial
(see, for example, Hartshorne II 7.1 and II 6.2), from which it follows that all regular maps
AnC1Xforiging ! Pm are given by a family of homogeneous polynomials. Assuming this,
it is possible to prove the following result.
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COROLLARY 6.50. Let ˛WPn! Pm be regular; if m< n, then ˛ is constant.

PROOF. Let � WAnC1�foriging! Pn be the map .a0; : : : ;an/ 7! .a0 W : : : W an/. Then ˛ ı�
is regular, and there exist polynomials F0; : : : ;Fm 2 kŒX0; : : : ;Xn� such that ˛ ı� is the map

.a0; : : : ;an/ 7! .F0.a/ W : : : W Fm.a//:

As ˛ ı� factors through Pn, the Fi must be homogeneous of the same degree. Note that

˛.a0 W : : : W an/D .F0.a/ W : : : W Fm.a//:

If m< n and the Fi are nonconstant, then 6.43 shows they have a common zero and so ˛ is
not defined on all of Pn. Hence the Fi must be constant. 2

q. Products

It is useful to have an explicit description of the topology on some product varieties.

The topology on Pm�Pn.

Suppose we have a collection of polynomials Fi .X0; : : : ;XmIY0; : : : ;Yn/, i 2 I , each of
which is separately homogeneous in the Xi and Yj . Then the equations

Fi .X0; : : : ;XmIY0; : : : ;Yn/D 0; i 2 I;

define a closed subset of Pm�Pn, and every closed subset of Pm�Pn arises in this way
from a (finite) set of polynomials.

The topology on Am�Pn

The closed subsets of Am�Pn are exactly those defined by sets of equations

Fi .X1; : : : ;XmIY0; : : : ;Yn/D 0; i 2 I;

with each Fi homogeneous in the Yj .

The topology on V �Pn

Let V be an irreducible affine algebraic variety. We look more closely at the topology
on V �Pn in terms of ideals. Let AD kŒV �, and let B D AŒX0; : : : ;Xn�. Note that B D
A˝k kŒX0; : : : ;Xn�, and so we can view it as the ring of regular functions on V �AnC1: for
f 2 A and g 2 kŒX0; : : : ;Xn�, f ˝g is the function

.v;a/ 7! f .v/ �g.a/WV �AnC1! k:

The ring B has an obvious grading — a monomial aX i00 : : :X
in
n , a 2 A, has degree

P
ij —

and so we have the notion of a graded ideal b� B . It makes sense to speak of the zero set
V.b/� V �Pn of such an ideal. For any ideal a�A, aB is graded, and V.aB/D V.a/�Pn.

LEMMA 6.51. (a) For each graded ideal b � B , the set V.b/ is closed, and every closed
subset of V �Pn is of this form.

(b) The set V.b/ is empty if and only if rad.b/� .X0; : : : ;Xn/.
(c) If V is irreducible, then V D V.b/ for some graded prime ideal b.
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PROOF. (a) In the case that AD k, we proved this in 6.1 and 6.2, and similar arguments
apply in the present more general situation. For example, to see that V.b/ is closed, cover
Pn with the standard open affines Ui and show that V.b/\Ui is closed for all i .

The set V.b/ is empty if and only if the cone V aff.b/ � V �AnC1 defined by b is
contained in V �foriging. ButX

ai0:::inX
i0
0 : : :X

in
n ; ai0:::in 2 kŒV �;

is zero on V �foriging if and only if its constant term is zero, and so

I aff.V �foriging/D .X0;X1; : : : ;Xn/:

Thus, the Nullstellensatz shows that V.b/ D ;) rad.b/ D .X0; : : : ;Xn/. Conversely, if
XNi 2 b for all i , then obviously V.b/ is empty.

For (c), note that if V.b/ is irreducible, then the closure of its inverse image in V �AnC1
is also irreducible, and so IV.b/ is prime. 2

Exercises

6-1. Show that a point P on a projective curve F.X;Y;Z/D 0 is singular if and only if
@F=@X , @F=@Y , and @F=@Z are all zero at P . If P is nonsingular, show that the tangent
line at P has the (homogeneous) equation

.@F=@X/PXC .@F=@Y /PY C .@F=@Z/PZ D 0.

Verify that Y 2Z DX3CaXZ2CbZ3 is nonsingular if X3CaXCb has no repeated root,
and find the tangent line at the point at infinity on the curve.

6-2. Let L be a line in P2 and let C be a nonsingular conic in P2 (i.e., a curve in P2 defined
by a homogeneous polynomial of degree 2). Show that either

(a) L intersects C in exactly 2 points, or

(b) L intersects C in exactly 1 point, and it is the tangent at that point.

6-3. Let V D V.Y �X2;Z�X3/� A3. Prove

(a) I.V /D .Y �X2;Z�X3/;

(b) ZW �XY 2 I.V /� � kŒW;X;Y;Z�, but ZW �XY … ..Y �X2/�; .Z �X3/�/.
(Thus, if F1; : : : ;Fr generate a, it does not follow that F �1 ; : : : ;F

�
r generate a�, even

if a�is radical.)

6-4. Let P0; : : : ;Pr be points in Pn. Show that there is a hyperplane H in Pn passing
through P0 but not passing through any of P1; : : : ;Pr .

6-5. Is the subset
f.a W b W c/ j a¤ 0; b ¤ 0g[f.1 W 0 W 0/g

of P2 locally closed?

6-6. Show that the image of the Segre map Pm�Pn!PmnCmCn (see 6.26) is not contained
in any hyperplane of PmnCmCn.
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6-7. Write 0, 1,1 for the points .0W1/, .1W1/, and .1W0/ on P1.

(a) Let ˛ be an automorphism of P1 such that

˛.0/D 0; ˛.1/D 1; ˛.1/D1:

Show that ˛ is the identity map.

(b) Let P0, P1, P2 be distinct points on P1. Show that there exists an ˛ 2 PGL2.k/ such
that

˛.0/D P0; ˛.1/D P1; ˛.1/D P2:

(c) Deduce that Aut.P1/' PGL2.k/.

6-8. Show that the functor

R P n.R/D fdirect summands of rank 1 of RnC1g

satisfies the criterion 5.71 to arise from an algebraic prevariety. (This gives an alternative
definition of Pn.)

6-9. (a) Let V � An and W � Pm be algebraic varieties and 'WV !W a map. Show that
' is regular if and only if every point in V has an open neighbourhood U on which there are
regular functions f0; : : : ;fm such that

'.a1; : : : ;an/D .f0.a1; : : : ;an/W : : : Wfm.a1; : : : ;an//

for all .a1; : : : ;an/ 2 U .
(b) Show that, for a regular map ' as in (a), it may not be possible to take U D V . Hint:

Let V � A4 be the complement of .0;0;0;0/ in

XY �ZW D 0;

and let 'WV ! P1 send .w;x;y;z/ to .xWz/ if one of x or z is nonzero and .w;0;y;0/ to
.wWy/. See sx4626969 (Mohan).



CHAPTER 7
Complete Varieties

Complete varieties are the analogues in the category of algebraic varieties of compact
topological spaces in the category of Hausdorff topological spaces. Recall that the image of
a compact space under a continuous map is compact, and hence is closed if the image space
is Hausdorff. Moreover, a Hausdorff space V is compact if and only if, for all topological
spaces T , the projection map qWV �T ! T is closed, i.e., maps closed sets to closed sets
(see Bourbaki, N., General Topology, I, 10.2, Corollary 1 to Theorem 1).

a. Definition and basic properties

Definition

DEFINITION 7.1. An algebraic variety V is complete if for all algebraic varieties T , the
projection map qWV �T ! T is closed.

Note that a complete variety is required to be separated — we really mean it to be a
variety and not a prevariety. We shall see 7.22 that projective varieties are complete.

EXAMPLE 7.2. Consider the projection map

.x;y/ 7! yWA1�A1! A1:

This is not closed; for example, the variety V WXY D 1 is closed in A2 but its image in A1
omits the origin. However, when we replace V with its closure in P1�A1, its projection
becomes the whole of A1. To see this, note that

NV def
D f..xWz/;y/ 2 P1�A1 j xy D z2g

contains V as an open dense subset, and so must be its closure in P1 �A1. The point
..xW0/;0/ of NV maps to 0.

Properties

7.3. Closed subvarieties of complete varieties are complete.

Let Z be a closed subvariety of a complete variety V . For any variety T , Z�T is closed in
V �T , and so the restriction of the closed map qWV �T ! T to Z�T is also closed.

7.4. A variety is complete if and only if its irreducible components are complete.

157
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Each irreducible component is closed, and hence complete if the variety is complete (7.3).
Conversely, suppose that the irreducible components Vi of a variety V are complete. If Z is
closed in V �T , then Zi

def
DZ\ .Vi �T / is closed in Vi �T . Therefore, q.Zi / is closed in

T , and so q.Z/D
S
q.Zi / is also closed.

7.5. Products of complete varieties are complete.

Let V1; : : : ;Vn be complete varieties, and let T be a variety. The projection
�Q

i Vi
�
�T ! T

is the composite of the projections

V1� � � ��Vn�T ! V2� � � ��Vn�T ! �� � ! Vn�T ! T;

all of which are closed.

7.6. If 'WW ! V is surjective and W is complete, then V is complete.

Let T be a variety, and let Z be a closed subset of V �T . Let Z0 be the inverse image of Z
in W �T . Then Z0 is closed, and its image in T equals that of Z.

7.7. Let 'WW ! V be a regular map of varieties. If W is complete, then '.W / is a
complete closed subvariety of V . In particular, every complete subvariety of a variety is
closed.

Let �'
def
D f.w;'.w//g � W � V be the graph of '. It is a closed subset of W � V (because

V is a variety, see 5.28), and '.W / is the projection of �' into V . Therefore '.W / is closed,
and 7.6 shows that it is complete. The second statement follows from the first applied to the
identity map.

7.8. A regular map V ! P1 from a complete connected variety V is either constant or
surjective.

The only proper closed subsets of P1 are the finite sets, and such a set is connected if and
only if it consists of a single point. Because '.V / is connected and closed, it must either be
a single point (and ' is constant) or P1 (and ' is onto).

7.9. The only regular functions on a complete connected variety are the constant functions.

A regular function on a variety V is a regular map f WV ! A1 � P1, to which we can apply
7.8.

7.10. A regular map 'WV !W from a complete connected variety to an affine variety has
image equal to a point. In particular, every complete connected affine variety is a point.

EmbedW as a closed subvariety of An, and write 'D .'1; : : : ;'n/, where 'i is the composite
of ' with the coordinate function xi WAn! A1. Each 'i is a regular function on V , and
hence is constant. (Alternatively, apply 5.12.) This proves the first statement, and the second
follows from the first applied to the identity map.

7.11. In order to show that a variety V is complete, it suffices to check that qWV �T ! T

is a closed mapping when T is affine (or even an affine space An).

Every variety T can be written as a finite union of open affine subvarieties T D
S
Ti . If Z

is closed in V �T , then Zi
def
DZ\ .V �Ti / is closed in V �Ti . Therefore, q.Zi / is closed

in Ti for all i . As q.Zi /D q.Z/\Ti , this shows that q.Z/ is closed. This shows that it
suffices to check that V �T ! T is closed for all affine varieties T . But T can be realized
as a closed subvariety of An, and then V �T ! T is closed if V �An! An is closed.
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Remarks

7.12. The statement that a complete variety V is closed in every larger variety W perhaps
explains the name: if V is complete, W is connected, and dimV D dimW , then V DW .
Contrast An � Pn.

7.13. Here is another criterion: a variety V is complete if and only if every regular map
C XfP g! V extends uniquely to a regular map C ! V ; here P is a nonsingular point on a
curve C . Intuitively, this says that all Cauchy sequences have limits in V and that the limits
are unique.

b. Proper maps

DEFINITION 7.14. A regular map 'WV ! S of varieties is said to be proper if it is “univer-
sally closed”, that is, if for all regular maps T ! S , the base change '0WV �S T ! T of '
is closed.

7.15. For example, a variety V is complete if and only if the map V ! fpointg is proper.

7.16. From its very definition, it is clear that the base change of a proper map is proper. In
particular,

(a) if V is complete, then V �S ! S is proper,

(b) if 'WV ! S is proper, then the fibre '�1.P / over a point P of S is complete.

7.17. If 'WV ! S is proper, and W is a closed subvariety of V , then W
'
�! S is proper.

PROPOSITION 7.18. A composite of proper maps is proper.

PROOF. Let V3! V2! V1 be proper maps, and let T be a variety. Consider the diagram

V3 V3�V2
.V2�V1

T /' V3�V1
T

V2 V2�V1
T

V1 T:

closed

closed

Both smaller squares are cartesian, and hence so also is the outer square. The statement is
now obvious from the fact that a composite of closed maps is closed. 2

COROLLARY 7.19. If V ! S is proper and S is complete, then V is complete.

PROOF. Special case of the proposition. 2

COROLLARY 7.20. The inverse image of a complete variety under a proper map is com-
plete.

PROOF. Let 'WV ! S be proper, and let Z be a complete subvariety of S . Then V �S Z!
Z is proper, and V �S Z ' '�1.Z/. 2
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EXAMPLE 7.21. Let f 2 kŒT1; : : : ;Tn;X;Y � be homogeneous of degree m in X and Y ,
and let H be the subvariety of An�P1 defined by

f .T1; : : : ;Tn;X;Y /D 0.

The projection map An�P1! An defines a regular map H ! An, which is proper (7.22,
7.15). The fibre over a point .t1; : : : ; tn/ 2 An is the subvariety of P1 defined by the polyno-
mial

f .t1; : : : ; tn;X;Y /D a0X
m
Ca1X

m�1Y C�� �CamY
m; ai 2 k:

Assume that not all ai are zero. Then this is a homogeneous of degree m and so the fibre
always has m points counting multiplicities. The points that “disappeared off to infinity”
when P1 was taken to be A1 (see p. 51) have literally become the point at infinity on P1.

c. Projective varieties are complete

The reader may skip this section since the main theorem is given a more explicit proof in
Theorem 7.31 below.

THEOREM 7.22. A projective variety is complete.

PROOF. After 7.3, it suffices to prove the Theorem for projective space Pn itself; thus we
have to prove that the projection map Pn�W !W is a closed mapping in the case that W
is an irreducible affine variety (7.11).

Write p for the projection W �Pn!W . We have to show that Z closed in W �Pn
implies that p.Z/ closed in W . If Z is empty, this is true, and so we can assume it to
be nonempty. Then Z is a finite union of irreducible closed subsets Zi of W �Pn, and it
suffices to show that each p.Zi / is closed. Thus we may assume that Z is irreducible, and
hence that Z D V.b/ with b a graded prime ideal in B D AŒX0; : : : ;Xn� (6.51).

If p.Z/ is contained in some closed subvarietyW 0 ofW , thenZ is contained inW 0�Pn,
and we can replace W with W 0. This allows us to assume that p.Z/ is dense in W , and we
now have to show that p.Z/DW .

Because p.Z/ is dense in W , the image of the cone V aff.b/ under the projection W �
AnC1!W is also dense in W , and so (see 3.34a) the map A! B=b is injective.

Let w 2W : we shall show that if w … p.Z/, i.e., if there does not exist a P 2 Pn such
that .w;P / 2Z, then p.Z/ is empty, which is a contradiction.

Let m � A be the maximal ideal corresponding to w. Then mBCb is a graded ideal,
and V.mBCb/D V.mB/\V.b/D .w�Pn/\V.b/, and so w will be in the image of Z
unless V.mBCb/¤ ;. But if V.mBCb/D ;, then mBCb� .X0; : : : ;Xn/

N for some N
(by 6.51b), and so mBCb contains the set BN of homogeneous polynomials of degree N .
Because mB and b are graded ideals,

BN �mBCb H) BN DmBN CBN \b:

In detail: the first inclusion says that an f 2 BN can be written f D gCh with g 2 mB
and h 2 b. On equating homogeneous components, we find that fN D gN ChN . Moreover:
fN D f ; if g D

P
mibi , mi 2m, bi 2 B , then gN D

P
mibiN ; and hN 2 b because b is

homogeneous. Together these show f 2mBN CBN \b.
Let M D BN =BN \ b, regarded as an A-module. The displayed equation says that

M DmM . The argument in the proof of Nakayama’s lemma (1.3) shows that .1Cm/M D 0
for some m 2m. Because A! B=b is injective, the image of 1Cm in B=b is nonzero. But
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M D BN =BN \b� B=b, which is an integral domain, and so the equation .1Cm/M D 0
implies that M D 0. Hence BN � b, and so XNi 2 b for all i , which contradicts the
assumption that Z D V.b/ is nonempty. 2

Remarks

7.23. Every complete curve is projective.

7.24. Every nonsingular complete surface is projective (Zariski), but there exist singular
complete surfaces that are not projective (Nagata).

7.25. There exist nonsingular complete three-dimensional varieties that are not projective
(Nagata, Hironaka).

7.26. A nonsingular complete irreducible variety V is projective if and only if every finite
set of points of V is contained in an open affine subset of V (Conjecture of Chevalley; proved
by Kleiman1; see 6.22 for the necessity).

d. Elimination theory

When given a system of polynomial equations to solve, we first use some of the equations
to eliminate some of the variables; we then find the solutions of the reduced system, and
go back to find the solutions of the original system. Elimination theory does this more
systematically.

Note that the fact that Pn is complete has the following explicit restatement: for each
system of polynomial equations

.�/

8̂<̂
:
P1.X1; : : : ;XmIY0; : : : ;Yn/D 0

:::

Pr.X1; : : : ;XmIY0; : : : ;Yn/D 0

such that each Pi is homogeneous in the Yj , there exists a system of polynomial equations

.��/

8̂<̂
:
R1.X1; : : : ;Xm/D 0

:::

Rs.X1; : : : ;Xm/D 0

with the following property; an m-tuple .a1; : : : ;am/ is a solution of (**) if and only if there
exists a nonzero n-tuple .b0; : : : ;bn/ such that .a1; : : : ;am;b0; : : : ;bn/ is a solution of (*). In
other words, the polynomials Pi .a1

; : : : ;amIY0; : : : ;Yn/ have a common zero if and only if
Rj .a1; : : : ;am/D 0 for all j . The polynomials Rj are said to have been obtained from the
polynomials Pi by elimination of the variables Yi .

Unfortunately, the proof we gave of the completeness of Pn, while short and elegant,
gives no indication of how to construct (**) from (*). The purpose of elimination theory is
to provide an algorithm for doing this.

1Kleiman, Steven L., Toward a numerical theory of ampleness. Ann. of Math. (2) 84 1966 293–344
(Theorem 3, p. 327, et seq.). See also, Hartshorne, Robin, Ample subvarieties of algebraic varieties. Lecture
Notes in Mathematics, Vol. 156 Springer, 1970, I �9 p45.
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Elimination theory: special case

Let P D s0XmC s1Xm�1C�� �C sm and Q D t0XnC t1Xn�1C�� �C tn be polynomials.
The resultant of P and Q is defined to be the determinantˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌
s0 s1 : : : sm

s0 : : : sm
: : : : : :

t0 t1 : : : tn
t0 : : : tn

: : : : : :

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

n rows

m rows

There are n rows with s0 : : : sm and m rows with t0 : : : tn, so that the matrix is .mCn/�
.mCn/; all blank spaces are to be filled with zeros. The resultant is a polynomial in the
coefficients of P and Q.

PROPOSITION 7.27. The resultant Res.P;Q/D 0 if and only if

(a) both s0 and t0 are zero; or

(b) the two polynomials have a common root.

PROOF. If (a) holds, then Res.P;Q/D 0 because the first column is zero. Suppose that ˛ is
a common root of P and Q, so that there exist polynomials P1 and Q1 of degrees m�1
and n�1 respectively such that

P.X/D .X �˛/P1.X/; Q.X/D .X �˛/Q1.X/:

Using these equalities, we find that

P.X/Q1.X/�Q.X/P1.X/D 0: (33)

On equating the coefficients ofXmCn�1; : : : ;X;1 in (33) to zero, we find that the coefficients
of P1 and Q1 are the solutions of a system of mCn linear equations in mCn unknowns.
The matrix of coefficients of the system is the transpose of the matrix0BBBBBB@

s0 s1 : : : sm
s0 : : : sm

: : : : : :

t0 t1 : : : tn
t0 : : : tn

: : : : : :

1CCCCCCA
The existence of the solution shows that this matrix has determinant zero, which implies that
Res.P;Q/D 0.

Conversely, suppose that Res.P;Q/D 0 but neither s0 nor t0 is zero. Because the above
matrix has determinant zero, we can solve the linear equations to find polynomials P1 and
Q1 satisfying (33). A root ˛ of P must be also be a root of P1 or of Q. If the former,
cancel X �˛ from the left hand side of (33), and consider a root ˇ of P1=.X �˛/. As
degP1 < degP , this argument eventually leads to a root of P that is not a root of P1, and so
must be a root of Q. 2
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The proposition can be restated in projective terms. We define the resultant of two
homogeneous polynomials

P.X;Y /D s0X
m
C s1X

m�1Y C�� �C smY
m; Q.X;Y /D t0X

n
C�� �C tnY

n;

exactly as in the nonhomogeneous case.

