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Blurb

The idea of tannakian categories, and of their importance for motives, was Grothen-
dieck’s. He explained it to Saavedra Rivano, who developed the theory of tannakian
categories and described their application to motives in his thesis (1972). It was Saavedra
who introduced the terminology “tannakian”.

Deligne removed a major lacuna in the theory of nonneutral tannakian categories,
gave an internal characterization of a tannakian category in characteristic zero, and
removed some unnecessary hypotheses in the theory or polarizations.

This is a updated account of the theory of tannakian categories, written in the spirit
of the 1982 article by Deligne and Milne.
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Introduction

Origins

André Weil’s work on the arithmetic of curves and other varieties over finite fields led
him in 1949 to state his famous “Weil conjectures”. These had a profound influence on
algebraic geometry and number theory in the following decades. In an effort to explain
the conjectures, Grothendieck was led to define several different “Weil cohomology
theories” and to posit an ur-theory underlying all of them whose objects he called
motives. In order to provide a framework for studying these different theories, especially
motives, Grothendieck introduced the notion of a tannakian category.

Weil’s first insight was that the numbers of points on smooth projective algebraic
varieties over finite fields behave as if they were the alternating sums of the traces of an
operator acting on a well-behaved homology theory.! In particular, the (co)homology
groups should be vector spaces over a field of characteristic zero, be functorial, and give
the “correct” Betti numbers. However, already in the 1930s, Deuring and Hasse had
shown that the endomorphism algebra of an elliptic curve over a field of characteristic p
may be a quaternion algebra over Q that remains a division algebra even when tensored
with Q, or R, and hence cannot act on a 2-dimensional vector space over Q (or even Q,,
or R). In particular, no such cohomology theory with Q-coefficients exists.

Grothendieck defined étale cohomology groups with Q,-coefficients for each prime
¢ distinct from the characteristic of the ground field, and in characteristic p # 0, he
defined the crystalline cohomology groups with coefficients in an extension of Q. Each
cohomology theory is well-behaved. In particular it has a Lefschetz trace formula, and
Weil’s first insight is explained by realizing the points of the variety in a finite field as
the fixed points of the Frobenius operator, and hence, by trace formula, their cardinality
as the alternating sum of the traces of the operator acting on the cohomology groups. A
striking feature of this is that, while the traces of the Frobenius operator are, by definition,
elements of different fields @, they in fact lie in Q and are independent of [ (for smooth
projective varieties). This last fact suggested to Grothendieck that there was some sort
of Q-theory underlying the different Q;-theories. To explain what this is, we need the
notion of a tannakian category.

Briefly, a tannakian category over a field k is a k-linear abelian category with a tensor
product structure having most of the properties of the category of finite-dimensional
representations of an affine group scheme over k except one: there need not exist an exact
tensor functor to the category of k-vector spaces, and when one does exist there need be
a canonical one. Each of the cohomology theories takes values, not just in a category of

1 me fallut du temps avant de pouvoir méme imaginer que les nombres de Betti fussent susceptibles
d’une interprétation en géométrie algébrique abstraite. Je crois que je fis un raisonnement heuristique basé
sur la formule de Lefschetz. (It took me a while before I could even imagine that the Betti numbers were
susceptible to an interpretation in abstract algebraic geometry. I think I made a heuristic argument based
on the Lefschetz formula). Weil, (Buvre, Commentaire [1949b].
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vector spaces, but in a tannakian category. For example, crystalline cohomology takes
values in a category of isocrystals. These are finite-dimensional vector spaces over an
extension of Q,, but only the elements of Q, act as endomorphisms in the category.
More specifically, if 1 is the unit object of the category (the tensor product of the empty
set), we have End(1) = Q,. Grothendieck’s insight is that there should be a tannakian
category Mot over Q such that the functors to the local tannakian categories defined by
the different cohomology theories factor through it. Algebraic correspondences between
smooth projective algebraic varieties should define maps between motives, whose traces
lie in End(1) = Q and map to the traces on the various cohomology groups, which
explains why the latter lie in Q.

Weil’s second insight was that an analogue of the Riemann hypothesis should hold
for the eigenvalues of Frobenius operators. This suggested that some of the well-known
positivities in characteristic zero should persist to characteristic p. To see why, we briefly
recall Weil’s proof of the Riemann hypothesis for abelian varieties over finite fields.

Consider an abelian variety A over an algebraically closed field of characteristic p.
For a prime ¢ # p, we have a finite-dimensional Q,-vector space VA, and, for each
polarization of A, we have a pairing ¢ : V,AXV,A — Q. As Q; is not a subfield of
R, it makes no sense to say that ¢ is positive-definite. However, Weil showed that ¢
induces an involution on the finite-dimensional Q-algebra End(A) ® Q and that this
involution is positive.? The Riemann hypothesis for the abelian variety follows directly
from this. Grothendieck extended Weil’s ideas to tannakian categories by introducing
the notion of a “Weil form” on an object of a tannakian category and of a “polarization”
on a tannakian category.

A tannakian category over k is said to be neutral if it admits an exact tensor functor to
the category of k-vector spaces. Neutral tannakian categories are the analogues for affine
group schemes of the categories studied by Tannaka and Krein. A classical theorem
of Tannaka describes how to recover a compact topological group from its category
of finite-dimensional unitary representations, and Krein characterized the categories
arising in this way.

Not all tannakian categories are neutral, and the obstruction to a tannakian category
over k having a k-valued fibre functor lies in a nonabelian cohomology group of degree
2, more general than was available in the early 1960s. Grothendieck’s student Giraud
developed the necessary nonabelian cohomology theory in his thesis (Giraud 1971).

As we have explained, the idea of tannakian categories, and of their importance
for motives, was Grothendieck’s. He explained it to Saavedra Rivano, who developed
the theory of tannakian categories in his thesis (Saavedra 1972). It was Saavedra who
introduced the terminology “tannakian”. Although Grothendieck used the term “tan-
nakian category” in unpublished writings, he considered the categories to be part of a
vast theory engobalizing Galois theory and the theory of fundamental groups, and later
wrote that “Galois-Poincaré category” would have been a more appropriate name.>

Summary

We now present a summary of the main results of the theory. Throughout, k is a field.

20ver C, this was known to the Italian geometers as the positivity of the Rosati involution.

Deligne writes: I expect that at first Grothendieck did not know of Tannaka’s work - and never cared
about it. His aim was to unify the cohomology theories he had created. That each H is with values in a
category with ®, and that Kiinneth holds, was a brilliant insight which, like a number of his brilliant ideas,
is now part of our subconscious, making it hard to see how deep it was.



A tensor category (symmetric monoidal category) is a category C together with a
functor ® : C x C — C and sufficient constraints to ensure that the tensor product of
any (unordered) finite set of objects in C is well-defined up to a canonical isomorphism.
In particular, there exists a unit object 1 (tensor product of the empty set of objects).
A tensor category is rigid if every object admits a dual (in a strong sense). A tensor
Junctor of tensor categories is one preserving the tensor products and constraints.

A tensorial category over k is a rigid abelian tensor category equipped with a
k-linear structure such that ® is k-bilinear and the structure map k — End(1) is an
isomorphism. A tensorial category over k is a tannakian category over k if, for some
nonzero k-algebra R, there exists an R-valued fibre functor, i.e., an exact k-linear tensor
functor w : C — Mod(R). We write Aut®(w) for the group of automorphisms of w (as a
tensor functor).

In the remainder of the introduction, all tensor categories are assumed to be essen-
tially small (i.e., equivalent to a small category).

A criterion to be a tannakian category

For an object X of a tensorial category C over k, there is a canonical trace map
Try : End(X) — End(1) =k,

and we let dim X denote the trace of idy. In tensorial categories, traces are additive on
short exact sequences (I, 6.6).

THEOREM 1 (I, 10.1) A tensorial category over k of characteristic zero is tannakian (i.e., a
fibre functor exists) if and only if, for all objects X, dim X is an integer > 0.

Neutral tannakian categories.

A tannakian category (C, ®) over k is neutral if there exists a k-valued fibre functor. For
example, the category Repf(G) of finite-dimensional representations of an affine group
scheme G over k is a tannakian category over k with the forgetful functor as a k-valued
fibre functor.

THEOREM 2 (I1, 3.1) Let C be a tannakian category over k and w a k-valued fibre functor.
(a) The functor of k-algebras R ~ Autl?(co ® R) is represented by an affine group scheme
G= /lutf’(w) over k.

(b) The functor C — Repf(G) defined by w is an equivalence of tensor categories.

For example, if C = Rep(G) and w is the forgetful functor, then Autf(a)) =G.

The theorem gives a dictionary between neutralized tannakian categories over k and
affine group schemes over k. To complete the theory in the neutral case, it remains to
describe the R-valued fibre functors on C for R a k-algebra.

THEOREM 3 (I, 8.1) Let C and w be as in Theorem 2, and let G = Autf’(w). For any
R-valued fibre functor v on C, Isom®(w @ R, v) is a torsor under Gy, for the fpqc topology.
The functor v - Jsom®(w ® R, v) is an equivalence from the category of R-valued fibre
functors on C to the category of Gg-torsors,

FIB(C)z ~ TORS(G)g.
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ASIDE The situation described in the theorem is analogous to the following. Let X be
a connected topological space, and let C be the category of locally constant sheaves of
Q-vector spaces on X. For each x € X, there is a functor w,, : C — Vecfq taking a sheaf
to its fibre at x, and w, defines an equivalence of categories C — Rep(7,(X, x)). Let
IT, ,, be the set of homotopy classes of paths from x to y; then IT,. , ~ Isom(w,,w,), and
I, , is a 71 (X, x)-torsor.

General tannakian categories.

Many of the tannakian categories arising in algebraic geometry are not neutral. They
correspond to affine groupoid schemes rather than affine group schemes.

Let S be an affine scheme over k. A k-groupoid scheme acting on S is a k-scheme
G together with two k-morphisms ¢,s : G =3 S and a partial law of composition

o: G >S< G—->G (morphism of S X S-schemes)
S,5,t

such that, for all k-schemes T, (S(T), G(T), (t, s), o) is a groupoid (i.e., a small category
in which the morphisms are isomorphisms). A groupoid G is transitive if the morphism

(t,8): G—> Sx%x, S

is faithfully flat. The representations of G on locally free sheaves of finite rank on S form
a tannakian category Repf(S:G) over k.

Let S = SpecR be an affine scheme over k. By a fibre functor over S, we mean an
R-valued fibre functor. For example, Repf(S: G) has a canonical (forgetful) fibre functor
over S. When w is a fibre functor over S on a tannakian category over k, we let Aut?(w)

denote the functor of S X, S-schemes sending (b,a): T — S X, S to Isom?(a*a), b*w).

THEOREM 4 (I11, 1.1) Let C be a tannakian category over k and w a fibre functor over S.
(a) The functor Autf’(a)) is represented by an affine k-groupoid scheme G acting transi-
tively on S.

(b) The functor C — Rep(S:G) defined by w is an equivalence of tensor categories.
For example, if C = Rep(S:G) and w is the forgetful functor, then Autf’(a)) ~G.

The gerbe of fibre functors

Let Aff, denote the category of affine k-schemes. For each affine k-scheme S, we let
FIB(C)g denote the category of fibre functors of C over S. As S varies, the categories
F1B(C)s form a stack over Aff; for the fpqc topology, and (c) of Theorem 4 implies that
FIB(C) is a gerb (any two fibre functors are locally isomorphic).

The tannakian categories over k form a 2-category with the 1-morphisms being the
exact k-linear tensor functors and the 2-morphisms the morphisms of tensor functors.
Similarly, the affine gerbes over k form a 2-category with the 1-morphisms being the
cartesian functors of fibred categories and the 2-morphisms being the equivalences
between 1-morphisms.

THEOREM 5 (IV, 3.3) The 2-functor sending a tannakian category to its gerbe of fibre
functors is an equivalence of 2-categories.* Explicitly, for any tannakian category C over k,
the canonical functor

C — Rep(F1B(C))

4Not a 2-equivalence



is an equivalence of tensor categories, and for any affine gerbe G over k, the canonical
functor
G — FiB(Rep(G))

is an equivalence of stacks.

The theorem gives a dictionary between tannakian categories over k and affine gerbes
over k.

The fundamental group of a tannakian category

Let T be a tannakian category over k. The notion of a Hopf algebra makes sense in the
ind-category Ind T. In order to make available a geometric language, Deligne defined
the category of affine group schemes in Ind T to be the opposite of that of commutative
Hopf algebras. If G is the group scheme corresponding to the Hopf algebra A, then, for
any R-valued fibre functor w, w(G) < Spec(w(A)) is an affine group scheme over R. The
Jundamental group 7(T) of T is the affine group scheme in Ind T such that

w(m(T)) = Aut®(w)

for all fibre functors w. The group 7(T) acts on the objects X of T, and w transforms this
action into the natural action of Aut®(w) on w(X).

Let X be a topological space, connected, locally connected, and locally simply con-
nected. There is the following analogy:

T X
object Y of T covering of X(=locally constant sheaf)
fibre functor w, point xy € X
Aut®(w) (X, Xo)
7(T) local system of the 7;(X, x)
action of 7(T) on Y in T | action of the local system of the 7;(X, x)
on a locally constant sheaf.

For T the category of motives over k, 7z(T) is called the motivic Galois group of k.

Polarized tannakian categories.

For tannakian categories over R (or a subfield of R), there are positivity structures called
polarizations. For simplicity, let (C, ®) be an algebraic tannakian category over R. A
nondegenerate bilinear form

Pp: VRV >R

on an object V of C is called a Weil form if its parity ¢, (the unique automorphism
of V satisfying ¢(y, x) = ¢(x,¢€,y)) is in the centre of End(V') and if for all nonzero
endomorphisms u of V, Tr(uou®) > 0, where u? is the adjoint of u. Two Weil forms

SFrom Deligne: The first three lines [in the table] were surely clear and important for Grothendieck. 1
don’t remember him considering Ind T, 7z(T), or Hopf algebras in T. For me, it was a way to make sense of
my surprise, seeing that for each of the standard fibre functors w with values in C,

Aut®(w : motives - € — vector spaces)

had the same ‘texture’ as objects of C.
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p:V®V >Randy: W QW — R are compatible if the form ¢ @pon V @ W is
again a Weil form.

Now fix an € € Z(R), where Z is the centre of the band of the gerb of FIB(C) —itis a
commutative algebraic R-group — and suppose that for each object V' of C we are given
a nonempty compatibility class (V") of (7-positive) Weil forms on V with parity ¢y, .
We say that 7 is an e-polarization of C if direct sums and tensor products of 7z-positive
forms are 7-positive. When ¢ = 1, so that ¢(x, y) = ¢(y, x), the polarization is said to be
symmetric.

Let G be an affine group scheme over R, and let C be an element of G(R) such that
inn(C) is a Cartan involution, i.e., the involution corresponding to a compact form® of G.
Because inn(C) is an involution, C? is central. For each V in Repf(G), let (V) be the
set of G-invariant bilinear forms ¢ : V ® V — R such that the bilinear form ¢,

bc(x,y) € ¢(x,Cy),

is symmetric and positive-definite. Then 7. is a C2-polarization on Repf(G). For a
neutralized tannakian category, the - exhaust the polarizations.

THEOREM 6 Let G be an affine algebraic R-group. Then Repf(G) admits a polarization if
and only if G is an inner form of a real compact group, in which case every polarization is
of the form 7 for some C as above, and C is uniquely determined by the polarization up to
conjugacy.

It follows from the theorem that if C is an algebraic tannakian category endowed
with a symmetric polarization, then C is neutral and there is an R-valued fibre functor
w: C — Vecf(R) such that Aut®(w) is a compact R-group; moreover, w is unigely
determined up to a unique isomorphism by the condition that the positive forms on an
object V of C are exactly the forms ¢ such that w(¢) is symmetric and positive-definite.

Motives

Fix an admissible equivalence relation for algebraic cycles on smooth projective algebraic
varieties over k, and let M(k) denote the corresponding category of motives. It is a tensor
category equipped with a Q-linear structure (in particular, it is additive) such that ® is
Q-bilinear.

THEOREM 7 The category of motives M(k) is a Q-linear rigid tensor category.

Let X be a smooth projective variety over k. We say that X satisfies the sign conjecture
if there exists an algebraic cycle e on X X X such that eH*(X) = @i>0 H?(X) for the
standard Weil cohomology theories. Smooth projective varieties over a finite field satisfy
the sign conjecture, as do abelian varieties over any field. Let NMot(k) denote the
category of motives for numerical equivalence over k generated by the smooth projective
varieties over k satisfying the sign conjecture.

THEOREM 8 The category of numerical motives NMot(k) is a semisimple tannakian cate-
gory over Q.

A real form G’ of G is compact if G(R) is compact and contains a point of each connected component
of G¢.



To prove that NMot(k) is polarized and that the standard Weil cohomologies factor
through it requires Grothendieck’s standard conjectures. Given the lack of progress on
these conjectures, Deligne has suggested looking for alternatives, of which there are

several.

Acknowledgements
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Notation and Conventions

Generally, we follow the conventions of Giraud 1971. We use roman letters for sets,
underline for internal homs, san-serif for categories, and small caps for stacks. Thus,

o Hom(x,y) is a set,

o  JFom(x,y)is an object of the same category as x and y,
o Hom(x,y) is itself a category,

o HoM(x,y) is a stack,

o  Hom is a2-category.

By an order, we mean a partial order (reflexive, antisymmetric, transitive). Functors
between additive categories are assumed to be additive. Natural transformations are
sometimes called morphisms of functors. All rings are associative with 1, and are
commutative unless indicated otherwise. A strictly full subcategory is a full subcategory
containing with any X, all objects isomorphic to X. Isomorphisms are denoted by =,
canonical (or given) isomorphisms by =~,” and equivalences of categories by ~. For a
field k, k2 denotes an algebraic closure of k and kP the separable closure of k in k2.

For affine schemes X = Spec A and Y = Spec B, we sometimes identify the sets
Hom(X,Y) and Hom(B, A) and use the same letter for a map of affine schemes and the
corresponding map of rings.

In a category, the collection of morphisms from one object to a second is required to
be small. The category itself is small if, in addition, the collection of objects is small. A
category is essentially small if it is equivalent to a small category. Here “small” means,
according to taste, a set in the sense of von Neumann-Bernays-Gd&del set theory or an
element of some fixed universe (i.e., U-small for a fixed universe U).

Let k be a commutative ring. A category C is k-linear if it is additive, the Hom-sets
are k-modules, and composition is k-linear. Functors between k-linear categories are
required to be k-linear on the Hom-sets and preserve finite inductive limits.

Our notation agrees with that of Saavedra 1972 except for some simplifications: what
is called a ®-widget AC unifere by Saavedra here becomes a tensor widget.

Among the different terminologies,

inductive | direct | colimit | lim
projective | inverse | limit lim

we use the first and last pair.
Some alternative terminologies (we use that on the left).

tensor category ®-category symmetric monoidal category

tensor functor ®-functor

tensorial category over k | tensor category over k | rigid abelian tensor category
+ an isomorphism k ~ End(1)

"We emphasize that, when we write X ~ Y, we mean that X and Y are isomorphic by a specific
isomorphism, usually canonical, even when we do not explicitly describe the isomorphism.



Some categories (k is a field):

Affg, Aff,
coMod(C)

coModf(C)
coModf(L)

4Mod, Mod 4
Modf 4
Mod(R)
Modf(R)
Proj(R)
Repf(G)

Repf(S:G)

Set
SChk
Vecf(k)
See also the Index.

schemes affine over an affine scheme S, over k

right C-comodules (C a coalgebra)

right C-comodules finite-dimensional over k (C a coalgebra over k)
L-comodules finitely generated and projective as right B-modules
(L a coalgebroid acting on B)

left, right A-modules (A a noncommutative ring)

finitely presented right A-modules (A a noncommutative ring)
R-modules (R a commutative ring)

finitely presented R-modules

finitely generated projective R-modules

linear representations of G on finite-dimensional k-vector spaces
(G an affine group scheme over k)

representations of G on locally free Og-modules of finite rank

(G a k-groupoid acting on S)

sets

schemes over k

finite-dimensional k-vector spaces
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Table of Concordance

In each entry, the first term is the number of an item in Deligne and Milne 1982 and the
second term is its number in this work.

1.1,2.1 21,19 2.28,6.18 4.5,4.2 5.3,11.4 6.9, 10.21
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14,28 2.4,1.16 2.31,9.14 4.8,4.5 5.6,11.7 6.12,10.24
1.5,2.5 2.5,1.17 2.32,9.3 4.9,4.6 5.7,11.8 6.13,10.25
1.6,4.1 2.6,1.19 2.33,9.7 4.10,5.1 5.8,11.9 6.14,10.26
1.7,5.1 2.7,1.20 2.34,9.11 4.11,5.2 5.9,11.10 6.15,10.27
1.8,3.1 2.8,. 2.35,9.16 4.12,5.3 5.10,11.13 6.16, 10.28
1.9,5.6 29,23 3.1,7.5 413,54 5.11,11.11 6.17,5.1
1.10, 3.3 2.10,2.4 3.2,8.1 4.14,5.5 512,121 6.18, 5.2
1.11,34 2.11,3.1 3.3,. 4.15,6.1 5.13,12.2 6.19, 5.3
1.12,3.2 2.12,. 3.4,aside,p.4 4.16,6.2 5.14,12.3 6.20, 10.29
1.13,5.7 2.13,. 3.5,. 4.17,7.1 5.15,12.4 6.21,10.30
1.14,5.10 2.14,. 3.6,1.8 4.18,7.2 5.16,12.5 6.22,10.31
1.15,6.1 2.15,3.16 3.7,. 4.19,7.3 5.17,12.6 6.23,10.33
1.16, 6.2 2.16, 3.25 3.8,. 4.20,. 5.18,12.7 6.24,10.34
1.17,6.3 2.17,3.27 3.9,. 421,74 5.19,12.8 6.25,10.37
1.18, 6.4 2.18,. 3.10,. 4.22,8.1 5.20,12.9 6.26, 10.38
1.19, 6.5 2.19,. 3.11,. 4.23,8.2 5.21,12.10 6.27,10.39
1.20,4.1 2.20,6.1 3.12,. 4.24,8.3 6.1,10.8 6.28,10.40
1.21,8.1 2.21,5.1 3.13,12.1 4.25,8.4 6.2,10.9 6.29,10.41
1.22,8.2 2.22,6.2 3.14,. 4.26, 8.5 6.3,10.10

1.23,8.3 2.23,6.13 3.15,. 4.27,9.1 6.4,10.12

1.24, 8.4 2.24,6.14 4.1,2.1 4.28,9.2 6.5,10.13

1.25,8.7 2.25,6.15 42,22 4.29,10.3 6.6,.

1.26, 8.8 2.26,6.16 43,23 51,9.2 6.7,10.14

1.27,8.9 2.27,6.17 4.4, 5.2,11.2 6.8, 10.20



Chapter I

Tensor Categories

A tensor category is one in which every finite set of objects has a well-defined
tensor product. The choice of a unit object (tensor product of the empty set)
makes it into a symmetric monoidal category.

This chapter consists mostly of definitions, except for §10 where we prove Deligne’s
theorem on the existence of a fibre functor.

1 Monoidal categories
Let C be a category and let
®:CXxC->C, X, Y)»XQY

be a functor.
An associativity constraint for (C, ®) is a natural isomorphism

axyz- XY QR®Z)-XQRY)QZ

such that, for all objects X,Y, Z, T, the following diagram commutes,

XY Q®UZT)
X®a% \){,1:,2®T
XR®UY®2)QT) X®Y)®ZQ®T)

€))
“X,Y@Z,\ /X@Y,Z,T
axyz®T

X®YRNIT —— (XQY)®Z)®T

This is the pentagon axiom (Saavedra 1972, 1, 1.1.1.1; Mac Lane 1998, p. 162).}

In some sources, the arrow a has the opposite direction. A similar remark applies to other arrows in
this chapter.

11
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DEFINITION 1.1 A pair (U, u) consisting of an object U of C and an isomorphismu : U®
U — U is a unit of (C, ®) if the functors

X-»UX:C->C
Xw»XQU:C->C
are fully faithful.

DEFINITION 1.2 A triple (C, ®, cr) consisting of a category C, a functor ® : Cx C — C,
and an associativity constraint « satisfying the pentagon axiom is a monoidal category
if there exists a unit (U, u).

PROPOSITION 1.3 Let (U, u) be a unit of the monoidal category (C,®,a). There exist
unique natural isomorphisms

Ik URX>X, px:XQU>X

such that Ay = u = py and the following triangles commute,

UQ(X®Y) — , U®X)®Y XQ@YQU) — . (XQY)QU

A;\\ /4;Y X&>\ /4gy

X®Y XQY
(2)

PROOF We first define A1x. As X w U ® X is fully faithful, it suffices to define U ®
Ax : U® (U ® X) » U ® X. This we take to be
Ay,Ux u®X
UQURX) —s (UQU)®X —> U ®X.

‘We have to show that
A
UR®(XQ®Y) =25 XQY

laU,x,y ”

Uex)eYy 2 xev

commutes, and for this it suffices to show that

UQURX®Y) 2 o) x®Y) X% yexeY)
lU®o‘U,X,Y laU®UX,Y laU,X,Y
US(U®X)®Y) Wenex)ey X% yvex)ey

commutes. The left-hand square commutes because of the pentagon axiom (the un-
marked arrow involves two applications of «) and the right-hand square commutes
because of the naturality of a. This proves the statement for 1y, and the proof for py is
similar. a]

PROPOSITION 1.4 The following diagram commutes for all X, Y,

ax,u,y

XQUQ®Y) XQU)®Y

QE\\ //Q; ®

X®Y
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PROOF Consider the diagram,

a RY
(XQU)U)QY s X®UU)®Y
(me %u)@tl’
X®U)®Y
AXQU,U,Y ax,uy AX,UQU,Y
X®UQRY)
Px®URY) \mxw@)m
XRU)®UQEY) X®ygy X@URU)®Y)
XQU®UQ®Y)).

The triangle at lower left is (3), except with Y replaced by U ® Y. BecauseY » U Q® Y
is fully faithful, it suffices to show that this triangle commutes. The outside pentagon
is that in the pentagon axiom, and so it suffices to show that each of the remaining
subdiagrams commutes. The two rectangles commute because of the functoriality of «,
and the two triangles are the diagrams (2) tensored with X and Y. O

PROPOSITION 1.5 If (U, u) is a unit then
U Qu= Au,u,u ® (u ® U) (4)
and the functors X ~» U @ X and X ~ X ® U are equivalences of categories.

PROOF The equality (4) is the special case of (3) with X =Y = U. For the second part
of the statement, note that A and p are natural isomorphisms of the functors with the
identity functor. o

PROPOSITION 1.6 For any two units (U, u) and (U’,u’) of a monoidal category (C, ®),
there is a unique isomorphism a : U — U’ making the diagram

UQU —— U

lee o

u

UI ® UI __,) Ul
commute.