PROPOSITION 7.28. The resultant Res.P;Q/D 0 if and only if P and Q have a common
zero in P1.

PROOF. The zeros of P.X;Y / in P1 are of the form:

(a) .1 W 0/ in the case that s0 D 0;

(b) .a W 1/ with a a root of P.X;1/.

Since a similar statement is true for Q.X;Y /, 7.28 is a restatement of 7.27. 2

Now regard the coefficients of P and Q as indeterminates. The pairs of polynomials
.P;Q/ are parametrized by the space AmC1�AnC1DAmCnC2. Consider the closed subset
V.P;Q/ in AmCnC2�P1. The proposition shows that its projection on AmCnC2 is the set
defined by Res.P;Q/D 0. Thus, not only have we shown that the projection of V.P;Q/ is
closed, but we have given an algorithm for passing from the polynomials defining the closed
set to those defining its projection.

Elimination theory does this in general. Given a family of polynomials

Pi .T1; : : : ;TmIX0; : : : ;Xn/;

homogeneous in the Xi , elimination theory gives an algorithm for finding polynomials
Rj .T1; : : : ;Tm/ such that the Pi .a1; : : : ;amIX0; : : : ;Xn/ have a common zero if and only if
Rj .a1; : : : ;am/D 0 for all j . (Theorem 7.22 shows only that the Rj exist.)

Maple can find the resultant of two polynomials in one variable: for example, entering
“resultant..xCa/5; .xCb/5;x/” gives the answer .�aCb/25. Explanation: the polynomi-
als have a common root if and only if a D b, and this can happen in 25 ways. Macaulay
doesn’t seem to know how to do more.

Elimination theory: general case

In this subsection, we give a proof of Theorem 7.22, following Cartier and Tate 1978,2 which
is a more explicit proof than that given above. Throughout, k is a field (not necessarily
algebraically closed) and K is an algebraically closed field containing k.

THEOREM 7.29. For any graded ideal a in kŒX0; : : : ;Xn�, exactly one of the following
statements is true:

(a) there exists an integer d0 � 0 such that a contains every homogeneous polynomial of
degree d � d0;

(b) the ideal a has a nontrivial zero in KnC1.

PROOF. Statement (a) says that the radical of a contains .X0; : : : ;Xn/, and so the theorem
is a restatement of 6.2(a), which we deduced from the strong Nullstellensatz. For a direct
proof of it, see the article of Cartier and Tate. 2

2Cartier, P., Tate, J., A simple proof of the main theorem of elimination theory in algebraic geometry.
Enseign. Math. (2) 24 (1978), no. 3-4, 311–317.
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THEOREM 7.30. Let RD
L
d2NRd be a graded k-algebra such that R0 D k, R is gener-

ated as a k-algebra by R1, and Rd is finite-dimensional for all d . Then exactly one of the
following statements is true:

(a) there exists an integer d0 � 0 such that Rd D 0 for all d � d0;

(b) no Rd D 0, and there exists a k-algebra homomorphism R!K whose kernel is not
equal to RC def

D
L
d�1Rd .

PROOF. The hypotheses on R say that it is a quotient of kŒX0; : : : ;Xn� by a graded ideal.
Therefore 7.30 is a restatement of 7.29. 2

Let P1; : : : ;Pr be polynomials in kŒT1; : : : ;TmIX0; : : : ;Xn� with Pj homogeneous of de-
gree dj in the variablesX0; : : : ;Xn. Let J be the ideal .P1; : : : ;Pr/ in kŒT1; : : : ;TmIX0; : : : ;Xn�,
and let A be the ideal of polynomials f in kŒT1; : : : ;Tm� with the following property: there
exists an integer N � 1 such that fXN0 ; : : : ;fX

N
n all lie in J .

THEOREM 7.31. Let V be the zero set of J in An.K/�Pn.K/. The projection of V into
An.K/ is the zero set of A.

Consider the ring B D kŒT1; : : : ;TmIX0; : : : ;Xn� and its subring B0 D kŒT1; : : : ;Tm�.
Then B is a graded B0-algebra with Bd the B0-submodule generated by the monomials of
degree d in X0; : : : ;Xn, and J is a homogeneous (graded) ideal in B . Let AD

L
d2NAd

be the quotient graded ring B=J D
L
d2NBd=.Bd \J /. Let S be the ideal of elements a

of A0 such that aAd D 0 for all sufficiently large d .

THEOREM 7.32. A ring homomorphism 'WA0 ! K extends to a ring homomorphism
	 WA!K not annihilating the ideal AC def

D
L
d�1Ad if and only if '.S/D 0.

Following Cartier and Tate, we leave it to reader to check that 7.32 is equivalent to 7.31.

Proof of Theorem 7.32

We shall prove 7.32 for any graded ring AD
L
d�0Ad satisfying the following two condi-

tions:

(a) as an A0-algebra, A is generated by A1;

(b) for every d � 0, Ad is finitely generated as an A0-module.

In the statement of the theorem, K is any algebraically closed field.
The proof proceeds by replacing A with other graded rings with the properties (a) and

(b) and also having the property that no Ad is zero.
Let 'WA0!K be a homomorphism such that '.S/D 0, and let PD Ker.'/. Then P

is a prime ideal of A0 containing S.
Step 1. Let J be the ideal of elements a of A for which there exists an s 2 A0XP such

that saD 0. For every d � 0, the annihilator of the A0-module Ad is contained in S, hence
in P, and so J \Ad ¤ Ad . The ideal J is graded, and the quotient ring A0 D A=J has the
required properties.

Step 2. Let A00 be the ring of fractions of A0 whose denominators are in ˙ def
D A00XP.

Let A00
d

be the set of fractions with numerator in A0
d

and denominator in ˙ . Then A00 DL
d�0A

00
d

is a graded ring with the required properties, and A000 is a local ring with maximal

ideal P00 def
DP0 �A00.
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Step 3. Let R be the quotient of A00 by the graded ideal P00 �A00. As A00
d

is a nonzero
finitely generated module over the local ringA000, Nakayama’s lemma shows thatA00

d
¤P00A00

d
.

Therefore R is graded ring with the required properties, and k DR0
def
D A000=P

00 is a field.
Step 4. At this point R satisfies the hypotheses of Theorem 7.30. Let " be the composite

of the natural maps
A! A0! A00!R.

In degree 0, this is nothing but the natural map from A0 to k with kernel P. As ' has
the same kernel, it factors through "0, making K into an algebraically closed extension of
k. Now, by Theorem 7.30, there exists a k-algebra homomorphism f WR! K such that
f .RC/¤ 0. The composite map 	 D f ı " has the required properties. 2

For more on elimination theory, see Chapter 8, Section 5, of Cox, David A.; Little, John;
O’Shea, Donal, Ideals, varieties, and algorithms. Springer, Cham, 2015.

ASIDE 7.33. Elimination theory became unfashionable several decades ago — one prominent alge-
braic geometer went so far as to announce that Theorem 7.22 eliminated elimination theory from
mathematics,3 provoking Abhyankar, who prefers equations to abstractions, to start the chant “elimi-
nate the eliminators of elimination theory”. With the rise of computers, it has become fashionable
again.

e. The rigidity theorem; abelian varieties

The paucity of maps between complete varieties has some interesting consequences. First
an observation: for any point w 2W , the projection map V �W ! V defines an isomor-
phism V �fwg ! V with inverse v 7! .v;w/WV ! V �W (this map is regular because its
components are).

THEOREM 7.34 (RIGIDITY THEOREM). Let 'WV �W ! T be a
regular map, and assume that V is complete, V and W are irre-
ducible, and T is separated. If '.v;w0/ is independent of v for one
w0 2W , then '.v;w/D g.w/ with g a regular map gWW ! T .

V �W

W

T

'

q

g

PROOF. Choose a v0 2 V , and consider the regular map

gWW ! T; w 7! '.v0;w/:

We shall show that ' D g ıq. Because V is complete, the projection map qWV �W !W is
closed. Let U be an open affine neighbourhood U of '.v0;w0/; then T XU is closed in T ,
'�1.T XU/ is closed in V �W , and

C def
D q.'�1.T XU//

is closed in W . By definition, C consists of the w 2 W such that '.v;w/ … U for some
v 2 V , and so

W XC D fw 2W j '.V �fwg/� U g:

3Weil, A., Foundations of Algebraic Geometry, 1946/1962, p. 31: “The device that follows, which, it may
be hoped, finally eliminates from algebraic geometry the last traces of elimination-theory, is borrowed from
C. Chevalley’s Princeton lectures.” Demazure 2012 quotes Dieudonné as saying: “Il faut éliminer la théorie de
l’élimination.”
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As '.V;w0/ D '.v0;w0/, we see that w0 2 W XC . Therefore W XC is nonempty, and
so it is dense in W . As V �fwg is complete and U is affine, '.V �fwg/ must be a point
whenever w 2W XC (see 7.10); in fact

'.V �fwg/D '.v0;w/D g.w/:

We have shown that ' and g ı q agree on the dense subset V � .W XC/ of V �W , and
therefore on the whole of V �W . 2

COROLLARY 7.35. Let 'WV �W ! T be a regular map, and assume that V is complete,
that V and W are irreducible, and that T is separated. If there exist points v0 2 V , w0 2W ,
t0 2 T such that

'.V �fw0g/D ft0g D '.fv0g�W /,

then '.V �W /D ft0g.

PROOF. With g as in the proof of the theorem,

'.v;w/D g.w/D '.v0;w/D t0: 2

In more colloquial terms, the corollary says that if ' collapses a vertical and a horizontal
slice to a point, then it collapses the whole of V �W to a point, which must therefore be
“rigid”.

DEFINITION 7.36. An abelian variety is a complete connected group variety.

THEOREM 7.37. Every regular map ˛WA! B of abelian varieties is the composite of a
homomorphism with a translation; in particular, a regular map ˛WA! B such that ˛.0/D 0
is a homomorphism.

PROOF. After composing ˛ with a translation, we may suppose that ˛.0/D 0. Consider the
map

'WA�A! B; '.a;a0/D ˛.aCa0/�˛.a/�˛.a0/:

Then '.A�0/D 0D '.0�A/ and so ' D 0. This means that ˛ is a homomorphism. 2

COROLLARY 7.38. The group law on an abelian variety is commutative.

PROOF. Commutative groups are distinguished among all groups by the fact that the map
taking an element to its inverse is a homomorphism: if .gh/�1 D g�1h�1, then, on taking
inverses, we find that ghD hg. Since the negative map, a 7! �aWA! A, takes the identity
element to itself, the preceding corollary shows that it is a homomorphism. 2

f. Chow’s Lemma

The next theorem is a useful tool in extending results from projective varieties to complete
varieties. It shows that a complete variety is not far from a projective variety.

THEOREM 7.39 (CHOW’S LEMMA). For every complete irreducible variety V , there exists
a surjective regular map f WV 0! V from a projective algebraic variety V 0 to V such that,
for some dense open subset U of V , f induces an isomorphism f �1.U /! U (in particular,
f is birational).
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Write V as a finite union of nonempty open affines, V DU1[ : : :[Un, and letU D
T
Ui .

Because V is irreducible, U is a dense in V . Realize each Ui as a dense open subset of a
projective variety Pi . Then P def

D
Q
i Pi is a projective variety (6.26). We shall construct an

algebraic variety V 0 and regular maps f WV 0! V and gWV 0! P such that

(a) f is surjective and induces an isomorphism f �1.U /! U ;

(b) g is a closed immersion (hence V 0 is projective).

Let '0 (resp. 'i ) denote the given inclusion of U into V (resp. into Pi ), and let

' D .'0;'1; : : : ;'n/WU ! V �P1� � � ��Pn;

be the diagonal map. We setU 0D '.U / and V 0 equal to the closure ofU 0 in V �P1�� � ��Pn.
The projection maps pWV �P ! V and qWV �P ! P restrict to regular maps f WV 0! V

and gWV 0! P . Thus, we have a commutative diagram

V

U V 0 V �P

P:

'

'0

f

g

p

q

(34)

PROOF OF (a)

In the upper-left triangle of the diagram (34), the maps ' and '
0

are isomorphisms from U

onto its images U 0 and U . Therefore f restricts to an isomorphism U 0! U . Note that

U 0 D f.u;'1.u/; : : : ;'n.u// j u 2 U g;

which is the graph of the map .'1; : : : ;'n/WU ! P . Therefore, U 0 is closed in U �P (5.28),
and so

U 0 D V 0\ .U �P /D f �1.U /:

The map f is dominant, and f .V 0/D p.V /, which is closed because P is complete. Hence
f is surjective.

PROOF OF (b)

We first show that g is an immersion. As this is a local condition, it suffices to find
open subsets Vi � P such that

S
q�1.Vi / � V

0 and each map V 0\q�1.Vi /
g
�! Vi is an

immersion.
We set

Vi D p
�1
i .Ui /D P1� � � ��Ui � � � ��Pn

where pi is the projection map P ! Pi .
We first show that the sets q�1.Vi / cover V 0. The sets Ui cover V , hence the sets

f �1.Ui / cover V 0, and so it suffices to show that

q�1.Vi /� f
�1.Ui /
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for all i . Consider the diagrams

q�1.Vi / Ui

V �P Pi

'i

piıq

f �1.Ui / Ui

V �P Pi

f

'i

piıq

U Ui

V �P Pi :

'

'0

'i

piıq

The diagram at left is cartesian, i.e., it realizes q�1.Vi / as the fibred product

q�1.Vi / D .V �P /�Pi
Ui ;

and so it suffices to show that the middle diagram commutes. But U 0 is dense in V 0, hence
in f �1.Ui /, and so it suffices to prove that the middle diagram commutes with f �1.Ui /
replaced by U 0. But then it becomes the diagram at right, which obviously commutes.

We next show that
V 0\q�1.Vi /

g
�! Vi

is an immersion for each i . Recall that

Vi D Ui �P
i ; where P i D

Y
j¤i

Pj :

and so
q�1.Vi /D V �Ui �P

i
� V �P:

Let �i denote the graph of the map�
Ui �P

i pi
�! Ui ,! V

�
:

Being a graph, �i is closed in V �
�
Ui �P

i
�

and the projection map V �
�
Ui �P

i
�
!

Ui �P
i restricts to an isomorphism �i ! Ui �P

i . In other words, �i is closed in q�1.Vi /,
and the projection map q�1.Vi /!Vi restricts to an isomorphism �i!Vi . As �i is closed in
q�1.Vi / and contains U 0, it contains V 0\q�1.Vi /, and so the projection map q�1.Vi /! Vi
restricts to an immersion V 0\q�1.Vi /! Vi .

Finally, V �P is complete because V and P are, and so V 0 is complete (7.3). Hence
g.V / is closed (7.7), and so g is a closed immersion.

Notes

7.40. Let V be a complete variety, and let V1; : : : ;Vs be the irreducible components of V .
Each Vi is complete (7.4), and so there exists a surjective birational regular map V 0i ! Vi
with V 0i projective (7.39). Now

F
V 0i is projective 6.26, and the compositeG

V 0i !
G
Vi ! V

is surjective and birational.

7.41. Chow (1956, Lemma 1)4 proved essentially the statement 7.42 by essentially the
above argument. He used the lemma to prove that all homogeneous spaces are quasiprojective.
See also EGA II, 5.6.1.

4Chow, Wei-Liang. On the projective embedding of homogeneous varieties. Algebraic geometry and
topology. A symposium in honor of S. Lefschetz, pp. 122–128. Princeton University Press, Princeton, N. J.,
1957.
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g. Analytic spaces; Chow’s theorem

We summarize a little of Serre, Jean-Pierre. Géométrie algébrique et géométrie analytique.
Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1–42, commonly referred to as GAGA.

7.42. The following is more general than Theorem 7.39: for every algebraic variety V ,
there exists a projective algebraic variety V 0 and a birational regular map ' from an open
dense subset U of V 0 onto V whose graph is closed in V 0�V ; the subset U equals V 0 if
and only if V is complete. Ibid. p. 12.

A subset V of Cn is analytic if every v 2 V admits an open neighbourhood U in Cn
such that V \U is the zero set of a finite collection of holomorphic functions on U . An
analytic subset is locally closed.

Let V 0 be an open subset of an analytic set V . A function f WV 0! C is holomorphic
if, for every v 2 V 0, there exists an open neighbourhood U of v in Cn and a holomorphic
function h on U such that f D h on V 0\U . The holomorphic functions on open subsets of
V define on V the structure of a C-ringed space.

DEFINITION 7.43. An analytic space is a C-ringed space .V;OV / satisfying the following
two conditions:

(a) there exists an open covering V D
S
Vi of V such that, for each i , the C-ringed space

.Vi ;OV jVi / is isomorphic to an analytic set equipped with its sheaf of holomorphic
functions;

(b) the topological space V is Hausdorff.

PROPOSITION 7.44. An algebraic variety V is complete if and only if V.C/ is compact in
the complex topology.

PROOF. The proof uses Chow’s lemma (ibid. Proposition 6, p. 12). 2

There is a natural functor V  V an from algebraic varieties over C to complex analytic
spaces (ibid. �2).

We omit the definition of a coherent sheaf of OV -modules.

THEOREM 7.45. Let V be a projective variety over C. Then the functor F 7! F an is an
equivalence from the category of coherent OV -modules to the category of coherent OV an-
modules, under which locally free modules correspond. In particular, � .V an;OV an/ '

� .V;OV /.

PROOF. This summarizes the main results of GAGA (ibid. Théoréme 2,3, p. 19, p. 20). 2

THEOREM 7.46 (CHOW’S THEOREM). Every closed analytic subset of a projective variety
is algebraic.

PROOF. Let V be a projective space, and letZ be a closed analytic subset of V an. A theorem
of Henri Cartan states that OZan is a coherent analytic sheaf on V an, and so there exists a
coherent algebraic sheaf F on V such that F an DOZan . The support of F is Zariski closed,
and equals Z (ibid. p. 29). 2

THEOREM 7.47. Every compact analytic subset of an algebraic variety is algebraic.
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PROOF. Let V be an algebraic variety, and let Z be a compact analytic subset. By Chow’s
lemma (7.42), there exists a projective variety V 0, a dense open subset U of V 0, and a
surjective regular map 'WU ! V whose graph � is closed in V �V 0. Let � 0D� \.Z�V 0/.
As Z and V 0 are compact and � is closed, � 0 is compact, and so its projection V 00 on V 0 is
also compact. On the other hand, V 00 D f �1.Z/, which shows that it is an analytic subset
of U , and therefore also of V 0. According to Chow’s theorem, it is a Zariski closed subset of
V 0 (hence an algebraic variety). Now Z D f .V 00/ is constructible (Zariski sense; see 9.7
below), and therefore its Zariski closure coincides with its closure for the complex topology,
but (by assumption) it is closed. 2

COROLLARY 7.48. Let V and W be algebraic varieties over C. If V is complete, then
every holomorphic map f WV an!W an is algebraic.

PROOF. Apply the preceding theorem to the graph of f . 2

EXAMPLE 7.49. The graph of z 7! ez WC! C�C is closed in C�C but it is not Zariski
closed.

h. Nagata’s Embedding Theorem

A necessary condition for a prevariety to be an open subvariety of a complete variety is that
it be separated. An important theorem of Nagata says that this condition is also sufficient.

THEOREM 7.50. Every variety V admits an open immersion V ,! W into a complete
variety W .

If V is affine, then one can embed V ,! An ,! Pn, and take W to be the closure of V
in Pn. The proof in the general case is quite difficult. See:

Nagata, Masayoshi. Imbedding of an abstract variety in a complete variety. J.
Math. Kyoto Univ. 2 1962 1–10; A generalization of the imbedding problem of
an abstract variety in a complete variety. J. Math. Kyoto Univ. 3 1963 89–102.

For a modern exposition, see:

Lütkebohmert, W. On compactification of schemes. Manuscripta Math. 80
(1993), no. 1, 95–111.

In the 1970s, Deligne translated Nagata’s work into the language of schemes. His personal
notes are available in three versions.

Deligne, P., Le théorème de plongement de Nagata, Kyoto J. Math. 50, Number
4 (2010), 661-670.
Conrad, B., Deligne’s notes on Nagata compactifications. J. Ramanujan Math.
Soc. 22 (2007), no. 3, 205–257.
Vojta, P., Nagata’s embedding theorem, 19pp., 2007, arXiv:0706.1907.

See also:

Temkin, Michael. Relative Riemann-Zariski spaces. Israel J. Math. 185 (2011),
1–42.

A little history

When he defined abstract algebraic varieties, Weil introduced the term “complete variety” to
denote the algebraic geometer’s analogue of a compact manifold.
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Exercises

7-1. Identify the set of homogeneous polynomials F.X;Y /D
P
aijX

iY j , 0� i;j �m,
with an affine space. Show that the subset of reducible polynomials is closed.