PROOF The isomorphism
Ayt
v&Zueu L v
has the required properties. o

EXAMPLE 1.7 The category Cat of small categories and functors becomes a monoidal
category with the cartesian product of categories as tensor product. Any category with
only one object and one arrow is a unit object.
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Notes

1.8 The above theory simplifies when we use o to omit parentheses. Let (U, u) be a
unit. There are unique morphisms 1y : U ® X — X and px : X ® U — X such that

‘Ox®U=X®u

For example, 1y is the morphism corresponding to u ® X under the isomorphism

U®-
Hom(U® X,X) — Hom(UQ® U ® X,U ® X).
Both Ay and py are isomorphisms, natural in X. Moreover,

{ /’IX®Y == AX ®Y
Pxgy =X & py.

For example, to prove the first equality, note that

def def

U®AX®Y =U.®X®Y= U®lx®Y

In the commutative diagram

URY
xeUueUey 2% xoUueY
lX®U®ly lX(X)/lY
Y
XQU®Y Fx® X®Y,

the left-hand and top arrows both equal the morphism X ® u ® Y (by (5)). As this is an
isomorphism, it follows that X @ 1y = px ® Y.

1.9 Saavedra 1972, 1, 1.3.2, defines a “unité reduit” to be a pair (U, u) consisting of an
object U and an isomorphism u : U @ U — U such that the functors X v U ® X and
X w X ® U are equivalences. According to 1.5, this agrees with our notion of a unit.

1.10 Define an LR-unit to be a triple (U, 4, p) such that (3) commutes (the triangle
axiom). Proposition 1.3 shows that, to give the structure of a unit on an object is the
same as giving the structure of an LR-unit.

1.11 A monoidal category is classically defined to be a triple (C, ®, @) together with an
LR-unit (Mac Lane 1998, p. 162). According to 1.10, this is the same as giving a triple
together with a unit object.

1.12 In our definition of a monoidal category, instead of specifying a unit object we
only required it to exist. According to 1.6, this makes little difference.

For more on units in monoidal categories, see Kock 2008.
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2 Tensor (symmetric monoidal) categories
Let C be a category and let
®:CXxC->C, X, Y)»XQY

be a functor.
A commutativity constraint for (C, ®) is a natural isomorphism

Ixy - XQ®Y - YR®X

such that, for all objects X, Y,

Yyxxy : X®Y - XQ®Y

is the identity morphism on X ® Y (Saavedra 1972, 1, 1.2.1).
An associativity constraint a and a commutativity constraint y are compatible if,
for all objects X, Y, Z, the following diagram commutes,?

XY ®Z) -5 (XQY)®Z

7

X®Z®Y) ZR(X®Y) (6)

N ed

(X®Z)®YH ZRX)®Y
This is the hexagon axiom (Saavedra 1972, 1, 2.1.1.1; Mac Lane 1998, p. 184).

DEFINITION 2.1 A tensor categoryisasystem (C, ®, a,y), where (C, ®, a) isa monoidal
category and y is a compatible commutativity constraint.

PROPOSITION 2.2 In a tensor category, the following diagram commutes,

XUY

XQUY) — XQU)®Y
lX@AY ly@Y

XY <% Uex)®Y

PROOF Exercise.

When we use the associativity constraint to omit parentheses, this becomes the triangle

YXQ®Y.Z

XQ®YQRZ ——— > ZQXQ®Y.

X®m /X,Z;DY

XQ®ZRY
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We sometimes denote a unit of a tensor category by (1, e) and call 1 an identity
object.

EXAMPLE 2.3 Let R be a commutative ring. The category Mod(R) becomes a tensor
category with the usual tensor product and the obvious constraints. (If one perversely
takes a to the negative of the obvious isomorphism, then the pentagon (1) fails to
commute by a sign.) A pair (U, e) consisting of a free R-module U of rank 1 and a
basis element e determines a unit (U, u) of Mody - take u to be the unique isomorphism
UQ®U — U sendinge®e to e. Every unit is of this form. In this case, there is a canonical

X mult.
unit, namely, (R,R ® R — R).

EXAMPLE 2.4 The category of complex Hilbert spaces and bounded linear maps becomes
a tensor category with the completed tensor product & as tensor product (Weidmann

It.
1980). The pair (C,C ® C nif C) is a unit.

For other examples, see §8 below.

Extending ®

Let (C, ®,a) be a monoidal category. Any functor C* — C defined by repeated ap-
plication of ® is called an iterate of ®. If F,F’ : C" — C are iterates of ®, then it is
possible to construct an isomorphism of functors F — F’ using only « and a~!. The
significance of the pentagon axiom is that it implies that the isomorphism is unique:
any two iterates of @ to C" are isomorphic by a unique isomorphism constructed out
of a and a~! (Mac Lane 1963; 1998, VII, 2). This means that there is an essentially
unique way of extending ® to a functor ®n : C" - Cforall n > 0. Similarly, when
(C,®,a,y) is a tensor category, there is an essentially unique way of extending ® to a
functor ®l. el Cc! > C, where I is any (unordered) finite indexing set. In other words,
the tensor product of any finite family of objects of C is well-defined up to a unique
isomorphism (Mac Lane 1963). We can make this statement more precise.

PROPOSITION 2.5 The tensor structure on a tensor category (C, ®) admits an extension as
follows: for each finite set I, there is a functor

Qier: ¢ = C
and, for each map a : I — J of finite sets, there is a natural isomorphism
X(a) : ®ie] Xi - ®je] (®ll—>j Xl)
satisfying the following conditions,

(a) if1 is a singleton, then ®i o IS the identity functor X ~ X; if a is a map between
singletons, then y(a) is the identity automorphism of the identity functor;

b
(b) the isomorphisms defined by maps I L12«k give rise to a commutative diagram

x(@)
®i61Xi ®je] (®in—>j Xi)

l;{(ba) lx(b)

R (x(ally)

®keK (®szXi) - ®keK (®ij (®i»—>j Xi)) ’

where I, = (ba)~!(k).
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PROOF Apply the coherence theorems of Mac Lane 1963, 1998. o

By (®i < X) being an extension of the tensor structure on C, we mean that ®i aXi=
X, ® X, when I = {1, 2} and that the isomorphisms

X@Y¥YQ®2)-X®Y)®Z
XY - Y®X

induced by y are equal to « and y respectively. It is automatic that (®g X, x(@ - {1,2})
is a unit and that y({2} < {1,2}D)isdy: X - 1 ® X. If (®:€I,)(’) is a second such
extension, then there is a unique system of natural isomorphisms ®i aXi— ®;el Xi
compatible with y and y’ and such that, when I = {i}, the isomorphism is idy.

Whenever a tensor category (C, ®) is given, we shall always assume that an extension
as in Proposition 2.5 has been made.

The proposition justifies our definition of “tensor category”: the constraints imposed
are the minimum necessary to force the proposition to hold.

Invertible objects

Let (C, ®) be a tensor category. An object L of C is invertible if
Xw»L®X:C->C

is an equivalence of categories. For example, an object L of Modf(R) is invertible if and
only if it is projective of rank 1.
If L is invertible, then there exists an L’ such that L ® L’ is a unit object. The converse
assertion is also true: if L® L’ = 1, then L ® — and — ® L’ are quasi-inverse functors.
An inverse of L is any pair (L™}, §) with L™! and object and § a morphism,

. = — —7-1
5WXQM&_*L<& L, X_ =L

Note that this definition is symmetric: (L, §) is an inverse of L~!. If (L,, §;) and (L,, §,)
are both inverses of L, then there is a unique isomorphism a : L; — L, such that the
composite

5,001®a): LQL, >LRL, > 1

is &; (because the functors — ® L; and — ® L, are both quasi-inverse to L Q —).

NOTES

2.6 There is no standard definition of “tensor category”in the literature. Rather, authors
adopt the definition most convenient for their purposes.

2.7 A a symmetric monoidal category is a monoidal category together with a compat-
ible commutativity constraint (Mac Lane 1998, p. 184). This is essentially the same as
our notion of a tensor category (see 1.11, 1.12).

2.8 Our notion of a tensor category is the same as that of a “®-catégorie AC unifére” in
Saavedra 1972 and, because of 1.6, it is essentially the same as the notion of a “®-catégorie
ACU” defined ibid. I, 2.4.1 (cf. ibid. I, 2.4.3).
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2.9 Proposition 2.5 suggests the notion of an “unbiased tensor category” in which no
preference is given to the functor ® : C> — C, and the constraints are canonical. See
chapter 4 of Leinster 2004, which treats the case of monoidal categories.

2.10 There is a large literature on coherence in monoidal and symmetric monoidal
categories, beginning with Mac Lane 1963. For a recent review, see Mimram 2024.

2.11 There is a large literature on monoidal categories satisfying a commutativity con-
straint weaker than that we have imposed, which we shall ignore.

3 Tensor functors
Let (C,®) and (D, ®) be tensor categories.

DEFINITION 3.1 A tensor functor (C,®) — (D, ®) is a pair (F, ¢) consisting of a functor
F: C — D and a natural isomorphism cxy : F(X) ® F(Y) - F(X ® Y) with the
following properties:

(a) forall X,Y, Z € ob(C), the diagram

FXQ®FYQFZ) 2% FXQFY®72) —— FX® (Y ® 2))

l“FX,FY,FZ lF (ax,y,z)

(FX®FY)®FZ 2 FX®Y)®FZ —— F(X®Y) ® Z)

commutes;
(b) forall X,Y € ob(C), the diagram

FX®FY — FXQ®Y)
lyFX,FY lF (rx.y)
FY®FX — F(Y ®X)

commutes;
(¢) if (U,u)is aunitin C, then (F(U), F(u)) is a unit in C’.

Let (F, c) be a tensor functor (C, ®) — (D, ®). For any finite family (X;);c; of objects
in C, c gives rise to a well-defined isomorphism

c: Q) Fx;) - F(R)X).

iel iel

Moreover, for any map a : I — J, the following diagram commutes,

®ie[ F(Xl) : F(®i€[Xi)
lx(a) lF(x(a))

In particular, (F, c) maps inverse objects to inverse objects.
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DEFINITION 3.2 Let (F,c) and (G, d) be tensor functors C — D. A morphism of tensor
Junctors (F,c) - (G, d) is a natural transformation A : F — G such that, for all finite
families (X;);cr of objects in C, the diagram

QR FX) ——— F(Q®X)

iel iel
J@axi Jm )
iel iel
d
RGX) —— G(R X))
iel iel

commutes. If 1y is an isomorphism for all X, then we call 1 an isomorphism of tensor
Junctors.

It suffices to check that the diagram (7) commutes when I is {1, 2} or the empty set.
For the empty set, (7) becomes

1 —=> F()

|k

7 — G()

in which the horizontal morphisms are the unique isomorphisms compatible with
the structures of 1/, F(1), and G(1) as identity objects of C’. In particular, 1; is an
isomorphism.

DEFINITION 3.3 A tensor functor (F,c): (C,®) — (D, ®) is a tensor equivalence (or
an equivalence of tensor categories) if F : C — D is an equivalence of categories.

This definition is justified by the following remark.

3.4 Let (F,c): (C,®) — (D,®) be a tensor equivalence. To say that F: C — D is
an equivalence of categories means that there exists a functor G : D — C and natural
isomorphisms

n: idc = GF, ¢: idy = FG.

After possibly replacing € with a different natural isomorphism idp, —> FG, we obtain a
system (F, G, 1, €) satisfying the triangle identities (see A.4). There then exists a d such
that (G, d) is tensor functor and # and € are isomorphisms of tensor functors (Saavedra
1972, 1, 4.4).

We let Hom®(F, G) denote the collection of morphisms of tensor functors (F,c) —
(G, d).

For any field k and k-algebra R, there is a canonical tensor functor ¢ : Vecf(k) —
Mod(R), namely, V «~ V ®; R. When (F, ¢) and (G, d) are tensor functors C — Vecf(k),
we define 7om®(F, G) to be the functor of k-algebras such that

FHom®(F,G)(R) = Hom®(¢goF, $0G). 9)

NOTES In Saavedra 1972, 1, 4.2.3, a tensor functor is called a “®-foncteur AC unifére”.
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4 Internal Homs and duals in tensor categories

Internal Homs

Let (C, ®) be a tensor (symmetric monoidal) category.
DEFINITION 4.1 Let X,Y € obC. When the functor
T »Hom(T ® X,Y): C°P — Set
is representable, we let Hom(X,Y) denote the representing object and
evyy: Hom(X,Y)@X - Y

the morphism corresponding to idgcom(x,y)- Thus, to every morphismg: T® X — Y
there corresponds a unique morphism f : T — Hom(X,Y) such thatevy y o(f ® X) =
8,

T TRX
£ f®X)|
Fom(X,Y) %om(X,Y)@XTY.
oY (10)
More succinctly,
Hom(T ® X,Y) ~ Hom(T, Hom(X,Y)). (11)

Fix X. If lom(X,Y) exists for all Y, then the functor Hom(X, —) is the right adjoint
of —-®X.3

EXAMPLE 4.2 Let R be a commutative ring. For R-modules M, N, Homz(M, N) is again
an R-module, and

Homg(T ®r M,N) ~ Homgz(T,Homz(M,N)), 6 < (t > (m+— 0(t ® m))

(Bourbaki A, IT, 4.1). Thus, Hom(M, N) exists for all modules M, N, and equals Homg(M, N)
(viewed as an R-module). In this case, evy, y is

f®x e f(x): Homg(M,N)@ M — N,
which explains its name.

Assume now that the functor Fom(X, —) exists for all X, i.e., that the functor — ® X
has a right adjoint. Then there is a composition map

Fom(Y,Z) ® Hom(X,Y) - Hom(X,Z), (12)

corresponding to

e
FHom(Y,Z) ® Hom(X,Y) ® X —— Fom(Y,Z) ® Y —> Z.

3Strictly speaking, this is the left internal Hom. The right internal Hom is right adjoint to X ® —, so
Hom(X ® T,Y) ~ Hom(T, Hom(X,Y)). Because of the commutativity constraint, left and right internal
Homs essentially coincide.
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From the canonical isomorphisms

1
Hom(T, Hom(Z, Hom(X,Y))) (:) Hom(T ® Z, Flom(X,Y))

11
~ Hom(T®R®ZRX,Y)

11
(:) Hom(T,Hom(Z ® X,Y)),
and the Yoneda lemma, we get a canonical isomorphism

Hom(Z,Hom(X,Y)) ~ Hom(Z @ X,Y). (13)

Note that

Hom(1, Hom(X, Y)) = Hom(I ® X,Y) ~ Hom(X, Y). (14)
The weak dual X" of an object X is defined to be Hom(X, 1). The morphism
evy : XV Q®X — 1
induces a bijection
frevyo(f ®X): Hom(T,XY) - Hom(T ® X, 1), (15)

natural in T, and this property characterizes (XV,evy). The map X — XV can be
made into a contravariant functor by sending f: X — Y to the unique morphism
’f . YV - XV rendering commutative the diagram*

t d
vVex % xvex
lidyv f leVX (16)

YWY —X 1,

In other words, !f is the morphism corresponding to evy o(idyv ® f) under the isomor-
phism (15)

g evyo(g®idy): Hom(YY,XY) - Hom(Y"Y ® X, 1).
When f is an isomorphism, we let f¥ = (/f)~': XV — YV, so that
evyo(fY® f)=evx: XV®X — 1. 17)
EXAMPLE 4.3 In Mod(R), MY = Homg(M, R) and f is determined by the equation
O, =3, f)n, YEN'Y x€M,
where we have written ( , ); and (, )y for evy, and evy. We have

YD fQIy = 0, x' € MY, x M.

“The morphism ‘f is that corresponding to evy o(idyv ® ) under the isomorphism (15)

g evyo(g®idy): Hom(YY,XV) - Hom(YY ® X, 1).
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Letiy : X — XVY be the morphism corresponding in (15) toevy oy : X @ XV — 1.
When iy is an isomorphism, X is said to be reflexive. If X has an inverse

X L5: X1@X 51,

then X is reflexive and the morphism X! — XV corresponding to & in (11) is an
isomorphism.
For finite families of objects (X;);er and (Y;);er, there is a morphism

®iel.7{0m(Xi,Yi) - %Om(®iEIXi’®iEI Yl) (18)

corresponding in (11) to

~ Rev
(®i61 ‘,}fom(Xi’ Yl)) ® (®i€IXi) - ®i€] ("}Com(Xis Yl) ®Xl) E— ®i€[ Yi'

In particular, there are morphisms

Qi Xi' = (®ieIXi)v (19)

and
XY - Hom(X,Y) (20)

obtained respectively by takingY; = T alli,and X; =X, X, =1=Y,,Y, =Y.

NOTES A symmetric monoidal category in which internal Homs exist is said to be closed.

Duals
Let (C, ®) be a tensor category.

DEFINITION 4.4 Let X be an object in C. A pair (X', X’ ® X N 1) is a dual’ of X if
there exists a morphism 6 : T — X ® X’ such the following equalities hold,

[20:¢ , X®c .
Xo2T®X s XX X — X ® 1~ X) = idy o)
X'®6 QX'
X 2X ®T S X XX s 1@X ~X') =idy .

Here ¢ and & are called the evaluation and coevaluation morphisms, and are often
denoted evy and &y (or coevy).

EXAMPLE 4.5 Let M be a free R-module of finite rank, let N = Fom(M, R), and let € be
the evaluation map f @ m — f(m): N ® M — R. Let (e;) and (elf ) be dual bases for M
and N,andletd : R - M ® N be the map sending 1 to )’ e; ® e{ . Then ¢ is independent
of the choice the basis (¢;), and the following equalities hold,

QM M®e .
(M~R@QM — MN®M — MR ~M) =idy,

N®d§ t®M . (22)
(N*N®R—>NQMQ®N — RN ~N)=idy.

Thus, (N, ¢) is the dual of M.

SStrictly speaking, this is a left dual - the right dual is a morphism X ® X’ — 1 such that there exists a
morphism T — X’ ® X making the similar diagrams commute. Because of the commutativity constraint,
left and right essentially coincide.
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PROPOSITION 4.6 Lete: X' ® X — 1 be a morphism in C. The pair (X', ¢) is a dual of X
if and only if the map

Wer: Hom(S,T ® X') - Hom(S ® X, T)
. , fex T®: .
sending f: S - T ® X' to the composite SQ@X — TR®X' ® X - T® 1 ~Tisa
bijection for all S,T € obC.

PROOF We have functors

c .. FS=5®X
< GT=TQX,

and a natural transformation
. T®e
€:FG-ide, TRX' X —>TQRT1Tx~T.

According to A.3, ¥ 1 is bijective for all S, T, i.e., (F, G, ¥~1) is an adjunction, if and only
if there exists a natural transformation 7 : idc — GF such that the triangle identities

TRX' - TRX' ®XQ®X' - TQX')=idrgy

hold for all S,T € obC,i.e., (X', ¢)is a dual of X. 0

Note that, if (X', €) is a dual of X, then the map ¢ x sends & to idy; in particular, § is
unique if it exists.
Assume that Flom(X, T) exists for all T, and let

e=evyp: HomX,1)®X — 1.

As in 4.6, this defines a morphism g 7, and from

bs,
Hom(S, T ® Hom(X, 1)) — Hom(S ® X,T) ~ Hom(S, Hom(X,T)),  (23)
we get (by the Yoneda lemma) a canonical morphism, natural in T,
T® Hom(X,1) > Hom(X,T). (24)

PROPOSITION 4.7 Anobject X of C admits a dualifand onlyif, forallT € obC, Hom(X,T)
exists and (24) is an isomorphism.

PROOF Assume that Hom(X, T) exists for all T. If (24) is an isomorphism for all T, then
the composite of the morphisms in (23) is an isomorphism for all S and T, and hence
s 1 is an isomorphism. According to 4.6, this implies that (X', ¢) is a dual of X.°

®More directly, let XV be the weak dual Fom(X, 1) of X. By definition (4.1), we have an evaluation
morphism
ev: XV®X - 1.

With T = X, (24) becomes an isomorphism
X ® Hom(X,1) - Hom(X,X).

On composing the obvious morphism 1 — Hom(X,X) with the inverse of this isomorphism we get a
morphism
5: 1 -XQ®XV.

The morphisms ev and & satisfy the equalities (21).
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Conversely, if X has a dual (XV, ¢), then
Ysr: Hom(S,T ® X¥) - Hom(S ® X, T),
is an isomorphism for all S (see 4.6). Therefore, Hom(X, T) exists and equals T ® X".q
COROLLARY 4.8 Ifan object X of C admits a dual (XY, ¢), then

(XV7 E) = (”}(Om(Xv ﬂ)’ eVX,TI)
T QXY ~ Hom(X,T).

In particular, if (XV,¢) exists, then it is unique up to a unique isomorphism, and the
morphism (10)
XVQ®T — Hom(X,T)

is an isomorphism.
PROOF This was shown in the above proof. o
For an M € ob Mod(R), the morphism (24) becomes
T ® Hom(M,R) - Hom(M,T), tQ® f+— (m— f(m)t). (25)

PROPOSITION 4.9 The following conditions on an R-module M are equivalent:
(a) M admits a dual;

(b) the map (25) is an isomorphism for all T;
(c) M is finitely generated and projective.
PROOF (a) = (b): Special case of 4.7 (it can also be proved directly).

(b) = (c): In particular, M ® Hom(M, R) ~ Endgz(M). If Zi o7 Mi ® fi corresponds
to idy, under this isomorphism, so that Zi o film)m; = mfor allm € M, then

M me(f;(m)) RI (@)=Y am; M

is a factorization of id,;. Therefore M is a direct summand of a free module of finite
rank, snd so is finitely generated and projective.

(c) = (a): When M is free of finite rank, we saw in 4.5 that there exists a dual. In the
general case, there exists a finite family (f;);c; of elements of R generating R as an ideal
and such that, for each i, the R fi-module M. is free. Thus, there exists a §; for each i,
and the uniqueness assertion in Proposition 4.5 implies that they patch together to give
aé for M. O

For example, a module over a Dedekind domain admits a dual if and only if it is
finitely generated and torsion free, and a vector space over a field admits a dual if and
only if has finite dimension (for an infinite-dimensional vector space V, there is no
coevaluation map k — V @ VV).

NoTEs This section follows Dold and Puppe 1980.
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5 Rigid tensor categories

DEFINITION 5.1 A tensor category (C, ®) is rigid if, for all objects X and Y,
(a) Hom(X,Y) exists, and

(b) the canonical morphism (24)
Y ® Hom(X,1) - Hom(X,Y)
is an isomorphism.

Equvalent condition (4.7): every object of C admits a dual.
Let (C, ®) be a rigid tensor category. The opposite category C°P has a tensor structure
for which ®X?p = (®X;)°P. The tensor functor

X, [}~ XV, [f}: CP > C
is a contravariant equivalence of categories because its composite with itself is isomorphic

to the identity functor. It is therefore a contravariant equivalence of tensor categories
(3.4). In particular,

f = f: Hom(X,Y) - Hom(Y",XV) (26)
is an isomorphism. There is also a canonical isomorphism
Hom(X,Y) - FHom(YV,XV), 27
namely, the composite of the isomorphisms

(4.8) XV ®i (4.8)
Hom(X,Y) =XV QY — XV @YY L vy @ XV -3 Fom(YY,XY).

PROPOSITION 5.2 Let (C, ®) be a tensor category. If C is rigid, then X ~ D(X) EXVisa

functor equipped with a natural isomorphism
Yxyz: HomX ®Y,Z) ~ Hom(X,Z @ D(Y)).
Conversely, if there exists a functor D : C — C and a natural isomorphism i, then C is

rigid; moreover, (D(Y), €), where € corresponds to the identity map under {py)y 1, is the
dual of Y.

PROOF Restatement of 4.6. o

NOTES Saavedra 1972, 1, 5.1.1 defines a tensor category to be rigid if Hom(X,Y) exists for all X,
Y and the canonical morphism (18)

FHom(X,,Y1) ® Hom(X,,Y,) » Hom(X; ® X5, Y, ®Y>)

is an isomorphism for all X;, X,, Y7, Y,. This is equivalent to our definition.



26 Chapter I. Tensor Categories

Traces

Let (C, ®) be a rigid tensor category. For any object X of C, there are morphisms
Fom(X,X) (2—20; XX 3. (28)

On applying the functor Hom(1, —) to this, we obtain by (14) a morphism
Try : End(X) — End(1) (29)

called the trace morphism. More directly, the trace of f : X — X is the composite of
the morphisms

fexY POARLESR Yx.xVv

1]—>X®XV—>X® Xex = 1.

We sometimes write Tr(f|X) for Trx(f). The (categorical) dimension (or rank) of X
is defined to be Trx(idy), so dim X is the composite of the morphisms

1]—>X®XV XV®X—>1]

Note that dim(X) is an element of the ring End(1). In particular, it need not be an
integer, much less a positive integer (see 8.7 and 8.9 for example). In the tensor category
of finite-dimensional vector spaces over a field k of characteristic p, every vector space
of dimension p has categorical dimension 0.

PROPOSITION 5.3 There are the following equalities.
(@) Trxgy(f ®g) = Trx(f) + Try(g), where f : X - X, g: Y =Y.
(b) Trxgy(f @ g) = Trx(f) - Try(g), where f: X - X, g: Y =Y.
(¢) Trxv(fY) = Trx(f), where f : X - X.

(d) Tri(f) = f
(e) Trx(gof) = Trygx(Yx,yo(g ® f)) = Try(fog), where f : X — Y, g: Y - X.
PROOF Only the proof of (e) presents problems. For a morphism f: X — Y, let
5(f): 1 - Y ® XV denote the composite
12 xex' 25 yeoxv.
Thus, when Y = X, Try(f) = evy oyx xvod(f).
For morphisms X —f> y 5z , the morphism &(go f) is the composite

0(2)®Ji ZQ XY
1210122 s evverex 22 s e10Xx  ~Z@XY.  (30)

Thus, when Z = X,

Trx(gof) = evy oyx xvod(gof) = Tr(yx yo(g ® f)).

Similarly,
Try(fog) = Tr(yy xo(f ® g) = Tr(yx,yo(g ® f)). -
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COROLLARY 5.4 For any objects X,Y of C,

dimX @Y)=dimX +dimY
dim(X®Y)=dimX -dimY
dim(XV) = dim(X)
dim(1) = id; .

PROOF Apply the proposition to the identity morphisms. O

REMARK 5.5 (DELIGNE 1990, 7.1) Consider, as in (e) of the Proposition 5.3, morphisms
f:X —>Yandg: Y — X. The tensor product of the unordered set {X, Y} is well-defined
up to a canonical isomorphism, as is the morphism ®{f,g}: ® {X,Y} - ®{X,Y}. The
proposition says that the trace of this morphism is Tr(go f), hence, by symmetry, also

Tr(fog).
More generally, consider morphisms

Uy Uz Up—1 Un
X —X,— - — X, — X

These give rise to a morphism,

® u: @ xi— Q X

i€z/(n) i€z /(n) i€z /(n)
which we denote by ®u;. On iterating (30), we find that §(u, o --- ou;) is the composite

8(up)®: - ®8(u;) X1 ®evy, ®--®evy, ®X)

I —X;0X,®X,® X, ®X/ X ®X),
and it follows that
Tr(uyo - ou;) = ®;(evy, OVXi,XiV)O ®; 6(u;) = Tr(®;u;). (31)

Tensor functors of rigid categories

Atensor functor F : C — D ofrigid tensor categories induces amorphism F : End(1¢) —
End(1p). It is obvious from the definitions that it preserves duals and that

Trpx) F(f) = F(Trx(f))
dim(F(X)) = F(dim(X)).

PROPOSITION 5.6 Let(F,c): (C,®) — (D, ®) be a tensor functor of rigid tensor categories.
ForX,Y € ob(C),
F(Hom(X,Y)) ~ Hom(FX,FY).

In particular,
F(XY) ~ F(X)V.

The morphism is that corresponding by adjunction (21) to

F(evxy): F(H{om(X,Y)) @ FX — FY.
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PROOF There is a commutative diagram

F(Hom(X,Y)) —— Fom(FX,FY)

:T4,8 2T4.8

FX'®Y) ——— (FX)' ® FY.

PROPOSITION 5.7 Let (F,c) and (G, d) be tensor functors C — D of tensor categories. If C
and D are rigid, then every morphism of tensor functors u . F — G is an isomorphism.

PROOF The morphism v : G — F making the diagrams

FXY) — G(XY)
l_v (UX) l_v
FX)Y —X5 G(X)

commute for all X € ob(C), is an inverse for u. Note that vy is the composite

GOX) = GXV)Y 5 F(XVYY ~ F(X).

To see that uyovy = idgy, chase around the outside of the following diagram in two
ways, starting from the GX at lower left. The outer diagram commutes because each
subdiagram does.

FX ® F(X") ® GX 2% px @ G(X') ® GX —2%, Fx
5FX®idW Wjd lux®id ®id Jux
ox — 2% | 60X ®@G(XY)® GX ¥, gx
The proof that vyouy = idgy is similar. O

For a k-algebra R, let ¢ be the functor — ®; R : Vecf(k) - Mod(R). Letw: C —
Vecf(k) be a tensor functor of tensor categories. If C is rigid. Then (cf. (9))

def

X End(grow) = Aut(pgow) <

End®(w)(R) = Aut®(@)(R). (32)

PROPOSITION 5.8 Let F : C — D be a tensor functor between rigid tensor categories. The
following conditions on F are equivalent:
(a) every object of D is a subobject of F(X) for some object X of C;

(b) every object of D is a quotient of F(X) for some object X of C.

PROOF Assume (a), and let Y be an object of D. There exists an object X of C and a
monomorphismi: YV — F(X). Inarigid tensor category, the functor ¥ is a contravariant
equivalence with itself as a quasi-inverse, and tensor functors preserve duals (5.6). Hence

F(XY) ~ F(X)Y — L YWey

is an epimorphism. We have shown that (a) implies (b), and the converse is proved
similarly. o
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DEFINITION 5.9 A tensor functor of rigid tensor categories is dominant if it satisfies
the equivalent conditions of 5.8.

DEFINITION 5.10 Let C’ be a strictly full subcategory of a tensor category C. We say that
C’ is a tensor subcategory of C if it is stable under the formation of finite tensor products
(it suffices to check that it contains a unit and that it contains X ® Y whenever it contains
X and Y). We say that it is a rigid tensor subcategory if, in addition, it contains XV
whenever it contains X.

A (rigid) tensor subcategory becomes a (rigid) tensor category under the induced
tensor structure.

NOTES For a proof that the diagram in Proposition 5.6 commutes, see sx4932465. The proof of
Proposition 5.7 was extracted from ncatlab.org.

6 Rigid abelian tensor categories

Our convention, that functors between additive categories are additive, forces the fol-
lowing definition.

DEFINITION 6.1 An additive (resp. abelian) tensor category is a tensor category (C, ®)
such that C is an additive (resp. abelian) category and ® is a bi-additive functor.

If (C, ®) is an additive tensor category and (1, e) is a unit, then R et End(1) is a ring
that acts, via 1y : 1 ® X S X, on each object of C. The action of R on X commutes
with endomorphisms of X and so, in particular, R is commutative. If (1/,¢") is a second
unit, then the unique isomorphism a : (1,e) — (1/,¢’) (see 1.6) defines an isomorphism
R ~ End(1’). Therefore C is R-linear in the sense that each Hom-set is equipped with
an R-module structure and o and @ are R-bilinear. When C is rigid and R ~ End(1), the
trace morphism is an R-linear map Tr: End(X) — R.

PROPOSITION 6.2 Let (C, ®) be a rigid tensor category. Then ® commutes with inductive
and projective limits in each variable. In particular, if C is abelian, then @ is exact in each
variable.

PROOF The functor — ® X has a right adjoint, namely, Hom(X, —), and therefore
commutes with inductive limits. By considering the opposite category C°P, one deduces

that it also commutes with projective limits. (In fact, Hom(X, —) is also a left adjoint
- ®X). o

Note that ® is not usually exact in Mod(R).
PROPOSITION 6.3 Let (C, ®) be a rigid abelian tensor category. If U is a subobject of 1,
then 1 ~ U @ U+, where U+ = Ker(1 — UV). Consequently, 1 is a simple object if End(1)
is a field.

PROOF Let V = Coker(U — 1). On tensoring

0 U 1 |4 0



https://math.stackexchange.com/questions/4932465
https://ncatlab.org/toddtrimble/published/Morphisms+between+tensor+functors
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with U < 1, we obtain an exact commutative diagram7

0 U 1 |4 0

J ] 2]

0 — UQU — U — VU — 0,

from which it follows that V @ U = 0, and that U @ U = U as a subobjectof 1@ 1 = 1.
For any object T, the morphism T ® U — T obtained from U < 1 by tensoring with
T, is a monomorphism. This proves the first equivalence in

TQU =0 < the morphism TQU — T is zero < the morphism T — UY®T is zero,

and the second follows from the canonical isomorphisms

1.6.5 1.6.5
Hom(T ® U,T) ( ~ Hom(TQ® U ®TV,1) ~ Hom(T,UY QT).

Therefore, for any object X,
T ¥ Ker(X - UY ® X)

is the largest subobject of X such that T ® U = 0. On tensoring the exact sequence
0-Ut->1-U"-0

with X, we see that T ~ U1 ® X.

On applying this remark with X = V and using that V @ U = 0, we find that
Ul®V ~ V:on applying it with X = U and using that U ® U = U, we find that
Ul ® U = 0.8 From the exact sequence

0-ULtQU U1 -ULt®V -0
we deduce that UL ~ V,and that 1 ~ UL @ U. O

REMARK 6.4 Itfollows from the proposition shows that, in arigid abelian tensor category,
there is a one-to-one correspondence between subobjects of 1 and idempotents in End(1).
Such an idempotent e determines a decomposition of tensor categories C = C' x C” in
which the objects of C" (resp. C"’) are those on which e (resp. 1 — e) acts as the identity
morphism.

PROPOSITION 6.5 Let C and C' be abelian tensor categories, and let 1 and 1’ be identity
objects. If C is rigid, 1 is simple, and 1" # 0, then every exact tensor functor F : C — C' is
faithful.

PROOF As F is additive and exact, it suffices to show that F(X) # 0 when X # 0. If
X #0,then 8y : T — X ® XV is a monomorphism, and so

"~F1) - FX®XV)~FX)Q®FXY)

is a monomorphism. As 1’ # 0, this implies that F(X) # 0. O

"We prove that the second square commutes. From morphisms A — B and C — D in C, we get
commutative squares

AXD —— BXD A®D —> B®D
| [ | |
AXC —— BXxC ARC — BQ®C

inCxCandC. NowtakeA=D=1,B=V,andC =U.
81etT c U. Then,asforU,TQT =T,s0TQU =0 = T =0.



6. Rigid abelian tensor categories 31

Traces

The next proposition says that traces are additive on short exact sequences.

PROPOSITION 6.6 For any exact commutative diagram

0 )¢ X X" 0
R
0 X' X X" 0

in a rigid abelian tensor category,

Trx(f) = Trx:/(f") + Trxn (f7).

In particular,
dim(X) = dim(X’) + dim(X"").

PROOF For an object X of such a category, let ty denote the morphism (28)

Hom(X,X) =~ X' @ X — 1.

Then Hom(T, t) is the trace map End(X) — End(1).
For a short exact sequence

T:0-X -X->X">0,

let
Fom(Z, L) = Ker (Hom(X,X) - Hom(X',X")).

Thus,
Hom(1, #om(Z, %)) ~ End(Z) £ {f € End(X) | f respects =}.

It suffices to show that the diagram

FHom(Z,X) —— FHom(X', X" d Fom(X",X")
l ltX/+tXN (33)
FHom(X,X) X 1

commutes. On tensoring X with its dual, we get a diagram with exact rows and columns
(6.2),
0 0 0

0 XI/V ®Xl XHV ®X XHV ®XII 0

0 — XVRX — s XX —— XX —— 0

0—>X,V®X’ —)X’V®X—>X,V®X" — 50
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From a diagram chase, we see that (X" ® X) @ (X¥ ® X’) maps onto the kernel of
XV®X — X'V®X". Hence Hom(X",X)® Hom(X,X") maps onto Fom(Z, ), and so
it suffices to show that (33) commutes with Fom(Z, Z) replaced by each of FHlom(X", X)
and Hom(X,X"). On Hom(X",X), the map to Flom(X’,X") vanishes, and so we have
to show that

FHom(X",X) —— FHom(X",X")

1 o

Fom(X,X) X 1

commutes, and dually for Flom(X, X").
From the identity Tr(fg) = Tr(gf), we see that the diagram

Hom(X,X") @ Hom(X",X) —— Fom(X",X")

1 o

Fom(X,X) X 1

commutes. On composing with the morphism 1 — Hom(X,X"") that corresponds to
the given morphism X — X" under the isomorphism

Hom(1, Hom(X,X")) ~ Hom(X,X"),
we obtain the required diagram for Hom(X", X). o

COROLLARY 6.7 In a rigid abelian tensor category, the trace of any nilpotent endomor-
phism is zero.

PROOF If the endomorphism f of X is nilpotent, then there exists a finite decreasing
filtration F of X such that f(F") c F'*!, for example, the filtration with F! = fi(X).
Then f = 0 on F!/F™*1, and so

Tr(f) £ 3 Te(f|F/F*1) = o. i
When the category is not assumed to be abelian, the corollary can fail

NOTES Proposition 6.6 is from a letter of Deligne, July 11, 2003.

Tensorial categories

Now let k be a field.

DEFINITION 6.8 A tensorial category over k is a rigid abelian tensor category equipped
with an isomorphism k ~ End(1).

In other words, a tensorial category over k is a rigid abelian tensor category equipped
with a k-linear structure such that  is k-bilinear and the structure homomorphism
k — End(1) is an isomorphism.

DEFINITION 6.9 A tensorial subcategory of a tensorial category over k is a strictly full
abelian subcategory® stable under tensor products and duals. It is again a tensorial
category over k.

9That is, an abelian category such that the inclusion functor is exact.
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PROPOSITION 6.10 Every right exact tensor functor between tensorial categories over k is
exact and faithful.

PROOF This follows from 6.5 and the next more precise statement. o

LEMMA 6.11 Let F : C — D be a right exact functor between abelian tensor categories. If
C is tensorial over k and the tensor product on D is right exact, then F is exact.

PROOF Let0 - X — Y — Z be an exact sequence in C. On applying F to the dual
sequence, we get an exact sequence

F(Z)¥ - F(Y) = F(X)" = 0. (34)

LetU - V — W — 0 be an exact sequence in D. If Hom(U, 1) and Fom(V, 1) exist in
D, then Hom(W, 1) exists in D and the sequence

0—-> Hom(W,1) - Hom(V,1) - Fom(U, 1) (35)

is exact. As F(X) is dual to F(X)V, it equals Hom(F(X)", 1) (see 4.8) and similarly for Y
and Z. For (34), the sequence (35) becomes

1> FX)—> FY)—- F(2),
which is therefore exact. O

Let P € N[x,y]. When X, Y are objects of a tensor category, we can define P(X,Y)
by interpreting addition as @ and multiplication as &, so

PCx,y) = Zijmi,jxiyj = P(X,Y) = @ijmi’jX®i QY%

DEFINITION 6.12 For an object X of a rigid abelian tensor category C, we let (X)® denote
the strictly full subcategory of C whose objects are subquotients of P(X, X") for some
P € N[t, s]. It is again a rigid abelian tensor category. We call X a tensor generator of C
if C = (X)%®.

Extension of scalars

Let C be a k-linear abelian category.

6.13 For a finite-dimensional vector space V and an object X over C, we define V ® X
to represent the functor T ~ V @ Hom(T, X), so

Hom(V ® X,T) ~V ® Hom(T, X).

The choice of a basis (e;);e; of V realizes V' ® X as a direct sum of copies of X indexed
by I.

6.14 Let k’ be a finite extension of k. We define C ;) to be the category whose objects
are the pairs (X, u) with X an object of C and i : k' ® X — X a k’-module structure on
X .19 With the obvious notion of morphism, C() becomes a k'-linear abelian category,

10Specifically, k' “="k’ ® 1 can be regarded as a k-algebra in C, and then y is required to satisfy the
usual conditions (9.4). Alternatively, u defines a map k€’ — End(X), which is required to be a k-algebra
homomorphism.
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said to have been obtained from C by extension of scalars to k’. For X in C, there is a
natural k’-module structure on k€’ ® X, and in this way we get a functor

e: C—>Cyny, Xw k' ® X, (extension of scalars).
There is also a functor
r: Cyuny—C, (X,u)w X, (restriction of scalars),

and
Hom¢(X,rY) ~ Home/(eX,Y), X €C,Y € Cyyy.

Therefore r is left exact, and e is right exact. In fact, r is exact: let (X, uy) — (Y, uy) be
an epimorphism in C), and let C be the cokernel of X — Y in C; then C acquires a
k’-module structure from those on X and Y, and so it is 0.

DEFINITION 6.15 A k-linear abelian category is locally finite if every object has finite
length and every k-vector space Hom(X, Y) has finite dimension.

An object of an abelian category is said to have finite length if it admits a (finite)
composition series, in which case all composition series have the same length. Both
the Jordan-Hdlder and Krull-Schmidt theorems hold in locally finite k-linear abelian
categories.

EXAMPLE 6.16 Let A be a finite-dimensional k-algebra and k’ a finite extension of k.
The k-linear abelian category Modf(A) is locally finite, and Modf(A) ;s can be identified
with Modf(A’), where A’ = k’ ®; A; moreover, e and r are the usual extension and
restriction functors.

PROPOSITION 6.17 Let C be a locally finite k-linear abelian category.

(a) Let X be a simple object of C, and let F be the centre of End(X) (so F is a finite
extension of k). Then k' ® X is semisimple in C .y if and only if F ®y k' is a product
of fields.

(b) LetY = (X, u) be a semisimple object of Cr). Then X is a semisimple object of C.

(c) Let X be an object of C. If k' ® X is simple (resp. semisimple), then so also is X.

PROOF (a) As X is simple D o End(X) is a division algebra, finite-dimensional over k,
and its centre F is a finite extension of k. Let (X) denote the strictly full subcategory of
C whose objects are finite direct sums of copies of X. Then

Hom(X,—): (X) - Vecfp

is an equivalence of categories. When we extend scalars to k’, eX corresponds to the
right D ®; k’-module D ®) k', which is semisimple if and only if F ®; k' is a product of
fields (Bourbaki A, VIII, §7).

(b) We may suppose that Y is simple. The sum of the simple subobjects of X is a
nonzero k’-submodule of X, hence equals X (by the simplicity of Y).

(c) If kK’ ® X is semisimple, then X is semisimple because it is a subobject of reX,
which is semisimple by (b). If kK’ ® X is simple, then X is obviously simple. o
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PROPOSITION 6.18 Let C be a locally finite k-linear abelian category, and let X be an object
of C. If X is a sum of simple subobjects, say, X = Zl. 7 Si (the sum need not be direct), then
for every subobject Y of X, there is a subset J of I such that

X=Y® @iej S;.
In particular, X is a finite direct sum of simple subobjects, and Y is a direct summand of X.

PROOF Let J be maximal among the subsets of I such that the sum S; = Zj o Sjis
directand Y N S; = 0. We claim that Y + S; = X (hence X is the direct sum of Y and the
S; with j € J). For this, it suffices to show that each S; is contained in Y + S;. Because
S; is simple, S; N (Y + S;) equals S; or 0. In the first case, S; C Y + S;, and in the second
S;nS;=0and Y N (S; + S;) = 0, contradicting the definition of I. o

DEFINITION 6.19 A locally finite k-linear abelian category C is semisimple if every
object is a sum of simple objects (hence a finite direct sum).

PROPOSITION 6.20 Let C be a locally finite k-linear abelian category, and let k' be a finite
extension of k. If C(y is semisimple, then so also is C, and the converse is true if k' is
separable over k.

PROOF The necessity follows directly from 6.17c, so suppose that k’ is separable over k.
If X in C is semisimple, then e(X) is semisimple (6.17a), and every object Y of C) is
a direct factor of such an object. More precisely, the adjunction morphism er(Y) — Y
splits. The object er(Y) = k’ ® Y has two k’-module structures, that provided by k’
and that provided by Y, and hence an action of k’ ®j k’. The adjunction morphism is
the natural morphism k' ® Y — (k' ® Y) ® g, i k’. This is split because k' @ k' — k’
is projection on a direct factor. o

6.21 Let C be a tensorial category over k, and let k” be a finite extension of k. For objects
X and Y of C(k/), let

XQ®uY=CokerX kK'Y 2 XQ®Y).

Then Cy) is a k'-linear abelian tensor category. Moreover, e : C — Cy is a tensor
functor sending a unit of C to a unit of C(;sy and the dual of an object X of C to the dual
of eX in C). Objects in Cy) have internal Homs: if X" = (X, ux) and Y’ = (Y, uy) are
objects of C), then FHom(X’,Y”) is the intersection of the kernels of the morphisms

feAf—f1: HomX,Y) > Hom(X,Y)
as A runs over a basis for k” over k. More intrinsically, it is the kernel of a morphism
Fom(X,Y) — (K'Y @ From(X,Y),
where (k")V is dual of k” as a k-vector space.

PROPOSITION 6.22 Let k' be a finite separable extension of k. If C is tensorial over k, then
Ck) is tensorial over k'.

PROOF As we noted above, if 1 is a unit in C, then el is a unit in C), and clearly
End(el) ~ k. It remains to show that objects in C,) have duals. As noted above, if X
in C has dual XV, then eX has dual e(X"), and every object Y of Ck) is a direct factor
of such an object. More precisely, the adjunction morphism er(Y) — Y splits (see the
proof of 6.20). O

NoTES This subsection largely follows Deligne 2014, 5.3.
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7 Tannakian categories
In this section, k is a field.

DEFINITION 7.1 Let (C, ®) be a tensorial category over k and R a k-algebra. A fibre
functor on C with values in R (or an R-valued fibre functor on C) is a k-linear exact
tensor functor w : C — Mod(R). A morphism of fibre functors is defined to be a
morphism of tensor functors (3.2).

More generally, a fibre functor on C over a k-scheme S is an exact k-linear tensor
functor from C to the category of quasi-coherent sheaves on S.

DEFINITION 7.2 A tannakian category over k is a tensorial category over k that admits
an R-valued fibre functor, some nonzero k-algebra R. If there exists a fibre functor with
values in k itself, then the category is said to be neutral.

In other words, a tannakian category over k is a k-linear rigid abelian tensor category
C such that the structure map k — End(1) is an isomorphism and such that there exists
a fibre functor with values in some nonzero k-algebra R.

DEFINITION 7.3 A tannakian subcategory of a tannakian category over k is a tensorial
subcategory. In other words, it is a strictly full subcategory closed under the formation
of direct sums, subquotients, tensor products, and duals. It is again a tannakian category
over k — any fibre functor restricts to a fibre functor.

PROPOSITION 7.4 Every R-valued fibre functor w on a tensorial category takes values in
Proj(R).

PROOF Let X be an object of the category and w an R-valued fibre functor. As X admits
a dual, so also does w(X), and hence it is finitely generated and projective (4.9). O

Thus fibre functors take values in Proj(R), but are exact only as functors to Mod(R).

PROPOSITION 7.5 Let w be an R-valued fibre functor on a tensorial category C over k. For
any R-algebra R', the functor

X wp(X) £ o(X) @ R
is an R'-valued fibre functor on C.
PROOF Certainly, wg is a k-linear tensor functor C — Mod(R’). If
0-X -X-X"->0
is a short exact sequence in C, then
0—- wX") - awX)— awX")—0

is exact in Mod(R). As w(X"') is projective, the sequence splits, and so it remains exact
when tensored with any R-algebra. Thus wg is exact.
Alternatively, apply 6.11. o

PROPOSITION 7.6 Every tannakian category C admits a fibre functor with values in a field.
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PROOF Let w be an R-valued fibre functor on C with R # 0. For any maximal ideal m of
R, R/m is field containing k and X w w(X) ®x R/m is a fibre functor with values in
R/m. o

PROPOSITION 7.7 Every exact tensor functor from a tannakian category to an abelian
tensor category with 1 # 0 is faithful. In particular, every R-valued fibre functor, R # 0, is
faithful.

PROOF This is a special case of 6.5. O

DEFINITION 7.8 A morphism of tannakian categories over k is an exact k-linear
tensor functor. It is automatically faithful (6.5).

7.9 Let C be a tannakian category over k. For a finite-dimensional k-vector space
V and object X of C, we let V ® X denote the object representing the functor T
V ®, Hom(T, X), so

Hom(T,V ® X) ~ V ®, Hom(T, X), T € obC.
The choice of a basis ey, ..., e,, for V identifies V ® X with X".

7.10 An object of a tannakian category C is said to be trivial if it is isomorphic to a
finite sum of copies of 1. As 1 is simple (6.3), every such object is a finite direct sum of
copies of 1, and the full subcategory of trivial objects is stable under the formation of
subquotients in C. The functors

VsV RI1
Vecf(k) ————— C
Hom(1,X)«X

are adjoint,
Hom(V ® 1,X) ~ Hom(V, Hom(1, X)).

The unit of the adjunction
V - Hom(1,VQ®T1)

(see A.1) is an isomorphism, whereas the counit
Hom(1,X)® 1 - X
is a monomorphism that is an isomorphism if and only if X is trivial. Therefore, the

functors define an equivalence of Vecf(k) with the full subcategory of trivial objects in
C.

PROPOSITION 7.11 Let C be a tannakian category over k, and let w be a fibre functor with
values in a nonzero k-algebra R. For all X, Y in C, the canonical map

Hom(X,Y) ®; R - Homg(w(X),w(Y))

is injective.
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PROOF Recall (14) that Hom(1, Hom(X,Y)) ~ Hom(X, Y). For any finite-dimensional
subspace V of Hom(X, Y)) we have a canonical monomorphiam

V1T Hom(X,Y).
On applying w to this morphism, we obtain an injective map
V ® R & w(Hom(X,Y)) ~ Homg(w(X), w(Y)),

On passing to the inductive limit over the spaces V, we obtain the required injective
map. o

PROPOSITION 7.12 Every tannakian category is locally finite.

PROOF Let k = End(1). According to proposition 7.6, the category has a fibre functor w
with values in a field K. Then w : C — Vecf(K) is exact and faithful, and according to
Proposition 7.11, the canonical map

Hom(X,Y) ®; K > Hom(w(X), w(Y))
is injective. This implies the statement. O

DEFINITION 7.13 A pre-tannakian category over k is a locally finite tensorial category
over k.

Both 7.11 and 7.12 (both conditions) may fail for nontannakian categories. See
Example 8.9 below.

DEFINITION 7.14 A tannakian category is algebraic if it admits a tensor generator (in
the sense of 6.12).

This agrees with the definition Saavedra 1972, 111, 3.3.1 (ibid., 3.3.1.1).

Extension of scalars

THEOREM 7.15 Let (C, ®) be a tannakian category over k and k' a finite extension of k.
Then (C (), @) is a tannakian category over k.

Note that, if k" D k’ D k are extensions of k, then C can be identified with
(Ctkry)ry» and so it suffices to prove the theorem for k’ /k separable and for k' /k purely
inseparable of degree p. This we do in a series of lemmas.

LEMMA 7.16 If C is tensorial over k', then it is tannakian over k'.

PROOF Let w be a fibre functor on C with values in a k-algebra R. If (X, u) € ob C),
then w(X) has the structure of an R ®; k’-module, and (X, u) ~ w(X) is a fibre functor
on C,y with values in the k’-algebra R ® k’. 5

Together with 6.22, this proves the theorem when k' /k is separable. In the next two
lemmas, C is a tannakian category over k and k’ = k(a'/P), a € k.

LEMMA 7.17 Let w be a fibre functor on C with values in an extension K of k, and let X be
an object of C. The k" ®; K-module structure on w(X) defined by any k’-module structure
on X makes it into a free k' ®; K-module.
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PROOF LetK’ = k' ®; K. If K’ is a field, then the statement is obvious. Otherwise, a is a
pthpowerin K, say, a = aP, and the K-algebra K’ = K[¢]/(¢P), wheree = a'/P®@1-1Qa.
Let d be the dimension of the K-vector space w(X)/ew(X). The K’'-module w(X) is
isomorphic to a direct sum of d modules of the form K[¢]/(¢/), 1 < j < p. From this,
we see that it is free if and only if /\Id<, w(X) is free (of rank one). Let /\Z, X be the image
of the antisymmetrization map

d d
R'x-®'x
Because w is exact, it maps /\Z, X to /\?{, w(X). After replacing X with /\z, X, we may

suppose that w(X) is a nonzero monogenic K’-module.
The k’-module structure on X defines a morphism

K®1 - Hom(X,X). (36)

As 1 is simple (6.3), the kernel of (36) is of the form A ® 1 with A is a vector subspace of
k’. As A is also an ideal in k’, it is 0, and so (36) is a monomorphism. On applying w, we
deduce that w(X) is a faithful K’-module, and we conclude by noting that every faithful
monogenic K’-module is free. o

LEMMA 7.18 The category Cyy is tensorial.

PROOF We have to show that duals exist. Let 1’ be the unit object k' ® 1 of C(k,) For
X in C(4r), we shall show that the weak dual X &g om(X, 1) of X is dual to X in the
sense of 4.4. We have an evaluation morphism (4.1)

ev: XV QuX -1, (37)
and, for all T in C(;), a morphism
T ®k’ XV - }fomk/(X, T) (38)

Let w be a fibre functor on C, and let o’ be the functor (X, u) w w(X) taking values in
K’ € K ®, k'. Then o' transforms this last map into

w(T) @ w(X)V = Homg(w(X),w(T)). (39)

Lemma 7.17 shows that (39) is an isomorphism. The functor o’ is exact and such that
w'(Z) =0 = Z = 0 because w has these properties. Therefore w’ is conservative
and (38) is an isomorphism. Take Y = X. Composing the obvious morphism 1/ —
Homy,(X,X) with the inverse to (38), we get a morphism

d: ﬂ,—>X®k1XV.