7-2. Let V and W be complete irreducible varieties, and let A be an abelian variety. Let
P and Q be points of V and W . Show that any regular map hWV �W ! A such that
h.P;Q/D 0 can be written hD f ıpCg ıq where f WV ! A and gWW ! A are regular
maps carrying P and Q to 0 and p and q are the projections V �W ! V;W .





CHAPTER 8
Normal Varieties; (Quasi-)finite maps;

Zariski’s Main Theorem

We begin by studying normal varieties. These varieties have some of the good properties
of nonsingular varieties, and it is easy to show that every variety is birationally equivalent
to a normal variety. After studying finite and quasi-finite maps, we discuss the celebrated
Zariski’s Main Theorem (ZMT), which says that every quasi-finite map of algebraic varieties
can be obtained from a finite map by removing a closed subset from the source variety. In its
original form, the theorem says that a birational regular map to a normal algebraic variety
fails to be a local isomorphism only at points where the fibre has dimension > 0.

a. Normal varieties

Recall (1.42) that an integrally closed domain is an integral domain that is integrally closed
in its field of fractions. Moreover, that an integral domain A is normal if and only if Am is
normal for every maximal ideal m in A (see 1.49).

DEFINITION 8.1. A point P on an algebraic variety V is normal if OV;P is an integrally
closed domain. An algebraic variety is said to be normal if all of its points are normal.

Since the local ring at a point lying on two irreducible components can’t be an integral
domain (see 3.14), a normal variety is a disjoint union of its irreducible components, which
are therefore its connected components.

PROPOSITION 8.2. The following conditions on an irreducible variety V are equivalent.

(a) The variety V is normal.

(b) For all open affine subsets U of V , the ring OV .U / is an integrally closed domain.

(c) For all open subsets U of V , a rational function on V that satisfies a monic polynomial
equation on U whose coefficients are regular on U is itself regular on U .

PROOF. The equivalence of (a) and (b) follows from 1.49.
(a)H) (c). Let U be an open subset of V , and let f 2 k.V / satisfy

f nCa1f
n�1
C�� �Can D 0; ai 2OV .U /;

(equality in k.V /). Then ai 2OV .U /�OP for all P 2 U , and so f 2OP for all P 2 U .
This implies that f 2OV .U / (5.11).

173
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(c)H) (b). The condition applied to an open affine subset U of V implies that OV .U / is
integrally closed in k.V /. 2

A regular local noetherian ring is normal — this is a difficult result that we don’t prove
here (see CA 22.5 for references). Conversely, a normal local domain of dimension one is
regular. Thus nonsingular varieties are normal, and normal curves are nonsingular. However,
a normal surface need not be nonsingular: the cone

X2CY 2�Z2 D 0

is normal, but it is singular at the origin — the tangent space at the origin is k3.
The singular locus of a normal variety V must have dimension � dimV �2 (see 8.12

below). For example, a normal surface can only have isolated singularities — the singular
locus can’t contain a curve. In particular, the surface Z3 DX2Y (see 4.42) is not normal.

The normalization of an algebraic variety

Let E � F be a finite extension of fields. The extension E=F is said to be normal if the
minimal polynomial of every element of E splits in E. Let F al be an algebraic closure
of F containing E. The composite in F al of the fields �E, � 2 Aut.E=F /, is normal
over F (and is called the normal closure of F in F al). If E is normal over F , then E is
Galois over EAut.E=F / (FT 3.10), and EAut.E=F / is purely inseparable over F (because
HomF .EAut.E=F /;F al/ consists of a single element).

PROPOSITION 8.3. Let A be a finitely generated k-algebra. Assume that A is an integral
domain, and let E be a finite field extension of its field of fractions F . Then the integral
closure A0 of A in E is a finite A-algebra (hence a finitely generated k-algebra).

PROOF. According to the Noether normalization theorem (2.45), A contains a polynomial
subalgebra A0 and is finite over A0. Now E is a finite extension of F.A0/ and A0 is the
integral closure of A0 in E, and so we only need to consider the case that A is a polynomial
ring kŒX1; : : : ;Xd �.

Let QE denote the normal closure of E in some algebraic closure of F containing E, and
let QA denote the integral closure of A in QE. If QA is finitely generated as an A-module, then
so is its submodule A0 (because A is noetherian). Therefore we only need to consider the
case that E is normal over F .

According to the above discussion, E �E1 � F with E Galois over E1 and E1 purely
inseparable over F . Let A1 denote the integral closure of A in E1. Then A0 is a finite
A1-algebra (1.51), and so it suffices to show that A1 is a finite A-algebra. Therefore we only
need to consider the case that E is purely inseparable over F .

In this case, k has characteristic p ¤ 0, and, for each x 2E, there is a power q.x/ of p
such that xq.x/ 2 F . As E is finitely generated over F , there is a single power q of p such
that xq 2 F for all x 2E. Let F al denote an algebraic closure of F containing E. For each
i , there is a unique Yi 2 F al such that Y qi DXi . Now

F D k.X1; : : : ;Xd /�E � k.Y1; : : : ;Yd /

and
AD kŒX1; : : : ;Xd �� A

0
� kŒY1; : : : ;Yd �

because kŒY1; : : : ;Yd � containsA and is integrally closed (1.32, 1.43). Obviously kŒY1; : : : ;Yd �
is a finite A-algebra, and this implies, as before, that A0 is a finite A-algebra. 2
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COROLLARY 8.4. Let A be as in 8.3. If Am is normal for some maximal ideal m in A, then
Ah is normal for some h 2 AXm.

PROOF. Let A0 be the integral closure of A in its field of fractions. Then A0DAŒf1; : : : ;fm�
for some fi 2 A0. Now .A0/m

1.47
D .Am/

0
D Am, and so there exists an h 2 AXm such that,

for all i , hfi 2 A. Now A0
h
D Ah, and so Ah is normal. 2

The proposition shows that if A is an integral domain finitely generated over k, then the
integral closure A0 of A in a finite extension E of F.A/ has the same properties. Therefore,
Spm.A0/ is an irreducible algebraic variety, called the normalization of Spm.A/ in E. This
construction extends without difficulty to nonaffine varieties.

PROPOSITION 8.5. Let V be an irreducible algebraic variety, and let K be a finite field
extension of k.V /. Then there exists an irreducible algebraic variety W with k.W /DK
and a regular map 'WW ! V such that, for all open affines U in V , '�1.U / is affine and
kŒ'�1.U /� is the integral closure of kŒU � in K.

The map ' (or just W ) is called the normalization of V in K.

PROOF. For each v 2 V , let W.v/ be the set of maximal ideals in the integral closure of Ov
in K. Let W D

F
v2V W.v/, and let 'WW ! V be the map sending the points of W.v/ to v.

For an open affine subset U of V ,

'�1.U /' spm.kŒU �0/;

where kŒU �0 is the integral closure of kŒU � in K. We endow W with the k-ringed space
structure for which

.'�1.U /;OW j'�1.U //' Spm.kŒU �0/.

A routine argument shows that .W;OW / is an algebraic variety with the required properties.2

EXAMPLE 8.6. (a) The normalization of the cuspidal cubic V WY 2DX3 in k.V / is the map
A1! V , t 7! .t2; t3/ (see 3.29).

(b) The normalization of the nodal cubic V WY 2 DX3CX2 (4.10) in k.V / is the map
A1! V , t 7! .t2�1; t3� t /.

PROPOSITION 8.7. The normal points in an irreducible algebraic variety form a dense open
subset.

PROOF. Corollary 8.4 shows that the set of normal points is open, and it remains to show
that it is nonempty. Let V be an irreducible algebraic variety. According to (3.37, 3.38), V
is birationally equivalent to a hypersurface H in AdC1, d D dimV ,

H W a0X
m
Ca1X

m�1
C�� �Cam; ai 2 kŒT1; : : : ;Td �; a0 ¤ 0; m 2 NI

moreover, T1; : : : ;Td can be chosen to be a separating transcendence basis for k.V / over
k. Therefore the discriminant D of the polynomial a0XmC�� �Cam is nonzero (it is an
element of kŒT1; : : : ;Td �).

Let AD kŒT1; : : : ;Td �; then kŒH�D AŒX�=.a0XmC�� �Cam/D AŒx�. Let

y D c0C�� �C cm�1x
m�1; ci 2 k.T1; : : : ;Td /; (35)

be an element of k.H/ integral over A. For each j 2 N, Trk.H/=F .A/.yxj / is a sum of
conjugates of yxj , and hence is integral over A (cf. the proof of 1.44). As it lies in F.A/, it
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is an element of A. On multiplying (35) with xj and taking traces, we get a system of linear
equations

c0 �Tr.xj /C c1 �Tr.x1Cj /C�� �C cm�1 �Tr.xm�1Cj /D Tr.yxj /; j D 0; : : : ;m�1:

By Cramer’s rule (p. 26),

det.Tr.xiCj // � cl 2 A; l D 0; : : : ;m�1:

But det.Tr.xiCj //DD,1 and so cl 2AŒD�1�. Hence kŒH� becomes normal once we invert
the nonzero element D. We have shown that H contains a dense open normal subvariety,
which implies that V does also. 2

PROPOSITION 8.8. For every irreducible algebraic variety V , there exists a surjective regu-
lar map 'WV 0! V from a normal algebraic variety V 0 to V such that, for some dense open
subset U of V; ' induces an isomorphism '�1.U /! U (in particular ' is birational).

PROOF. Proposition 8.7 shows that the normalization of V in k.V / has this property. 2

8.9. More generally, for a dominant map 'WW ! V of irreducible algebraic varieties, there
exists a normalization of V in W . For each open affine U in V we have

kŒU �� � .'�1.U /;OW /� k.W /:

The integral closure kŒU �0 of � .U;OV / in � .'�1.U /;OW / is a finite kŒU �-algebra (because
it is a kŒU �-submodule of the integral closure of kŒU � in k.W /). The normalization of V in
W is a regular map '0WV 0! V such that, for every open affine U in V ,

.'0�1.U /;OV 0/D Spm.kŒU �0/:

In particular, '0 is an affine map. For example, ifW and V are affine, then V 0D Spm.kŒV �0/,
where kŒV �0 is the integral closure of kŒV � in kŒW �. There is a commutative triangle

W V 0

V:

j

' '0

b. Regular functions on normal varieties

DEFINITION 8.10. An algebraic variety V is factorial at a point P if OP is a factorial
domain. The variety V is factorial if it is factorial at all points P .

When V is factorial, it does not follow that OV .U / is factorial for all open affines U in V .
A prime divisor Z on a variety V is a closed irreducible subvariety of codimension 1.

LetZ be a prime divisor on V , and let P 2 V ; we say thatZ is locally principal at P if there
exists an open affine neighbourhood U of P and an f 2 kŒU � such that I.Z\U/D .f /;
the regular function f is then called a local equation for Z at P . If P …Z, then Z is locally
principal at P because then we can choose U so that Z\U D ;, and I.Z\U/D .1/.

1See, for example, 2.34 of my notes Algebraic Number Theory.
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PROPOSITION 8.11. An irreducible variety V is factorial at a point P if and only if every
prime divisor on V is locally principal at P .

PROOF. Recall that an integral domain is factorial if and only if every prime ideal of height
1 is principal (1.24, 3.52). 2

PROPOSITION 8.12. The codimension of the singular locus in a normal variety is at least 2.

PROOF. Let V be a normal algebraic variety of dimension d , and suppose that its singular
locus has an irreducible component W of codimension 1. After replacing V with an open
subvariety, we may suppose that it is affine and that W is principal, say, W D .f / (see
8.11). There exists a nonsingular point P on W (4.37). Let .U;f1/; : : : ; .U;fd�1/ be germs
of functions at P (on V ) whose restrictions to W generate the maximal ideal in OW;P (cf.
4.36). Then .U;f1/; : : : ; .U;fd�1/; .U;f / generate the maximal ideal in OV;P , and so P is
nonsingular on V . This contradicts the definition of W . 2

SUMMARY 8.13. For an algebraic variety V ,

nonsingular H) factorial H) normal H) singular locus has codimension � 2.

˘ The variety X21 C�� �CX
2
5 is factorial but singular.

˘ The cone Z2 DXY in A3 is normal but not factorial (see 9.39 below).

˘ The variety Spm.kŒX;XY;Y 2;Y 3�/ is a surface in A4 with exactly one singular point,
namely, the origin. Its singular locus has codimension 2, but the variety is not normal
(the normalization kŒX;XY;Y 2;Y 3� is kŒX;Y �).

˘ Every singular curve has singular locus of codimension 1 (hence fails all conditions).

ZEROS AND POLES OF RATIONAL FUNCTIONS ON NORMAL VARIETIES

Let V be a normal irreducible variety. A divisor on V is an element of the free abelian group
Div.V / generated by the prime divisors. Thus a divisor D can be written uniquely as a finite
(formal) sum

D D
X

niZi ; ni 2 Z; Zi a prime divisor on V:

The support jDj of D is the union of the Zi corresponding to nonzero ni . A divisor is said
to be effective (or positive) if ni � 0 for all i . We get a partial ordering on the divisors by
defining D �D0 to mean D�D0 � 0:

Because V is normal, there is associated with every prime divisor Z on V a discrete
valuation ring OZ . This can be defined, for example, by choosing an open affine subvariety
U of V such that U \Z ¤ ;; then U \Z is a maximal proper closed subset of U , and so
the ideal p corresponding to it is minimal among the nonzero ideals of RD � .U;O/I so Rp

is an integrally closed domain with exactly one nonzero prime ideal pRp — it is therefore a
discrete valuation ring (4.20), which is defined to be OZ . More intrinsically we can define
OZ to be the set of rational functions on V that are defined an open subset U of V meeting
Z.

Let ordZ be the valuation k.V /�
onto
�! Z with valuation ring OZ ; thus, if � is a prime

element of OZ , then
aD unit��ordZ.a/:

The divisor of a nonzero element f of k.V / is defined to be

div.f /D
X

ordZ.f / �Z:
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The sum is over all the prime divisors of V , but in fact ordZ.f /D 0 for all but finitely many
Z. In proving this, we can assume that V is affine (because it is a finite union of affines),
say V D Spm.R/. Then k.V / is the field of fractions of R, and so we can write f D g=h
with g;h 2 R, and div.f /D div.g/�div.h/. Therefore, we can assume f 2 R. The zero
set of f , V.f / either is empty or is a finite union of prime divisors, V D

S
Zi (see 3.42)

and ordZ.f /D 0 unless Z is one of the Zi .
The map

f 7! div.f /Wk.V /�! Div.V /

is a homomorphism. A divisor of the form div.f / is said to be principal, and two divisors
are said to be linearly equivalent, denoted D �D0, if they differ by a principal divisor.

When V is nonsingular, the Picard group Pic.V / of V is defined to be the group of
divisors on V modulo principal divisors. (The definition of the Picard group of a general
algebraic variety agrees with this definition only for nonsingular varieties; it may differ for
normal varieties.)

THEOREM 8.14. Let V be a normal variety, and let f be rational function on V . If f has
no zeros or poles on an open subset U of V , then f is regular on U .

PROOF. We may assume that V is connected, hence irreducible. Now apply the following
statement (proof omitted):

a noetherian domain is normal if and only if Ap is a discrete valuation ring for
all prime ideals p of height 1 and AD

T
ht.p/D1Ap.

COROLLARY 8.15. A rational function on a normal variety, regular outside a subset of
codimension � 2, is regular everywhere.

PROOF. This is a restatement of the theorem. 2

COROLLARY 8.16. Let V and W be affine varieties with V normal, and let 'WV XZ!W

be a regular map defined on the complement of a closed subset Z of V . If codim.Z/� 2,
then ' extends to a regular map on the whole of V .

PROOF. We may suppose that W is affine, and embed it as a closed subvariety of An. The
map V XZ!W ,!An is given by n regular functions on V XZ, each of which extends to
V . Therefore V XZ! An extends to An, and its image is contained in W . 2

c. Finite and quasi-finite maps

Finite maps

DEFINITION 8.17. A regular map 'WW ! V of algebraic varieties is finite if there exists
a finite covering V D

S
i Ui of V by open affines such that, for each i , the set '�1.Ui / is

affine and kŒ'�1.Ui /� is a finite kŒUi �-algebra.

EXAMPLE 8.18. Let V be an irreducible algebraic variety, and let 'WW ! V be the normal-
ization of V in a finite extension of k.V /. Then ' is finite. This follows from the definition
8.5 and Proposition 8.3.

The next lemma shows that, for maps of affine algebraic varieties, the above definition
agrees with Definition 2.39.
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LEMMA 8.19. A regular map 'WW ! V of affine algebraic varieties is finite if and only if
kŒW � is a finite kŒV �-algebra.

PROOF. The necessity being obvious, we prove the sufficiency. For simplicity, we shall
assume in the proof that V andW are irreducible. Let .Ui /i be a finite family of open affines
covering V and such that, for each i , the set '�1.Ui / is affine and kŒ'�1.Ui /� is a finite
kŒUi �-algebra.

Each Ui is a finite union of basic open subsets of V . These are also basic open subsets
of Ui , because D.f /\Ui DD.f jUi /, and so we may assume that the original Ui are basic
open subsets of V , say, Ui DD.fi / with fi 2 A.

Let AD kŒV � and B D kŒW �. We are given that .f1; : : : ;fn/DA and that Bfi
is a finite

Afi
-algebra for each i . We have to show that B is a finite A-algebra.
Let fbi1; : : : ;bimi

g generateBfi
as anAfi

-module. After multiplying through by a power
of fi , we may assume that the bij lie in B . We shall show that the family of all bij generate
B as an A-module. Let b 2 B . Then b=1 2 Bfi

, and so

b D
ai1

f
ri

i

bi1C�� �C
aimi

f
ri

i

bimi
, some aij 2 A and ri 2 N:

The ideal .f r1

1 ; : : : ;f
rn
n /D A because any maximal ideal containing .f r1

1 ; : : : ;f
rn
n / would

have to contain .f1; : : : ;fn/D A. Therefore,

1D h1f
r1

1 C�� �Chnf
rn
n , some hi 2 A:

Now

b D b �1D h1 �bf
r1

1 C�� �Chn �bf
rn
n

D h1.a11b11C�� �Ca1m1
b1m1

/C�� �Chn.an1bn1C�� �Canmn
bnmn

/,

as required. 2

LEMMA 8.20. Let 'WW ! V be a regular map with V affine, and let U be an open affine
in V . There is a canonical isomorphism of k-algebras

� .W;OW /˝kŒV � kŒU �! � .'�1.U /;OW /:
PROOF. Let U 0 D '�1.U /. The map is defined by the kŒV �-bilinear pairing

.f;g/ 7! .f jU 0 ;g ı'jU 0/W� .W;OW /�kŒU �! � .U 0;OW /:
When W is also affine, it is an isomorphism (see 5.31, 5.32).

Let W D
S
Wi be a finite open affine covering of W , and consider the commutative

diagram:

0 � .W;OW /˝kŒV � kŒU �
Q
i

� .Wi ;OW /˝kŒV � kŒU �
Q
i;j

� .Wij ;OW /˝kŒV � kŒU �

0 � .U 0;OW /
Q
i

� .U 0\Wi ;OW / � .U \Wij ;OW /.

Here Wij DWi \Wj . The bottom row is exact because OW is a sheaf, and the top row is
exact because OW is a sheaf and kŒU � is flat over kŒV �.2 The varieties Wi and Wi \Wj are
all affine, and so the two vertical arrows at right are products of isomorphisms. This implies
that the first is also an isomorphism. 2

2A sequence 0!M 0!M !M 00 is exact if and only if 0! Am˝AM
0! Am˝AM ! Am˝AM

00 is
exact for all maximal ideals m ofA (1.21). This implies the claim because kŒU �mP

'OU;P 'OV;P ' kŒV �mP

for all P 2 U .
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PROPOSITION 8.21. Let 'WW ! V be a regular map of algebraic varieties. If ' is finite,
then, for every open affine U in V , '�1.U / is affine and kŒ'�1.U /� is a finite kŒU �-algebra.

PROOF. Let Vi be an open affine covering of V (which we may suppose to be finite) such
that Wi

def
D '�1.Vi / is an affine subvariety of W for all i and kŒWi � is a finite kŒVi �-algebra.

Let U be an open affine in V , and let U 0 D '�1.U /. Then � .U 0;OW / is a subalgebra ofQ
i � .U

0\Wi ;OW /, and so it is an affine k-algebra finite over kŒU �.3 We have a morphism
of varieties over V

U 0 Spm.� .U 0;OW //

V

canonical

(36)

which we shall show to be an isomorphism. We know that each of the maps

U 0\Wi ! Spm.� .U 0\Wi ;OW //

is an isomorphism. But Spm.� .U 0\Wi ;OW // is the inverse image of Vi in Spm.� .U 0;OW //.
Therefore the canonical morphism is an isomorphism over each Vi , and so it is an isomor-
phism. 2

SUMMARY 8.22. Let 'WW ! V be a regular map, and consider the following condition on
an open affine subset U of V :

(*) '�1.U / is affine and kŒ'�1.U /� is a finite over kŒU �.
The map ' is finite if (*) holds for the open affines in some covering of V , in which case (*)
holds for all open affines of V .