The morphisms ev and § satisfy the equalities (21) because this becomes true after o’
has been applied. (See also 4.7.) O

7.19 Let C be tannakian category over k, and let k® be an algebraic extension of k, for
example, an algebraic closure of k. As k’ runs over the finite extensions of k in k¢, the
categories C/y form 2-inductive system of abelian categories, and we define Cy.) to be
the inductive 2-limit of this system. The category Ca) is tensorial over k%, and a fibre
functor w on C with values in R defines a fibre functor on Cy.y with values in k ®j R (cf.
the proof of 7.16). Therefore, C.) is a tannakian category over k. There is a canonical
tensor functore: C — Ckays called extension of scalars.
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We list some consquences of Theorem 7.15 (Deligne 2014, 5.7, 5.9, 5.11).

7.20 Ifan object X of a tannakian category C over k admits a k’-module structure, where
k’ is an extension of k, then [k’ : k] divides dim X.

7.21 Let X be a simple object of a tannakian category C over a field k of characteristic
p # 0. If dim X < p, then the centre of End(X) is separable extension of k (indeed, it is
an extension of degree < p according to 7.20).

7.22 Let C be a tannakian category over a field k of characteristic p and k¢ an algebraic
extension of k. Let X be an object of C.

(a) If e(X) is semisimple in C4a), then X is semisimple in C.
(b) If X is semisimple in C and dim X < p, then e(X) is semisimple in Cya).

NoOTEs The proof given above of Theorem 7.15 is due to Grothendieck - see Deligne 2014, 5.4.

8 Examples

EXAMPLE 8.1 The category Vecf(k) of finite-dimensional vector spaces over a field k
is a tannakian category over k with the identity functor as a k-valued fibre functor. All
the above definitions take on a familiar meaning when applied to Vecf(k). For example,
Tr: End(X) — k is the usual trace map.

EXAMPLE 8.2 The category Mod(R) of modules over a commutative ring R is an abelian
tensor category and End(1) = R. In general it is not rigid because not all R-modules will
admit duals. The category Modf(R) of finitely presented R-modules is an abelian tensor
category if R is coherent, for example, noetherian.

EXAMPLE 8.3 The category Proj(R) of finitely generated projective modules over a com-
mutative ring R is a rigid additive tensor category and End(1) = R, but, in general, it is
not abelian. The rigidity follows from 4.9.

EXAMPLE 8.4 Let G be an affine group scheme over a field k. The category Repf(G) of
linear representations of G on finite-dimensional k-vector spaces is a tannakian category
over k with the forgetful functor as a k-valued fibre functor.

EXAMPLE 8.5 Let V' and V" be vector spaces over k of the same dimension, each
equipped with a nondegenerate quadratic form. Then the categories Repf(O(V')) and
Repf(O(V")) are canonically equivalent (as k-linear tensor categories). To see this, note
that Isom(V’, V") is an O(V") torsor with an action of O(V""). Twisting a representation
of O(V') by the torsor gives the equivalence.

EXAMPLE 8.6 The finite groups D, and Qg have the isomorphic representation rings
(over C, say) because they have the same character tables, but the categories Repf(D,)
and Repf(Qg) are not equivalent as C-linear tensor categories because a direct calcula-
tion shows that they have different associativity constraints. Alternatively, suppose that
there is a tensor equivalence, which we may assume commutes with the forgetful fibre
functors. Such an equivalence sends the trivial representation 1, of D, to the trivial rep-
resentation 1, of Qg (they are identity objects) and it sends the simple two-dimensional
representation V, of D, to the simple two-dimensional representation V, of Qg (they
are unique). In particular, we would get a C-linear isomorphism g : V, — V. Now
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sends the unique identity object Tp in V) ® V) to the unique identity object 1, in
Vo ® V. But no such g can exist because the flipmapv @ w —» w ® vactsaslon 1p
and —1 on Ty,.

It may be an open problem to classify the tannakian categories with the same repre-
sentation ring as Qg. See m0282292.

EXAMPLE 8.7 (SUPER VECTOR SPACES) Let C be the category whose objects are pairs
(V0, V1) of finite-dimensional vector spaces over k, i.e., Z /(2)-graded vector spaces. We
give C the tensor structure whose commutativity constraint is determined by the Koszul
sign rule, i.e., that defined by the isomorphisms

vuwr (-DVwuv: VIiQWIl - Wi @ Vi

Then C is a tensorial category over k, but it is does not admit a nonzero fibre functor
because

dim(V?,v1) = dim(V?) — dim(V1),
which need not be positive. Notation: sVec(k).

EXAMPLE 8.8 The rigid additive tensor category freely generated by an object T is defined
to be any pair (C, T) with C a rigid additive tensor category C such that End(1) = Z[¢]
(polynomial ring) and T an object such that

F w F(T): Hom®(C,C’) - C’

is an equivalence of categories for all rigid additive tensor categories C’ (¢ will turn out
to be the categorical dimension of T')). We show how to construct such a pair (C,T) -
clearly it is unique up to a unique equivalence of tensor categories preserving T.

Let V be a free module of finite rank over a commutative ring k and let T%?(V) be
the space V®¢ ® VV®? of tensors with covariant degree a and contravariant degree b .
A morphism f : T%P(V) — T%4(V) can be identified with a tensor “f ” in TP+ea+d(y),
When a+d = b +c, TP*%9+4(V/) contains a special element, namely, the (a + d)th tensor
power of “id”e T1!(V), and other elements can be obtained by allowing an element
of the symmetric group S, 4 to permute the contravariant components of this special
element. We have therefore a map

€: Sgpq = Hom(T®b, T%%) (whena+d=>b+c¢).

The induced map k[S,,4] = Hom(T*?, T%%) on the group algebra is injective provided
rank(V) > a + d. One checks that the composite of two such maps ¢(c) : T*P(V) —
T¢4(V) and (1) : T%(V) — T/ (V) is given by a universal formula

(1) - e(0) = (rank V)V - ¢(p) (40)

with p and N depending only on a, b, c,d, e, f, o0, and 7.

We define C’ to be the category having as objects symbols T*? (a,b € N), and for
which Hom(T%?, T¢4) is the free Z[t]-module with basis S, 4 if a + d = b +c and is zero
otherwise. Composition of morphisms is defined to be Z[¢]-bilinear and to agree on basis
elements with the universal formula (40) but with rank(V') replaced by the indeterminate
t. The associativity law holds for this composition because it does whenever ¢ is replaced
by a large enough positive integer (it becomes the associativity law in a category of
modules). Tensor products are defined by

Ta,b ® Tc,d — Ta+c,b+d


https://mathoverflow.net/questions/282292
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and by an obvious rule for morphisms. We define T to be T1°.

The category C is deduced from C’ by formally adjoining direct sums of objects.
Its universality follows from the fact that the formula (40) holds in any rigid additive
category.

EXAMPLE 8.9 (GL,) Let n be an integer, and use t —» n: Z[t] - C to extend the scalars
in Example 8.8 from Z[t] to C. If V is an n-dimensional complex vector space and if
a +d < n, then

Hom(T%?, T%%) @ 71;) C - Homgy, (T**(V), T¢4(V))

is an isomorphism. For any sum T’ of objects T%? and large enough integer n, End(T")® pan)
C is therefore a product of matrix algebras. This implies that End(T") ®z(;) Q[t] is a
semisimple algebra.

After extending the scalars in C to Q(t), i.e., replacing Hom(T’, T"") with

Hom(T’,T") ®zj1 Q(1),

and passing to the pseudo-abelian (Karoubian) envelope (formally adjoining images of
idempotents), we obtain a semisimple rigid abelian tensor category GL, (apply VII, 6.4).
The dimension of T in GL, is t ¢ N and so, although End(1) = Q(t) is a field, GL, is not
tannakian.

If X is an object of a tensorial category T over a field k containing ¢t and X has
dimension t, then there exists an exact tensor functor from (GL,) to T sending the
universal object X, to X. Two such tensor functors are isomorphic, and the tensor
automorphisms of such a tensor functor are those of X. In particular, we have a tensor
functor

Xy 1 ®X;_;: (GLy) - (GL;—y)

Iterate this construction, and let T be the inductive limit of the categories (GL;_,), n > 0.
This tensor category over k can be seen to be freely generated by an object X, of dimension
t equipped with a decomposition

Xt = ﬂ ®Xl’—1’ Xt—l = ﬂ @X[_Z, .ee

In (GL,_,) ,X; = 1" @ X;_,, has endomorphism ring M,,(k) X k. Passing to the limit, we
find that the ring of endomorphisms of X; in T is the ring of marices of the form

* | 0
0| Al
The object X, of T is not of finite length, and Hom(X,, X,) is not of finite dimension over

k.
For more on these categories, see Deligne 2007 and the many articles citing it.

9 Algebraic geometry in a tensorial category

Throughout this section, T is a tensorial category over a field k. We explain, following
Deligne 1989, how to do algebraic geometry in T.
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9.1 For objects S,T,X,Y in T, the canonical morphism (18), p. 22,
Hom(S,X)® Hom(T,Y) > Hom(SQT,XRY)

is an isomorphism - it is essentially the isomorphism

VRX)RT'RY)LT' ®S'RXQY ~(SQT)' X QY.
On applying Hom(1, —), we obtain an isomorphism of k-vector spaces,
Hom(S,X) ® Hom(T,Y) ~ Hom(S® T, X ® Y).

(The first ® is in the category of k-vector spaces.) To give a morphism X ® Y — Z from
X ® Y to another object Z is the same as giving a homomorphism of k-vector spaces,

Hom(S®T,X®Y) > Hom(S® T, Z),

natural in S and T (Yoneda lemma). On combining the last two statements, we see that
to give a morphism X ® Y — Z is the same as giving a homomorphism of k-vector spaces

Hom(S,X) ® Hom(T,Y) - Hom(S® T, Z)

9.2 The category Ind T of ind-objects of T (see Appendix B) is again a k-linear abelian
category. The tensor product on T extends to a tensor product on Ind T, which is exact
in each variable (6.2, B.4). The objects of Ind T can be identified with the small filtered
inductive limits of representable functors T°? — Vec(k),

I EeL) . def
X = h_r)n X, ~ h_r)nth = hx, hx, = Hom(—,Xg).

To give a morphism X ® Y — Z in Ind T is the same as giving a k-bilinear map
hx(S) X hy(T) = hz(SQT)
naturalin Sand T.

9.3 A ring A (associative with 1) in Ind T is an object A equipped with morphisms
m: AQA — Aand1: 1 — A such that the two composed morphisms

meA
ARARA — 3 AQA =5 A
AQ@m

are equal and the two morphisms

1®id,4 m
AxTRA— ARQRA— A

AR1 m
AAQRTI —ARA— A

equal id4. For example, when T = Vec(k), a ring in Ind T is a k-algebra (associative
with 1) in the usual sense. A homomorphism of rings in Ind T is a morphism of objects
compatible with the multiplication and the morphisms 1.

The multiplication morphism m : A ® A — A corresponds to a k-bilinear map

X,y xy: ha(S) X hy(T) = hy(SQT),
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natural in S and T, and the associativity of m becomes the equality
(xy)z =x(yz) forx € hy(S),y € hu(T), z € hy(U).

Here xy € hy(S® T),yz € hy(T ® U), and (xy)z, x(yz) € h,(S® T ® U). That
1: 1 — Aisan identity becomes the equalities

1x = x = x1 for x € h,(S).
Herel € hy(1),s01x € hy(1 ® S) ~ hy(S) and x1 € hy(S ® 1) ~ h4(S).

9.4 A left A-module is an object M of Ind T together with a morphism u: AQM — M
such that the two morphisms
meM u
ARARM T/ AQM — M
AQu

are equal, and such that

1M u
M~TQQM — AQM — M

equals idj;. Right A-modules are defined similarly. The left A-modules in Ind T form an
abelian category 4Mod - to form the kernel or cokernel of a morphism in 4Mod, first
form it in Ind T, and then equip it with the induced A-module structure.

When M is a right A-module and N a left A-module, we define M ® 4 N to be the
coequalizer of the pair of morphisms

MM ®N
MQRAQN T MM
MQ@un

9.5 When A is commutative, ® 4 makes Mod(A) < Mod 4 into an A-linear tensor
category. The unit is (A, m). There is a canonical functor

X»X®A: T—- Mod(A).
This sends XV to the dual of X ® A in Mod(A),
XYRA=(X®A).

The categorical dimension of X in T becomes the categorical dimension of X ® A in
Mod(A),
dim (X) = dimy (X ® A), (41)

once we identify k = End(1) with a subring of End4(A) ~ Hom(1, A) using the mor-
phisme: 1T — A.

DEFINITION 9.6 A homomorphism f: A — B of commutative rings in Ind T is flat
(resp. faithfully flat) if the functor

M v M ®,4 B: Mod(A) - Mod(B)

is exact (resp. exact and faithful).
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To check that a flat homomorphism A — B is faithfully flat, it suffices to show that
M#0 = M®,B#0.
LEMMA 9.7 Let f : A — B be faithfully flat. A sequence

(N): N -5 N2 N

of A-modules is exact if (and only if)

1 1
M ®B:N&,B N, B2 N ©, B

is exact.

PROOF Let C be the cokernel of N’ R Ker(f3), so that

N’—a>Ker(,6’)—>C—>0

is exact. As f is flat, the sequence

®1
N' ®, B — Ker(8) 4 B— C®, B —> 0

is exact, and as (N) ® 4 B is exact, C ® 4 B = 0. This implies that C = 0 because f is
faithful, and so () is exact. O

LEMMA 9.8 Forany commutativering (A, m,1)inT, the morphism1: 1 — Aisfaithfully

flat.

PROOF The morphism 1 is a monomorphism because it is nonzero and 1 is simple (6.3).
As ® is exact in each variable (6.2), for any object M, the morphism M ® 1: M Q@ 1 —
M ® A is a monomorphism. It follows that the functor — ® A is exact and that M @ A # 0
whenever M # 0. The functor is therefore also faithful. O

Faithfully flat descent

For a homomorphism f: A — B, weletey,e; : B - B ®,4 B denote the morphisms

®id ids ®
BrA®, B2 Bo,B, B~B®,A 2L Be,B.

On points, eg(b) =1, @ band e;(b) = b ® 1,.

PROPOSITION 9.9 Let f . A — B be a faithfully flat homomorphism of commutative rings
in Ind T. For any A-module M, the sequence

eo®idy,

d
M— > B®,M —= BQ,BQ, M (42)
€1®idM

®id
is exact, i.e., dy is the equalizer of the parallel pair. HeredyisM ~ AQ M g BQuM.
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PROOF Letd; = ey ® idy; —e; ® idy,. Clearly d;od, = 0. Assume first that there exists
an A-linear section to f, i.e., an A-linear map g : B — A such that gof = id4. Define
ky and k; to be the A-linear morphisms

M
g®BRM
Then kyod, = id,;, which shows that d;, is a monomorphism. Moreover,
klodl + dOOkO = idB®AM’

which shows that d, maps onto the kernel of d;.
We now consider the general case. Because A — B is faithfully flat, it suffices to
prove that the sequence (42) becomes exact after tensoring with B. But the sequence

obtained by tensoring (42) with B is isomorphic to the sequence (42) for the faithfully

®B
flat homomorphism B ~ A ® 4 B f—> B ® 4 B and the B-module B ® 4 M because, for

example,

B®4(B®1 M)~ (B®,4B)®p(BQ®,yM).
Now B — B ®4 B has a B-linear section, namely, that defined by multiplication BQ B —
B, and so we can apply the first case. o

9.10 Let f : A — B be afaithfully flat homomorphism of commutative rings in Ind T,
and let M be an A-module. Set M’ = f,.M “B® 4 M. The modules ey, M’ and e; M’
can be identified with B ® 4 M and M ® 4 B respectively, with the natural action of
B ® 4 B. There is a canonical isomorphism ¢ : e;, M’ — e, M’, namely,

el*M, = (elf)*M = (eOf)*M = eO*M,'
Moreover, M can be recovered from the pair (M’, ¢) as the equalizer of
®M’
a: M :A®AM’f—>B®AM’

a
M' —= B®aM, :
B . ! ! M'f ! ¢ !
6.M2’M ®AA—)M ®AB_)B®AM'
Conversely, every pair (M’, ¢), with M’ a B-module and ¢ a B® 4 B-linear morphism
$: M'®,4 B — B®, M’ satisfying a certain natural condition arises in this way from

an A-module. Given ¢, we construct morphisms

$: BM @4B—>BR,BR M, ¢,=BR¢

$: M ®4BR B> BR1BOsM', ¢,=(ysp®M')opo(yy5®B)

¢3: M ®,BR,B—>BR, M ®,B, ¢3=¢®B.
On points, ¢, $,, and ¢; are obtained by tensoring ¢ with idg in the first, second, and
third positions respectively. A pair (M’, ¢) arises from an A-module M as above if and
only if ¢, = ¢; 0¢;. The necessity is easy to check. For the sufficiency, define M to be the
equalizer of, 8 : M’ = B®4 M’ with a and 3 as above. There is a canonical morphism

B®,4 M — M’, and it suffices to show that this is an isomorphism and that the map
arising from M is ¢. The diagram

a®B

M ®,B E’; B, M ®,B
=|s =|#
€0®M,

B®AM’ _; B®AB®AM’
e @M’
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commutes with either the upper or the lower horizontal maps (for the lower maps, this
uses the relation ¢, = ¢, 0¢5), and so ¢ induces an isomorphism on the equalizers. But,
by definition of M, the equalizer of the pair (o ® id, 8 ® id) is M ® 4 B, and, according
to Proposition 9.9, the equalizer of the pair (e, ® id, e; ® id) is M’. This completes the
proof.

9.11 More precisely, M ~ (B ®4 M, ¢) is an equivalence from Mod(A) to the category
of pairs (M’, ¢) satisfying ¢, = ¢,0¢5. This statement holds also when M and M’ are
equipped with A-algebra structures preserved by ¢.

REMARK 9.12 When T is the category of finite-dimensional vector spaces over k, so Ind T
is the category of all vector spaces over k, then a ring in Ind T is a k-algebra (associative
with 1) in the usual sense, and the results become familiar, for example, 9.10 is faithfully
flat descent in the usual sense (e.g., Waterhouse 1979, 17.1, 17.2).

Affine schemes

9.13 Following Deligne 1989, in order to have a geometric language at our disposal, we
define the category of affine schemes in Ind T to be the opposite of that of commutative
rings (associative with 1) in Ind T. We call an object of the category an affine scheme
in Ind T or an affine T-scheme, and we write Sp(A) for the affine T-scheme defined by
A. Fibre products exist, and correspond to tensor products. An A-module M is called a
module over Sp(A), and, when Sp(B) is an affine scheme over Sp(A), B ® 4 M is called
the inverse image of M over Sp(B).

For example, Sp(0) is the empty scheme and Sp(1) is the point (pt) — they are the
initial and final objects in the category. We say that S = Sp(A) is nonempty if A # 0.
Every S is either empty or faithfully flat over (pt). For X and S affine schemes in T, the
set X(S) of S-points of X is Hom(S, X).

An affine group T-scheme is a group object in the category of affine T-schemes. Let H
be an affine group scheme in T. An H-torsor is a nonempty affine T-scheme P equipped
with arightaction p : PXH — P such that, forall S, P(S) is either empty or a torsor under
H(S). The condition “empty or a torsor” means that, for all S, (pr, o) : P(S) X H(S) —
P(S) X P(S) is bijective, i.e., that (pr, p) : P X H — P X P is an isomorphism.

EXAMPLE 9.14 (VECTORIAL SCHEMES IN T) For M in Ind T, put I'(M) = Hom(1, M),
the global sections of M over S. When M is a module over S = Sp(A), we have

I'(M) = Hom(1,M) ~ Hom4(A, M).

Note that the functor I' need not be exact. For example, when T = Repf(G), it is the
functor of G-invariants.

An object X of T defines for each S = Sp(A) a module X5 = A ® X, the inverse image
of X by S — (pt). The functor S w I'(X;) is representable,

Hom(1,A ® X) = Hom(X", A) = Homyjng,(Sym(X"), A).

We sometimes denote by X the T-scheme Sp(Sym(X")) representing this functor. This is
similar, when V is a finite-dimensional k-vector space, to using V' to denote the scheme
Spec(Sym™(V")), which has V for its k-points.

The functor S w I'(X;) is a functor to groups. The T-scheme X is therefore a group
scheme in T. The group structure corresponds to the usual Hopf algebra structure on
Sym*(XV).
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EXAMPLE 9.15 (AN AFFINE k-SCHEME IS AN AFFINE T-SCHEME) Since End(1) = k, the
subcategory of T of sums of copies of 1 is naturally equivalent to that of vector spaces of

finite dimension over k, by a functor V'« V @ 1. The choice of a basis e, ..., e, of V

identifies V ® 1 with 1”. See 7.10.

Passing to the ind-objects, we obtain a functor from the category of (all) vector spaces
over k to Ind T. Under this functor, an affine scheme over k defines a scheme in T.
Similarly, for affine group schemes, torsors, and so on. The point Spec(k) defines the
T-scheme (pt).

9.16 Let G be an affine group T-scheme and X an object of T. To give an action of
G on X is to give, for every S, an action of G(S) on the S-module Xg, compatible with
base changes S’/S. Such an action is determined by the action of the universal element
idg € G(G) on X;. For G = Sp(A), this is an A-linear morphism A ® X - A ® X,
which is determined by its restriction to X - A ® X. The morphism X — A ® X makes
X a comodule over the Hopf algebra A (commutative with 1) in Ind T.

9.17 (THE CASE OF Repf(G)) Let G be an affine group scheme over k and let T =
Repf(G). The ind-objects of T are the linear representations — not necessarily of finite
dimension - of G (B.11). The affine T-schemes are the affine schemes over k equipped
with an action of G, an affine group T-scheme H is an affine group scheme over k
equipped with an action of G, an H-torsor is an G-equivariant H-torsor (in the usual
sense), a vectorial T-scheme is the equivariant affine scheme of a finite-dimensional
representation of G, and the inclusion of affine k-schemes into affine T-schemes is “equip
with the trivial action of G”.

When T is a neutral tannakian category, this interpretation allows us to routinely
reduce questions on T-schemes to questions in usual algebraic geometry.

On reversing the arrows in 9.11, we obtain faithfully flat descent for affine schemes.

THEOREM 9.18 Leta: V — U be a faithfully flat map of affine schemes in Ind T. To give
an affine scheme W over U is the same as giving an affine scheme W' over V together with
an isomorphism ¢ . pry W' — pr; W' satisfying

P31 (9) = p3,(#)op3,(¢).
Here pj; denotes the projection VXV XV — V X V such that pj;(wy, w,, ws) = (wj, wy).

ASIDE 9.19 Let T be a pre-tannakian category over a perfect field. In this case, Deligne (1990,
8.13) constructs a T-group 7z(T) called the fundamental group of T. In particular, 7(T) acts on
the objects of T. For example, if T = Repf(G), 7(T) is (the Hopf algebra of) G with G acting by
conjugation.

When T is tannakian, the construction of the fundamental group is easier — see IV, 4.13. For
any fibre functor w of T over a scheme S, w(7(T)) is an affine group scheme over S, and the
action of 77(T) on an object X defines an action of w(7(T)) on w(X), natural in X and compatible
with tensor products, which for varying X gives an isomorphism

w(7(T)) — Aut?(w).

NoOTEs This section largely follows Deligne 1989, §5,6.
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10 An intrinsic characterization of tannakian categories

We show that a tensorial category over a field of characteristic zero is tannakian, i.e.,
admits a fibre functor, if its objects have categorical dimension an integer > 0.

THEOREM 10.1 (DELIGNE 1990, 7.1) Let T be an essentially small tensorial category over
a field k of characteristic zero. The following conditions are equivalent:

(a) Tistannakian, i.e., there exists a fibre functor with values in a nonzero ring;
(b) forall X in T, dim X is an integer > 0;
(c) forall X in T, there exists an integer n > 0 such that /\nX =0.

The proof will occupy the rest of this section. Throughout, T is a tensorial category
over a field k of characteristic 0.

The decomposition of X®" under the action of the symmetric group

Let X € obT. There is a natural action of the symmetric group S,, on X®". The nth
exterior power /\" X of X is defined to be the image of the antisymmetrization map

e Z sgn(o)o : X®" — x®n,

gES,
As chark = 0, it is also the image of the projector a/n!, and so
dim(\" X) = Tr(a/n!) = Tr(a)/n.. (43)

PROPOSITION 10.2 We have

. n_ o dimXy g (dimX)(dimX —1)---dim(X —n+1)
dlm(/\ X)_( n )_ n-n—1-----1 :

PROOF Let o be a cyclic permutation of order n. It follows from (31), p. 27, applied to
Xi =X and u; = ldx, that
Tr(o | X®") = dim(X).

If o has r(o) cycles (including cycles of length 1), then
Tr(o | X®") = dim(X)"@).

It follows from (43) that there exists a universal polynomial P € Q[T] such that
dim /\n X = P(dim X). Taking T to be Vecf(k), we find that, for alld € N,

d\ de d!
P)= ()< (d_—;).n,

We deduce that P(T) = (Z), and the statement follows. o

10.3 For each partition A of n, let t; be the canonical Young tableau of shape 4 (so the
boxes are numbered 1, 2, ..., n, starting at the left of first row, filling the first row, and
then continuing to the next row ...), and let ¢; € Q[S,,] be the corresponding Young
symmetrizer (Fulton and Harris 1991, §4.1). Then S; < Q[S, ]c; is an absolutely simple
representation of S,, over Q, and the S; as A runs over the partitions of n form a complete
system of simple representations of S,,.
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The dimension of S; is the number of standard Young tableau of shape 4. The hook
length formula (ibid., Exercise 6.4) says that

. n+c(x
dims; = []_ W()) (44)
where the product is taken over all boxes x of the Young diagram corresponding to ¢;
and c(x) denotes the content of x (the number of boxes to the left of x minus the number
above x) and h(x) denotes the hook length of x (the number of boxes directly below
or directly to the right of the box, with the box itself counted once). For example, if
A =(n,0,...,0), then S; = Sym"(V), and

. 2n
dimS; = ( " )
Let e = dim'SA
n:
tents for Q[S,,].

c;. Then the e; form a complete set of orthogonal primitive idempo-

10.4 Let X € obT. The action of S,, on X®" extends to an action of the group algebra
k[S, ], to which we can apply the results of the last paragraph. Each idempotent of k[S,,]
defines a direct summand of X®", and we have

Xe®n = @Xﬂ, X; € e;X®", 1 a partition of n.
A

For example, the idempotent attached to the partition (n) is ZU <s. 0/n!, and the cor-
responding direct summand is Sym"(X). The idempotent attached to the partition
(1,1,..,1)is Za s sgn(o)o/n!, and the corresponding direct summand is /\nX .

10.5 The argument in the proof of Proposition 10.2 shows that there exists a universal
polynomial P, in Z[T] such that dim X; = P;(dim X). Now (44) shows that, for T an
integer > 0, hence always, we have

PAT) = H T+c(1<).

k()
Thus,
dimx; =[], S5, (45)
For example,
dimSym" X = (dimX;— " 1) :

It follows that, if dim X is an integer, and is > 0 (resp. < 0), then dim X; = O whenever the
number of rows (resp. the number of columns) in the Young diagram exceeds | dim X|.

VARIANT 10.6 Equivalently, we could define
X; = (S, ® X®")n

(it makes sense to tensor an object of a k-linear category with a k (or Q) vector space). The
image of the idempotent % Y, o isinvariant, and the argument in the proof of Proposition
10.2 gives

dm&=%;mwmmmwx

n

where y; is the character of S; and r(o) is the number of cycles in o.
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Linear algebra in a tensorial category

The next proposition says that exact sequences in T split locally for the fpqc topology.

PROPOSITION 10.7 (DELIGNE 1990, 7.14) Let

0—-N —l> E—M-0
be an exact sequence in T. There exists a ring P in Ind T such that
0>-NQP—-EQP->-MQ®P—-0
splits as a sequence of P-modules.

PROOF Suppose first that N = 1. Then i is a monomorphism 1 — E. Let S* = Sym"(E),
and let

N i)EQZm ﬂ) N

be the canonical factorization of idg.. Let v, : S* — S"! be the composite of the
morphisms

NG i) E®n ~ E®n QI ld_®)i E®n+1 Fﬁ; S"+1,

and let P = h_n} (S",v,). Then v,, is a monomorphism with cokernel Sym™*(M). In
n

particular, P # 0.
The next diagram defines a ring structure on P,

E®" @ E®"
sm ® S > Sm+n
l(id ®DHR(id ®i)
U @y E®mtl ® E®ntl Um+n+1°VUm+n
lAm+1®in/7 anﬂ
Sm+1 ® Sn+1 _____________________ > Sm+n+2.
Consider the diagram
Een @ 2%, pom @ p —— penl
Tin Tin@)id lpn-f—l
sn _ Up® STQE ———-t__y SnHL

where u,, is defined to make the right-hand square commute. From the diagram, we see
that

u,o(idgn ®i) = vy,.

On passing to the limit, we obtain a morphism u : P ® E — E such that

uo(idp ®v) = idp .
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Moreover, u is a P-module homomorphism because the diagram

Sm®sn®E u"esm®sn+1

| l

Umn+
Sm+n ® E m+n Sm+n+1

is obviously commutative as it does not involve i. This completes the proof of the lemma
in the case N = 1.

Now consider an arbitrary N. In the next diagram, the bottom row is the pushout of
the top row by ev oyy nv,

i®idyv
00— NN 2™ F@NY — M®NY —— 0

leV OYN,NV lh l
!

0 1 i E’ M’ 0.

The top row is exact because internal Homs are exact in T. The first part of the proof
gives us a morphism u’ : E’ — 1 such that u’oho(i ® idyv) = evy oyy yv. Consider the
morphism

u: E— N, u=(idy ®u'oh)(ypy ® idyv)(idp ®dy).

Then

uoi = (idy ®u'oh)(75 n ® idyv)(ids @Sy )oi
= (idy ®u'oh)(yg,y ® idyv)(i ® idygnv)(idy ®dy)
= (idy ®u’oh)(idy ®i ® idyv)(¥n N ® idyv)(idy ®yn)
= (idy @ evy yn v )(¥n N ® idyv)(idy RS y)
= (idy @ evy)(idy ®y)
= idy,

where in the third and fifth equations, we used the naturality of y. This completes the
proof. O

COROLLARY 10.8 Let F : C — D be a k-linear tensor functor of tensorial categories over a
field k of characteristic 0. If F is faithful, then it is exact.

PROOF Extend F to a functor Ind C — Ind D, again denoted F - it is again a faithful
k-linear tensor functor. Let (N): 0 > N - E - M — 0 be an exact sequence in C, and
let P be as in 10.7. Then (N) ® P is split-exact, and so F((N)) ® P) ~ F((N)) ® F(P) is
exact (because Ind F is additive). Therefore F((N)) is exact (9.7, 9.8). O

COROLLARY 10.9 Let T be a tensorial category over a field k of characteristic 0, let R be a
k-algebra, and let F : T — Modf(R) be a k-linear tensor functor. If F is faithful, then it is
exact.

PROOF Extend F to a functor Ind T — Mod(R), again denoted F - it is again a faithful
k-linear tensor functor. Let (N): 0 > N - E - M — 0 be an exact sequence in T, and
let P be as in 10.7. Then F(E) is a finitely generated projective R-module, and F(P) =
li_r)n Sym"(F(E)). In particular, F(P) is a faithfully flat R-algebra. As (N)®P is split-exact,
the sequence F((IN) ® P) is exact (F is additive). But F(N) ® P) ~ F((N)) ® F(P), and
so F((N)) is exact. O
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Proof of Theorem 10.1

It is obvious that (a) of Theorem 10.1 implies (b). We next show that (c) implies (b).
If /\nX = 0, then dim /\nX = 0, and 10.2 shows that dimX = 0,1, ... orn — 1; in
particular, it is an integer > 0. It remains to show that (b) = (a), (¢).

For the remainder of this section we assume that T satisfies (b) of Theorem 10.1, i.e., for
all X in T, dim X is an integer > 0.

LEMMA 10.10 Let X € obT. IfdimX = 0, then X = 0.

PROOF If X # 0, then idy # 0 and the map 6y : 1T — X ® XV is not the zero map.
Because 1 is simple (see 6.3), it is a monomorphism. Now

0 < dim(Coker(8y)) = dim(X ® X¥) -1 = (dim X)(dimX¥) — 1,
and so dim X # 0 # dim X". o

10.11 From Lemma 10.10, we see that X; = O for all A of length > dimX. Let X
be an object of T of dimension n > 0. Let GL,(k) act on V' = k" according to the

.....

for a partition A of length at most n and an m € N. Then

Qm
) : Repf(GL,) — T

.....

is an exact tensor functor sending the standard representation to X.

LEMMA 10.12 Let A be a commutative ring in Ind T and let M be an A-module that is a
direct summand (as an A-module) of A ® X for someX € obT.

(a) Ifdimy M = 0, then M = 0.

(b) If dimy M > 0, then there exists an algebra P, faithfully flat over A, such that
M ®, P =P@® N as P-modules.

(c) Ifdimy M = d > 0, then there exists a faithfully flat extension B of A such that
M ®, B~ B%4,

PROOF (a) Letn =dimX and A® X =M @ N. Then
n+1 n+1
/\A (A®X)=A®/\ X =0.

On the other hand, as

Nwven= @ Nve v,

p+gq=m
we see that M @ 4 /\f1 N is a direct summand of /\ZH(A ® X); hence is zero. As
dim,(N) =dimy(A®X) =dimX =d,

we have dim 4 ( /\Z1 N)=1.LetQ = /\Z N. Then A is a direct summand of Q ® , Q"
because the dimension of Q over A is 1. Consequently,

M®,Q®,Q"=0= M=0.
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(b) We can now argue as in 10.11 to obtain an exact faithful functor from Repf(GL,,)
to Mod(A) sending V to A ® X. Let ey, ..., e, be a basis for V and f4, ... f,, the dual basis
for VV. The group GL, acts on the polynomial algebra k[e;, f ], which can therefore be
viewed as an algebra in Ind(Repf(GL,,)). The relation )’ e; f; = 1 is invariant under the
action of GL,,, and hence the quotient algebra

_ kle;, fil
Qefi—1)

is also an algebra in Repf(GL,,).

The image of P of C under the above functor is the required algebra in Mod(A).
Indeed, as M is a direct summand of A ® X, which is flat over A, M is flat over A.
Therefore P is also flat over A, and it is faithfully flat because it contains A as a direct
summand (as C contains k as a direct summand). Finally, there exists a decomposition
V®C =C & Qin Repf(GLy4(k)): the projection V ® C — Cisv ® p — v - p and the
embeddingC - VQCisp+ )¢ ® fi(p), p € C.

(c) Applying (b) d times, we get a faithfully flat A-algebra B such that M ® 4 B =
B®d @ N with dimg N = 0. -

LEMMA 10.13 Let A be a commutative ring in Ind T and M an A-module such that
dimy M =d > 0. If M is a direct summand (as A-modules) of A ® X for some X € obT,
then there exists a faithful extension B of A such that M ® 4 B ~ B®4.

PROOF Applying (b) d times, we get a faithfully flat A-algebra B such that M ® 4, B ~
B®d @ N with dimg N = 0. -

We now prove the theorem. For eaph object X of C, we have constructed a commuta-
tive ring Ay such that Ay @ X ~ A;? dimX 55 A, -modules (10.10, 10.13). Define an order
on the isomorphism classes of objects of C by [X] < [Y] if and only if (X) = (Y'), and
apply transfinite induction to obtain an algebra A in Ind T such that

(a) forallXinT,A® X ~ A®dmX,

(b) for all exact sequences0 - M — N — P — 01in T, the sequence of A-modules
0>-M®A->N®A > PQ®A — 0is split exact.
Now

X » Hom, (A4, X ® A): T — Mod(R), R% End,(A),

is a fibre functor.
QUESTION 10.14 Let T be a tensorial over a field k of characteristic zero. Assume that,
forall X in T, dim X is an integer > 0. We then showed that there exists a fibre functor

on T. If T is algebraic, i.e., T = (X)® for some X in T, is it possible to show that there
exists a fibre functor on T with values in a finite extension of k?

REMARK 10.15 Corollaries 10.8 and 10.9 also hold for tensorial categories over fields
k of nonzero characteristic. In the above, characteristic zero is only used to get the
factorization of the identity map on Sym"(E) in the proof of Proposition 10.7. This
proposition can be replaced by the following statement: a sequence

0-X->Y—>Z2-0
is exact if and only the sequence

0 XQRI->YRI->ZRYKI >0
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is split exact for an arbitrary nonzero injective I € ob(Ind T) (Coulembier et al. 2023,
2.4.2).

REMARK 10.16 When k has nonzero characteristic, condition (c) of Theorem 10.1 no
longer implies that the category is tannakian — one needs an additional hypothesis
(Coulembier 2020, Theorem B).

ASIDE 10.17 For an analogue of Theorem 10.1 in super mathematics (i.e., Z /2Z-graded mathe-
matics), see Deligne 2002.

NoTEs The exposition in this section follows Deligne 1990, §7, and Hai 2002.






Chapter I1

Neutral tannakian categories

Throughout this chapter, k is a field except when stated otherwise. Unadorned tensor
products are over k.

1 Affine group schemes

We review the basic theory of affine group schemes and their representations. For more
details, see, for example, Milne 2017 or Waterhouse 1979. After 1.10, all bialgebras and
Hopf algebras are commutative.

Affine monoid schemes and bialgebras

1.1 LetG = Spec A be an affine scheme over k,andm : GXG — Gande: Speck — G
morphisms. The triple (G, m, e) is an affine monoid scheme over k if (G(R), m(R), e(R))
is a monoid for all k-algebras R. This condition can be expressed in terms of diagrams:
the associativity condition requires that the two composed morphisms

mXidG

GXGXG — GxG 25 G (46)
idg xm

are equal and the condition that e(R) is a neutral element requires that the two morphisms

idg xe m
G~GXxSpeck—— GXG— G
(47)

exidg m
G ~SpeckXG—— GXG— G
equal idg.
1.2 An algebra over k (associative with 1) is a k-vector space V' together with k-linear
mapsm: AQ A - Aande: k — A such that the two composed maps
m®id 4 m
ARARA — 3 A®RA —— A (48)
idA Qm
are equal and the two maps
e®id

Ack@A S AQA—S A
(49)

id Qe m
A AQRk— ARA— A

equal id 4.

57
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1.3 A coalgebra over k (co-associative with co-identity) is a k-vector space C together
with k-linear maps A: C - C ® C and e : C — k such that the two composed maps

A®id

c2,c® C__3CRCRC
1d ®A
are equal and the two maps
e®id

C—>C®C—>k®c C

ctcoct® cogkac
equal idc.
Thus “algebra” and “coalgebra” are opposite (dual) notions.

1.4 A bialgebra over k is a quintuple (A, m, e, A, €) such that
(a) (A, m,e)is an algebra over k,
(b) (A, A,¢)is acoalgebra over k,
(c) A and € are algebra homomorphisms,

(d) m and e are coalgebra homomorphisms.
In the presence of (a) and (b), the conditions (c) and (d) are equivalent (see, for example,
Milne 2017, 9.40). A bialgebra (A, m, e, A, €) is said to be commutative if the underlying
algebra (A, m, e) is commutative.

1.5 Let G = Spec A be an affine scheme over k. Then A is a commutative k-algebra,
and the monoid structures (m, e) on G correspond exactly to the coalgebra structures
(A,€) on A given by algebra homomorphisms, i.e., to the bialgebra structures on A.
The functor A ~ Spec A defines a contravariant equivalence between the category of
commutative bialgebras over k and the category of affine monoid schemes over k.

1.6 Let (C,A,¢)and (C’,A’,€’) be coalgebras over k. Then C ® C’ becomes a coalgebra
over k with the comultiplication

CC’ C

C®C' (C®C)®(C'®C)—>(C®C')®(C®C'),
where yc o(c ® ¢') = ¢’ ® ¢, and co-identity
e®e:CRC' > kQ®k ~k.

If G and G’ are affine monoid schemes over k with associated coalgebras C and C’, then
G x G' is an affine monoid scheme over k with associated coalgebra C ® C’.

Affine group schemes and Hopf algebras

1.7 Let G be an affine scheme over k and m: G X G — G a k-morphism. The pair
(G, m) is an affine group scheme over k if (G(R), m(R)) is a group for all k-algebras R.
In terms of diagrams, this condition says that there exist morphismse : Speck — G and
inv: G — G (necessarily unique) such that (G, m, e) is a monoid scheme over k and

G (inv,id) GxXG (id,inv) G

l l

m
e Y e
Speck G Speck

commutes.
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1.8 Let A be a k-algebra (not necessarily commutative) and A: A - A ® A a homo-
morphism of k-algebras. The pair (A, A) is a Hopf algebra over k if there exist k-algebra
homomorphismse: A - kand S: A — A (necessarily unique) such that (4,A,¢e)isa
bialgebra over k, and

(S,id4)oA =€ = (id4, S)oA.

Such an S is called an antipode. Thus a bialgebra over k is a Hopf algebra if and only if
there exists an antipode. A Hopf algebra is said to be commutative if the algebra A is
commutative.

1.9 Let G = Spec A be an affine scheme over k. To give the structure of a group scheme
on G is the same as giving the structure of a commutative Hopf algebra on A. The functor
A -~ Spec A defines a contravariant equivalence between the category of commutative
Hopf algebras over k and the category of affine group schemes over k.

1.10 We say that an affine group scheme G = Spec A is algebraic, and that G is an
algebraic group, if A is finitely generated as a k-algebra. Thus “algebraic group over k”
means “affine group scheme of finite type over k”.

Henceforth, all bialgebras and Hopf algebras are commutative.

Representations

1.11 Let G be an affine group (or monoid) scheme over k. A representation of G on a
k-vector space V is a homomorphism

G(R) — Autgjinear(V(R))

natural in R. In other words, it is a family of homomorphisms G(R) — GL(V(R)), indexed
by the k-algebras R, compatible with extension of scalars. When V is finite-dimensional,
this is the same as a homomorphism G — GL;, of affine group (or monoid) schemes
over k. We let Repf(G) denote the category of representations of G on finite-dimensional
k-vector spaces.

1.12 A (right) comodule over a k-coalgebra C is a vector space V over k together with
a k-linear map p: V —» V ®; C such that the two composed maps

. idy ®A
V—VC __—Z3VRCRC
p®idc

are equal and
id
v Levec X vk
equals idy,. For example, A defines an C-comodule structure on C.

PROPOSITION 1.13 Let G = Spec A be an affine group (or monoid) scheme and V a
k-vector space. To give an A-comodule structure on V is the same as giving a linear repre-
sentation of Gon V.

PROOF A representation r of G on V is determined by its action on the “universal”
element
idg € Hom(G, G) = G(A).
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Now r(id;) is an A-isomorphism V®A — V® A whose restrictiontoV = Vk C VQA
determines it and is an A-comodule structure p on V. Conversely, a comodule structure
p on V determines a representation of G on V such that, for every k-algebra R and

g €G(R) o Hom,. (A, R), the restrictionof g, : VAR >V ®RtoV®k CV ®Ris

(idy ®glop: V>V ®A >V QR.
For more details, see Milne 2017, 4.1. o

Let G = Spec A. The representation of G on A defined by the A-comodule structure
A: A > AQ® Ais called the regular representation of G.

PROPOSITION 1.14 Let C be a k-coalgebra and (V, p) a comodule over C. Every finite
subset S of V is contained in a sub-comodule of V having finite dimension over k.

PROOF Let {c;} be a basis for C over k (possibly infinite). For each v in S, write p(v) =
> v; ® ¢; (finite sum). The k-subspace spanned by the v and the v; occurring in such a
sum is a sub-comodule over C containing S (see, for example, Milne 2017, 4.7). O

COROLLARY 1.15 Every C-comoduleis a filtered union of finite-dimensional sub-comodules.

PROOF Let C be a k-coalgebra, and V' a C-comodule. The set of all sub-comodules of V'
finite-dimensional over k is ordered by inclusion, filtered (any two are contained in a
third), and has union V (by the proposition). o

COROLLARY 1.16 Every representation of an affine group scheme (or monoid scheme) on
a vector space is a filtered union of finite-dimensional subrepresentations.

PROOF According to Proposition 1.13, this is a restatment of Corollary 1.15. o

PROPOSITION 1.17 An affine group scheme G is algebraic if and only if it has a faithful
finite-dimensional representation over k.

PROOF Letr: G — GLy be a faithful representation of G. Then Ker(r) = 1, and so r is
a closed immersion (e.g., Milne 2017, 3.35). In particular, G is a closed subscheme of a
scheme of finite type over k, and so is of finite type over k.

For the converse, let G = Spec A with A a finitely generated k-algebra, and let (A, €)
be the corresponding k-coalgebra structure on A. A sub-comodule V of A provides a
faithful representation of G if it contains a set of generators for the k-algebra A (e.g.,
Milne 2017, proof of 4.9). According to 1.14, we can choose V to be finite-dimensional
over k. O

PROPOSITION 1.18 Let C be a coalgebra over k. Every finite subset of C is contained in a
finite-dimensional k-subcoalgebra.

PROOF According to 1.14, the finite subset is contained in a finite-dimensional k-
subspace V' of A such that A(V) C V ® C. Let {v;} be a basis for V, and let A(v;) =
2. U; ® a;; (finite sum). Then A(a;;) = >’ a;q;;, and so the k-subspace V' spanned by
the v; and q;; satisfies A(V") € V' ®; V'. Now V' is the required k-coalgebra. o

PROPOSITION 1.19 Let A be a Hopf algebra over k. Every finite subset of A is contained in
a Hopf subalgebra that is finitely generated as a k-algebra.
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PROOF According to 1.18, the finite subset is contained in a finite-dimensional k-
subspace C of A such that A(C) € C®, C. If Aa = ), b; @ c;, then A(Sa) = ), Sb; ® Sc;,
and so the k-subspace V spanned by C and SC satisfies A(V) CV @, Vand S(V) C V.
We can take A to be the k-algebra generated by V. o

COROLLARY 1.20 Let G be an affine group scheme over k. Then G is a filtered projective
limit G = LE G; of affine algebraic groups over k in which the transition maps G; — G;,
i < j, are faithfully flat.

PROOF Let A be a the Hopf algebra over G. According to the proposition, A is a filtered
union A = | J A; of Hopf subalgebras A; that are finitely generated as k-algebras. The
functor Spec transforms the inductive limit A = h_r)nAl- into an projective limit G =
1(@ G;. As Hopf algebras are always faithfully flat over Hopf subalgebras (Waterhouse
1979, 14.1), A; is faithfully flat over A;, and the transition map G; — G; is faithfully
flat. o

More precisely, if G is an affine group scheme over k, then G = I(E G/N, where N
runs over the set of normal affine subgroup schemes of G such that G/N is algebraic.
Projective limits of affine group schemes are again affine group schemes. See Demazure
and Gabriel 1970, I11, §3, n° 7.

PROPOSITION 1.21 Let G be an algebraic group over k and (V, r) a faithful finite-dimensional
representation of G. Every finite-dimensional representation of G can be constructed from
V' by forming tensor products, direct sums, duals, and subquotients.

PROOF See, for example, Milne 2017, 4.14. O
In other words, (V, r) is a tensor generator (6.12) for the rigid tensor category Repf(G).

THEOREM 1.22 (CHEVALLEY) Let G be an algebraic group over k. Every algebraic sub-
group of H of G arises as the stabilizer of a one-dimensional subspace in a finite-dimensional
representation of G.

PROOF See, for example, Milne 2017, 4.27. 0

2 Recovering G from Repf(G)

Let G be an affine group scheme over k. Let R be a k-algebra, and let g € G(R). For
every finite-dimensional representation (V, ry,) of G over k, we have an R-linear map

def
A’V = rV(g)Z VR — VR'

These maps satisfy the following conditions:

(a) for all representations V and W, lygw = Ay ® Ay

(b) Ay is the identity map (here 1 = k with the trivial action);

(c) for all G-equivariant mapsu : V — W, Ay oup = ugody.
THEOREM 2.1 Let G be an affine group scheme over k, and let R be a k-algebra. Suppose
that, for every finite-dimensional representation (V,ry) of G over k, we are given an R-

linear map Ay : Vi — Vi. If the family (v )y satisfies the conditions (a, b, c), then there
exists a unique g € G(R) such that Ay, = ry(g) forall V.
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PROOF Let A(G, R) denote the set of families 4 = (/) satisfying the conditions (a,b,c).
Suppose first that G is algebraic, and let (W, r) be a faithful representation of G. It follows
from Proposition 1.21 that an element (4y,)y of A(G, R) is determined by 1y, and so we
have inclusions

G(R) = A(G,R) = GLy(R), g~ (ry(@)y = rw(g).

According to Chevalley’s theorem (1.22), there exists a representation (W, ry,) of G, and
aline L in W such that G is the stabilizer of L in GLy,. We may choose (W, ry,) to be
faithful. Let u : L — W be the inclusion map, and let 1 € A(G, R). As Ay oug = ugod;,
we see that Ay, stabilizes L, and so it lies in G(R), as required.

In the general case, let V € Repf(G), and let (V')® be the strictly full subcategory of
Repf(G) of objects isomorphic to a subquotient of P(V, V") for some P € N[t, s]. Let Gy,
be the image of G in GLy,. It is an algebraic quotient of G acting faithfully on V, and so

Gy(R) = A(Gy,R) = GLy(R).
Define an ordering on the set of isomorphism classes of objects of Repf(G) by the rule
[VI<[V'] < (V)® c(V')8.

Note that [V], [V'] < [V @ V'], and so the set is filtered. If [V'] < [V], then restriction
gives a commutative diagram

Gy(R) —— A(Gy1,R)

l |

Gv(R) ; A(GV, R)
On passing to the projective limit, we obtain bijections

G(R) = lim Gy(R) = lim A(Gy, R) = A(G, R).

COROLLARY 2.2 Let G be an affine group scheme over k and let w be the forgetful functor
on Repf(G). Then the canonical morphism

G — Aut®(w)
is an isomorphism of functors.

PROOF For any k-algebra R,

def

Aut®(w)(R) = End®(w)(R) = End(¢grow)

(see (32), p. 28), but End(¢row) = A(G, R). -

Let f : G - H be a homomorphism of affine group schemes over k. Using f, we
can regard an H-module as a G-module. In this way, we get a tensor functor

w! : Repf(H) — Repf(G) (50)

such that 0% ow/ = ol Our next result shows that all such functors arise in this

forget forget®
fashion.
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COROLLARY 2.3 Let G and H be affine k-group schemes, and let F : Repf(H) — Repf(G)
be a tensor functor such that w® __ ow/ = wf! There exists a unique homomorphism

forget forget’
f: G — HsuchthatF = o/,

PROOF Such an F defines a homomorphism (functorial in the k-algebra R)

CAut®(@f  YR) — Au®(@! YR), F*Ay = Ap).

forget forget

Proposition 2.8 allows us to regard F* as a functorial homomorphism G(R) — H(R).
According to the Yoneda lemma this arises from a unique homomorphism f: G — H.
Clearly, the maps F — f and f — w/ are inverse. o

REMARK 2.4 (a) Theorem 2.1 holds also for affine monoid schemes, but with a slightly
different proof (see Milne 2017, 9.2).

(b) Proposition 2.2 shows that G is determined by the triple (Repf(G), ®, w®). In fact,
the coalgebra of G is already determined by (Repf(G), w®) (see the proof of Theorem 3.1
below).

ASIDE 2.5 Corollary 2.2 extends to more general base schemes. Let G be a group scheme affine
over a scheme S. We can form the category of representations of G on locally free Og-modules of
finite rank, and ask whether the canonical homomorphism

G- ﬂut®(wforget) (51)

is an isomorphism of functors of S-schemes.

An obvious necessary condition is that G be linear, i.e., that there exist a locally free Og-
module € of finite rank and an S-morphism G — GL that is both a closed immersion and a
homomorphism. For groups of multiplicative type, there is the following criterion.

When S is connected and locally noetherian and G is of finite type over S and of

multiplicative type, G is linear if and only if it is isotrivial, i.e., is split by a finite
étale covering S’ — S of S (Grothendieck, SGA 3, XI, 4.6).

This extends to reductive groups as follows.

Assume that S is connected and that G is reductive. Then G is linear if and only if
its radical torus rad(G) is isotrivial (Gille 2022, 1.1).

A group scheme G over an arbitrary S is said to be reductive if it is smooth and affine over S with
reductive geometric fibres. For such a group scheme, rad(G) is the largest central torus of G.

Let S be affine, connected, and noetherian, and let § be a geometric point of S. Let T be
a torus over S, and let T/ be the quotient of T corresponding to the submodule of X*(T ) =
Hom;(T5, G,,,) consisting of the elements with finite 7 (S, §)-orbits. Then T/ is the universal
isotrivial quotient of T. There is the following partial answer to the original question.

Let G be a reductive group over S (affine, connected, and noetherian). Then the
homomorphism (51) induces an isomorphism
G ~ Aut®(w),

where G/ is the quotient of G by the kernel of rad(G) — rad(G)” (Zhao 2022, 3.2.3).

For example, (51) is an isomorphism when G is a reductive group over a Dedekind domain, and
it need not be an isomorphism when G is a torus of dimension 2 over a curve with a node.

EXERCISE 2.6 Let G be an algebraic group over k, and let w be the forgetful functor
Repf(G) — Vecf(k). We have seen that G(k) can be identified with set of natural
automorphisms (4y )y of w such that 1y gy = Ay @ Ay and z 1y = id. Show that the Lie
algebra of G can be identified with the set of natural endomorphisms (1y,);, of w such
that Ay gy = Ay ® id +1d @4y, and 47 = 0.



64 Chapter II. Neutral tannakian categories

3 The main theorem

Recall that a neutral tannakian category over k is a k-linear rigid abelian tensor category
such that there exists an exact k-linear tensor (fibre) functor w to Vecf(k). Then k ~
End(1) and every fibre functor is faithful.

Statements

THEOREM 3.1 Let (C, ®) be an essentially small neutral tannakian category over k and @
a k-valued fibre functor.
(a) The functor M‘X’(w) of k-algebras is represented by an affine group scheme G.