PROPOSITION 8.23. (a) Closed immersions are finite.

(b) The composite of two finite morphisms is finite.

(c) The product of two finite morphisms is finite.

PROOF. (a) Let Z be a closed subvariety of a variety V , and let U be an open affine
subvariety of V . Then Z\U is a closed subvariety of U . It is therefore affine, and the map
Z\U ! U corresponds to a map A! A=a of rings, which is obviously finite.

This proves (a). As to be finite is a local condition, it suffices to prove (a) and (b) for
maps of affine varieties. Then the statements become statements in commutative algebra.

(b) If B is a finite A-algebra and C is a finite B-algebra, then C is a finite A-algebra.
To see this, note that if fbig is a set of generators for B as an A-module, and fcj g is a set of
generators for C as a B-module, then fbicj g is a set of generators for C as an A-module.

(c) If B and B 0 are respectively finite A and A0-algebras, then B ˝k B 0 is a finite
A˝k A

0-algebra. To see this, note that if fbig is a set of generators for B as an A-module,
and fb0j g is a set of generators for B 0 as an A0-module, then fbi ˝b0j g is a set of generators
for B˝AB 0 as an A˝A0-module. 2

3Recall that a module over a noetherian ring is noetherian if and only if it is finitely generated, and that a
submodule of a noetherian module is noetherian. Therefore, a submodule of a finitely generated module over a
noetherian ring is finitely generated.
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By way of contrast, open immersions are rarely finite. For example, the inclusion
A1Xf0g ,! A1 is not finite because the ring kŒT;T �1� is not finitely generated as a kŒT �-
module (any finitely generated kŒT �-submodule of kŒT;T �1� is contained in T �nkŒT � for
some n).

THEOREM 8.24. Finite maps of algebraic varieties are closed.

PROOF. It suffices to prove this for affine varieties. Let 'WW ! V be a finite map of affine
varieties, and let Z be a closed subset of W . The restriction of ' to Z is finite (by 8.23a
and b), and so we can replace W with Z; we then have to show that Im.'/ is closed. The
map corresponds to a finite map of rings A! B . This will factors as A! A=a ,! B , from
which we obtain maps

Spm.B/! Spm.A=a/ ,! Spm.A/:

The second map identifies Spm.A=a/ with the closed subvariety V.a/ of Spm.A/, and so
it remains to show that the first map is surjective. This is a consequence of the going-up
theorem (1.53). 2

The base change of a finite map

Recall that the base change of a regular map 'WV ! S is the map '0 in the diagram:

V �S W V

W S:

 0

'0 '

 

PROPOSITION 8.25. The base change of a finite map is finite.

PROOF. We may assume that all the varieties concerned are affine. Then the statement
becomes: if A is a finiteR-algebra, then A˝RB=N is a finite B-algebra, which is obvious.2

PROPOSITION 8.26. Finite maps of algebraic varieties are proper.

PROOF. The base change of a finite map is finite, and hence closed. 2

COROLLARY 8.27. Let 'WV ! S be finite; if S is complete, then so also is V .

PROOF. Combine 7.19 and 8.26. 2

Quasi-finite maps

Recall that the fibres of a regular map 'WW ! V are the closed subvarieties '�1.P / of W
for P 2 V . As for affine varieties (2.39), we say that a regular map of algebraic varieties is
quasi-finite if all of its fibres are finite.

PROPOSITION 8.28. A finite map 'WW ! V is quasi-finite.

PROOF. Let P 2 V ; we wish to show '�1.P / is finite. After replacing V with an affine
neighbourhood of P , we can suppose that it is affine, and then W will be affine also. The
map ' then corresponds to a map ˛WA! B of affine k-algebras, and a point Q of W maps
to P if and only ˛�1.mQ/D mP . But this holds if and only if mQ � ˛.mP /, and so the
points of W mapping to P are in one-to-one correspondence with the maximal ideals of



182 8. NORMAL VARIETIES; (QUASI-)FINITE MAPS; ZARISKI’S MAIN THEOREM

B=˛.mP /B . Clearly B=˛.mP /B is generated as a k-vector space by the image of any
generating set for B as an A-module, and so it is a finite k-algebra. The next lemma shows
that it has only finitely many maximal ideals. 2

LEMMA 8.29. A finite k-algebra A has only finitely many maximal ideals.

PROOF. Let m1; : : : ;mn be maximal ideals in A. They are obviously coprime in pairs, and
so the Chinese Remainder Theorem (1.1) shows that the map

A! A=m1� � � ��A=mn; a 7! .: : : ;ai modmi ; : : :/;

is surjective. It follows that

dimkA�
X

dimk.A=mi /� n

— here dimk means dimension as a k-vector space. 2

Finite and quasi-finite maps of prevarieties are defined as for varieties.

Examples

8.30. The projection from the curve XY D 1 onto the X axis (see p. 71) is quasi-finite but
not finite — its image is not closed in A1, and kŒX;X�1� is not finite over kŒX�.

8.31. The map
t 7! .t2; t3/WA1! V.Y 2�X3/� A2

from the line to the cuspidal cubic is finite because the image of kŒX;Y � in kŒT � is kŒT 2;T 3�,
and f1;T g is a set of generators for kŒT � as a kŒT 2;T 3�-module (see 3.29).

8.32. The map A1! A1, a 7! am is finite.

8.33. The obvious map

.A1 with the origin doubled /! A1

is quasi-finite but not finite (the inverse image of A1 is not affine).

8.34. The map A2Xforiging ,!A2 is quasi-finite but not finite, because the inverse image
of A2 is not affine (see 3.33). The map

A2Xf.0;0/gtfOg ! A2

sending O to .0;0/ is bijective but not finite (here fOg D Spm.k/D A0).

8.35. The map in 8.31, and the Frobenius map

.t1; : : : ; tn/ 7! .t
p
1 ; : : : ; t

p
n /WA

n
! An

in characteristic p ¤ 0; are examples of finite bijective regular maps that are not isomor-
phisms.
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8.36. Let V D A2 D Spm.kŒX;Y �/ and let f be the map defined on the ring level by

X 7!X D A

Y 7!XY 2CY C1D B:

Then f is (obviously) quasi-finite, but it is not finite. For this we have to show that kŒX;Y �
is not integral over its subring kŒA;B�. The minimal polynomial of Y over kŒA;B� is

AY 2CY C1�B D 0;

which shows that it is not integral over kŒA;B� (see 1.44). Alternatively, one can show
directly that Y can never satisfy an equation

Y sCg1.A;B/Y
s�1
C�� �Cgs.A;B/D 0; gi .A;B/ 2 kŒA;B�;

by multiplying the equation by A.

8.37. Let V be the hyperplane

XnCT1X
n�1
C�� �CTn D 0

in AnC1, and consider the projection map

.a1; : : : ;an;x/ 7! .a1; : : : ;an/WV ! An:

The fibre over a point .a1; : : : ;an/ 2 An is the set of solutions of

XnCa1X
n�1
C�� �Can D 0;

and so it has exactly n points, counted with multiplicities. The map is certainly quasi-finite;
it is also finite because it corresponds to the finite map of k-algebras,

kŒT1; : : : ;Tn�! kŒT1; : : : ;Tn;X�=.X
n
CT1X

n�1
C�� �CTn/:

See also the more general example p. 51.

8.38. Let V be the hyperplane

T0X
n
CT1X

n�1
C�� �CTn D 0

in AnC2. The projection map

.a0; : : : ;an;x/ 7! .a0; : : : ;an/WV
'
�! AnC1

has finite fibres except for the fibre above o D .0; : : : ;0/, which is A1. Its restriction to
V X'�1.o/ is quasi-finite, but not finite. Above points of the form .0; : : : ;0;�; : : : ;�/ some
of the roots “vanish off to1”. (Example 8.30 is a special case of this.) See also the more
general example p. 51.

8.39. Let
P.X;Y /D T0X

n
CT1X

n�1Y C�� �CTnY
n;

and let V be its zero set in P1 � .AnC1 X fog/. In this case, the projection map V !
AnC1Xfog is finite.
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d. The fibres of finite maps

Let 'WW ! V be a finite dominant morphism of irreducible varieties. Then dim.W / D
dim.V /, and so k.W / is a finite field extension of k.V /. Its degree is called the degree of
the map '. The map ' is said to be separable if the field k.W / is separable over k.V /.
Recall that jS j denotes the number of elements in a finite set S .

THEOREM 8.40. Let 'WW ! V be a finite surjective regular map of irreducible varieties,
and assume that V is normal.

(a) For all P 2 V ,
ˇ̌
'�1.P /

ˇ̌
� deg.'/.

(b) The set of points P of V such that
ˇ̌
'�1.P /

ˇ̌
D deg.'/ is an open subset of V , and it

is nonempty if ' is separable.

Before proving the theorem, we give examples to show that we need W to be separated
and V to be normal in (a), and that we need k.W / to be separable over k.V / for the second
part of (b).

EXAMPLE 8.41. (a) The map

fA1 with origin doubled g ! A1

has degree one and is one-to-one except over the origin where it is two-to-one.
(b) Let C be the curve Y 2 DX3CX2, and consider the map

t 7! .t2�1; t.t2�1//WA1! C .

It is one-to-one except that the points t D ˙1 both map to 0. On coordinate rings, it
corresponds to the inclusion

kŒx;y� ,! kŒT �,
�
x 7! T 2�1

y 7! T .T 2�1/
,

and so is of degree one. The ring kŒx;y� is not integrally closed — in fact kŒT � is the integral
closure of kŒx;y� in its field of fractions k.x;y/D k.T /.

(c) The Frobenius map

.a1; : : : ;an/ 7! .a
p
1 ; : : : ;a

p
n /WA

n
! An

in characteristic p ¤ 0 is bijective on points, but has degree pn. The field extension
corresponding to the map is

k.X1; : : : ;Xn/� k.X
p
1 ; : : : ;X

p
n /

which is purely inseparable.

LEMMA 8.42. Let Q1; : : : ;Qr be distinct points on an affine variety V . Then there is a
regular function f on V taking distinct values at the Qi .

PROOF. We can embed V as closed subvariety of An, and then it suffices to prove the
statement with V D An — almost any linear form will do. 2
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PROOF (OF 8.40). In proving (a) of the theorem, we may assume that V and W are affine,
and so the map corresponds to a finite map of k-algebras, kŒV �! kŒW �. Let '�1.P /D
fQ1; : : : ;Qrg. According to the lemma, there exists an f 2 kŒW � taking distinct values at
the Qi . Let

F.T /D TmCa1T
m�1
C�� �Cam

be the minimal polynomial of f over k.V /. It has degree m � Œk.W / W k.V /� D deg',
and it has coefficients in kŒV � because V is normal (see 1.44). Now F.f / D 0 implies
F.f .Qi //D 0, i.e.,

f .Qi /
m
Ca1.P / �f .Qi /

m�1
C�� �Cam.P /D 0:

Therefore the f .Qi / are all roots of a single polynomial of degreem, and so r �m� deg.'/.
In order to prove the first part of (b), we show that, if there is a point P 2 V such that

'�1.P / has deg.'/ elements, then the same is true for all points in an open neighbourhood
of P . Choose f as in the last paragraph corresponding to such a P . Then the polynomial

TmCa1.P / �T
m�1
C�� �Cam.P /D 0 (*)

has r D deg' distinct roots, and so mD r . Consider the discriminant discF of F . Because
(*) has distinct roots, disc.F /.P /¤ 0, and so disc.F / is nonzero on an open neighbourhood
U of P . The factorization

kŒV �! kŒV �ŒT �=.F /
T 7!f
! kŒW �

gives a factorization
W ! Spm.kŒV �ŒT �=.F //! V:

Each point P 0 2 U has exactly m inverse images under the second map, and the first map is
finite and dominant, and therefore surjective (recall that a finite map is closed). This proves
that '�1.P 0/ has at least deg.'/ points for P 0 2 U , and part (a) of the theorem then implies
that it has exactly deg.'/ points.

We now show that if the field extension is separable, then there exists a point such
that '�1.P / has deg' elements. Because k.W / is separable over k.V /, there exists an
f 2 kŒW � such that k.V /Œf �D k.W /. Its minimal polynomial F has degree deg.'/ and its
discriminant is a nonzero element of kŒV �. The diagram

W ! Spm.kŒV �ŒT �=.F //! V

shows that j'�1.P /j � deg.'/ for P a point such that disc.f /.P /¤ 0. 2

Let E � F be a finite extension of fields. The elements of E separable over F form a
subfield F sep of E, and the separable degree of E over F is defined to be the degree of F sep

over F . The separable degree of a finite surjective map 'WW ! V of irreducible varieties
is the separable degree of k.W / over k.V /.

THEOREM 8.43. Let 'WW ! V be a finite surjective regular map of irreducible varieties,
and assume that V is normal.

(a) For all P 2 V ,
ˇ̌
'�1.P /

ˇ̌
� sepdeg.'/, with equality holding on a dense open subset.

(b) For all i ,
Vi D fP 2 V j

ˇ̌
'�1.P /

ˇ̌
� ig

is closed in V .
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PROOF. If ' is separable, this was proved in 8.40. If ' is purely inseparable, then ' is

one-to-one because, for some q, the Frobenius map V .q
�1/ F
�! V factors through '. To

prove the general case, factor ' as the composite of a purely inseparable map with a separable
map. 2

ASIDE 8.44. A finite map from a variety onto a normal variety is open (hence both open and closed).
For an elementary proof, see Theorem 63.12 of Musili, C., Algebraic geometry for beginners. Texts
and Readings in Mathematics, 20. Hindustan Book Agency, New Delhi, 2001.

e. Zariski’s main theorem

In this section, we explain a fundamental theorem of Zariski.

Statement and proof

One obvious way to construct a nonfinite quasi-finite map is to take a finite map W ! V

and remove a closed subset of W . Zariski’s Main Theorem (ZMT) shows that, for algebraic
varieties, every quasi-finite map arises in this way.

THEOREM 8.45 (ZARISKI’S MAIN THEOREM). Every quasi-finite map of algebraic vari-

eties 'WW ! V factors into W
j
,! V 0

'0

! V with '0 finite and j an open immersion:

W V 0

V:

open immersion

quasi-finite finite

When ' is a dominant map of irreducible varieties, the statement is true with '0WV 0! V

equal to the normalization of V in W (in the sense of 8.9).

The key result needed to prove 8.45 is the following statement from commutative algebra.
For a ring A and a prime ideal p in A, �.p/ denotes the field of fractions of A=p.

THEOREM 8.46 (LOCAL VERSION OF ZMT). LetA be a commutative ring, and let i WA!
B be a finitely generated A-algebra. Let q be a prime ideal of B , and let pD i�1.q/. Finally,
let A0 denote the integral closure of A in B . If Bq=pBq is a finite �.p/-algebra, then there
exists an f 2 A0 not in q such that the map A0

f
! Bf is an isomorphism.

PROOF. The proof is quite elementary, but intricate — see �17 of my notes CA. 2

Recall that a point v in a topological space V is isolated if fvg is an open subset of V .
The isolated points v of an algebraic variety V are those such that fvg is both open and
closed. Thus they are the irreducible components of V of dimension 0.

Let 'WW ! V be a continuous map of topological spaces. We say that w 2 W is
isolated in its fibre if it is isolated in the subspace '�1.'.w// of W . Let 'WA! B be a
homomorphism of finitely generated k-algebras, and consider spm.'/Wspm.B/! spm.A/;
then n 2 spm.B/ is isolated in its fibre if and only if Bn=mBn is a finite k-algebra; here
mD '�1.n/.

PROPOSITION 8.47. Let 'WW ! V be a regular map of algebraic varieties. The set W 0 of
points of W isolated in their fibres is open in W .
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PROOF. Let w 2W 0. Let Ww and Vv be open affine neighbourhoods of w and v D '.w/
such that '.Ww/� Vv , and let AD kŒVv� and B D kŒWw �. Let nD ff 2 B j f .w/D 0g—
it is the maximal ideal in B corresponding to w.

Let A0 be the integral closure of A in B . Theorem 8.46 shows that there exists an f 2A0

not in m such that A0
f
' Bf . Write A0 as the union of the finitely generated A-subalgebras

Ai of A0 containing f :
A0 D

[
i
Ai :

Because A0 is integral over A, each Ai is finite over A (see 1.35). We have

Bf ' A
0
f D

[
i
Aif :

Because Bf is a finitely generated A-algebra, Bf D Aif for all sufficiently large Ai . As the
Ai are finite over A, Bf is quasi-finite over A, and spm.Bf / is an open neighbourhood of w
consisting of quasi-finite points. 2

PROPOSITION 8.48. Every quasi-finite map of affine algebraic varieties 'WW ! V factors

into W
j
�! V 0

'0

�! V with j a dominant open immersion and '0 finite.

PROOF. Let A D kŒV � and B D kŒW �. Because ' is quasi-finite, Theorem 8.46 shows
that there exist fi 2 A0 such that the sets spm.Bfi

/ form an open covering of W and
A0
fi
' Bfi

for all i . As W quasicompact, finitely many sets spm.Bfi
/ suffice to cover

W . The argument in the proof of (8.47) shows that there exists an A-subalgebra A00 of A0,
finite over A, which contains f1; : : : ;fn and is such that Bfi

' A00
fi

for all i . Now the map
W D Spm.B/! Spm.A00/ is an open immersion because it is when restricted to Spm.Bfi

/

for each i . As Spm.A00/! Spm.A/D V is finite, we can take V 0 D Spm.A00/. 2

Recall (Exercise 8-3) that a regular map 'WW ! V is affine if '�1.U / is affine whenever
U is an open affine subset of V .

PROPOSITION 8.49. Let 'WW ! V be an affine map of irreducible algebraic varieties.
Then the map j WW ! V 0 from W into the normalization V 0 of V in W (8.9) is an open
immersion.

PROOF. Let U be an open affine in V . Let AD kŒU � and B D kŒ'�1.U /�. In this case, the
normalization A0 of A in B is finite over A (because it is contained in the normalization of
A in k.W /, which is finite over A (8.3)). Thus, in the proof of 8.48 we can take A00 D A0,
and then '�1.U /! Spm.A0/ is an open immersion. As Spm.A0/ is an open subvariety of
V 0 and the sets '�1.U / cover W , this implies that j WW ! V 0 is an open immersion. 2

As V 0! V is finite, this proves Theorem 8.45 in the case that ' is an affine map of
irreducible varieties. To deduce the general case of Theorem 8.45 from 8.44 requires an
additional argument. See Theorem 12.83 of Görtz, U. and Wedhorn, T., Algebraic Geometry
I., Springer Spektrum, Wiesbaden, 2020.

NOTES

8.50. Let 'WW ! V be a quasi-finite map of algebraic varieties. In 8.45, we may replace
V 0 with the closure of the image of j . Thus, there is a factorization ' D '0 ıj with '0 finite
and j a dominant open immersion.
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8.51. Theorem 8.45 is false for prevarieties (see 8.33). However, it is true for separated
maps of prevarieties. (A regular map 'WV ! S of algebraic prevarieties is separated if the
image �V=S of the map v 7! .v;v/WV ! V �S V is closed; the map ' is separated if V is
separated.)

8.52. Assume that V is normal in 8.45. Then '0 is open (8.44), and so ' is open. Thus,
every quasi-finite map from an algebraic variety to a normal algebraic variety is open.

Applications to finite maps

Zariski’s main theorem allows us to give a geometric criteria for a regular map to be finite.

PROPOSITION 8.53. Every quasi-finite regular map 'WW ! V of algebraic varieties with
W complete is finite.

PROOF. The map j WW ,! V 0 in 8.45 is an isomorphism of W onto its image j.W / in V 0.
If W is complete, then j.W / is closed (7.7), and so the restriction of '0 to j.W / is finite.2

PROPOSITION 8.54. Every proper quasi-finite map 'WW ! V of algebraic varieties is
finite.

PROOF. Factor ' into W
j
,!W 0

˛
! V with ˛ finite and j an open immersion. Factor j into

W
w 7!.w;jw/
��������!W �V W

0
.w;w 0/ 7!w 0

��������!W 0:

The image of the first map is �j , which is closed because W 0 is a variety (see 5.28; W 0 is
separated because it is finite over a variety — exercise). Because ' is proper, the second
map is closed. Hence j is an open immersion with closed image. It follows that its image is
a connected component of W 0, and that W is isomorphic to that connected component. 2

NOTES

8.55. When W and V are curves, every surjective map W ! V is closed. Thus it is easy
to give examples of closed surjective quasi-finite, but nonfinite, maps. Consider, for example,
the map �

A1Xf0g
�
tA0! A1;

sending each a 2 A1Xf0g to a and O 2 A0 to 0. This doesn’t violate the Proposition 8.54,
because the map is only closed, not universally closed.

Applications to birational maps

Recall (p. 116) that a regular map 'WW ! V of irreducible varieties is said to be birational
if it induces an isomorphism k.V /! k.W / on the fields of rational functions.

8.56. One may ask how a birational regular map 'WW ! V can fail to be an isomorphism.
Here are three examples.

(a) The inclusion of an open subset into a variety is birational.
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(b) The map (8.31) from A1 to the cuspidal cubic,

A1! C; t 7! .t2; t3/;

is birational. Here C is the cubic Y 2 D X3, and the map kŒC �! kŒA1� D kŒT �
identifies kŒC � with the subring kŒT 2;T 3� of kŒT �. Both rings have k.T / as their
fields of fractions.

(c) For any smooth variety V and pointP 2 V , there is a regular birational map 'WV 0! V

such that the restriction of ' to V 0 X '�1.P / is an isomorphism onto V XP , but
'�1.P / is the projective space attached to the vector space TP .V /. See the section
on blow-ups below.

The next result says that, if we require the target variety to be normal (thereby excluding
example (b)), and we require the map to be quasi-finite (thereby excluding example (c)),
then we are left with (a).

PROPOSITION 8.57. Let 'WW ! V be a birational regular map of irreducible varieties. If
V is normal and the map ' is quasi-finite, then ' is an isomorphism from W onto an open
subvariety of V .

PROOF. Factor ' as in the Theorem 8.45 (so, in particular, '0WV 0! V is the normalization
of V in W ). For each open affine subset U of V , kŒ'0�1.U /� is the integral closure of kŒU �
in k.W /. Because ' is birational, the inclusion k.V /� k.V 0/D k.W / is an equality. Now
kŒU � is integrally closed in k.V / (because V is normal), and so U D '0�1.U / (as varieties).
We have shown that '0WV 0! V is an isomorphism locally on the base V , and hence an
isomorphism. 2

8.58. In topology, a continuous bijective map 'WW ! V need not be a homeomorphism,
but it is if W is compact and V is Hausdorff. Similarly, a bijective regular map of algebraic
varieties need not be an isomorphism. Here are three examples:

(a) In characteristic p, the Frobenius map

.x1; : : : ;xn/ 7! .x
p
1 ; : : : ;x

p
n /WA

n
! An

is bijective and regular, but it is not an isomorphism even though An is normal.

(b) The map t 7! .t2; t3/ from A1 to the cuspidal cubic (see 8.56b) is bijective, but not an
isomorphism.

(c) Consider the regular map A1! A1 sending x to 1=x for x ¤ 0 and 0 to 0. Its graph
� is the union of .0;0/ and the hyperbola xy D 1, which is a closed subvariety of
A1�A1. The projection .x;y/ 7! xW� ! A1 is a bijective, regular, birational map,
but it is not an isomorphism even though A1 is normal.

If we require the map to be birational (thereby excluding example (a)), V to be normal
(thereby excluding example (b)), and the varieties to be irreducible (thereby excluding
example (c)), then the map is an isomorphism.

PROPOSITION 8.59. Let 'WW ! V be a bijective regular map of irreducible algebraic
varieties. If the map ' is birational and V is normal, then ' is an isomorphism.

PROOF. The hypotheses imply that ' is an isomorphism of W onto an open subset of V
(8.57). Because ' is bijective, the open subset must be the whole of V . 2
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In fact, example (a) can be excluded by requiring that ' be generically separable (instead
of birational).

PROPOSITION 8.60. Let 'WW ! V be a bijective regular map of irreducible varieties. If
V is normal and k.W / is separably generated over k.V /, then ' is an isomorphism.

PROOF. Because ' is bijective, dim.W /D dim.V / (see Theorem 9.9 below) and the sep-
arable degree of k.W / over k.V / is 1 (apply 8.40 to the variety V 0 in 8.45). Hence ' is
birational, and we may apply 8.59. 2

8.61. In functional analysis, the closed graph theorem states that, if a linear map 'WW ! V

between two Banach spaces has a closed graph � def
Df.w;'w/ jw 2W g, then ' is continuous

(q.v. Wikipedia). One can ask (cf. mo113858) whether a similar statement is true in algebraic
geometry. Specifically, if 'WW !V is a map (in the set-theoretic sense) of algebraic varieties
V;W whose graph is closed (for the Zariski topology), then is ' a regular map? The answer
is no in general. For example, even in characteristic zero, the map .t2; t3/! t WC ! A1
inverse to that in 8.56(b) has closed graph but is not regular. In characteristic p, the inverse
of the Frobenius map x 7! xp provides another counterexample. For a third counterexample,
see 8.58(c). The projection � from � to W is a bijective regular map, and so ' will be
regular if � is an isomorphism. According to 8.60, � is an isomorphism if the varieties
are irreducible, W is normal, and � is generically separable. In particular, a map between
irreducible normal algebraic varieties in characteristic zero is regular if its graph is closed.

A condition for an algebraic monoid to be a group

A monoid variety is an algebraic variety G together with the structure of a monoid defined
by regular maps

mWG�G!G; eWA0!G:

LEMMA 8.62. Let .G;m;e/ be an algebraic monoid. The map

TeG˚TeG ' T.e;e/.G�G/
.dm/.e;e/

������! Te.G/

is addition.

PROOF. The first isomorphism is .X;Y / 7! .d˛/e.X/C .dˇ/e.Y /, where ˛ is the map
x 7! .x;e/WG!G�G and ˇ is x 7! .e;x/. To compute .dm/.e;e/..dˇ/e.X/C.d˛/e.Y //;
note that mı˛ D idG Dmıˇ. 2

PROPOSITION 8.63. Let .G;m;e/ be an algebraic monoid over k. If .G.k/;m.k// is a
group with identity element e, then .G;m/ is an algebraic group, that is, the map a 7! a�1

is regular.

PROOF. Let a 2G.k/. The translation map LaWx 7! ax is an isomorphism G!G because
it has an inverse La�1 . Therefore G is homogeneous as an algebraic variety: for any two
points in jGj, there is an isomorphism G!G mapping one to the other. It follows that G is
nonsingular, in particular, normal.

The map
.x;y/ 7! .x;xy/WG�G!G�G
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is regular, a bijection on k-points, and induces an isomorphism on the tangent spaces at .e;e/
(apply the lemma). It is therefore an isomorphism of algebraic varieties over k. Therefore,
its inverse .x;y/ 7! .x;x�1y/ is regular, and so

.x;y/ 7! x�1yWG�G!G

is regular. This implies that .G;m/ is an algebraic group. 2

Note that it is necessary in the proposition thatG be reduced: considerGDSpeckŒT �=.T n/,
n > 1, with the trivial monoid structure G�G! e!G.

Variants of Zariski’s main theorem

Mumford, 1966,4 III, �9, lists the following variants of ZMT.

Original form (8.57) Let 'WW ! V be a birational regular map of irreducible varieties.
If V is normal and ' is quasi-finite, then ' is an isomorphism of W onto an open
subvariety of V .

Topological form Let V be a normal variety over C, and let v 2 V . Let S be the singular
locus of V . Then the complex neighbourhoods U of v such that U XU \ S is
connected form a base for the system of complex neighbourhoods of v.

Power series form Let V be a normal variety, and let OV;Z be the local ring attached to
an irreducible closed subset of V (cf. p. 177). If OV;Z is an integrally closed integral
domain, then so also is its completion.

Grothendieck’s form (8.45) Every quasi-finite map of algebraic varieties factors as the
composite of an open immersion with a finite map.

Connectedness theorem Let 'WW ! V be a proper birational map, and let v be a (closed)
normal point of V . The '�1.v/ is a connected set (in the Zariski topology).

The original form of the theorem was proved by Zariski using a fairly direct argument
whose method doesn’t seem to generalize.5 The power series form was also proved by
Zariski, who showed that it implied the original form. The last two forms are much deeper
and were proved by Grothendieck. See the discussion in Mumford 1966.

NOTES. The original form of the theorem (8.57) is the “Main theorem” of Zariski, O., Foundations
of a general theory of birational correspondences. Trans. Amer. Math. Soc. 53, (1943). 490–542.

f. Stein factorization

The following important theorem shows that the fibres of a proper map are disconnected
only because the fibres of finite maps are disconnected.

THEOREM 8.64 (STEIN FACTORIZATION). Every proper map 'WW ! V of algebraic va-
rieties factors into W

'1
!W 0

'2
! V with '1 proper with connected fibres and '2 finite.

4Introduction to Algebraic Geometry, Harvard notes. Reprinted as “The Red Book of Varieties and Schemes”
(with the introduction of misprints) by Springer 1999.

5See Lang, S., Introduction to Algebraic Geometry, 1958, V 2, for Zariski’s original statement and proof of
this theorem. See Springer, T.A., Linear Algebraic Groups, 1998, 5.2.8, for a direct proof of (8.59).
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When V is affine, this is the factorization

W ! Spm.OW .W //! V:

The first major step in the proof of the theorem is to show that '�OW is a coherent sheaf
on V . Here '�OW is the sheaf of OV -algebras on V ,

U  OW .'�1.U //:

To say that '�OW is coherent means that, on every open affine subset U of V , it is the sheaf
of OU -algebras defined by a finite kŒU �-algebra. This, in turn, means that there exists a
regular map '2WSpm.'�OW /! V that, over every open affine subset U of V , is the map
attached by Spm to the map of k-algebras kŒU �!OW .'�1.U //:

The Stein factorization is then

W
'1
�!W 0

def
D Spm.'�OW /

'2
�! V:

By construction, '2 is finite and '1WW !W 0 has the property that OW 0 ! '1�OW is
an isomorphism. That its fibres are connected is a consequence of the following extension of
Zariski’s connectedness theorem to non birational maps.

THEOREM 8.65. Let 'WW ! V be a proper map such that the map OV ! '�OW is an
isomorphism. Then the fibres of ' are connected.

See Hartshorne 1977, III, �11.

NOTES. The Stein factorization was originally proved by Stein for complex spaces (q.v. Wikipedia).

g. Blow-ups

Under construction.
Let P be a nonsingular point on an algebraic variety V , and let Tp.V / be the tangent

space at P . The blow-up of V at P is a regular map QV ! V that replaces P with the
projective space P.TP .V //. More generally, the blow-up at P replaces P with P.CP .V //,
where CP .V / is the geometric tangent cone at P .

Blowing up the origin in An

Let O be the origin in An, and let � WAn X fOg ! Pn�1 be the map .a1; : : : ;an/ 7!
.a1W : : : Wan/. Let �� be the graph of � , and let fAn be the closure of �� in An �Pn�1.
The map � WfAn! An defined by the projection map An�Pn�1! An is the blow-up of An
at O .

Blowing up a point on a variety

Examples

8.66. The nodal cubic

8.67. The cuspidal cubic

http://www.urbanfonts.com/blog/wp-content/uploads/2013/04/12.gif
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h. Resolution of singularities

Let V be an algebraic variety. A desingularization of V is birational regular map � WW ! V

such that W is nonsingular and � is proper; if V is projective, then W should also be
projective, and � should induce an isomorphism

W X��1.Sing.V //! V XSing.V /:

In other words, the nonsingular variety W is the same as V except over the singular locus of
V . When a variety admits a desingularization, then we say that resolution of singularities
holds for V .

Note that with “nonsingular” replaced by “normalization”, the normalization of V (see
8.5) provides such a map (resolution of abnormalities).

Nagata’s embedding theorem 7.50 shows that it suffices to prove resolution of singu-
larities for complete varieties, and Chow’s lemma 7.39 then shows that it suffices to prove
resolution of singularities for projective varieties. From now on, we shall consider only
projective varieties.

Resolution of singularities for curves was first obtained using blow-ups (see Chapter
7 of Fulton’s book, Algebraic Curves). Zariski introduced the notion of the normalization
of a variety, and observed that the normalization � W QV ! V of a curve V in k.V / is a
desingularization of V .

There were several proofs of resolution of singularities for surfaces over C, but the first
to be accepted as rigorous is that of Walker (patching Jung’s local arguments; 1935). For a
surface V , normalization gives a surface with only point singularities (8.12), which can then
be blown up. Zariski showed that the desingularization of a surface in characteristic zero can
be obtained by alternating normalizations and blow-ups.

The resolution of singularities for three-folds in characteristic zero is much more difficult,
and was first achieved by Zariski (Ann. of Math. 1944). His result was extended to nonzero
characteristic by his student Abhyankar and to all varieties in characteristic zero by his
student Hironaka.

The resolution of singularities for higher dimensional varieties in nonzero characteristic
is one of the most important outstanding problems in algebraic geometry. In 1996, de Jong
proved a weaker result in which, instead of the map � being birational, k.W / is allowed to
be a finite extension of k.V /.

A little history

Normal varieties were introduced by Zariski in a paper, Amer. J. Math. 61, 1939, p. 249–194.
There he noted that the singular locus of a normal variety has codimension at least 2 and
that the system of hyperplane sections of a normal variety relative to a projective embedding
is complete (i.e., is a complete rational equivalence class). Zariski’s introduction of the
notion of a normal variety and of the normalization of a variety was an important insertion
of commutative algebra into algebraic geometry. It is not easy to give a geometric intuition
for “normal”. One criterion is that a variety is normal if and only if every surjective finite
birational map onto it is an isomorphism (8.57). See mo109395 for a discussion of this
question.
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Exercises

8-1. Prove that a finite map is an isomorphism if and only if it is bijective and étale. (Cf.
Harris 1992, 14.9.)

8-2. Give an example of a surjective quasi-finite regular map that is not finite (different
from any in the notes).

8-3. Let 'WW ! V be a regular map with the property that '�1.U / is an open affine subset
of W whenever U is an open affine subset of V (such a map is said to be affine). Show that
if V is separated, then so also is W .

8-4. For every n � 1, find a finite map 'WW ! V with the following property: for all
1� i � n,

Vi
def
D fP 2 V j '�1.P / has � i pointsg

is a nonempty closed subvariety of dimension i .



CHAPTER 9
Regular Maps and Their Fibres

Consider again the regular map 'WA2 ! A2, .x;y/ 7! .x;xy/ (Exercise 3-3). The line
Y D c maps to the line Y D cX . As c runs over the elements of k, this line sweeps out the
whole x;y-plane except for the y-axis, and so the image of ' is

C D .A2Xfy-axisg/[f.0;0/g;

which is neither open nor closed, and, in fact, is not even locally closed. The fibre

'�1.a;b/D

8<:
point .a;b=a/ if a¤ 0
Y -axis if .a;b/D .0;0/
; if aD 0, b ¤ 0:

From this unpromising example, it would appear that it is not possible to say anything about
the image of a regular map or its fibres. However, it turns out that almost everything that can
go wrong already goes wrong in this example. We shall show:

(a) the image of a regular map is a finite union of locally closed sets;

(b) the dimensions of the fibres can jump only over closed subsets;

(c) the number of elements (if finite) in the fibres can drop only on closed subsets, provided
the map is finite, the target variety is normal, and k has characteristic zero.

a. The constructibility theorem

THEOREM 9.1. Let 'WW ! V be a dominant regular map of irreducible affine algebraic
varieties. Then '.W / contains a dense open subset of V .

PROOF. Because ' is dominant, the map f 7! f ı'WkŒV �! kŒW � is injective (3.34). Ac-
cording to Lemma 9.4 below, there exists a nonzero a 2 kŒV � such that every homomorphism
˛WkŒV �! k such that ˛.a/¤ 0 extends to a homomorphism ˇWkŒW �! k with ˇ.1/¤ 0.
In particular, for P 2D.a/, the homomorphism g 7! g.P /WkŒV �! k extends to a nonzero
homomorphism ˇWkŒW �! k. The kernel of ˇ is a maximal ideal of kŒW � whose zero set is
a point Q of W such that '.Q/D P . 2

Before beginning the proof of Lemma 9.4, we should look at an example.

EXAMPLE 9.2. Let A be an affine k-algebra, and let B D AŒT �=.f / with f D amTmC
�� �Ca0. When does a homomorphism ˛WA! k extend to B? The extensions of ˛ corre-
spond to roots of the polynomial ˛.am/TmC�� �C˛.a0/ in k, and so there exists an extension
unless this is a nonzero constant polynomial. In particular, ˛ extends if ˛.am/¤ 0.

195
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LEMMA 9.3. Let A�B be finitely generated k-algebras. Assume that A and B are integral
domains, and that B is generated by a single element, say, B DAŒt�'AŒT �=a. Let c�A be
the set of leading coefficients of the polynomials in a. Then every homomorphism ˛WA! k

such that ˛.c/¤ 0 extends to a homomorphism B! k.

PROOF. Note that c is an ideal in A. If aD 0, then every homomorphism ˛ extends. Thus
we may assume that a¤ 0. Let f D amTmC�� �Ca0 be a nonzero polynomial of minimum
degree in a such that ˛.am/¤ 0. Because B ¤ 0, we have that m� 1.

Extend ˛ to a homomorphism Q̨ WAŒT �! kŒT � by sending T to T . The k-submodule of
kŒT � generated by Q̨ .a/ is an ideal (because T �

P
ci Q̨ .gi /D

P
ci Q̨ .giT //.

Unless Q̨ .a/ contains a nonzero constant, it generates a proper ideal in kŒT �, which will
have a zero c in k (2.11). The homomorphism

AŒT �
Q̨
! kŒT �

h 7!h.c/
�! k; T 7! T 7! c

then factors through AŒT �=aD B and extends ˛.
In the contrary case, a contains a polynomial

g.T /D bnT
n
C�� �Cb0; ˛.bi /D 0 .i > 0/; ˛.b0/¤ 0:

On dividing f .T / into g.T /, we find that

admg.T /D q.T /f .T /C r.T /; d 2 N; q;r 2 AŒT �; degr < m:

On applying Q̨ to this equation, we obtain

˛.am/
d˛.b0/D Q̨ .q/ Q̨ .f /C Q̨ .r/:

Because Q̨ .f / has degree m> 0, we must have Q̨ .q/D 0, and so Q̨ .r/ is a nonzero constant.
After replacing g.T / with r.T /, we may assume n < m. If mD 1, such a g.T / can’t exist,
and so we may suppose m> 1 and (by induction) that the lemma holds for smaller values of
m.

For h.T / D crT r C cr�1T r�1C �� � C c0, let h0.T / D cr C �� � C c0T r . Then the A-
module generated by the polynomials T sh0.T /, s � 0, h2 a, is an ideal a0 inAŒT �. Moreover,
a0 contains a nonzero constant if and only if a contains a nonzero polynomial cT r , which
implies t D 0 and AD B (since B is an integral domain).

If a0 does not contain nonzero constants, then setB 0DAŒT �=a0DAŒt 0�. Then a0 contains
the polynomial g0 D bnC�� �C b0T n, and ˛.b0/¤ 0. Because degg0 < m, the induction
hypothesis implies that ˛ extends to a homomorphism B 0! k. Therefore, there is a c 2 k
such that, for all h.T /D crT rC cr�1T r�1C�� �C c0 2 a,

h0.c/D ˛.cr/C˛.cr�1/cC�� �C c0c
r
D 0:

On taking h D g, we see that c D 0, and on taking h D f , we obtain the contradiction
˛.am/D 0. 2

LEMMA 9.4. Let A�B be finitely generated k-algebras. Assume that A and B are integral
domains, and let b be a nonzero element of B . Then there exists a nonzero a 2 A with
the following property: every homomorphism ˛WA! k from A into k such that ˛.a/¤ 0
extends to a homomorphism ˇWB! k such that ˇ.b/¤ 0.
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PROOF Suppose that we know the proposition in the case that B is generated by a single
element, and write B D AŒx1; : : : ;xn�. Then there exists an element bn�1 2 AŒx1; : : : ;xn�1�
with the following property: every homomorphism ˛WAŒx1; : : : ;xn�1�! k such that ˛.bn�1/¤
0 extends to a homomorphism ˇWB ! k such that ˇ.b/¤ 0. Then there exists a bn�2 2
AŒx1; : : : ;xn�2� etc. Continuing in this fashion, we obtain an element a 2Awith the required
property.

Thus we may assume B D AŒx�. Let a be the kernel of the homomorphism T 7! x,
AŒT �! AŒx�.

Case (i). The ideal aD .0/. Write

b D f .x/D a0x
n
Ca1x

n�1
C�� �Can; ai 2 A;

and take a D a0. If ˛WA! k is such that ˛.a0/ ¤ 0, then there exists a c 2 k such that
f .c/¤ 0, and we can take ˇ to be the homomorphism

P
dix

i 7!
P
˛.di /c

i .
Case (ii). The ideal a¤ .0/. Let

f .T /D amT
m
C�� �Ca0; am ¤ 0;

be an element of a of minimum degree. Let h.T / 2AŒT � represent b. As b is nonzero, h … a.
Because f is irreducible over the field of fractions of A, it and h are coprime over that field.
Hence there exist u;v 2 AŒT � and c 2 AXf0g such that

uhCvf D c:

It follows now that cam satisfies our requirements, for if ˛.cam/¤ 0, then ˛ can be extended
to ˇWB! k by the preceding lemma, and ˇ.u.x/ �b/D ˇ.c/¤ 0, and so ˇ.b/¤ 0. 2

ASIDE 9.5. It is also possible to deduce Theorem 9.1 from the generic freeness theorem (CA 21.11).