(b) The functor C — Repf(G) defined by w is an equivalence of tensor categories.

Thus every neutral tannakian category is equivalent (in possibly many different
ways) to the category of finite-dimensional representations of an affine group scheme.

The proof will occupy the rest of this section. We first construct the coalgebra A of
G without using the tensor structure on C (Theorem 3.15). The tensor structure then
allows us to define an algebra structure on A, and the rigidity of C implies that A is a
Hopf algebra (so that G is a group scheme rather than a monoid scheme).

COROLLARY 3.2 A neutral tannakian category (C, ®) is algebraic (1, 7.14) if and only if for
one (hence every) k-valued fibre functor w, the affine group scheme M‘X’(a)) is algebraic.

PROOF If(C, ®) has a tensor generator X, then, for any k-valued fibre functor w, Aut®(w)
has a faithful finite-dimensional representation, namely, w(X), and so it is an algebraic
group (1.17).

Let w be a k-valued fibre functor on C such that G & &Qb(w) is algebraic. Then
G has a finite-dimensional faithful representation (1.17), which is a tensor generator
for Repf(G) (see 1.21), and corresponds to a tensor generator of (C, ®) under the tensor
equivalence C = Repf(G) defined by w. o

Abelian categories as module categories

Let A be an abelian category. An object P of A is a generator if the functor h” o

Hom(P, —) is faithful and it is projective if h” is exact. An object of A is simple if it is
nonzero and contains no proper nonzero subobject. A composition series for an object
X of A is a finite decreasing filtration

X=F'>F!'>...0F =0

with simple successive quotients. Objects of finite length admit composition series, and
any two composition series have the same length and multiset of quotients (taken up
to isomorphism). We let 1g(X) denote the common length of the composition series for
X, and, for a simple object S, we let 1g,(X) denote the number of i such that F'/F™* is
isomorphic to S. In the Grothendieck group of A,

[X]=)]1g,X) - [S],

where [S] runs over the isomorphism classes of simple objects in A.
If P is a generator and A has direct sums, then, for any object X of A, the morphism

P p,—x. Pr=P, (b))~ X f(pp)

f:P-X
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is an epimorphism. When X is noetherian (or artinian), a finite number of f suffice, so
that there is an epimorphism P"” — X for some n € N.

PROPOSITION 3.3 Let A be an abelian category whose objects are noetherian, and let P be
a projective generator for A (assumed to exist). Then A &« End(P) is a right-noetherian
ring and h' is an equivalence A <> Modf 4.

PROOF The left action of A on P defines a right action of A on h”(X), natural in X, and
so hf is a functor A — Mod,. Because P is a projective generator, h’ is exact and faithful.
Let X € ob A. For some m, n, we have an exact sequence

P" > Pt X —0.
On applying h” to this sequence, we get an exact sequence
A™ > A" - hP(X) - 0,

which shows that h”(X) has finite presentation. Conversely, let M be a finitely presented
right A-module, say,

Am S An 5 M 0,

where u is an m X n matrix with coefficients in A. This matrix defines a morphism
P™ — P" whose cokernel X has the property that h(X) ~ M. This shows that h” is
essentially surjective, and it remains to show that it is full.

Let X, Y be objects of A, and choose an exact sequence P” — P" — X — 0. Then

Hom(P™,Y) ~ hP(Y)™ ~ Hom(A™, h*(Y)) ~ Hom(h?(P™), hP(Y)),
and the composite of these maps is that defined by h”. From the diagram

0 —— Hom(X,Y) ———— Hom(P",Y) ————— Hom(P™,Y)

1 ! !

0 — Hom(hf(X),h?(Y)) — Hom(h"(P"), h'(Y)) — Hom(h*(P™), hP(Y))

we see that Hom(X,Y) — Hom(h?(X), hP(Y)) is an isomorphism, and so h? is full. 5

Recall (I, 6.15) that a k-linear abelian category is locally finite if its objects have finite
length and its homs are finite-dimensional.

COROLLARY 3.4 Let A be a locally finite k-linear abelian category with a projective gen-
erator P. Then A < End(P) is a finite-dimensional k-algebra, and h¥ is an equivalence
A = Modf 4.

PROOF Immediate consequence of the proposition. o

EXAMPLE 3.5 Let A = Modf 4, where A is a finite-dimensional k-algebra, and let P be a
projective generator of A, for example, a direct sum of copies of A4. Let B = End(h?).
Then End(P) = B°P, and h' is an equivalence

hP
MOde e MOdeop = BMOdf.
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PROPOSITION 3.6 Let A be a k-linear abelian category with a projective generator, and
let w: A — Vecf(k) be an exact faithful k-linear functor. Then B « End(w) is a finite-
dimensional k-algebra, and w is an equivalence of categories A — gModf.

PROOF Note first that the existence of w implies that the k-linear category A is locally
finite: certainly Hom(X,Y) ¢ Hom(w(X), w(Y)) is finite dimensional, and a subobject
Z of X is determined by the subspace w(Z) of w(X), and so the set of subobjects of X can
be identified with a subset of the lattice of subspaces of w(X).

The left action of B on w defines a left action of B on w(X), natural in X, and so w is
a functor A - gModf. By definition, it is exact and faithful, and it remains to show that
it is full and essentially surjective.

Let P be a projective generator for A, and let A = End(P). Then A acts on w(P) on
the left, and the map

& ® p > w(@)(p): Hom(P,X) ®, w(P) — w(X)

is natural in X € ob A. This map is obviously an isomorphism when X = P. As both
functors commute with finite direct sums and are right exact, it follows that it is an
isomorphism for all X in A (cf. the proof of Proposition 3.3),

h @ w(P) ~ w.

We have a factorization (up to a natural isomorphism)
w

A T) MOde TC{)(P)) BMOdf.

As w is exact, the A-module w(P) is flat, and hence projective (because it is finitely
presented). Let Q = Hom 4 (w(P), 4A). Then h?(—) ~ — ® w(P), and so h€ is exact and
faithful. Thus, Q is a projective generator, and so

h.Q . MOdA - MOdeop = BMOdf,

where B’ = End(Q) ~ End(h?)°? ~ End(w)°P. -

Existence of a projective generator

We next obtain a criterion for an abelian category to have a projective generator.

LEMMA 3.7 Let A be an abelian category whose objects have finite length. If
(a) there are only finitely many isomorphism classes of simple objects, and
(b) every simple object is a quotient of a projective object,

then there exists a projective generator for A.

PROOF Let Sy, ..., S, be a set of representatives for the simple objects, and, for each i,
let P; — S; be an epimorphism with P; projective. Then P © P, & --- & P, is projective
generator. Certainly, it is projective, and to show that h” is faithful, it suffices to show
that M # 0 = hP(M) # 0, but this is obvious. -
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3.8 For an object X of the abelian category A, we let (X) denote the strictly full subcate-
gory of A whose objects are subquotients of a finite direct sum of copies of X. It is an
abelian subcategory of A containing X.!

3.9 An essential extension of an object Y is an epimorphism « : E — Y such that no
subobject E’ C E, distinct from E, maps onto Y. When Y is simple, this says that the
kernel of a contains every E’ C E distinct from E.

LEMMA 3.10 Assume A = (X)), and let E - S be an essential extension of a simple object
Sin A ForallY € obA,

dim; Hom(E,Y) < Igg(Y) - dimy End(S). (52)
If equality holds for X, then it holds for all objects of A, and E is projective.

PROOF When Y is simple, every nonzero morphism E — Y factors through E » S
(because its kernel is contained in Ker(E - S)) and induces an isomorpism S — Y.

Thus
{ Hom(E,Y) ~ Hom(S,Y) ~ Hom(S, S)ifY ~ S
Hom(E,Y) = 0 otherwise.

In both cases, (52) holds with equality.
An exact sequence
0-Y ->Y->Y">0 (53)

gives an exact sequence
0 - Hom(E,Y') - Hom(E,Y) - Hom(E,Y"), (54)
from which it follows that
dim, Hom(E,Y) < dim; Hom(E, Y’) + dim; Hom(E, Y"").

As the right-hand side of (52) is additive on short exact sequences, the inequality (52)
now follows by induction on the length of Y. Moreover, we see that, given an exact
sequence (53), equality holds for Y if and only if it holds for Y" and Y”'.

If equality holds in (52) for Y = X, then the last statement shows that equality holds
for X™, and then also for all subquotients of X". Moreover, the sequence (54) is exact
with a 0 on the right, which says that E is projective. O

PROPOSITION 3.11 (GABBER) Let A be a locally finite k-linear abelian category. Then
A = (X) for some X if and only if A admits a projective generator.

PROOF If A admits a projective generator P, then A ~ Modf 4 with A = End(P) (by 3.4),
and Modf 4, = (A,4).

For the converse, let A = (X). The quotients of any composition series for X represent
the isomorphism classes of simple objects, and so A satisfies (a) of 3.7. We shall complete
the proof by showing that every simple object S of A admits an essential extension
P(S) » S with P(S) projective.

11t would be more logical to call an object X of A a generator if A = (X) and a separator if h* is faithful,
but we follow the traditional terminology. Some authors say that an abelian category is finitely generated if
it equals (X)) for some X.



68 Chapter II. Neutral tannakian categories

Let S be simple. If S itself is projective, then there is nothing to prove. Otherwise,
there exists a nonsplit extension

0-S8 —>E —->S-0,

and we may choose S’ to be simple. If E; is projective, then we can take it to be P(S).
Otherwise, we repeat the construction with E; for S. In this way we get a sequence
E;»E_y» - >»E —>E =S

with each E jan essential extension of E -1 hence of S. The problem is to show that
this process stops. If A has a generator, then this is easily proved, but we only know
something weaker, and so we shall have to construct the sequence more carefully.
Let
X=F'>F'>--DF >F* >...0F =

be a composition series for X. We construct, by induction on i, an essential extension
P; » S of S such that

dimy Hom(P;, X /F") = 1g¢(X /F") - dimy End(S). (55)

First take P; = S. We now construct P, given P;. Let f1, ..., f, span Hom(P;, X /F").
Define Qy, ..., Q; by the fibre product diagram

Qj —_ X/Fi+1

l lproject

fi .
P, —— X/F!

and define Q’ to be the fibre product of the Q j over P;. Let Q be a subobject of Q' minimal
among those mapping onto P;. Then Q is an essential extension of P;, hence also of S.
As Q maps onto P;, we have an inclusion

Hom(PbX/Fi) = Hom(Q’X/Fi),
but

. (52) ) ,
dimy Hom(Q, X /F') < lg (X /F") - dimy End(S) ‘Z’ dim, Hom(P;, X /F"),

and so
Hom(P;, X /F') ~ Hom(Q, X /F?). (56)

Each f;: P; - X /F' defines a morphism Q =X /F*1 by base change, and hence a
morphism Q — X /F'*1. From this we see that every element of Hom(P;, X /F?) lifts to
an element of Hom(Q, X /F**!), and so the map

Hom(Q, X /F'*1) - Hom(Q, X /F") ~ Hom(P;, X /F")
is surjective. Thus, we have an exact sequence
0 - Hom(Q, F'*' /F") - Hom(Q, X /F"*!) - Hom(Q, X /F") — 0.

The dimensions of the end terms are lg (F'/F'*!) - dim End(S) (because F'*!/F' is
simple) and 1g,(X /F 1) . dimy End(S) ((56) and induction). Therefore,
dim, Hom(Q, X /F'*!) = 1g (X /F'**') - dimy End(S),
and we can take P;,; = Q.
The induction ends with an essential extension P(S) o P, of S such that (52) is an

equality for E = P(S) and Y = X. The lemma now shows that P(S) is projective, which
completes the proof. o
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Locally finite abelian categories as unions of module categories

PROPOSITION 3.12 Every locally finite k-linear abelian category A is a filtered union of
strictly full subcategories A, such that

o each A, is stable under finite direct sums and subquotients,

¢ each A, is equivalent to Modf 4 for some finite-dimensional k-algebra A, (not
necessarily commutative).

PROOF The category A is a union of the subcategories of the form (X). The union is
filtered because (X), (Y) C (X @ Y)). Each category (X) satisfies the first condition by
definition, and it satisfies the second by 3.4 and 3.11. o

3.13 Let A be as in 3.11, admitting a projective generator, and let B be a strictly full
subcategory of A stable under finite direct sums and subquotients. For X in A, let
i*X = X/ () Ker(a), where a runs over the epimorphisms X — Y with Y € obB. As X
has finite length,
"X=X/ ﬂ Ker(a) & @X/ Ker(a)
aEF a€eF

for some finite set F of . Thus i*X lies in B, and is the largest quotient of X in B. More
precisely, i* is a functor left adjoint to the inclusion functori: B — A,

Homg(i*X,Y) ~ Hom,(X,iY), X €obA, Y €obB.

Let P be a projective generator for A, and let A = End(P). Then Q “ipisa
projective generator for B, and B “ End(Q)isa quotient A/a of A.

According to Proposition 3.3, the functor Hom(P, —) identifies A with the category
Modf 4. In this model, P is A4, Q is Bg, and B is the subcategory of right A-modules
killed by a. In summary:

B— A A =End(P), Q=i*P,

hol~ W 1~ B = End(Q),

Mod J Mod,, j defined by A » B.

Locally finite abelian categories as comodule categories

The next proposition allows us to express the results of the last subsection in terms of
coalgebras, which are more convenient for passage to the limit.

For a k-vector space V, we let V'V denote the linear dual Homy_j;peq.(V, k) of V. Note
that VvV ® V¥ c (V ® V)Y, with equality if (and only if) V is finite-dimensional.

PROPOSITION 3.14  (a) If(C, A, ¢€) is a coalgebra over k, then (C¥,AY|cvgev,€Y) is an
algebra over k.

(b) If (A, m,e) is a finite-dimensional algebra over k, then (AY, m",e") is a coalgebra
over k.

(c) Let C be a coalgebra over k. Every right C-comodule is a left CV-module.

(d) Let A be an algebra over k. If A is finite dimensional, then every left A-module is a
right AY-comodule.
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PROOF For (a) and (b), compare the definitions 1.2 and 1.3.
For (c), let (M, p) be a right C-comodule. For m € M, write p(m) = Zl. m; ® c;, and
for f € CV, define
fom=2 fc)-my.

This makes M into a left C¥-module.
For (d), let M be a left A-module. For m € M, let {m,, ..., m,} be a basis of A - m.
Then there exist f; € AV such thata - m = ) f;(a)m; for all a € CV. Now

pm) =D m; ® f;
defines a co-action of AY on M. O

The operations in (c) and (d) are inverse, so, when C is finite-dimensional, to give a
right co-action of C on a k-vector space V is the same as giving a left action of C¥ on V.

Let C be an essentially small k-linear abelian category and w : C — Vecf(k) an exact
faithful k-linear functor. Note that the existence of w implies that C is locally finite. For
an object X of C, let Ay = End(w|(X)), and let Cx = A;’(. For any Y in (X), Ax acts on
w(Y) on the left, and so w(Y) is a right Cx-comodule; moreover, the functor Y w w(Y)
is an equivalence of categories (3.6, 3.11, 3.14)

(XY = coModf(Cx).
Define an ordering on the set of isomorphism classes of objects in C by the rule
[X] < [Y]if (X) C(Y).

Note that [X],[Y] < [X @ Y], so the set is filtered, and that if [X] < [Y], then restriction
defines a homomorphism Ay — Ax. On passing to the limit over the isomorphism
classes, we obtain the following statement.

THEOREM 3.15 Let C be an essentially small k-linear abelian category and w : C — Vecf
an exact faithful k-linear functor. Let C(w) be the k-coalgebra li_r>n[X] End(w|(X))Y. Then

w defines an equivalence of categories C — coModf(C(w)) carrying w into the forgetful
functor.

EXAMPLE 3.16 Let A be a finite-dimensional k-algebra (not necessarily commutative)
and w the forgetful functor 4Mod — Vecf(k). For R a commutative k-algebra, let ¢
denote the functor R® — : Vecf(k) - Mod(R). The action of R® A on R® w(M) defines
a map

a: R® A - End(¢row),

which we shall show to be an isomorphism by describing an inverse 5. For 1 €
End(¢row), set (1) = 14(1 ® 1). Clearly foa = id, and so we need only show that
aofs = id. For M € ob(Mody,), let M, = w(M). The A-module A ® M, is a direct
sum of copies of A, and the additivity of 1 shows that 1,gy, = 44 ® idy,. The map
a®@meam: AQ® My, - M is A-linear, and hence

RRA®M, —> RQM

l/IA®idMO l/IM

RRA®M, —> RQM
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is commutative. Therefore
(1 ®@m)=21,(1) @ m = (aof(A))(1 ® m) form € M,

i.e., aof =id.

We have shown that A ~ End(w), and it follows that, if in (3.15) we take C = 4,Mod,
so that C = (4 A), then the equivalence of categories obtained sends a left A-module to
the associated right AY-comodule (3.14).

NOTES

3.17 Theorem 3.15 was proved by Takeuchi (1977), but was known earlier to Bourbaki
(Serre 1993, §2, Thm 3).

3.18 The k-coalgebra C(w) in 3.15 is the coend of the functor
X w w(X)Y @ w(X): CPxC — Vecfy.
See 111, 6.1, below.

3.19 Itis necessary in Theorem 3.15 that C be essentially small, because otherwise the
underlying “set” of C(w) may be a proper class. For example, let S be a proper class, and
let C be the category of finite-dimensional k-vector spaces graded by S. In this case C(w)
contains an idempotent for each element of S, and so cannot be a set.

When we assume Grothendieck universes exist, we can say that C is always equivalent
to a category of comodules, but possibly only in a larger universe.

3.20 To realize the category in Theorem 3.15 as a category of modules over k-algebra, it
is necessary to introduce topologies. The category of coalgebras over k is the ind-category
of the category of finite coalgebras over k. Hence, its opposite is the pro-category of
the category of finite k-algebras, i.e., the category of profinite k-algebras. Moreover, the
category of right comodules over a coalgebra is equivalent, as a k-linear category with
a fibre functor, to the category of finite continuous modules over the corresponding
profinite k-algebra. See m0202746 and Saavedra 1972, 11, §1.

EXERCISE 3.21 Re-express everything in terms of 2-categories.

Categories of comodules

Let (C, A, €) be a coalgebra over the field k (co-associative with co-identity), and let w be
the forgetful functor coModf(C) — Vecf(k).

By definition, an object of coModf(C) is a pair (M, p;,), where M is a finite-dimensional
k-vector space and pp; : M — M ® C is a k-linear map satisfying certain conditions. On
varying M, we obtain a natural transformation p : @ - w ® C. On combining p with a
k-linearmapa : C — V,where V is a k-vector space (not necessarily finite-dimensional),
we get a natural transformationa: v > w @ V.

PROPOSITION 3.22 The map of k-vector spaces
am—a: Homk_linear(C, V) - Nat(w,w ® V) (57)

is an isomorphism.


https://mathoverflow.net/questions/202746/
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PROOF We construct an inverse. Let a be natural transformation w — w ® V. Let
¢ € C, and let M be a finite-dimensional subcomodule containing ¢ (which exists
by 1.14). Then ay(c) € M ® V, and its image under ¢ ® idy lies in V. The map
a (¢~ (e ®idy)(ay(c)) is well-defined, and is the required inverse. o

The map (49) is natural in V, and so we have a natural isomorphism of functors
Homk-linear(ca _) = Nat(w, w Q& _)- (58)

REMARK 3.23 The comultiplication map A: C — C ® C corresponds under (85) to a
natural transformation
w—->w®(CQC).

This can be shown to be the composite

P p®C
Ww—>wQR®C— (wR®C)RC~w®(CKRC).

The coidentity map € : C — k corresponds under (85) to the natural isomorphism
w — @ @ k. As the underlying vector space of C represents the functor Nat(w, » ® —),
we see that (C, A, €) can be recovered from the pair (coModf(C), w) (uniquely, up to a
unique isomorphism).

A homomorphism m : C ® C — C of k-coalgebras defines a C-coaction py;

PMRPN M®ycN®N

M&N2®™ M@CRN®C MON®C®C 2" v eN®C

on M ® N for any C-comodules M, N. On varying M and N in coModf(C), we get a
natural transformation
MM o@Quw->w@w®C.

PROPOSITION 3.24 The map
m = " Homy_coa1gebra(C ® C, C) = Nat(w @ w,0 @ @ ® C)
is an isomorphism of k-vector spaces.

PROOF Construct an inverse, as in 3.22. O

Define
¢ : coModf X coModf- — coModf,

to be the functor sending a pair of C-comodules (M, py,), (N, py) to (M @ N, pl’\'},N).

PROPOSITION 3.25 The map m — ¢™ defines a one-to-one correspondence between the
set of k-coalgebra homomorphisms m . C @, C — C and the set of k-bilinear functors

¢ : coModf X coModf . — coModf -

with the property that $(M,N) = M ® N as k-vector spaces.

(a) The homomorphism m is associative (48) if and only if, for all M, N, P in coModf(C),
the canonical isomorphism of k-vector spaces

MQINQ®P)~(MN)QP

is an isomorphism of C-comodules.
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(b) There exists a k-coalgebra homomorphism e : k — C satisfying (49), p. 57, if and
only if there exists a C-comodule U with underlying k-vector space of dimension 1
such that the canonical isomorphism of k-vector spaces

UQU~U

is an isomorphism of C-comodules.

(c) The homomorphism m is commutative (i.e., m(a ® b) = m(b ® a) foralla,b € C)
if and only if, for all M, N in coModf(C), the canonical isomorphism of k-vector
spaces

MQQN~NQRQM

is an isomorphism of C-comodules.

PROOF The first assertion is a restatement 3.24.
(a) Similar to (c).
(b) The map

M ®e M®m
M2Mk— MQCRQC —— MQC, M e coModf(C),

corresponds under (58) to ¢ — m(c @ e) : C — C. Therefore the right identity property
(49) holds if and only if the above map is py, (see 7.5). This means precisely that the
canonical isomorphism M ® k ~ M of k-vector spaces is a C-comodule map.

(c) Note that m is commutative if and only if m = moy, wherey: CQ®C - CQ®C
isc ® d — d ® c. This holds if and only if

(P":MN>MNKC)=(p"": M®N > M®N ® C).

From the definition of p™, we see that this is the case if and only if the canonical
isomorphism of k-vector spaces M @ N ~ N ® M is an isomorphism of C-comodules.

NOTEs Proposition 3.25 is due to Saavedra (1972, II, 2.6.3). See also Szamuely 2009, 6.2.

ToDoO 1 TBA Need to rewrite this proof. See IV, 2.6, 2.10.

Completion of the proof of the main theorem 3.1

THEOREM 3.26 Let (C, ®) be an essentially small k-linear abelian tensor category and
w : C — Vecf(k) an exact faithful k-linear tensor functor.

(a) The functor E_nd®(co) is represented by an affine monoid scheme G over k, and the
functor C — Repf(G) defined by w is an equivalence of categories.

(b) If (C, ®) is rigid, then G is an affine group scheme.

PROOF (a) After Theorem 3.15, we may suppose that C = coModf(C) for C a coalgebra
over k and that w is the forgetful functor. According to Proposition 3.25, the tensor
structure on C defines C-coalgebra homomorphisms m: C® C - Cande: k — C
making C into a commutative bialgebra (1.4) over k. The statement now follows from
the correspondence between bialgebras and affine monoid schemes (1.5).

(b) Because (C, ®) is rigid, (I, 5.7) shows that E_nd®(cu) = M‘g(w), and so G(R)isa
group for all k-algebras R. This implies that G is a group scheme. o

This completes the proof of Theorem 3.1. Note that, when (C, ®) is rigid, w is
automatically faithful (I, 6.5).
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REMARK 3.27 (a) Let (C, w) be (Repf(G), w®). On following through the proof of Theo-
rem 3.1 in this case one recovers Corollary 2.2: M‘X’(wc) is represented by G.

(b) In the proof of Theorem 3.26, it is possible to replace Proposition 3.25 with 1V,
2.6.

ASIDE 3.28 The proof of Theorem 3.26 makes sense under weaker hypotheses on (C, ®) at the
cost of weakening the properties of the k-coalgebra C. For example, if ® satisfies no commuta-
tivity condition, then the Hopf algebra C may be neither commutative nor cocommutative, and
this an interesting way of constructing such Hopf algebras. For more on this theme, see Breen
1994, 1.5.

4 A criterion to be a neutral tannakian category

When the category C comes equipped with a forgetful functor to Vecf(k), the following
criterion is useful.

PROPOSITION 4.1 Let C be an essentially small k-linear abelian categoryand ® : CXC —
C a k-bilinear functor. Suppose that there are given an exact faithful k-linear functor
F: C — Vecf(k), a natural isomorphismaxy ;. X@ (Y ®Z) -> X ®Y)®Z,and a
natural isomorphismyxy : X @ Y = Y ® X with the following properties,

(@) Fo® = ®o(F X F);

(b) F(ax.yz) is the usual associativity constraint in Vecf(k);

(¢) F(yx.y) is the usual commutativity constraint in Vecf(k);

(d) there exists a unit (U, u) in C such that (FU, Fu) is a unit in Vecf(k);

(e) if F(L) has dimension 1, then there exists an object L' in C such that LQ L™ ~ U.
Then (C, ®, a,y) is a tannakian category over k, and F is a k-valued fibre functor.

PROOF Certainly (C, ®, a, y) is a tensor category, and Theorem 3.26 shows that F defines
an equivalence of tensor categories C — Repf(G), where G is the affine monoid scheme
over k representing End®(F). Thus, we may assume C = Repf(G) and that F is the
forgetful functor. Let (U, u) be as in (d). Because it is a unit object, U can be identified
with k (trivial action of G). Let 1 € G(R). If L in Repf(G) has dimension 1, then
A; . L — Lisinvertible, as follows from the existence of a G-isomorphism LQ L™! — U.
It follows that Ay is invertible for all X in Repf(G), because

of A d
det(1) = N\ x =2 N d=dimX,

is invertible. Thus, G is an affine group scheme. o

NOTES Nori (1976, §1) adopts the statement of 4.1 as a definition of tannakian category.

5 The functor defined by a homomorphism of group
schemes

Let f : G — H be a homomorphism of affine group schemes over k. Using f, we can
regard an H-module as a G-module. In this way, we get an exact tensor functor

wf : Repf(H) — Repf(G)

such that
C‘)forgetoc‘)f = Wforget-
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PROPOSITION 5.1 Let f : G — H be a homomorphism of affine group schemes over k.
(a) The homomorphism f is faithfully flat if and only if the functor w/ is fully faithful
and its essential image is stable under forming subobjects.?

(b) The homomorphism f is a closed immersion if and only if every object of Repf(G) is
a subquotient of an object in the image of w/.

COROLLARY 5.2 Suppose that Repf(G) is semisimple. Then f is faithfully flat if and only
ifw! is fully faithful

REMARK 5.3 Let f : G — H be a faithfully flat homomorphism of affine group schemes
over k, and let N = Ker(f). Using f, we can regard a representation of H as a repre-
sentation of G and Repf(H) as a subcategory of Repf(G). Then Repf(H) consists of the
representations of G on which N acts trivially. In this way, we get a one-to-one corre-
spondence between the normal subgroup schemes of G and the tannakian subcategories
of Repf(G) stable under taking subobjects.