In order to generalize 9.1 to arbitrary maps of arbitrary varieties, we need the notion of a
constructible set. Let W be a topological space. A subset C of W is said to constructible if
it is a finite union of sets of the form U \Z with U open and Z closed. Obviously, if C is
constructible in W and V �W , then C \V is constructible in V , and it is constructible in
W if V is open or closed.

A constructible subset of An is one that is definable by a finite number of polynomials.
More precisely, it is defined by a finite number of statements of the form

f .X1; : : : ;Xn/D 0; g.X1; : : : ;Xn/¤ 0

combined using only “and” and “or” (or, better, statements of the form f D 0 combined
using “and”, “or”, and “not”). The next proposition shows that a constructible set C that is
dense in an irreducible variety V must contain a nonempty open subset of V . Contrast Q,
which is dense in R (real topology), but does not contain an open subset of R, or an infinite
subset of A1 that omits an infinite set.

PROPOSITION 9.6. Let C be a constructible set whose closure NC is irreducible. Then C
contains a nonempty open subset of its closure NC .

PROOF. We are given that C D
S
.Ui \Zi / with each Ui open and each Zi closed. We

may assume that each set Ui \Zi in this decomposition is nonempty. Clearly NC �
S
Zi ,

and as NC is irreducible, it must be contained in one of the Zi . For this i

C � Ui \Zi � Ui \ NC � Ui \C � Ui \ .Ui \Zi /D Ui \Zi :

Thus Ui \Zi D Ui \ NC is a nonempty open subset of NC contained in C . 2
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THEOREM 9.7. Every regular map 'WW ! V sends constructible sets to constructible sets.

PROOF We first show that it suffices to prove the theorem with W and V affine. Write V
as a finite union of open affines, and then write the inverse image of each of the affines
as a finite union of open affines. In this way, we get W D

S
i2I Wi with each Wi open

affine and '.Wi / contained in an open affine of V . If C is a constructible subset of W , then
'.C /D

S
i2I '.C \Wi /, and so '.C / is constructible if each set '.C \Wi / is constructible.

Now assume that W and V are affine, and let C be a constructible subset of W . Let Wi
be the irreducible components of W . They are closed in W , and so C \Wi is constructible
in W . As '.W /D

S
'.C \Wi /, it is constructible if the '.C \Wi / are. Hence we may

suppose that W is irreducible. Moreover, C is a finite union of its irreducible components.
As these are closed in C , they are constructible in W . We may therefore assume that C is
also irreducible; NC is then an irreducible closed subvariety of W .

We prove the theorem by induction on the dimension of W . If dim.W /D 0, then the
statement is obvious because W is a point. If NC ¤W , then dim. NC/ < dim.W /, and '.C / is
constructible by the induction hypothesis applied to NC

'
�! V . We may therefore assume

that NC DW . Replace V with '.C /. According to Proposition 9.6, C contains a dense open
subset U 0 of W , and Theorem 9.1 applied to U 0

'
�! V shows that '.C / contains a dense

open subset U of V . Write

'.C /D U ['.C \'�1.V �U//:

Then '�1.V �U/ is a proper closed subset of W (the complement of V �U is dense
in V and ' is dominant). As C \ '�1.V �U/ is constructible in '�1.V �U/, the set
'.C \'�1.V �U// is constructible in V by induction, which completes the proof. 2

ASIDE 9.8. Let X be a subset of Cn. If X is constructible for the Zariski topology on Cn, then the
closure of X for the Zariski topology is equal to its closure for the complex topology.

b. The fibres of morphisms

We wish to examine the fibres of a regular map 'WW ! V . We can replace V by the closure
of '.W / in V and so assume that ' is dominant.

THEOREM 9.9. Let 'WW ! V be a dominant regular map of irreducible varieties. Then

(a) dim.W /� dim.V /;

(b) if P 2 '.W /, then
dim.'�1.P //� dim.W /�dim.V /

for every P 2 V , with equality holding exactly on a nonempty open subset U of V .

(c) The sets
Vi D fP 2 V j dim.'�1.P //� ig

are closed in '.W /.

In other words, for P on a dense open subset U of V , the fibre '�1.P / has the expected
dimension dim.W /� dim.V /. On the closed complement of U (possibly empty), the
dimension of the fibre is > dim.W /�dim.V /, and it may jump further on closed subsets.

Before proving the theorem, we should look at an example.
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EXAMPLE 9.10. Consider the subvariety W � V �Am defined by r linear equations

mX
jD1

aijXj D 0; aij 2 kŒV �; i D 1; : : : ; r;

and let ' be the projection W ! V . For P 2 V , '�1.P / is the set of solutions of system of
equations

mX
jD1

aij .P /Xj D 0; aij .P / 2 k; i D 1; : : : ; r;

and so its dimension is m� rank.aij .P //. Since the rank of the matrix .aij .P // drops on
closed subsets, the dimension of the fibre jumps on closed subsets. More precisely, for each
r 2 N,

fP 2 V j rank.aij .P //� rg

is a closed subset of V (see Exercise 2-2); hence, for each r 0 2 N,

fP 2 V j dim'�1.P /� r 0g

is closed in V .

PROOF. (a) Because the map is dominant, there is a homomorphism k.V / ,! k.W /, and
obviously tr degkk.V /� tr degkk.W / (an algebraically independent subset of k.V / remains
algebraically independent in k.W /).

(b) In proving the first part of (b), we may replace V by any open neighbourhood of P .
In particular, we can assume V to be affine. Let m be the dimension of V . From (3.47) we
know that there exist regular functions f1; : : : ;fm such that P is an irreducible component
of V.f1; : : : ;fm/. After replacing V by a smaller neighbourhood of P , we can suppose that
P D V.f1; : : : ;fm/. Then '�1.P / is the zero set of the regular functions f1 ı'; : : : ;fm ı',
and so (if nonempty) has codimension �m in W (see 3.45). Hence

dim'�1.P /� dimW �mD dim.W /�dim.V /:

In proving the second part of (b), we can replace both W and V with open affine subsets.
Since ' is dominant, kŒV �! kŒW � is injective, and we may regard it as an inclusion
(we identify a function x on V with x ı ' on W /. Then k.V / � k.W /. Write kŒV � D
kŒx1; : : : ;xM � and kŒW �D kŒy1; : : : ;yN �, and suppose V and W have dimensions m and n
respectively. Then k.W / has transcendence degree n�m over k.V /, and we may suppose
that y1; : : : ;yn�m are algebraically independent over kŒx1; : : : ;xm�, and that the remaining
yi are algebraic over kŒx1; : : : ;xm;y1; : : : ;yn�m�. There are therefore relations

Fi .x1; : : : ;xm;y1; : : : ;yn�m;yi /D 0; i D n�mC1; : : : ;N; (37)

with Fi .X1; : : : ;Xm;Y1; : : : ;Yn�m;Yi / a nonzero polynomial. We write Nyi for the restriction
of yi to '�1.P /. Then

kŒ'�1.P /�D kŒ Ny1; : : : ; NyN �:

The equations (37) give an algebraic relation among the functions x1; : : : ;yi on W . When
we restrict them to '�1.P /, they become equations:

Fi .x1.P /; : : : ;xm.P /; Ny1; : : : ; Nyn�m; Nyi /D 0; i D n�mC1; : : : ;N:
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If these are nontrivial algebraic relations, i.e., if none of the polynomials

Fi .x1.P /; : : : ;xm.P /;Y1; : : : ;Yn�m;Yi /

is identically zero, then the transcendence degree of k. Ny1; : : : ; NyN / over k will be � n�m.
Thus, regard Fi .x1; : : : ;xm;Y1; : : : ;Yn�m;Yi / as a polynomial in the Y ’s with coeffi-

cients polynomials in the x’s. Let Vi be the closed subvariety of V defined by the simul-
taneous vanishing of the coefficients of this polynomial — it is a proper closed subset of
V . Let U D V X

S
Vi — it is a nonempty open subset of V . If P 2 U , then none of the

polynomials Fi .x1.P /; : : : ;xm.P /;Y1; : : : ;Yn�m;Yi / is identically zero, and so for P 2 U ,
the dimension of '�1.P / is � n�m, and henceD n�m by (a).

Finally, if for a particular point P , dim'�1.P /D n�m, then we can modify the above
argument to show that the same is true for all points in an open neighbourhood of P .

(c) We prove this by induction on the dimension of V — it is obviously true if dimV D 0.
We know from (b) that there is an open subset U of V such that

dim'�1.P /D n�m ” P 2 U:

Let Z be the complement of U in V ; thus Z D Vn�mC1. Let Z1; : : : ;Zr be the irreducible
components of Z. On applying the induction to the restriction of ' to the map '�1.Zj /!
Zj for each j , we obtain the result. 2

Recall that a regular map 'WW ! V of algebraic varieties is closed if, for example, W
is complete (7.7).

PROPOSITION 9.11. Let 'WW ! V be a regular surjective closed map of varieties, and let
n 2N. If V is irreducible and all fibres '�1.P / of ' are irreducible of dimension n, then W
is irreducible of dimension dim.V /Cn.

PROOF. Let Z be an irreducible closed subset of W , and consider the map 'jZWZ! V ; it
has fibres .'jZ/�1.P /D '�1.P /\Z. There are three possibilities.

(a) '.Z/¤ V . Then '.Z/ is a proper closed subset of V .

(b) '.Z/D V , dim.Z/ < nCdim.V /. Then (b) of (9.9) shows that there is a nonempty
open subset U of V such that for P 2 U ,

dim.'�1.P /\Z/D dim.Z/�dim.V / < n:

Thus, for P 2 U , the fibre '�1.P / is not contained in Z.

(c) '.Z/D V , dim.Z/� nCdim.V /. Then 9.9(b) shows that

dim.'�1.P /\Z/� dim.Z/�dim.V /� n

for all P ; thus '�1.P / � Z for all P 2 V , and so Z D W ; moreover dimZ D
dimV Cn.

Now letZ1; : : : ;Zr be the irreducible components ofW . I claim that (c) holds for at least
one of the Zi . Otherwise, there will be an open subset U of V such that for P in U , '�1.P /
is contained in none of the Zi ; but '�1.P / is irreducible and '�1.P /D

S
.'�1.P /\Zi /,

and so this is impossible. 2

CAUTION. It is possible for all the fibres of regular map W ! V to be reducible without
W being reducible. The variety in A2�A2 with equation x21y1�x

2
2y2 D 0 is irreducible,

but the fibres of the projection to the first factor (obtained by fixing the values of y1 and y2)
are all reducible. Pass to the projective closure to extend this to P2�P2.
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c. Flat maps and their fibres

Flat maps

Let A be a ring, and let B be an A-algebra. If the sequence of A-modules

0!N 0
˛
�!N

ˇ
�!N 00! 0

is exact, then the sequence of B-modules

B˝AN
0 1˝˛
�! B˝AN

1˝ˇ
�! B˝AN

00
! 0

is exact,1 but B˝A N 0! B˝A N need not be injective. For example, when we tensor the
exact sequence of kŒX�-modules

0! kŒX�
f 7!X �f
������! kŒX�

f 7!f mod .X/
����������! kŒX�=.X/! 0

with k, we get the sequence

k
0
�! k

id
�! k! 0:

DEFINITION 9.12. An A-algebra B is flat if

M !N injective H) B˝AM ! B˝AN injective.

It is faithfully flat if, in addition,

B˝AM D 0 H) M D 0:

Therefore, an A-algebra B is flat if and only if the functor M  B˝AM from A-
modules to B-modules is exact.

EXAMPLE 9.13. (a) Let S be a multiplicative subset of A. Then S�1A is a flat A-algebra
(1.18). (b) Every open immersion is flat (obvious). (c) The composite of two flat maps is flat
(obvious).

PROPOSITION 9.14. Let A! A0 be a homomorphism of rings. If A! B is flat, then so
also is A0! B˝AA

0.

PROOF. For any A0-module M ,

.B˝AA
0/˝A0M ' B˝A .A

0
˝A0M/' B˝AM:

In other words, tensoring an A0-module M with B ˝A A0 is the same as tensoring M
(regarded as an A-module) with B . Therefore it preserves exact sequences. 2

1The surjectivity of 1˝ˇ is obvious. Let B˝AN
�
�!Q be the cokernel of 1˝˛. Because

.1˝ˇ/ı .1˝˛/D 1˝ .ˇ ı˛/D 0;

there is a unique A-linear map f WQ! B˝AN
00 such that f ı� D 1˝ˇ. We shall construct an inverse g to

f . Let b 2 B , and let n 2N . If ˇ.n/D 0, then nD ˛.n0/ for some n0 2N 0; hence b˝nD b˝˛.n0/, and so
�.b˝n/D 0. It follows by linearity that �.b˝n1/D �.b˝n2/ if ˇ.n1/D ˇ.n2/, and so the A-bilinear map

B �N !Q; .b;n/ 7! �.b˝n/

factors through B �N 00. It therefore defines an A-linear map gW B˝AN 00!Q. To show that f and g are
inverse, it suffices to check that g ıf D idQ on elements of the form �.b˝n/ and that f ıg D idB˝AN 00 on
elements of the form b˝ˇ.n/ — both are obvious.
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PROPOSITION 9.15. A homomorphism ˛WA! B of rings is flat if and only if, for all
maximal ideals n in B , the map A˛�1.n/! Bn is flat.

PROOF. Let n be a prime ideal of B , and let mD ˛�1.n/ — it is a prime ideal in A.
IfA!B is flat, then so isAm!Am˝AB 'S

�1
m B (9.14). The map S�1m B!S�1n B D

Bn is flat (9.13a), and so the composite Am! Bn is flat (9.13c).
For the converse, let N 0!N be an injective homomorphism of A-modules, and let n

be a maximal ideal of B . Then Am˝A .N
0!N/ is injective (9.13). Therefore, the map

Bn˝A .N
0
!N/' Bn˝Am .Am˝A .N

0
!N//

is injective, and so the kernel M of B˝A .N 0! N/ has the property that Mn D 0. Let
x 2M , and let aD fb 2B j bx D 0g. For each maximal ideal n of B , x maps to zero in Mn,
and so a contains an element not in n. Hence aD B , and so x D 0. 2

PROPOSITION 9.16. A flat homomorphism 'WA! B is faithfully flat if and only if every
maximal ideal m of A is of the form '�1.n/ for some maximal ideal n of B .

PROOF. ): Let m be a maximal ideal of A, and let M D A=m; then

B˝AM ' B='.m/B:

As B˝AM ¤ 0, we see that '.m/B ¤ B . Therefore '.m/ is contained in a maximal ideal
n of B . Now '�1.n/ is a proper ideal in A containing m, and hence equals m.
(: Let M be a nonzero A-module. Let x be a nonzero element of M , and let a D

ann.x/ def
D fa 2 A j ax D 0g. Then a is an ideal in A, and M 0 def

D Ax ' A=a. Moreover,
B˝AM

0 ' B='.a/ �B and, because A! B is flat, B˝AM 0 is a submodule of B˝AM .
Because a is proper, it is contained in a maximal ideal m of A, and therefore

'.a/� '.m/� n

for some maximal ideal n of A. Hence '.a/ �B � n¤B , and so B˝AM �B˝AM 0¤ 0.2

COROLLARY 9.17. A flat local homomorphism A! B of local rings is faithfully flat.

PROOF. Let m and n be the (unique) maximal ideals of A and B . By hypothesis, nc Dm,
and so the statement follows from the proposition. 2

Properties of flat maps

LEMMA 9.18. Let B be an A-algebra, and let p be a prime ideal of A. The prime ideals
of B contracting to p are in natural one-to-one correspondence with the prime ideals of
B˝A �.p/.

PROOF. Let S D AXp. Then �.p/D S�1.A=p/. Therefore we obtain B˝A �.p/ from B

by first passing to B=pB and then making the elements of A not in p act invertibly. After the
first step, we are left with the prime ideals q of B such that qc � p, and after the second step
only with those such that qc \S D ;, i.e., such that qc D p. 2

PROPOSITION 9.19. Let B be a faithfully flat A-algebra. Every prime ideal p of A is of the
form qc for some prime ideal q of B .
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PROOF. The ring B˝A �.p/ is nonzero, because �.p/¤ 0 and A! B is faithfully flat, and
so it has a prime (even maximal) ideal q. For this ideal, qc D p. 2

SUMMARY 9.20. A flat homomorphism 'WA! B is faithfully flat if the image of

spec.'/Wspec.B/! spec.A/

includes all maximal ideals of A, in which case it includes all prime ideals of A.

PROPOSITION 9.21 (GOING-DOWN THEOREM FOR FLAT MAPS). Let A!B be a flat ho-
momorphism. Let p � p0 be prime ideals in A, and let q be a prime ideal in B such that
qc D p. Then q contains a prime ideal q0 such that q0c D p0:

B q � q0

A p � p0:

PROOF. Because A! B is flat, the homomorphism Ap! Bq is flat, and because pAp D

.qBq/
c , it is faithfully flat (9.16). The ideal p0Ap is prime (1.14), and so there exists a prime

ideal of Bq lying over p0Ap (by 9.19). The contraction of this ideal to B is contained in q
and contracts to p0 in A. 2

DEFINITION 9.22. A regular map 'WW ! V of algebraic varieties is flat if, for all P 2W ,
the map OV;'.P /!OW;P is flat, and it is faithfully flat if it is flat and surjective.

PROPOSITION 9.23. A regular map 'WW ! V of affine algebraic varieties is flat (resp.
faithfully flat) if and only if the map f 7! f ı'WkŒV �! kŒW � is flat (resp. faithfully flat).

PROOF. Apply (9.15) and (9.16). 2

PROPOSITION 9.24. Let 'WW ! V be a flat map of affine algebraic varieties. Let S � S 0

be closed irreducible subsets of V , and let T be a closed irreducible subset of W such that
'.T / is a dense subset of S . Then there exists a closed irreducible subset T 0 ofW containing
T and such that '.T 0/ is a dense subset of S 0.

PROOF. Let pD I.S/, p0 D I.S 0/, and qD I.T /. Then p� p0 because S � S 0. Moreover
qc D p because T

'
�! S is dominant and so the map kŒS�D kŒV �=p! kŒT �=q is injective.

According to (9.21), there exists a prime ideal q0 in kŒW � contained in q and such that
q0c D p0. Now V.q0/ has the required properties. 2

THEOREM 9.25 (GENERIC FLATNESS). For every regular map 'WW ! V of irreducible
algebraic varieties, there exists a nonempty open subset U of V such that '�1.U /

'
�! U is

faithfully flat.

PROOF. We may assume that W and V are affine, say, V D Spm.A/ and W D Spm.B/.
Let F be the field of fractions of A. We regard B as a subring of F ˝AB .

As F ˝AB is a finitely generated F -algebra, the Noether normalization theorem (2.45)
shows that there exist elements x1; : : : ;xm ofF ˝AB such thatF Œx1; : : : ;xm� is a polynomial
ring over F and F ˝AB is a finite F Œx1; : : : ;xm�-algebra. After multiplying each xi by
an element of A, we may suppose that it lies in B . Let b1; : : : ;bn generate B as an A-
algebra. Each bi satisfies a monic polynomial equation with coefficients in F Œx1; : : : ;xm�.
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Let a 2A be a common denominator for the coefficients of these polynomials. Then each bi
is integral over Aa. As the bi generate Ba as an Aa-algebra, this shows that Ba is a finite
AaŒx1; : : : ;xm�-algebra (1.36). Therefore, after replacing A with Aa and B with Ba, we
may suppose that B is a finite AŒx1; : : : ;xm�-algebra.

B F ˝AB E˝AŒx1;:::;xm�B

AŒx1; : : : ;xm� F Œx1; : : : ;xm� E def
D F.x1; : : : ;xm/

A F:

injective

finite finite finite

Let E D F.x1; : : : ;xm/ be the field of fractions of AŒx1; : : : ;xm�, and let b1; : : : ;br be
elements of B that form a basis for E˝AŒx1;:::;xm�B as an E-vector space. Each element
of B can be expressed as a linear combination of the bi with coefficients in E. Let q be
a common denominator for the coefficients arising from a set of generators for B as an
AŒx1; : : : ;xm�-module. Then b1; : : : ;br generate Bq as an AŒx1; : : : ;xm�q-module. In other
words, the map

.c1; : : : ; cr/ 7!
P
cibi WAŒx1; : : : ;xm�

r
q! Bq (*)

is surjective. This map becomes an isomorphism when tensored with E over AŒx1; : : : ;xm�q ,
which implies that each element of its kernel is killed by a nonzero element ofAŒx1; : : : ;xm�q
and so is zero (because AŒx1; : : : ;xn�q is an integral domain). Hence the map (*) is an
isomorphism, and so Bq is free of finite rank over AŒx1; : : : ;xm�q . Let a be some nonzero
coefficient of the polynomial q, and consider the maps

Aa! AaŒx1; : : : ;xm�! AaŒx1; : : : ;xm�q! Baq:

The first and third arrows realize their targets as nonzero free modules over their sources,
and so are faithfully flat. The middle arrow is flat by (9.13). Let m be a maximal ideal in Aa.
Then mAaŒx1; : : : ;xm� does not contain the polynomial q because the coefficient a of q is
invertible in Aa. Hence mAaŒx1; : : : ;xm�q is a proper ideal of AaŒx1; : : : ;xm�q , and so the
map Aa! AaŒx1; : : : ;xm�q is faithfully flat (apply 9.16). This completes the proof. 2

LEMMA 9.26. Let V be an algebraic variety. A constructible subset C of V is closed if it
has the following property: let Z be a closed irreducible subset of V ; if Z\C contains a
dense open subset of Z, then Z � C .

PROOF. Let Z be an irreducible component of NC . Then Z\C is constructible and it is
dense in Z, and so it contains a nonempty open subset U of Z (9.6). Hence Z � C . 2

THEOREM 9.27. A flat map 'WW ! V of algebraic varieties is open.

PROOF. Let U be an open subset of W . Then '.U / is constructible (9.7) and the going-
down theorem (9.21) implies that V X'.U / satisfies the hypotheses of the lemma. Therefore
V X'.U / is closed. 2

COROLLARY 9.28. Let 'WW ! V be a regular map of irreducible algebraic varieties. Then
there exists a dense open subset U of W such that '.U / is open, U D '�1.'U /, and
U

'
�! '.U / is flat.
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PROOF. According to 9.25, there exists a dense open subsetU of V such that '�1.U /
'
�!U

is flat. In particular, '.'�1.U // is open in V (9.27). Note that '�1.'.'�1.U //D '�1.U /.
Let U 0 D '�1.U /. Then U 0 is a dense open subset of W , '.U 0/ is open, U 0 D '�1.'U 0/,
and U 0

'
�! '.U 0/ is flat. 2

Fibres and flatness

The notion of flatness allows us to sharpen our earlier results.

PROPOSITION 9.29. Let 'WW ! V be a dominant map of irreducible algebraic varieties.
Let P 2 '.W /. Then

dim
�
'�1.P /

�
� dim.W /�dim.V /; (38)

and equality holds if ' is flat.

PROOF. The inequality was proved in 9.9. If ' is flat, then we shall prove (more precisely)
that, if Z is an irreducible component of '�1.P /, then

dim.Z/D dim.W /�dim.V /:

After replacing V with an open neighbourhood of P and W with an open subset intersecting
Z, we may suppose that both V and W are affine. Let

V � V1 � �� � � Vm D fP g

be a maximal chain of distinct irreducible closed subsets of V (so m D dim.V /). Now
'.Z/D fP g, and so (see 9.24) there exists a chain of irreducible closed subsets

W �W1 � �� � �Wm DZ

such that '.Wi / is a dense subset of Vi . Let

Z �Z1 � �� � �Zn

be a maximal chain of distinct irreducible closed subsets of V (so n D dim.Z/). The
existence of the chain

W �W1 � �� � �Wm �Z1 � �� � �Zn

shows that
dim.W /�mCnD dim.V /Cdim.Z/:

Together with (38), this implies that we have equality. 2

PROPOSITION 9.30. Let 'WW ! V be a dominant map of irreducible algebraic varieties.
Let P 2 '.W /. Then

dim
�
'�1.P /

�
� dim.W /�dim.V /:

There exists a dense open subset U of W such that '.U / is open in V , U D '�1.'.U //,
and equality holds for all P 2 '.U /.

PROOF. Let U be an open subset of W as in 9.28. 2
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PROPOSITION 9.31. Let 'WW ! V be a dominant map of irreducible varieties. Let S be a
closed irreducible subset of V , and let T be an irreducible component of '�1.S/ such that
'.T / is dense in S . Then

dim.T /� dim.S/Cdim.W /�dim.V /;

and equality holds if ' is flat.

PROOF. The inequality can be proved by a similar argument to that in 9.9 — see, for
example, Hochschild 1981, X, Theorem 2.1.2 The equality can be deduced by the same
argument as in 9.29. 2

PROPOSITION 9.32. Let 'WW !V be a dominant map of irreducible varieties. There exists
a nonempty open subset U of W such that '.U / is open, U D '�1.'U /, and U

'
�! '.U /

is flat. If S is a closed irreducible subset of V meeting '.U /, and T is an irreducible
component of '�1.S/ meeting U , then

dim.T /D dim.S/Cdim.W /�dim.V /:

PROOF. Let U be an open subset of W as in 9.28. 2

FINITE MAPS

PROPOSITION 9.33. Let V be an irreducible algebraic variety. A finite map 'WW ! V is
flat if and only if X

Q 7!P

dimkOQ=mPOQ

is independent of P 2 V .

PROOF. It suffices to prove this with V affine, in which case it follows from CA 12.6
(equivalence of (d) and (e)). 2

The integer dimkOQ=mPOQ is the multiplicity of Q in its fibre. The theorem says that
a finite map is flat if and only if the number of points in each fibre (counting multiplicities)
is constant.

For example, let V be the subvariety of AnC1 defined by an equation

XmCa1X
m�1
C�� �Cam D 0; ai 2 kŒT1; : : : ;Tn�

and let 'WV ! An be the projection map (see p. 51). The fibre over a point P of An is the
set of points .P;c/ with c a root of the polynomial

XmCa1.P /X
m�1
C�� �Cam.P /D 0:

The multiplicity of .P;c/ in its fibre is the multiplicity of c as a root of the polynomial.
Therefore

P
Q 7!P dimkOQ=mPOQ Dm for every P , and so the map ' is flat.

2Hochschild, Gerhard P., Basic theory of algebraic groups and Lie algebras. Springer, 1981.
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Criteria for flatness

THEOREM 9.34. Let 'WA! B be a local homomorphism of noetherian local rings, and let
m be the maximal ideal of A. If A is regular, B is Cohen-Macaulay, and

dim.B/D dim.A/Cdim.B=mB/;

then ' is flat.

PROOF. See Matsumura 1986, 23.1.3 2

9.35. We don’t define the notion of being Cohen-Macaulay here (see ibid. p. 134), but
merely list some of its properties.

(a) A noetherian ring A is Cohen-Macaulay if and only if Am is Cohen-Macaulay for
every maximal ideal m of A (this is part of the definition).

(b) Zero-dimensional and reduced one-dimensional noetherian rings are Cohen-Macaulay
(ibid. p. 139).

(c) Regular noetherian rings are Cohen-Macaulay (ibid. p. 137).

(d) Let 'WA! B be a flat local homomorphism of noetherian local rings, and let m be
the maximal ideal of A. Then B is Cohen-Macaulay if and only if both A and B=mB
are Cohen-Macaulay (ibid. p. 181).

PROPOSITION 9.36. Let 'WA! B be a finite homomorphism noetherian rings with A
regular. Then ' is flat if and only if B is Cohen-Macaulay.

PROOF. Note that B=mB/ is zero-dimensional,4 hence Cohen-Macaulay, for every maximal
ideal m of A (9.35b), and that ht.n/D ht.nc/ for every maximal ideal n of B . If ' is flat,
then B is Cohen-Macaulay by (9.35d). Conversely, if B is Cohen-Macaulay, then ' is flat
by (9.34). 2

EXAMPLE 9.37. LetA be a finite kŒX1; : : : ;Xn�-algebra (cf. 2.45). The map kŒX1; : : : ;Xn�!
A is flat if and only if A is Cohen-Macaulay.

An algebraic variety V is said to be Cohen-Macaulay if OV;P is Cohen-Macaulay
for all P 2 V . An affine algebraic variety V is Cohen-Macaulay if and only if kŒV � is
Cohen-Macaulay (9.35a). A nonsingular variety is Cohen-Macaulay (9.35c).

THEOREM 9.38. Let V and W be algebraic varieties with V nonsingular and W Cohen-
Macaulay. A regular map 'WW ! V is flat if and only if

dim'�1.P /D dimW �dimV (39)

for all P 2 V .

PROOF. Immediate consequence of (9.34). 2

3Matsumura, Hideyuki, Commutative ring theory. Cambridge University Press, Cambridge, 1986.
4Note that C def

D B=mB D B˝AA=m is a finite k-algebra. Therefore it has only finitely many maximal
ideals. Every prime ideal in C is an intersection of maximal ideals (2.18), but a prime ideal can equal a finite
intersection of ideals only if it equals one of the ideals.
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ASIDE 9.39. The theorem fails with “nonsingular” weakened to “normal”. Let Z=2Z act onW def
DA2

by .x;y/ 7! .�x;�y/. The quotient of W by this action is the quadric cone V � A3 defined by
T V D U 2. The quotient map 'WW ! V is .x;y/ 7! .t;u;v/ D .x2;xy;y2/. The variety W is
nonsingular, and V is normal because kŒV �D kŒX;Y �G (cf. CA 23.12). Moreover ' is finite, and so
its fibres have constant dimension 0, but it is not flat becauseX

Q 7!P

dimkOQ=mPOQ D
�
3 if P D .0;0;0/
2 otherwise

(see 9.33). See mo117043.

d. Lines on surfaces

As an application of some of the above results, we consider the problem of describing the set
of lines on a surface of degree m in P3. To avoid possible problems, we assume for the rest
of this chapter that k has characteristic zero.

We first need a way of describing lines in P3. Recall that we can associate with each
projective variety V � Pn an affine cone over QV in knC1. This allows us to think of points
in P3 as being one-dimensional subspaces in k4, and lines in P3 as being two-dimensional
subspaces in k4. To such a subspace W � k4, we can attach a one-dimensional subspaceV2

W in
V2

k4 � k6, that is, to each line L in P3, we can attach point p.L/ in P5. Not
every point in P5 should be of the form p.L/ — heuristically, the lines in P3 should form a
four-dimensional set. (Fix two planes in P3; giving a line in P3 corresponds to choosing a
point on each of the planes.) We shall show that there is natural one-to-one correspondence
between the set of lines in P3 and the set of points on a certain hyperspace ˘ � P5. Rather
than using exterior algebras, I shall usually give the old-fashioned proofs.

Let L be a line in P3 and let xD .x0 W x1 W x2 W x3/ and yD .y0 W y1 W y2 W y3/ be distinct
points on L. Then

p.L/D .p01 W p02 W p03 W p12 W p13 W p23/ 2 P5; pij
def
D

ˇ̌̌̌
xi xj
yi yj

ˇ̌̌̌
;

depends only on L. The pij are called the Plücker coordinates of L, after Plücker (1801-
1868).

In terms of exterior algebras, write e0, e1, e2, e3 for the canonical basis for k4, so that x,
regarded as a point of k4 is

P
xiei , and yD

P
yiei ; then

V2
k4 is a 6-dimensional vector

space with basis ei^ej , 0� i < j � 3, and x^y D
P
pij ei^ej with pij given by the above

formula.
We define pij for all i;j , 0� i;j � 3 by the same formula — thus pij D�pj i .

LEMMA 9.40. The line L can be recovered from p.L/ as follows:

LD f.
P
j ajp0j W

P
j ajp1j W

P
j ajp2j W

P
j ajp3j / j .a0 W a1 W a2 W a3/ 2 P3g:

PROOF. Let QL be the cone over L in k4 — it is a two-dimensional subspace of k4 — and let
xD .x0;x1;x2;x3/ and yD .y0;y1;y2;y3/ be two linearly independent vectors in QL. Then

QLD ff .y/x�f .x/y j f Wk4! k linearg:

Write f D
P
ajXj ; then

f .y/x�f .x/yD .
P
ajp0j ;

P
ajp1j ;

P
ajp2j ;

P
ajp3j /: 2
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LEMMA 9.41. The point p.L/ lies on the quadric ˘ � P5 defined by the equation

X01X23�X02X13CX03X12 D 0:

PROOF. This can be verified by direct calculation, or by using that

0D

ˇ̌̌̌
ˇ̌̌̌ x0 x1 x2 x3
y0 y1 y2 y3
x0 x1 x2 x3
y0 y1 y2 y3

ˇ̌̌̌
ˇ̌̌̌D 2.p01p23�p02p13Cp03p12/

(expansion in terms of 2�2 minors). 2

LEMMA 9.42. Every point of ˘ is of the form p.L/ for a unique line L.

PROOF. Assume p03 ¤ 0; then the line through the points .0 W p01 W p02 W p03/ and .p03 W
p13 W p23 W 0/ has Plücker coordinates

.�p01p03 W �p02p03 W �p
2
03 W p01p23�p02p13„ ƒ‚ …

�p03p12

W �p03p13 W �p03p23/

D .p01 W p02 W p03 W p12 W p13 W p23/:

A similar construction works when one of the other coordinates is nonzero, and this way we
get inverse maps. 2

Thus we have a canonical one-to-one correspondence

flines in P3g $ fpoints on ˘gI

that is, we have identified the set of lines in P3 with the points of an algebraic variety. We
may now use the methods of algebraic geometry to study the set. (This is a special case of
the Grassmannians discussed in �6.)

We next consider the set of homogeneous polynomials of degree m in 4 variables,

F.X0;X1;X2;X3/D
X

i0Ci1Ci2Ci3Dm

ai0i1i2i3X
i0
0 : : :X

i3
3 :

LEMMA 9.43. The set of homogeneous polynomials of degree m in 4 variables is a vector
space of dimension

�
3Cm
m

�
PROOF. See the footnote p. 141. 2

Let � D
�
3Cm
m

�
�1 D .mC1/.mC2/.mC3/

6
� 1, and regard P� as the projective space

attached to the vector space of homogeneous polynomials of degreem in 4 variables (p. 145).
Then we have a surjective map

P�! fsurfaces of degree m in P3g;

.: : : W ai0i1i2i3 W : : :/ 7! V.F /; F D
X

ai0i1i2i3X
i0
0 X

i1
1 X

i2
2 X

i3
3 :

The map is not quite injective — for example, X2Y and XY 2 define the same surface —
but nevertheless, we can (somewhat loosely) think of the points of P� as being (possibly
degenerate) surfaces of degree m in P3.

Let �m �˘ �P� � P5�P� be the set of pairs .L;F / consisting of a line L in P3 lying
on the surface F.X0;X1;X2;X3/D 0.
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THEOREM 9.44. The set �m is an irreducible closed subset of ˘ �P� ; it is therefore a
projective variety. The dimension of �m is m.mC1/.mC5/

6
C3.

EXAMPLE 9.45. For mD 1; �m is the set of pairs consisting of a plane in P3 and a line on
the plane. The theorem says that the dimension of �1 is 5. Since there are13 planes in P3,
and each has12 lines on it, this seems to be correct.

PROOF. We first show that �m is closed. Let

p.L/D .p01 W p02 W : : :/ F D
X

ai0i1i2i3X
i0
0 � � �X

i3
3 :

From 9.40 we see that L lies on the surface F.X0;X1;X2;X3/D 0 if and only if

F.
P
bjp0j W

P
bjp1j W

P
bjp2j W

P
bjp3j /D 0, all .b0; : : : ;b3/ 2 k4:

Expand this out as a polynomial in the bj with coefficients polynomials in the ai0i1i2i3 and
pij . Then F.:::/D 0 for all b 2 k4 if and only if the coefficients of the polynomial are all
zero. But each coefficient is of the form

P.: : : ;ai0i1i2i3 ; : : : Ip01;p02 W : : :/

with P homogeneous separately in the a’s and p’s, and so the set is closed in ˘ �P� (cf.
the discussion in 6.51).

It remains to compute the dimension of �m. We shall apply Proposition 9.11 to the
projection map

.L;F / �m �˘ �P�

L ˘:

'

For L 2 ˘ , '�1.L/ consists of the homogeneous polynomials of degree m such that
L� V.F / (taken up to nonzero scalars). After a change of coordinates, we can assume that
L is the line �

X0 D 0

X1 D 0;

i.e., LD f.0;0;�;�/g. Then L lies on F.X0;X1;X2;X3/D 0 if and only ifX0 orX1 occurs
in each nonzero monomial term in F , i.e.,

F 2 '�1.L/ ” ai0i1i2i3 D 0 whenever i0 D 0D i1:

Thus '�1.L/ is a linear subspace of P� ; in particular, it is irreducible. We now compute its
dimension. Recall that F has �C1 coefficients altogether; the number with i0 D 0D i1 is
mC1, and so '�1.L/ has dimension

.mC1/.mC2/.mC3/

6
�1� .mC1/D

m.mC1/.mC5/

6
�1:

We can now deduce from 9.11 that �m is irreducible and that

dim.�m/D dim.˘/Cdim.'�1.L//D
m.mC1/.mC5/

6
C3;

as claimed. 2
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Now consider the other projection. By definition

 �1.F /D fL j L lies on V.F /g:

EXAMPLE 9.46. Let mD 1. Then � D 3 and dim�1 D 5. The projection  W�1! P3 is
surjective (every plane contains at least one line), and (9.9) tells us that dim �1.F /� 2. In
fact of course, the lines on any plane form a 2-dimensional family, and so  �1.F /D 2 for
all F .

THEOREM 9.47. When m> 3, the surfaces of degree m containing no line correspond to
an open subset of P� .

PROOF. We have

dim�m�dimP� D
m.mC1/.mC5/

6
C3�

.mC1/.mC2/.mC3/

6
C1D 4� .mC1/:

Therefore, if m> 3, then dim�m < dimP� , and so  .�m/ is a proper closed subvariety of
P� . This proves the claim. 2

We now look at the case mD 2. Here dim�m D 10, and � D 9, which suggests that  
should be surjective and that its fibres should all have dimension � 1. We shall see that this
is correct.

A quadric is said to be nondegenerate if it is defined by an irreducible polynomial of
degree 2. After a change of variables, any nondegenerate quadric will be defined by an
equation

XW D YZ:

This is just the image of the Segre mapping (see 6.26)

.a0 W a1/, .b0 W b1/ 7! .a0b0 W a0b1 W a1b0 W a1b1/ W P1�P1! P3:

There are two obvious families of lines on P1�P1, namely, the horizontal family and the
vertical family; each is parametrized by P1, and so is called a pencil of lines. They map to
two families of lines on the quadric:�

t0X D t1Z

t0Y D t1W
and

�
t0X D t1Y

t0Z D t1W:

Since a degenerate quadric is a surface or a union of two surfaces, we see that every quadric
surface contains a line, that is, that  W�2! P9 is surjective. Thus (9.9) tells us that all the
fibres have dimension � 1, and the set where the dimension is > 1 is a proper closed subset.
In fact the dimension of the fibre is > 1 exactly on the set of reducible F ’s, which we know
to be closed (this was a homework problem in the original course).

It follows from the above discussion that if F is nondegenerate, then  �1.F / is iso-
morphic to the disjoint union of two lines,  �1.F /� P1[P1. Classically, one defines a
regulus to be a nondegenerate quadric surface together with a choice of a pencil of lines.
One can show that the set of reguli is, in a natural way, an algebraic variety R, and that, over
the set of nondegenerate quadrics,  factors into the composite of two regular maps:

�2� 
�1.S/ D pairs, .F;L/ with L on F I
#

R D set of reguli;
#

P9�S D set of nondegenerate quadrics.
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The fibres of the top map are connected, and of dimension 1 (they are all isomorphic to P1/,
and the second map is finite and two-to-one. Factorizations of this type occur quite generally
(see the Stein factorization theorem, 8.64).

We now look at the case mD 3. Here dim�3 D 19; � D 19 W we have a map

 W�3! P19:

THEOREM 9.48. The set of cubic surfaces containing exactly 27 lines corresponds to an
open subset of P19; the remaining surfaces either contain an infinite number of lines or a
nonzero finite number � 27.

EXAMPLE 9.49. (a) Consider the Fermat surface

X30 CX
3
1 CX

3
2 CX

3
3 D 0:

Let � be a primitive cube root of one. There are the following lines on the surface, 0� i;j �
2: �

X0C �
iX1 D 0

X2C �
jX3 D 0

�
X0C �

iX2 D 0

X1C �
jX3 D 0

�
X0C �

iX3 D 0

X1C �
jX2 D 0:

There are three sets, each with nine lines, for a total of 27 lines.
(b) Consider the surface

X1X2X3 DX
3
0 :

In this case, there are exactly three lines. To see this, look first in the affine space where
X0 ¤ 0 — here we can take the equation to be X1X2X3 D 1. A line in A3 can be written in
parametric form Xi D ai tCbi , but a direct inspection shows that no such line lies on the
surface. Now look where X0 D 0, that is, in the plane at infinity. The intersection of the
surface with this plane is given by X1X2X3 D 0 (homogeneous coordinates), which is the
union of three lines, namely,

X1 D 0; X2 D 0; X3 D 0:

Therefore, the surface contains exactly three lines.
(c) Consider the surface

X31 CX
3
2 D 0:

Here there is a pencil of lines: �
t0X1 D t1X0
t0X2 D�t1X0:

(In the affine space where X0 ¤ 0, the equation is X3CY 3 D 0, which contains the line
X D t , Y D�t , all t:/

We now discuss the proof of Theorem 9.48. If  W�3! P19 were not surjective, then
 .�3/ would be a proper closed subvariety of P19, and the nonempty fibres would all have
dimension � 1 (by 9.9), which contradicts two of the above examples. Therefore the map is
surjective, and there is an open subset U of P19 where the fibres have dimension 0; outside
U , the fibres have dimension > 0.