REMARK 5.4 Let
1-NL et 051

be a sequence of homomorphisms of affine group schemes over k. Assume that f is a
closed immersion and that g is faithfully flat. The sequence is exact if and only if the
following statements hold.
(a) Let V € Repf(G). Then w/ (V) is trivial if and only if V ~ «w&(W) for some
W € Repf(Q).

(b) Let V € Repf(G). There exists a subobject V, C V such that w/ (V) is the largest
trivial subobject of w/ (V).

(c) Every object of Repf(N) is a subobject of w/ (V) for some V in Repf(G) (i.e., w/ is
dominant, 5.8).

See Esnault et al. 2008, Appendix A .

Proof of (a) of Proposition 5.1

For a k-algebra A (not necessarily commutative), we let ,Modf; denote the category of
left A-modules finite-dimensional over k.

Let f : A — Bbeahomomorphism of k-algebras. Using f, we can regard a B-module
as an A-module and zModf as a subcategory of ,Modf.

LEMMA 5.5 Assume that B is finite-dimensional over k. The homomorphism f : A - B
is surjective if and only if gModf}, is a full subcategory of 4Modf stable under forming
submodules.

PROOF If f is surjective, then the subcategory zModf, certainly has the claimed proper-
ties. For the converse, let A denote the image of A in B. Then A is an A-submodule of B,
and hence also a B-submodule. As it contains the identity element 1 of B, it equals B.g

2Let F : A — B be an exact fully faithful functor of abelian categories. We say that its essential image is
stable under forming subobjects if, for all objects X of A, every subobject of F(X) is isomorphic to F(Y)
for some subobject Y of X. This condition is automatic if B is semisimple: every subobject of F(X) is of
the form e(F(X)) with e an idempotent in End(F(X)), and e(F(X)) ~ F(e’X), where ¢’ is the idempotent in
End(X) with image e.
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Let f: C — D be a homomorphism of k-coalgebras. Using f, we can regard a
C-comodule as a D-comodule and coModf(C) as a subcategory of coModf (D).

LEMMA 5.6 The homomorphism f : C — D is injective if and only if coModf(C) is a full
subcategory of coModf (D) stable under taking subobjects.

PROOF If C is finite-dimensional over k, this follows from 5.5 applied to f¥ : DV — CV
(see 3.14). In the general case, we can write C as a union C = | J C; of finite-dimensional
k-subcoalgebras (1.18), and correspondingly coModf(C) = Ul. coModf(C;). Now the
statement for C follows from the statement for the C;. o

We now prove (a) of Proposition 3.25.

If f: G — H is faithfully flat, and therefore an epimorphism, then Repf(H) can be
identified with the subcategory of Repf(G) of representations of G factoring through H.
It is therefore obvious that w/ has the stated properties. Conversely, if w/ has the stated
properties, then the homomorphism O(H) — O(G) of k-coalgebras is injective (5.6), and
so faithfully flat (Waterhouse 1979, 14.1).

Proof of (b) of Proposition 3.25

Let f : G — H be a homomorphism of affine group schemes over k. Let C be the strictly
full subcategory of Repf(G) whose objects are subobjects of objects of the form of w/(Y),
Y € ob(Repf(H)). The functors

Repf(H) — C — Repf(G)
correspond (see 3.15) to homomorphisms of k-coalgebras
O(H) - B - O(G).

As C is stable under taking subobjects in Repf(G), we see that B — O(G) is injective
(Lemma 5.6). Moreover, for Y € ob(Repf(H)),

End(wg (@’ (Y))) » End(wy|(Y))

is injective, where wg and wy are the forgetful functors, and so O(H) — B is surjective.

We now prove (b) of Proposition 3.25.

If f is a closed immersion, then O(H) — O(G) is surjective, and it follows that
B ~ O(G) and C = Repf(G).

Conversely, if C = Repf(G), then B = O(G), and O(H) — O(G) is surjective, i.e., f is
a closed immersion.

ASIDE 5.7 Statement (a) of Proposition 5.1 generalizes. A homomorphism f: G — H of
flat affine group schemes over a noetherian ring R is faithfully flat if and only if the func-
tor w/ : Repf(H) — Repf(G) is fully faithful and its essential image is stable under forming
subobjects. See Hai et al. 2024

6 Properties of G reflected in Repf(G)

In view of the previous theorems, it is natural to ask how properties of G are reflected in
Repf(G).
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Finiteness and connectedness

PROPOSITION 6.1 An affine group scheme G over k is finite if and only if Repf(G) = (X)
for some representation X, i.e., the objects of Repf(G) are subquotients of X" for some n.

PROOF If G is finite, then the regular representation X of G is finite-dimensional and
has the required property. Conversely if Repf(G) = (X), then G = Spec B, where B is the
linear dual of the finite k-algebra Ay in the proof of 3.15. o

PROPOSITION 6.2 An algebraic group G has no nontrivial finite quotients if and only if,
for every representation X on which G acts nontrivially, the subcategory (X) is not stable
under ®.

PROOF According to 5.1(a) and Proposition 6.1, there exists a non-trivial epimorphism
G — G’ with G’ finite if and only if Repf(G) has a non-trivial tensor subcategory of the
form (X). o

COROLLARY 6.3 In characteristic zero, an algebraic group G is connected if Repf(G) has
no tensor subcategory with only finitely many simple objects (up to isomorphism).

PROOF In characteristic zero, G is disconnected <= G hasanontrivial finite quotient <=
Repf(G) has a tensor subcategory of the form (X), which has only finitely many simple
objects (the quotients of any composition series for X represent the isomorphism classes
of simple objects in (X)). o

The converse to the corollary is false: in characteristic zero, every unipotent algebraic
group G is connected, but Repf(G) has a single simple object (up to isomorphism).

Algebraicity
PROPOSITION 6.4 An affine group scheme G over k is algebraic if and only if Repf(G)

admits a tensor generator, i.e., Repf(G) = (X)® for some object X.

PROOF Restatement of 3.2. O

Smoothness

6.5 Let G be an algebraic group over a field k. Is there a criterion on Repf(G) for G to be
smooth (or reduced)? In characteristic zero, every algebraic group is smooth, and over a
perfect field of characteristic p, an algebraic group is smooth if and only if it is reduced
(Milne 2017, 3.29). Note that Repf(u,) is semisimple even though u,, is not reduced.

ToDO 2 See 4.2 of arXiv:2306.03296 and mo356131.

Unipotent groups

6.6 An (affine) algebraic group G over k is unipotent if its only simple representations
are the one-dimensional representations with G acting trivially. Thus, if G is unipotent,


https://arxiv.org/abs/2306.03296
https://mathoverflow.net/questions/356131/
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then every nonzero representation has a nonzero fixed vector, and an easy induction
argument shows that, for any (V,r) in Repf(G), there exists a basis of V' for which

—
=%
% ¥
* %

—

i.e., there exists a flag such that G acts trivially on the quotients. Conversely, every
algebraic subgroup of U,, is unipotent (see, for example, Milne 2017, 14.5). An algebraic
group over k is unipotent if and only if every nontrivial algebraic subgroup of it admits a
nontrivial homomorphism to G, (ibid., 14.22). In characteristic zero, unipotent algebraic
groups are connected.

Trigonalizable groups

6.7 An algebraic group G over k is trigonalizable if its only simple representations are
those of dimension 1. An easy induction argument shows that, for any (V, r) in Repf(G),
there exists a basis of V' for which

k k %k k
k %k k
rG)cT, <
0 R,
k

Conversely, every algebraic subgroup of T, is trigonalizable (see, for example, Milne
2017, 16.2). A smooth connected algebraic group over an algebraically closed field is
solvable if and only if it is trigonalizable (Lie-Kolchin theorem, ibid., 16.30).

Reductive groups

6.8 A smooth connected algebraic group G over k is reductive if it has no nontrivial
smooth connected normal unipotent algebraic subgroup and this condition continues
to hold under extension of the base field k. When k is perfect, the condition has to be
checked only over k, and a smooth connected algebraic group is reductive if and only if
it has a faithful semisimple representation (see, for example, Milne 2017, 19.17).

6.9 Let G be an affine group scheme over a field of characteristic zero. Then G is a
reductive if and only if

(a) Repf(G) has a tensor generator (so G is algebraic; 6.4),

(b) Repf(G) contains no nontrivial object X such that (X) is stable under ® (so G is
connected; 6.2), and

(c) Repf(G) is semisimple (so G is reductive; 6.13).
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Semisimple groups

6.10 A smooth connected algebraic group G over k is semisimple if it has no nontrivial
smooth connected normal solvable algebraic subgroup and this condition continues
to hold under extension of the base field k. When k is perfect, the condition has to be
checked only over k.

6.11 A reductive group G is semisimple if and only if its centre is finite. The centre
of G is reflected in the gradations on Repf(G) (see 9.2 below). For example, let D be
a diagonalizable algebraic group with character group M. To give a homomorphism
D — Z(G) is the same as giving an M-gradation on Repf(G).

6.12 Let G be a reductive group. Then G /G is a torus, which is trivial if and only if G
is semisimple. It follows that G is semisimple if and only if there do not exist nontrivial
representations V and W of G such that V'@ W is trivial.

Semisimple tannakian categories

In this subsection, the field k has characteristic 0 (except in 6.19).

THEOREM 6.13 Let G be a connected affine group scheme over k. The category Repf(G) is
semisimple if and only if G is pro-reductive (i.e., a projective limit of reductive groups).

The theorem fails (both implications are false) if k has nonzero characteristic.

This will be proved as a consequence of a series of lemmas (for another exposition of
the proof, see Milne 2017, 22.42). As every finite-dimensional representation G — GLy,
of G factors through an algebraic quotient of G, we can assume that G itselfis an algebraic
group.

LEMMA 6.14 Let (V,r) be a representation of a connected algebraic group G over k; a
subspace W C V is stable under G if and only if it is stable under Lie(G).

PROOF We have
W is stable under G < Stabg(W) = G.

As Stabg (W) is smooth and G is connected,
Stabg(W) = G < Lie(Stabg(W)) = Lie(G)
(Milne 2017, 10.15). On the other hand,
W is stable under Lie(G) < Staby; (W) = Lie(G).
As Lie(Stabg (W) = Staby e (W) (ibid., 10.31), the statement follows. O
LEMMA 6.15 The category Repf(G) is semisimple if and only if Repf;(Gg) is semisimple.
PROOF This follows from Proposition 6.20. O

LEMMA 6.16 (WEYL) Let g be a semisimple Lie algebra over k. Every finite-dimensional
representation of g is semisimple.
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PROOF For an algebraic proof, see, for example, Humphreys 1972, 6.3. Weyl’s original
proof is as follows: we can assume that k = C; let g, be a compact real form of g, and let
G, be a connected simply-connected real Lie group with Lie algebra g,; as G, is compact,
every finite-dimensional representation (V, r) of it carries a gy-invariant positive-definite
form, namely, (x, y), = fGo(x, y)dg, where (, ) is any positive-definite form on V, and
therefore is semisimple; thus every finite-dimensional (real or complex) representation
of G, is semisimple, but, for any complex vector space V, the restriction map is an
isomorphism
Hom(G, GLy) ~ Hom(G,, GLy,),

and so every complex representation of G is semisimple. O
For the remainder of the proof, we assume that k is algebraically closed.

LEMMA 6.17 Let N be a normal algebraic subgroup of an algebraic group G. If (V,r)isa
semisimple representation of G, then (V,r|N) is a semisimple representation of N.

PROOF We can assume that V' is a simple G-module. Let W be a nonzero simple N-
submodule of V. For any g € G(k), gW is an N-module and it is simple because
g — g~'S maps N-submodules of gW to N-submodules of W. The sum >, gW, g € G(k),
is G-stable and nonzero, and therefore equals V. Thus V, being a sum of simple N-
submodules, is semisimple. O

We now prove the theorem. If G is reductive, then G = Z - G/, where Z is the centre
of G and G’ is the derived subgroup of G (Milne 2017, 19.25). Letr: G — GL; be a
finite-dimensional representation of G. As Z is a torus, r|Z is diagonalizable: V' = @i Vi
as a Z-module, where each element z of Z acts on V; as a scalar y;(z) (ibid., 12.14 et
seq.). Each V; is G’-stable and, as G’ is semisimple, is a direct sum of simple G’-modules.
It is now clear that V' is semisimple as a G-module.

Conversely, assume that Repf(G) is semisimple and choose a faithful representation
V of G. Let N be a normal unipotent algebraic subgroup of G. Lemma 6.17 shows that
V is semisimple as an N-module: V = @i V., where each V; is a simple N-module. As
N is solvable, the Lie-Kolchin theorem shows that each V; has dimension one, and as N
is unipotent, it has a fixed vector in each V;. Therefore N acts trivially on each V;, and
on V, and, as V is faithful, this shows that N = {1}.

REMARK 6.18 The proposition can be strengthened as follows: the identity compo-
nent G° of an affine group scheme G over k is pro-reductive if and only if Repf(G) is
semisimple.

To prove this, we have to show that the category Repf(G) is semisimple if and only
if Repf(G®) is semisimple. We may suppose that G is algebraic. As G° is a normal
algebraic subgroup of G, the necessity follows from 6.17. For the sufficiency, let V' be
a representation of G. Replace G with its image in GL;,. Let W be a G-stable subspace
of V. By assumption, there is a G°-equivariant map p: V — W such that p|W = id.
Define

_ _ 1 :
q: kQV -kQ@W, q=EZnggV1’
g

where n = (G(k): G°(k)) and g runs over a set of coset representatives for G°(k) in
G(k). One checks easily that g has the following properties:

(a) itis independent of the choice of the coset representatives;
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(b) for all o € Gal(k/k), o(q) = q;
(c) forally e k@ W, q(y) = g;

(d) forallg € G(k),gw -q=q-gy.
Thus q is defined over k, restricts to the identity map on W, and is G-equivariant.

REMARK 6.19 An algebraic group G is said to be linearly reductive if its representations
are semisimple. Thus, in characteristic zero, G is linearly reductive if and only if G° is
reductive. An algebraic group G over a field of characteristic p # 0 is linearly reductive
if and only if G° is of multiplicative type and p does not divide the index (G : G°). This
was proved by Nagata in 1961 for smooth algebraic groups, and is often referred to as
Nagata’s theorem. See Demazure and Gabriel 1970, IV, §3, 3.6.

Tannakian categories with the Chevalley property

A tannakian category is said to have the Chevalley property if the tensor product of any
two semisimple objects is semisimple. Chevalley’s theorem (Milne 2017, 22.43) says that,
for any algebraic group G over field k of characteristic zero, Repf(G) has the Chevalley
property. It follows that, in characteristic zero, all neutral tannakian categories have the
Chevalley property. We can extend this to nonneutral categories.

THEOREM 6.20 Let T be a tannakian category over a field k of characteristic zero. Then T
has the Chevalley property.

PROOF We may suppose that T is algebraic. Then there exists a finite extension k’ of k
such that T, is a neutral tannakian category (III, §§9,10). Let V and W be semisimple
objects in T, and let V/ and W’ be their images in T;,. Then V/ and W’ are semisimple
(1,6.17a), and so V' ® W' is semisimple. As (V @ W) ~ V' @ W', it follows that V W
is semisimple (I, 6.17c). O

In nonzero characteristic, there is only the following theorem of Deligne and Serre.

THEOREM 6.21 Let T be a tannakian category over a field of characteristic p # 0, and
letVy,...,V,, be objects of T. If the V; are semisimple and 221 (dimV; —1) < p, then
Vi® - ®V,, is semisimple.

PROOF As for the preceding theorem, it suffices to prove this for Repf(G). In that case,
it is proved in Serre 1994 when G is smooth and in Deligne 2014 in general. O

The bound ), (dim V; — 1) < p in the theorem is optimal, as the following example
shows. Let G = SL,, and for d € N, let V(d) denote the k-vector space of homogeneous
polynomials of degree d in two symbols. There is a canonical action of G on V(d) for
which V(d) is simple if d < p and nonsemisimple ifd = p. Letd,,...,d,;,1 <d; < p—1,
be integers such that )} d; = p. ThendimV(d;) = d; + 1, so

> (dimV(d;) - 1) = p,

and the existence of the homomorphism (f4,..., f) = f1-- [ fromV({d)) ® --- ®
V(d,,) onto V(p) shows that the former is not semisimple.
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7 Torsors

Basic definitions

In this subsection, we allow k to be a commutative ring. Unadorned tensor products are
over k, and unadorned products are over Spec k.

7.1 Let G be an affine group scheme faithfully flat over k, and let X be an affine scheme
over k. An action of G on X is a morphism X X G — X such that, for every k-algebra R,
X(R) X G(R) —» X(R) is an action of the group G(R) on the set X(R). This can also be
expressed in terms of diagrams. The action is said to be simply transitive if, for every R
and pair of points (x;, x,) in X(R), there is a unique g in G(R) such that gx; = x,. In
other words, for all R, the map

(t,g) — (t,tg): X(R) X G(R) —» X(R) X X(R)
is a bijection. This is equivalent to the morphism
XXG-o>XxX

being an isomorphism.

7.2 Let u: X X G — X be a simply transitive action of G on an affine k-scheme X. We
say that (X, u) is a torsor under G over k (for the fpqc topology) if X(R) # @ for some
faithfully flat k-algebra R. For example, G acting on itself by right translation is a torsor
under G over k (this is the trivial torsor). There is an obvious notion of a morphism of
torsors under G over k.

7.3 Let (X, u) be a torsor. By assumption, there exists a P € X(R) for some R faithfully
flat over k. For all R-algebras R/,

g~ Pg: GR) - X(R)

is a bijection compatible with the actions of G(R’), and so X ~ Gy as Gg-torsors. Hence
(X, ) is locally trivial for the fpqc topology. Conversely, an affine k-scheme with an
action of G is a torsor if it is locally isomorphic to the trivial torsor. Note that a torsor
over k is faithfully flat over k (because it becomes faithfully flat over some faithfully flat
R).

SUMMARY 7.4 Let G be an affine group scheme faithfully flat over k, andlet u : XXG —
X be an action of G on an affine scheme X over k. The pair (X, i) is a torsor under G
over k if each of the following (equivalent) conditions holds:

(a) the action is simply transitive and X (R) # @ for some faithfully flat k-algebra R;

(b) the action is simply transitive and X is faithfully flat over k;

(c) (X, u) is locally isomorphic for the fpqc topology to the trivial torsor (G acting
itself by right translation).

We sometimes write “G-torsor over R” instead of a “torsor under G over R”.

7.5 Let S = Speck, and endow the category Affg of affine schemes over S with the
fpqc topology. Let G be a sheaf of groupson Sand 4 : X X G — X an action of G on a
sheaf of sets X. We call X a torsor under G over S if (X, u) is locally isomorphic to the
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trivial torsor, i.e., there exists a finite surjective family of flat morphisms S; — S of affine
S-schemes such that (X, u)|S; is isomorphic to G|S; acting on itself by right translation
for each i.

When G is an affine group scheme flat over S, a torsor under G in the sense of
schemes is also a torsor in the sense of sheaves of sets, and descent theory shows that
every torsor of sets arises from an essentially unique torsor of affine schemes.

7.6 Let G — H be a homomorphism of affine group schemes flat over k, and let P
be a torsor under G over k. The quotient of the sheaf P X H by the diagonal action
(p,h)g = (pg, g h) of G is represented by a torsor P A® H under H over k.

ToDoO 3 Add the interpretation of torsors under affine group schemes as Hopf Galois extensions.

Projective limits

In this subsection, k is a field.

PROPOSITION 7.7 Let X be a torsor under an affine group scheme G over k. Let G:kiﬁ G;,
as in 1.20, and let X; = X A® G;. For all i, the map X(k¥) — X;(k¥) is surjective; in
particular, X (k¥) # @.

We first need a lemma from topology. Let (X;);er, (¢;,j)i<j> be a filtered projective
system of topological spaces and continuous maps. If the X; are non-empty and compact
(i.e., quasi-compact and T,), then l(iEX ; is nonempty according to a standard theorem.
The next lemma shows that we may weaken T, to T; in this statement provided that we
require the transition maps to be closed.

LEMMA 7.8 Let (X;)ics, (¢i))i<j be a filtered projective system of topological spaces and
continuous maps. If

(a) the X; are non-empty, quasi-compact, and T,, and

(b) the ¢; j are closed maps,

then l(iEXi is nonempty. Furthermore, if, for some fixed i, the maps ¢; j : X; — X; are
surjective for all j > i, then the map l(iEX j = X is surjective.

PROOF Let S be the set of families (A4;);c; such that A; is a nonempty closed subset
of X; and ¢; j(A;) C A; forall i, j € I with j > i. Define an ordering on 8 by setting
(4;) < (By)ifA; ¢ B;foralli € I. By quasicompactness (8, >) satisfies the hypotheses of
Zorn’s lemma, and so there exists an element (A;);c; of S that is minimal (with respect
to <). By (b), B; f iji ¢; j(A;) is closed in A;, and it is easy to see that (B;);c; € 8. By
minimality, B; = A; for all i.

For some fixed i, let x; € A;, and define

¢i_j1(xi)nAj ifj>i

4j

C. = .
J otherwise.

The condition T; implies that (C;);c; € 8. By minimality, A; = C; = {x;}. As this is true
for all i, we see that (x;);c; € lim X;. This proves the first statement, that l(iEX i # 0,
and the second statement follows from the first applied to the projective system with
Y;= ¢i‘jl(xi) for j > i, where x; is any element of X. O
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PROOF (OF PROPOSITION 7.7) If G is algebraic, then X is an affine scheme of finite type
over k, say, X = SgecA with A a nonzero finitely generated k-algebra. For any maximal
ideal mof A, k' € A /m is a finite extension of k (Zariski’s lemma), and X (k") # @.
Hence X (k?) # @.

In the general case, if I contains a countable cofinal subset, then we may suppose

that I = N. The maps
o XG> e X () - X (k)

are surjective, and so the statement is obvious in this case.

For more general I, we want apply Lemma 7.8. However, the transition maps
X j(kal) — X;(k) are not closed for the Zariski topology, and so we need to define
a new “orbit topology”.

Let Y be a torsor under an algebraic group H over k, and consider the collection €
of subsets of Y(k?) that are finite unions of orbits yH’(k), where y ranges over Y (k)
and H' ranges over the algebraic subgroups of H. These sets are closed for the Zariski
topology on Y (k?!), which is noetherian, and so any infinite intersection of such subsets
is actually a finite intersection. As y,H;(k¥) n y,H, (k%) is either empty or equal to
z(H, N H,)(k?") for any element z of the intersection, we see that every finite intersection
of sets in G, hence every intersection, lies in C. It follows that the elements of € are the
closed sets of a topology on X (k) - this is the orbit topology. As every y € H(k¥) is an
orbit of the trivial group, the topology is T;. It is quasi-compact because of the property
we proved for infinite intersections.

We now prove Proposition 7.9. The transition maps ¢;; : X j(kal) — X;(k¥) are
surjective. When we endow each set X;(k) with its orbit topology, they are continuous
because, if H is an algebraic subgroup of G; and x € X;(k%), then ¢J7i1(xH (k) =
x'H'(k*), where x’ is any preimage of x in X;(k*) and H' is the preimage of H in G;.
They are also closed because, if H is an algebraic subgroup of G j and x e X j(kal), then
¢;i(xH k) =¢ ii(0OH' (k¥), where H' is the image of H in G; (an algebraic subgroup).
Thus, the proposition follows from Lemma 7.8. o

COROLLARY 7.9 Let G be an affine k-group scheme, and write G as a projective limit m G,
as in 1.20. For all i, the map G(k*) — G;(k™) is surjective.

PROOF Apply Proposition 7.7 to X = G. o

ASIDE 7.10 Let G — H be a faithfully flat homomorphism of algebraic groups over a field k and
X — Y an equivariant morphism of homogeneous spaces. When X(k?') and Y (k?') are endowed
with the orbit topology, the map X (k¥ - Y(k?) is closed and continuous.

Using this, it is possible to prove Proposition 7.7 for homogeneous spaces. More generally,
for any faithfully flat homomorphism f: G — H of affine group schemes over k, the map
f) : G(k¥) — H(k¥) is surjective (Demazure and Gabriel 1970, III, §3, 7.6).

NOTES The orbit topology and Lemma 7.8 are used to prove Corollary 7.9 in Hochschild and
Mostow 1957, and to prove Proposition 7.7 in Wibmer 2022.

8 Classification of the fibre functors

Statements

Let C be a neutral tannakian category over k. By definition, there exists a fibre functor
w with values in k and we proved (3.1) that, if we let G = Aut®(w), then w defines
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an equivalence C = Repf(G). For any fibre functor » with values in a k-algebra R,
composition defines a pairing

Fom®(w,n) X Aut®(w) - FHom®(w,n)

of functors of R-algebras. Proposition 5.7 of Chapter I shows that Hom®(w,n) =
Jsom®(w,n), and therefore that 7om®(w, n) satisfies condition (a) of 7.5 to be a torsor.

THEOREM 8.1 Let C be a neutral tannakian category over k,and let w be a k-valued fibre
functor.

(a) For any fibre functor ) on C with values in R, 7om®(w,n) is representable by an
affine scheme faithfully flat over Spec R; it is therefore a G-torsor.

(b) The functor n -~ Fom®(wg,n) determines an equivalence between the category of
fibre functors on C with values in R and the category of G-torsors over R.

We defer the proof to the next subsection.

COROLLARY 8.2 Any two fibre functors on a neutral tannakian category over k are locally
isomorphic for the fpqc topology.

PROOF Let7 be an R-valued fibre functor and w a k-valued fibre functor. Then #om®(wg, n)
is a torsor over Spec R for the fpqc topology, and so becomes trivial over some faithfully
flat R-algebra R’. This means that w and 7 become isomorphic over R’. O

COROLLARY 8.3 Let C be a neutral tannakian category over k. Any two k-valued fibre
functors of C become isomorphic over k? (and over a finite extension of k if C is algebraic).

PROOF Suppose first that C is algebraic. If w and 7 are k-valued fibre functors, then
Hom(w,n) is represented by a scheme X = Spec A, where A is a nonzero finitely
generated k-algebra. For any maximal ideal of A, A/m is a finite extension of k (Zariski’s
lemma), and X(A/m) # @.

In the general case, let w and 7 be k-valued fibre functors. Then Hom®(w,n) is
represented by a torsor under the affine group scheme Aut®(w) over k, and so has a
k3-point by Proposition 7.7. o

A nonassociative algebra® in a tensor category is a pair (X, t) consisting of an object
X and a morphism ¢ : X ® X — X (no conditions). Let A = (V, t) be a nonassociative
algebra in Vecf(k). The functor of commutative k-algebras

R ~ Aut(A ® R) (automorphisms of R-algebras)
is represented by an algebraic subgroup of GLy,, denoted Aut(A).

COROLLARY 8.4 Let (C,®) be a neutral algebraic tannakian category over k. There exists
a nonassociative algebra (X, t) in C such that, for every fibre functor over an extension k' of
k,

Aut®(w) = Aut(w(X), w(t)).