Given that every cubic surface has at least one line, it is not hard to show that there is an
open subset U 0 where the cubics have exactly 27 lines (see Reid 1988, pp. 106–110).5 In
fact, U 0 can be taken to be the set of nonsingular cubics. According to 8.26, the restriction
of  to  �1.U / is finite, and so we can apply 8.40 to see that all cubics in U �U 0 have
fewer than 27 lines.

5Reid, Miles Undergraduate algebraic geometry. LMS Student Texts, 12, CUP, Cambridge, 1988. According
to Reid, p. 126, every adult algebraic geometer knows the proof that every cubic contains a line.
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REMARK 9.50. The twenty-seven lines on a cubic surface were discovered in 1849 by
Salmon and Cayley, and have been much studied — see A. Henderson, The Twenty-Seven
Lines Upon the Cubic Surface, Cambridge University Press, 1911. For example, it is known
that the group of permutations of the set of 27 lines preserving intersections (that is, such that
L\L0 ¤ ; ” �.L/\�.L0/¤ ;/ is isomorphic to the Weyl group of the root system of
a simple Lie algebra of type E6, and hence has 25920 elements.

It is known that there is a set of 6 skew lines on a nonsingular cubic surface V . Let L
and L0 be two skew lines. Then “in general” a line joining a point on L to a point on L0 will
meet the surface in exactly one further point. In this way one obtains an invertible regular
map from an open subset of P1�P1 to an open subset of V , and hence V is birationally
equivalent to P2.

e. Bertini’s theorem

Let X � Pn be a nonsingular projective variety. The hyperplanes H in Pn form a projective
space Pn_ (the “dual” projective space). The set of hyperplanes H not containing X and
such that X \H is nonsingular, form an open subset of Pn_. If dim.X/ � 2, then the
intersections X \H are connected.

f. Birational classification

Recall that two varieties V and W are birationally equivalent if k.V /� k.W /. This means
that the varieties themselves become isomorphic once a proper closed subset has been
removed from each (3.36).

The main problem of birational algebraic geometry is to classify algebraic varieties up
to birational equivalence by finding a particularly good representative in each equivalence
class.

For curves this is easy: in each birational equivalence class there is exactly one non-
singular projective curve (up to isomorphism). More precisely, the functor V  k.V / is a
contravariant equivalence from the category of nonsingular projective algebraic curves over
k and dominant maps to the category of fields finitely generated and of transcendence degree
1 over k.

For surfaces, the problem is already much more difficult because many surfaces, even
projective and nonsingular, will have the same function field. For example, every blow-up of
a point on a surface produces a birationally equivalent surface.

A nonsingular projective surface is said to be minimal if it cannot be obtained from
another such surface by blowing up. The main theorem for surfaces (Enriques 1914, Kodaira
1966) says that a birational equivalence class contains either

(a) a unique minimal surface, or

(b) a surface of the form C �P1 for a unique nonsingular projective curve C .

In higher dimensions, the problem becomes very involved, although much progress has
been made — see Wikipedia: MINIMAL MODEL PROGRAM.

Exercises

9-1. Let G be a connected group variety, and consider an action of G on a variety V , i.e., a
regular map G�V ! V such that .gg0/v D g.g0v/ for all g;g0 2G and v 2 V . Show that
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each orbit O D Gv of G is open in its closure NO , and that NO XO is a union of orbits of
strictly lower dimension. Deduce that each orbit is a nonsingular subvariety of V , and that
there exists at least one closed orbit.

9-2. Let G D GL2 D V , and let G act on V by conjugation. According to the theory of
Jordan canonical forms, the orbits are of three types:

(a) Characteristic polynomial X2CaXCb; distinct roots.

(b) Characteristic polynomial X2C aX C b; minimal polynomial the same; repeated
roots.

(c) Characteristic polynomial X2CaXCb D .X �˛/2; minimal polynomial X �˛.

For each type, find the dimension of the orbit, the equations defining it (as a subvariety of
V ), the closure of the orbit, and which other orbits are contained in the closure.

(You may assume, if you wish, that the characteristic is zero. Also, you may assume the
following (fairly difficult) result: for any closed subgroup H of an group variety G, G=H
has a natural structure of an algebraic variety with the following properties: G ! G=H

is regular, and a map G=H ! V is regular if the composite G ! G=H ! V is regular;
dimG=H D dimG�dimH .)

[The enthusiasts may wish to carry out the analysis for GLn.]

9-3. Find 3d2 lines on the Fermat projective surface

Xd0 CX
d
1 CX

d
2 CX

d
3 D 0; d � 3; .p;d/D 1; p the characteristic.

9-4. (a) Let 'WW ! V be a quasi-finite dominant regular map of irreducible varieties. Show
that there are open subsets U 0 and U of W and V such that '.U 0/� U and 'WU 0! U is
finite.

(b) Let G be a group variety acting transitively on irreducible varieties W and V , and let
'WW ! V be G-equivariant regular map satisfying the hypotheses in (a). Then ' is finite,
and hence proper.



Solutions to the exercises

1-1 Use induction on n. For n D 1, use that a nonzero polynomial in one variable has
only finitely many roots (which follows from unique factorization, for example). Now
suppose n > 1 and write f D

P
giX

i
n with each gi 2 kŒX1; : : : ;Xn�1�. If f is not the zero

polynomial, then some gi is not the zero polynomial. Therefore, by induction, there exist
.a1; : : : ;an�1/ 2 k

n�1 such that f .a1; : : : ;an�1;Xn/ is not the zero polynomial. Now, by
the degree-one case, there exists a b such that f .a1; : : : ;an�1;b/¤ 0.

1-2 .XC2Y;Z/; Gaussian elimination (to reduce the matrix of coefficients to row echelon
form); .1/, unless the characteristic of k is 2, in which case the ideal is .XC1;ZC1/.

2-1 W D Y -axis, and so I.W /D .X/. Clearly,

.X2;XY 2/� .X/� rad.X2;XY 2/

and rad..X//D .X/. On taking radicals, we find that .X/D rad.X2;XY 2/.

2-2 The d �d minors of a matrix are polynomials in the entries of the matrix, and the set of
matrices with rank � r is the set where all .rC1/� .rC1/ minors are zero.

2-3 Clearly V D V.Xn�Xn1 ; : : : ;X2�X
2
1 /. The map

Xi 7! T i WkŒX1; : : : ;Xn�! kŒT �

induces an isomorphism kŒV �! kŒT �. [Hence t 7! .t; : : : ; tn/ is an isomorphism of affine
varieties A1! V .]

2-4 We use that the prime ideals are in one-to-one correspondence with the irreducible closed
subsets Z of A2. For such a set, 0� dimZ � 2.

Case dimZ D 2. Then Z D A2, and the corresponding ideal is .0/.
Case dimZ D 1. Then Z ¤ A2, and so I.Z/ contains a nonzero polynomial f .X;Y /.

If I.Z/¤ .f /, then dimZ D 0 by (2.64, 2.62). Hence I.Z/D .f /.
Case dimZ D 0. Then Z is a point .a;b/ (see 2.63), and so I.Z/D .X �a;Y �b/.

2-6 The statement Homk�algebras.A˝Q k;B˝Q k/ ¤ ; can be interpreted as saying that
a certain set of polynomials has a zero in k.6 If the polynomials have a common zero in
C, then the ideal they generate in CŒX1; : : :� does not contain 1. A fortiori, the ideal they
generate in QŒX1; : : :� does not contain 1, and so the Nullstellensatz (2.11) implies that the
polynomials have a common zero in k.

2-7 Regard HomA.M;N / as an affine space over k; the elements not isomorphisms are the
zeros of a polynomial; because M and N become isomorphic over kal, the polynomial is
not identically zero; therefore it has a nonzero in k (Exercise 1-1).

6Choose bases for A and B as Q-vector spaces. Now a linear map from A to B is given by a matrix M .
The condition on the coefficients of the matix for the map to be a homomorphism of algebras is polynomial.
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3-1 A map ˛WA1! A1 is continuous for the Zariski topology if the inverse images of finite
sets are finite, whereas it is regular only if it is given by a polynomial P 2 kŒT �, so it is easy
to give examples, e.g., any map ˛ such that ˛�1.point/ is finite but arbitrarily large.

3-3 The image omits the points on the Y -axis except for the origin. The complement of the
image is not dense, and so it is not open, but any polynomial zero on it is also zero at .0;0/,
and so it not closed.

3-4 Let i be an element of k with square �1. The map .x;y/ 7! .xC iy;x � iy/ from
the circle to the hyperbola has inverse .x;y/ 7! ..xCy/=2;.x�y/=2i/. The k-algebra
kŒX;Y �=.XY �1/' kŒX;X�1�, which is not isomorphic to kŒX� (too many units).

3-5 No, because bothC1 and �1 map to .0;0/. The map on rings is

kŒx;y�! kŒT �; x 7! T 2�1; y 7! T .T 2�1/;

which is not surjective (T is not in the image).

5-1 Let f be regular on P1. Then f jU0 D P.X/ 2 kŒX�, where X is the regular function
.a0Wa1/ 7! a1=a0WU0! k, and f jU1 DQ.Y / 2 kŒY �, where Y is .a0Wa1/ 7! a0=a1. On
U0 \U1, X and Y are reciprocal functions. Thus P.X/ and Q.1=X/ define the same
function on U0\U1 D A1Xf0g. This implies that they are equal in k.X/, and must both be
constant.

5-2 Note that � .V;OV /D
Q
� .Vi ;OVi

/ — to give a regular function on
F
Vi is the same

as to give a regular function on each Vi (this is the “obvious” ringed space structure). Thus, if
V is affine, it must equal Specm.

Q
Ai /, where Ai D � .Vi ;OVi

/, and so V D
F

Specm.Ai /
(use the description of the ideals in A�B on in Section 1a). Etc..

5-5 Let H be an algebraic subgroup of G. By definition, H is locally closed, i.e., open in
its Zariski closure NH . Assume first that H is connected. Then NH is a connected algebraic
group, and it is a disjoint union of the cosets of H . It follows that H D NH . In the general
case, H is a finite disjoint union of its connected components; as one component is closed,
they all are.

4-1 (b) The singular points are the common solutions to8<:
4X3�2XY 2 D 0 H) X D 0 or Y 2 D 2X2

4Y 3�2X2Y D 0 H) Y D 0 or X2 D 2Y 2

X4CY 4�X2Y 2 D 0:

Thus, only .0;0/ is singular, and the variety is its own tangent cone.

4-2 Directly from the definition of the tangent space, we have that

Ta.V \H/� Ta.V /\Ta.H/.

As
dimTa.V \H/� dimV \H D dimV �1D dimTa.V /\Ta.H/;

we must have equalities everywhere, which proves that a is nonsingular on V \H . (In
particular, it can’t lie on more than one irreducible component.)

The surface Y 2 DX2CZ is smooth, but its intersection with the X -Y plane is singular.
No, P needn’t be singular on V \H if H � TP .V / — for example, we could have

H � V or H could be the tangent line to a curve.
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4-4 We can assume V and W to affine, say

I.V /D a� kŒX1; : : : ;Xm�

I.W /D b� kŒXmC1; : : : ;XmCn�:

If a D .f1; : : : ;fr/ and b D .g1; : : : ;gs/, then I.V �W / D .f1; : : : ;fr ;g1; : : : ;gs/. Thus,
T.a;b/.V �W / is defined by the equations

.df1/a D 0; : : : ; .dfr/a D 0;.dg1/b D 0; : : : ; .dgs/b D 0;

which can obviously be identified with Ta.V /�Tb.W /.

4-5 Take C to be the union of the coordinate axes in An. (Of course, if you want C to be
irreducible, then this is more difficult. . . )

4-6 A matrix A satisfies the equations

.I C "A/tr �J � .I C "A/D I

if and only if
Atr
�J CJ �AD 0:

Such an A is of the form
�
M N

P Q

�
with M;N;P;Q n�n-matrices satisfying

N tr
DN; P tr

D P; M tr
D�Q.

The dimension of the space of A’s is therefore

n.nC1/

2
(for N )C

n.nC1/

2
(for P )Cn2 (for M;Q)D 2n2Cn:

4-7 Let C be the curve Y 2 D X3, and consider the map A1 ! C , t 7! .t2; t3/. The
corresponding map on rings kŒX;Y �=.Y 2/! kŒT � is not an isomorphism, but the map on
the geometric tangent cones is an isomorphism.

4-8 The singular locus Vsing has codimension � 2 in V , and this implies that V is normal.
[Idea of the proof: let f 2 k.V / be integral over kŒV �, f … kŒV �, f D g=h, g;h 2 kŒV �;
for any P 2 V.h/XV.g/, OP is not integrally closed, and so P is singular.]

4-9 No! Let aD .X2Y /. Then V.a/ is the union of the X and Y axes, and IV.a/D .XY /.
For aD .a;b/,

.dX2Y /a D 2ab.X �a/Ca
2.Y �b/

.dXY /a D b.X �a/Ca.Y �b/.

If a¤ 0 and b D 0, then the equations

.dX2Y /a D a
2Y D 0

.dXY /a D aY D 0

have the same solutions.

6-1 Let P D .a W b W c/, and assume c ¤ 0. Then the tangent line at P D .a
c
W
b
c
W1/ is�

@F

@X

�
P

XC

�
@F

@Y

�
P

Y �

��
@F

@X

�
P

�a
c

�
C

�
@F

@Y

�
P

�
b

c

��
Z D 0:
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Now use that, because F is homogeneous,

F.a;b;c/D 0 H)

�
@F

@X

�
P

aC

�
@F

@Y

�
P

C

�
@F

@Z

�
P

c D 0.

(This just says that the tangent plane at .a;b;c/ to the affine cone F.X;Y;Z/D 0 passes
through the origin.) The point at1 is .0 W 1 W 0/, and the tangent line is Z D 0, the line at1.
[The line at1 meets the cubic curve at only one point instead of the expected 3, and so the
line at1 “touches” the curve, and the point at1 is a point of inflexion.]

6-2 The equation defining the conic must be irreducible (otherwise the conic is singular).
After a linear change of variables, the equation will be of the form X2CY 2 DZ2 (this is
proved in calculus courses). The equation of the line in aXCbY D cZ, and the rest is easy.
[Note that this is a special case of Bezout’s theorem (6.37) because the multiplicity is 2 in
case (b).]

6-3 (a) The ring

kŒX;Y;Z�=.Y �X2;Z�X3/D kŒx;y;z�D kŒx�' kŒX�;

which is an integral domain. Therefore, .Y �X2;Z�X3/ is a radical ideal.
(b) The polynomial F DZ�XY D .Z�X3/�X.Y �X2/ 2 I.V / and F � DZW �

XY . If
ZW �XY D .Y W �X2/f C .ZW 2

�X3/g;

then, on equating terms of degree 2, we would find

ZW �XY D a.YW �X2/;

which is false.

6-4 Let P D .a0W : : : Wan/ and QD .b0W : : : Wbn/ be two points of Pn, n � 2. The condition
that the hyperplane LcW

P
ciXi D 0 pass through P and not through Q is thatP

aici D 0;
P
bici ¤ 0:

The .nC1/-tuples .c0; : : : ; cn/ satisfying these conditions form a nonempty open subset of
the hyperplane H W

P
aiXi D 0 in AnC1. On applying this remark to the pairs .P0;Pi /, we

find that the .nC1/-tuples cD .c0; : : : ; cn/ such that P0 lies on the hyperplane Lc but not
P1; : : : ;Pr form a nonempty open subset of H .

6-5 The subset
C D f.a W b W c/ j a¤ 0; b ¤ 0g[f.1 W 0 W 0/g

of P2 is not locally closed. Let P D .1 W 0 W 0/. If the set C were locally closed, then P
would have an open neighbourhood U in P2 such that U \C is closed. When we look in
U0, P becomes the origin, and

C \U0 D .A2XfX -axisg/[foriging.

The open neighbourhoods U of P are obtained by removing from A2 a finite number of
curves not passing through P . It is not possible to do this in such a way that U \C is closed
in U (U \C has dimension 2, and so it can’t be a proper closed subset of U ; we can’t have
U \C D U because any curve containing all nonzero points on X-axis also contains the
origin).
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6-6 Let
P
cijXij D 0 be a hyperplane containing the image of the Segre map. We then haveP

cijaibj D 0

for all aD .a0; : : : ;am/ 2 kmC1 and bD .b0; : : : ;bn/ 2 knC1. In other words,

aCbt D 0

for all a 2 kmC1 and b 2 knC1, where C is the matrix .cij /. This equation shows that
aC D 0 for all a, and this implies that C D 0.

7-2 Define f .v/ D h.v;Q/ and g.w/ D h.P;w/, and let ' D h� .f ıpCg ı q/. Then
'.v;Q/D 0D '.P;w/, and so the rigidity theorem (7.35) implies that ' is identically zero.

8-2 For example, consider

.A1Xf1g/! A1
x 7!xn

! A1

for n > 1 an integer prime to the characteristic. The map is obviously quasi-finite, but it is
not finite because it corresponds to the map of k-algebras

X 7!XnWkŒX�! kŒX;.X �1/�1�

which is not finite (the elements 1=.X �1/i , i � 1, are linearly independent over kŒX�, and
so also over kŒXn�).

8-3 Assume that V is separated, and consider two regular maps f;gWZ� W . We have
to show that the set on which f and g agree is closed in Z. The set where ' ı f and
' ı g agree is closed in Z, and it contains the set where f and g agree. Replace Z
with the set where ' ıf and ' ıg agree. Let U be an open affine subset of V , and let
Z0 D .' ı f /�1.U / D .' ı g/�1.U /. Then f .Z0/ and g.Z0/ are contained in '�1.U /,
which is an open affine subset of W , and is therefore separated. Hence, the subset of Z0 on
which f and g agree is closed. This proves the result.

[Note that the problem implies the following statement: if 'WW ! V is a finite regular
map and V is separated, then W is separated.]

8-4 Let V D An, and let W be the subvariety of An�A1 defined by the polynomialQn
iD1.X �Ti /D 0:

The fibre over .t1; : : : ; tn/ 2 An is the set of roots of
Q
.X � ti /. Thus, Vn D An; Vn�1 is the

union of the linear subspaces defined by the equations

Ti D Tj ; 1� i;j � n; i ¤ j I

Vn�2 is the union of the linear subspaces defined by the equations

Ti D Tj D Tk; 1� i;j;k � n; i;j;k distinct,

and so on.

9-1 Consider an orbit O DGv. The map g 7! gvWG!O is regular, and so O contains an
open subset U of NO (9.7). If u 2 U , then gu 2 gU , and gU is also a subset of O which is
open in NO (because P 7! gP WV ! V is an isomorphism). ThusO , regarded as a topological
subspace of NO , contains an open neighbourhood of each of its points, and so must be open
in NO .



We have shown that O is locally closed in V , and so has the structure of a subvariety.
From (4.37), we know that it contains at least one nonsingular point P . But then gP is
nonsingular, and every point of O is of this form.

From set theory, it is clear that NO XO is a union of orbits. Since NO XO is a proper
closed subset of NO , all of its subvarieties must have dimension < dim NO D dimO .

Let O be an orbit of lowest dimension. The last statement implies that O D NO .

9-2 An orbit of type (a) is closed, because it is defined by the equations

Tr.A/D�a; det.A/D b;

(as a subvariety of V ). It is of dimension 2, because the centralizer of
�
˛ 0

0 ˇ

�
, ˛ ¤ ˇ, is��

� 0

0 �

��
, which has dimension 2.

An orbit of type (b) is of dimension 2, but is not closed: it is defined by the equations

Tr.A/D�a; det.A/D b; A¤

�
˛ 0

0 ˛

�
; ˛ D root of X2CaXCb.

An orbit of type (c) is closed of dimension 0: it is defined by the equation AD
�
˛ 0

0 ˛

�
.

An orbit of type (b) contains an orbit of type (c) in its closure.

9-3 Let � be a primitive d th root of 1. Then, for each i;j , 1 � i;j � d , the following
equations define lines on the surface�

X0C �
iX1 D 0

X2C �
jX3 D 0

�
X0C �

iX2 D 0

X1C �
jX3 D 0

�
X0C �

iX3 D 0

X1C �
jX2 D 0:

There are three sets of lines, each with d2 lines, for a total of 3d2 lines.

9-4 (a) Compare the proof of Theorem 9.9.
(b) Use the transitivity, and apply Proposition 8.26.
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