30f course, this is short for “possibly nonassociative algebra”.
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PROOF As C is neutral, there exists a k-valued fibre functor w,, and w, defines an
equivalence of tensor categories C — Repf(G), where G = Aut®(w,). According to
Milne 2020a, Theorem 1, G = Aut(A) for some nonassociative algebra A = (V, ty,) in
Repf(G). There exists a nonassociative algebra (X, t) in C and an isomorphism wy (X, t) ~
(V, ty) (unique up to a unique isomorphism). For any fibre functor w with values in an
extension k’ of k,

Aut® () € Aut(w(X), (1)),

but w becomes isomorphic to w, over some extension of k’, and so the inclusion is an
equality. O

EXAMPLE 8.5 Let V and V’ be vector spaces of the same dimension, each equipped with
a nondegenerate quadratic form. There is a canonical equivalence between Repf(O(V))
and Repf(O(V")) given by the O(V)-torsor of isomorphisms V — V.

NOTES

8.6 Define the categories in (b) of the theorem.
8.7 Restate the theorem as an equivalenc of 2-categories.

8.8 Let G be an affine group scheme over k. Let C = Repf(G), and let w be a fibre functor
on C. If w is the forgetful functor, then G ~ Aut®(w), but otherwise Aut®(w) is the
inner twist of G by the G-torsor Fom(wg,rge; , @) Thus, except when k is algebraically
closed, C only determines G up to an inner twist (i.e., it determines the band of G).

8.9 We noted in 8.8 that, over an algebraically closed field, an affine group scheme G is
determined up to isomorphism by the pair (Repf(G), ®). Without ®, we have only the
following result.

Let G be a connected reductive group over an algebraically closed field of character-
istic zero. Then G is determined up to isomorphism by the set of isomorphism classes of
its finite-dimensional semisimple representations endowed with the obvious sum and
product (i.e., by the Grothendieck semiring of Repf(G)). See, for example, Kazhdan et al.
2014.

Proof of Theorem 8.1

Recall (7.9), that we have defined V ® X when V and X are objects of Vecf; and C
respectively. We let Hom(V,X) = VY @ X. f W C V and Y C X, then the transporter
of WtoYis

(Y : W) € Ker(Hom(V,X) — FHom(W,X/Y).

Let X € ob(C), and define

Ay C End(wX), Ax =ywY: wY), YCX", n>1
Py CEnd(@X,X), Py=[),(Y:@Y), YCX" nxL

Then w(Pyx) = Ay and Py € ob({X)). For any R-algebra R, Feom(w|{(X), n|{X))(R")
is the subspace of Hom(w(Px) ®; R’,n(Px) ®& R’) of maps respecting all Y C X"; it
therefore equals n(Px) ® R’. Thus

Fom(w|(X), nI{XNR") — Homp jinear((PY), R').
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Let Q be the ind-object (P)\g)X, andletB = 11_11)1 A}\g. As we saw in 3.25, the tensor structure
on C defines an algebra structure on B; it also defines a ring structure on Q (i.e., a map
Q ® Q — Q in Ind(C)) making w(Q) — B into an isomorphism of k-algebras. We have

Hom(w,n)(R') = lim Hom(w|(X), n|(X)R)

= I(E HomR-linear(U(P)\g)’ R’)
= HomR—linear(U(Q), R)’

where 7(Q) &f h_r)n n(P}\;). Under this correspondence,

Hom®(w,n)(R") = HomR—algebra(U(Q)’R,),

and so Hom®(w,n) is represnted by 7(Q). We know (7.4) that n(P)\g) is a projective
R-module, in particular flat, and so n(Q) = h_r)n n(P}\g) is flat over R. For each X, there is
an epimorphism Py - 1, and the exact sequence

0-1—-Py—Py/1-0
gives rise to an exact sequence
0—-n(l) - U(P)\g) - n(P)\g/ﬂ) - 0.

As n(1) = R and n(Py/1) is flat, this shows that 7(Py) is a faithfully flat R-module.
Hence 7(Q) is faithfully flat over R, which completes the proof that FHom®(w,n) is a
G-torsor.
To show that 7 -~ Fom®(w,n) is an equivalence, we construct a quasi-inverse. Let
T be a G-torsor over R. For a fixed X, define R’ + 7n;(X)(R’) to be the sheaf associated
with
R w (T(R") x (w(X)®R")) /G(R").

Then X w 54(X) is a fibre functor on C with values in R.

Restatement in terms of Hopf Galois extensions

To be added.

9 Examples

Graded vector spaces

9.1 Let C be the category whose objects are the families (V"),c7 of vector spaces over k
with finite-dimensional direct sum V' = @ V". There is an obvious rigid tensor structure
on C for which End(1) = kand w: (V") w @ V" is a fibre functor. Thus, according
to Theorem 3.1, w defines an equivalence of tensor categories C — Repf(G) for some
affine k-group scheme G. This equivalence is easy to describe: take G = G, and send
(V™) to the representation of G,,, on V = € V" for which G,, acts on V" through the
character 1 — 1".
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Gradations on tannakian categories

9.2 Let M be a set. An M-gradation on an object X of an additive category is a de-
composition X = @m em X™. An M-gradation on an additive functor u : C — C'isan
M-gradation on each u(X), X € ob(C), that depends functorially on X.

Suppose now that M is an abelian group, and let D be the diagonalizable group over
k whose character group is M. For example, if M = Z, then D = G,,,, and if M = Z /nZ,
then D = u,.

An M-gradation on a tannakian category C over k can be variously described as
follows:

(a) an M-gradation, X = @ X™, on each object X of C that depends functorially on X
and is compatible with tensor products in the sense that

xeY)"= P x vy

r+s=m

(b) an M-gradation on the identity functor id¢ of C that is compatible with tensor
products;

(c) a homomorphism D — Aut®(idc);

(d) a central homomorphism D — G, where G = Aut®(w), for one (or every) fibre
functor w.
Definition (a) is simply a restatement of (b). By a central homomorphism in (d), we
mean a homomorphism from D into the centre of G defined over k. Although G need
not be defined over k, its centre is, and equals Aut®(idc), from which the equivalence of
(c) and (d) follows. Finally, a homomorphism w : D — Aut®(id¢) defines a gradation
X = @ X™ onevery X € obC: let X™ be the subobject on which w(d) acts as m(d) € k.

NOTES The results in this subsection are from Saavedra 1972, IV, 1.1.

Representations of groups of multiplicative type

9.3 Let k be a separable algebraic closure of k, and let T' = Gal(k/k). Recall that an
algebraic group G over k is of multiplicative type if every representation of G becomes
diagonalizable over k. In characteristic zero, this is equivalent to the identity component
of G being a torus. The character group X*(G) o Hom(Gg, G,,) of such a G is a finitely
generated abelian group on which T acts continuously. Let M = X*(G), and letk’ C k
be a Galois extension of k over which all elements of M are defined. For any finite-
dimensional representation V' of G, we have a decomposition

V Rk = @ ym, ym& eV k| gv=m(guvallg € Gk)}.

meM

A finite-dimensional vector space V over k together with a decomposition

k’®V:@V’"

meM

arises from a representation of G if and only if VU™ = gV forallm € M and o € .
Thus an object of Repf(G) can be identified with a finite-dimensional vector space V'
over k together with an M-gradation on V ® k’ that is compatible with the action of T.
See, for example, Milne 2017, 12.30.
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Filtrations of Repf(G)

Let V be a vector space. A homomorphism 4 : G,, — GL;, defines a filtration

- DF'W OF"V ..., F'W= o Vi
of V,where V = @i V; is the gradation defined by 4.

Let G be an algebraic group over a field k. A homomorphism 1: G,, — G defines a
filtration F* on V for every representation (V, r) of G, namely, that corresponding to roA.
These filtrations are compatible with the formation of tensor products and duals, and they
are exact in the sense that the functor V w Gr’(V) is exact. A functor (V,r) «~ (V,F*)
from representations of G to filtered vector spaces satisfying these conditions is called a
Jiltration F* of Repf(G), and a homomorphism 1 : G,, — G defining F" is said to split
F*. We write Filt(4) for the filtration defined by A.

Define FOG to be the algebraic subgroup of G respecting the filtration on each repre-
sentation of G, and, for n > 1, define F"G to be the algebraic subgroup of F G acting
trivially on the graded module (P, F'V /F*"V attached to each representation V of G.
Clearly, F"G is unipotent for n > 1.

THEOREM 9.4 Let G be a reductive group over a field k, and let F* be a filtration of Repf(G).
From the adjoint action of G on g, we acquire a filtration of g.

(a) There exists a cocharacter A of G splitting the filtration F".
(b) FOG is a parabolic subgroup of G with Lie algebra F°q.
(c) F'G is the unipotent radical of F°G, and Lie(F'G) = Flg.

(d) The centralizer Z(A) of any cocharacter A splitting F* is a connected algebraic sub-
group of F°G such that the quotient map q : F°G — F°G/F'G induces an isomor-
phism Z(1) — F°G/F1G, so

F°G =F'G X Z(Q),

and the composite qoA of 1 with q is central.

(e) Two cocharacters 1 and 2’ of G define the same filtration of G if and only if they
define the same group F°G and qod = gol’; the cocharacters 1 and 1’ are then
conjugate under F'G.

PROOF Choose a faithful representation V of G, and let P be the algebraic subgroup of G
preserving the filtration on V. Then P is obviously parabolic, and so P = P(1) for some
cocharacter 4 of G, i.e., P is the unique smooth algebraic subgroup of G such that

P(kY) = {g € G(k*) | lim A(t) - g - A()™ exists in G(kal)}
see Milne 2017, 25.1. Now 4 splits the filtration, and so (a), (b), and (c) follow from ibid.,
13.3, 25.6. o

REMARK 9.5 It sometimes more convenient to work with ascending filtrations. To turn
a descending filtration F* into an ascending filtration W,, set W; = F~; if u splits F*,
then z — u(z)~! splits W,. With this terminology, we have WG = W_,G X Z(u).

NOTES See Saavedra 1972, especially IV, 2.2.5.
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Filtered fibre functors

Let T be a tannakian category (not necessarily neutral) over a field k, and let R be a
commutative k-algebra.

A graded R-moduleis an R-module M together with a decomposition M = @n M.
With the obvious tensor structure, the graded R-modules become an R-linear abelian
tensor category. A graded R-module admits a dual if and only if it is finitely generated and
projective. To give a gradation on an R-module M is the same as giving a representation
of G, on M.

An R-valued graded fibre functor on T is an exact k-linear tensor functor from T
to the category of graded R-modules. It takes values in the finitely generated projective
graded R-modules.

A filtered R-module is an R-module M together with a family (F"M), <7 of submod-
ules

- DF'MD>F*ipM > ...

such that

Urm=m  (FM=o0

nez nez
A morphism (M,(F"M)) — (N,(F"N)) of filtered R-modules is an R-linear map
f M — N such that f(F"M) C F"N for all n. With the obvious tensor structure, the
filtered R-modules become an R-linear tensor category. A filtered R-module (M, (F"M))
admits a dual if and only if M is finitely generated and projective and the submodules
F"M are direct summands of M locally for the Zariski topology on Spec R. There is a
tensor functor

M« Gr'(M) = @ F'M/F™*'M
n

from filtered R-modules to graded R-modules.

An R-valued filtered fibre functor on T is a k-linear tensor functor w from T to
the category of filtered R-modules such that the functor X w Gr’(w(X)) is exact. For
example, if w is an R-valued graded fibre functor on T, then

X w M,(F'M), MEP o), FMED X)),
ieZ i>n

is a filtered fibre functor on T. Filtered fibre functors of this form are said to be splittable.
In the last subsection, we defined a filtration on Repf(G) to be a filtration on its
forgetful functor, and we saw that such a filtration is splittable if G is reductive.

THEOREM 9.6 Let w be a filtered fibre functor on T with values in a k-algebra R.
(a) There exists a faithfully flat R-algebra R’ such that w ®g R’ is splittable.
(b) Let ' be the composite of w with the forgetful functor to Mod(R). If the affine group

scheme over R representing Aut®(w') is pro-smooth (i.e., a projective limit of smooth
algebraic groups), then w is splittable.

PROOF See Ziegler 2015, Theorems 1.2 and 1.3. O

NOTES Saavedra (1972, IV, 2.2.1) states 9.6(a) as an open problem. In ibid., IV, 2.4, he gives
proofs (due to Deligne) of the theorem under various additional hypotheses, for example, if T is
neutral and k has characteristic zero.
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Tannaka duality

9.7 Let K be a topological group. The category Repf (K) of continuous representations
of K on finite-dimensional R-vector spaces is, in a natural way, a neutral tannakian
category with the forgetful functor as an R-valued fibre functor. There is therefore an
affine group scheme K over R, called the real envelope of K, and an equivalence of
categories Repf R(IZ) — Repf,(K) compatible with the forgetful fibre functors. This
equivalence arises from a homomorphism K — K(R). When K is compact, K = K(R)
and K is of finite type if and only if K is a Lie group. See Serre 1993, §5.

An algebraic group G over R is said to be compact if G(R) is compact and the
canonical functor Repf(G) — Repf(G(R)) is an equivalence. The second condition
is equivalent to each connected component of G(C) containing a real point (or to G(R)
being Zariski dense in G).

ASIDE 9.8 For the original Tannaka duality, see Tannaka 1938. Here is a review of Tannaka’s
paper (zbMATH 0020.00904):

The continuous bounded representations D of a topological group G form a semi-
group G in which three operations are defined: the Kronecker product DX x D@,
the transformation CDC~! with an arbitrary matrix C, and the formation of sums

bW o
(% oh)

G is called the dual semigroup of G. A representation A of G is a mapping that
assigns to each representation D a matrix D - A of the same degree as D, such that the
product DV x D@ is assigned the product DV- Ax D@ . 4, the transformed CDC ™!
is assigned the transformed matrix C(D - A)C™1, the sum is assigned the sum, and a
unitary representation is assigned a unitary matrix. The representations of G form
a topological group G with a suitable product and topology. This is compact, and
if G has sufficiently many almost-periodic functions, then G can be continuously
isomorphically and densely embedded in G. If G itself is compact, then G = G;
this is the duality theorem for compact groups. The main tool in the proof is the
examination of the prime ideals in the ring of almost-periodic functions on G.
van der Waerden (Leipzig)

Representations of Lie algebras

9.9 Let g be a finite-dimensional Lie algebra over a field k. The category Repf(g) of
representations of g on finite-dimensional k-vector spaces is a tannakian category over
k with the forgetful functor w as a k-valued fibre functor (apply 4.1). We examine this
category in two cases.

(a) Let g be one-dimensional and assume that k is algebraically closed. The affine
group scheme Autf’(w) is D(M) x G,, where D(M) is the diagonalizable group scheme
with character group M = (k, +), i.e., k viewed as an abelian group under addition. This
follows from Iwahori 1954.

(b) Let g be semisimple, and assume that k has characteristic zero. Then Autf’(a))
is the simply connected semisimple algebraic group over k with Lie algebra g (Cartier
1956; Milne 2007b).

9.10 Using 9.9b, it is possible to attach a tannakian category to a root system (better, a
diagram) without using algebraic groups. Simply choose a Lie algebra g with the given
root system and take the tannakian category to be Repf(g). The category has a natural
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gradation by P/Q from which it is possible to read off the category corresponding to any
lattice X in P containing Q.

Nori’s (true) fundamental group

9.11 Let S be a scheme over a field k. By vector sheaf on S, we mean a locally free
sheaf of finite rank (equivalently, a vector bundle). A vector sheaf E on S is finite if there
exist polynomials g, h € N[t], g # h, such that g(E) ~ h(E). For example, an invertible
L sheaf on S is finite if and only of L®™ ~ O for some m. With the obvious structures,
the finite vector sheaves form k-linear rigid tensor category with Og as the unit object,
but it is not necessarily abelian.

Define a vector sheaf E on a curve to be semi-stable if for every vector subsheaf

E' CE,
deg(E") < deg(E) get
rank(E’) ~ rank(E)

Let S be a complete connected reduced scheme over a field k. Following Nori 1976, we
say that a vector sheaf on S is semi-stable if for every nonconstant morphism f: C — S
with C a complete connected normal curve, f*E is semi-stable with slope u(f*E) = 0.
Let C(S/k) denote the category of semi-stable vector sheaves on S that are subquotients
of finite vector sheaves. If S has a k-rational point s, then C(S/k) is a tannakian category
over k (in particular, abelian) with a canonical k-valued fibre functor w,: E w Ej.
The affine group scheme attached to (C, wy) is called the fundamental group scheme
7111\7 (S,s) of S. It is a projective limit of finite group schemes over k. Note that C(S/k)
also has a tautologous fibre functor 7 over S such that 7, = w;.

Fix an s € S(k), and consider the triples (G, P, p), where G is a finite group scheme
over k, P is a torsor under G over S, and p € P(k) mapstos € S(k). They form a category
N(S/k,s) in an obvious way. From a homomorphism 71’11\] (S,s) = G from 71'11\] (S,s) to
a finite group scheme G over k, we get an exact tensor functor ¢ : Repf(G) — C(S/k),
and hence a fibre functor 7 = no¢ over S, a fibre functor = w;0¢ over k, and an
isomorphism 7; - . Now Fom(n,wg) is a torsor under G over S together with a
k-rational point lying over s. In this way, we obtain an equivalence of categories

M(E).

Hom(7) (S, 5),—) = N(S/k,s), (59)

where Hom(n’lv (S, s), —) is the category whose objects are finite group schemes over k
equipped with a homomorphism from 7111\] (S, s) and whose morphisms are the homo-
morphisms of k-group schemes compatible with the morphism from 7111\] (S,s). When
k is algebraically closed, the largest étale quotient of 7111\’ (S, s) is (S, s) as they both
classify the same objects.

See Nori 1976 for the original account and Szamuely 2009, 6.7, for a more recent
account.

The Galois theory of linear differential equations.

A differential field is a field K, which we shall always assume to have characteristic
zero, equipped with derivation, i.e., an additive map 6 : K — K such that d(ab) =
d(a)b + ad(b) for all a,b € K. We sometimes write a’ for da. For example, (C(T), ;—T),
is a differential field.
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Let (K, 9) be a differential field. A differential module (V, V) is a finite-dimensional
K-vector space V with an additive map V such that V(fm) = f'm + fVm for all f € K,
m € V. The choice of a basis for V' gives rise to a matrix differential equation

y' =Ay, AeM,K), yeK"

Roughly speaking, the Picard-Vessiot field for a differential module is the differential
ring generated by the solutions of the matrix differential equation. The differential
Galois group is then the group of differential k-algebra automorphisms of the Picard-
Vessiot field. It has a natural structure of an affine algebraic group. The classical theory
provides a Galois correspondence between the algebraic subgroups of the differential
Galois group and the differential subfields of the Picard-Vessiot ring. The basic problem
in the theory is how to compute the differential Galois group of a given differential
module.

There is a tannakian interpretation of the above theory, which provides new insights,
and which we now briefly describe.

Let (K,0) be a differential field. The kernel of d is a subfield k of K, called the
constant field. Let (V, V) be a differential module over (K, d). The subset V'V &f Ker(V)
is k-subspace, whose elements are called the horizontal vectors. Given an extension
(L,9) c (K, 9) of differential fields, define (V, V;) to be the differential module over
(L,0) with V; = V ®g L and such that, relative to a basis for V, V gives rise to a
differential equation with the same matrix A as V.

The differential modules over (K, 0) form a tensorial category over k. For example,
the tensor product of (V, V;) and (V,, V,)is (V; ® V,, V; ® V,), where

(Vi® V) (v ® ;) = Vi(v1) @ v, + 11 ® V,(vy),
and the dual of (V, V) is (VY, VVY), where

V¥()(v) = 3(¢(v)) — $(V(v)).

The forgetful functor (V, V) ~ V is a K-valued fibre functor, and so the category is even
tannakian.

DEFINITION 9.12 Let (V, V) be a differential module over a differential field (K, 3). A
differential field extension (L, ) D (K, 9) is a Picard-Vessiot extension for (V, V) if it
has the following properties:
(a) (L,0) has the same constant field k as (K, 9);
(b) the k-subspace VLVL of horizontal vectors in V; spans V; as an L-vector space;
(c) the coordinates of the horizontal vectors of V7, relative to an L-basis of V; coming
from a K-basis of V, generate the field L as an extension of K.

Note that if (L, 9) is a Picard-Vessiot extension for (V, V), then the condition (b)
holds for all differential modules in the tannakian subcategory ((V, V))® generated by
V,V).

THEOREM 9.13 Let (V, V) be a differential module over a differential field (K, 0).
(a) Let (L,0) be a Picard-Vessiot extension for (V, V). The functor

wp: ((V,V))® = Vecf(k), (W,V)w (W),

is a fibre functor on {(V, V))®, and Aut®(w;) is canonically isomorphic to the dif-
ferential Galois group of (V, V).
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(b) Every k-valued fibre functor on {(V, V))® arises, as in (a), from a Picard-Vessiot
extension.

In particular, when k is algebraically closed, (III, 10.1) implies that there exists a Picard—
Vessiot extension for (V, V) (unique, up to a nonunique isomorphism).

NOTES For more, see Deligne 1990, §9, van der Put and Singer 2003, and Szamuely 2009, 6.6.

Real Hodge structures

9.14 A real Hodge structure is a finite-dimensional vector space V over R together
with a decomposition

V ®gC = @pqvp,q

such that VP4 and V%P are conjugate complex subspaces of V ®p C. There is an obvious
rigid tensor structure on the category Hodp of real Hodge structures, and

w: (V,(VP9))w V

is a fibre functor. The group corresponding to Hodr and w is the real algebraic group
S obtained from G,, by restriction of scalars from C to R, that is, S = Resc /g G, (the
Deligne torus). The real Hodge structure (V, (VP9)) corresponds to the representation of
S on V such that an element 1 € S(R) = C* acts on VP9 as A"P179. There is a weight
gradationV = @V, whereV,,®C = EBP rq=m VP4, The functor (V, (VP9)) w (V,,)
from Hodp, to the category of graded real vector spaces corresponds to the homomorphism
G,, — S that, on real points, is

t—t1: RX - C*.

Rational Hodge structures

9.15 A rational Hodge structure is a Q-vector space V together with a real Hodge
structure on V @ R such that the weight gradation is defined over Q. Thus, to give
a rational Hodge structure on V is the same as giving a gradation V' = @m VmwonV
together with a real Hodge structure of weight m on V,, ® R for each m. The Tate
Hodge structure Q(m) is defined to be the Q-subspace (27i)"Q of C with h(z) acting
as (zz)™. It has weight —2m and type (—m, —m).

For a real Hodge structure (V, h), the R-linear map C = h(i) is called the Weil
operator. It acts as i97P on VP4, and C? = h(—1) acts as (—1)" on V.

A polarization of a real Hodge structure (V, h) of weight m is a morphism of Hodge
structures

P: VRV > R(—m), meZ,

such that
(x,y) » Qri)"Pp(x,Cy): VXV - R

is symmetric and positive-definite. A polarization of a rational Hodge structure V'
is a morphism of rational Hodge structures  : V ® V. — Q(—m) such that ) @ R
is a polarization of V' ® R. A rational Hodge structure is polarizable, i.e., admits a
polarization, if and only if V' ® R is polarizable. See Deligne 1979b, 1.1.

The polarizable rational Hodge structures form a tannakian category Hodg with the
forgetful functor as a fibre functor. Let G denote the associated affine group scheme over
Q. Then,
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(a) all algebraic quotients of G are reductive (in particular, connected);
(b) the quotient of G by its derived group is the (well-known) Serre protorus;

(c) the derived group of G is simply connected (hence a product of simply connected
almost-simple algebraic groups over Q);

(d) the simple factors of the adjoint group of G are the groups of the form Resg /q(H),
where F is a totally real number field and H is a geometrically simple algebraic
group over F such that, for all embeddings o of F in R, the real algebraic group
oH contains a compact maximal torus.

See, for example, Milne 2020b.

Hodge-Tate modules

9.16 Let K be a field of characteristic zero, complete with respect to a discrete valuation,
whose residue field is algebraically closed of characteristic p # 0. The Hodge-Tate
modules for K form a neutral tannakian category over Q, (see Serre 1979).

10 Tensor products of abelian tensor categories

In this section, we explain a construction that will be needed in the next chapter.

Tensor products of abelian categories: definition and preliminaries

In this subsection, k is a commutative ring. Unadorned tensor products are over k. When
A, B, and D are k-linear abelian categories, Rex, (A, D) is the category of k-linear right
exact functors A — D and Rex,(A X B, D) the category of k-bilinear functors A X B — D
right exact in each variable.

DEFINITION 10.1 (DELIGNE 1990, 5.1) Let A and B be k-linear abelian categories. A
pair (A X B, [X]) consisting of k-linear abelian category A [X] B and a k-bilinear functor
X : AxB — A[X B, right exact in each variable, is the tensor product of A and B if it
has the following universal property: for all k-linear abelian categories D, the functor

F w Fo[X: Rex;(A[XB,D) — Rex(A X B, D) (60)

is an equivalence of categories.*

LEMMA 10.2 Ifitexists, (A[X] B, [X]) is unique (up to an equivalence, unique up to a unique
isomorphism).

PROOF Let A and B be k-linear abelian categories, and let h, and hg be the corresponding
pseudofunctors 6°° — €, where € is a 2-category such that € is some set of k-
linear abelian categories and Hom(A, B) = Rex, (A, B). The 2-category Yoneda embedding
theorem says that

h: Hom(A, B) — Hom(hy, hg) (61)

is an isomorphism of categories (A.31). In the present situation, we can replace €-a{
with a 2-category of small k-linear abelian categories. If (A [X] B, [X]) and (A X' B,[X') are
two tensor products of A and B, then we are given a specific equivalence hagg — hagys.

“In this section, we largely ignore sizes. If A and B are locally small, then Hom(A, B) need not be locally
small unless A is small. In practice, A and B are essentially small, and we can require D to be small.
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which corresponds under (61) to an equivalence A [X] B — A X' B, uniquely determined
up to a unique isomorphism. 0

We shall prove the existence for locally finite k-linear abelian categories. Without
some finiteness condition, the tensor product need not exist, even for k = Q (see 10.15
below).

Let A and R be rings (not necessarily commutative), and let M be an (A, R)-module.
The functor

Fy: Mody —» Modg, X wXQ®@4 M

is right exact and commutes with all direct sums. It has been known since about 1960
(Eilenberg, Gabriel, Watts) that every such functor arises in this way. We prove a more
precise statement. Note that Fy, is natural in M: a homomorphism f: M — N of
(A, R)-bimodules defines a natural transformation F; — Fy whose value on X is

idy®f: X®4M — X ®4 N.
PROPOSITION 10.3 The functor
M ~ Fp;: 4Modr — Rex(Modf 4, Modg)
is an equivalence with quasi-inverse F ~ F(Ay).

PROOF From a natural transformation u : Fy; — Fy, we get a morphism

MA@ M-5A®,N ~N.

When applied to u = Fy, where f: M — N, this gives back f. Thus, the functor
M -+ F), is faithful.
Letu: Fy; — Fy be a natural transformation. For X in Modf 4, we shall show that

Uy : X®@M > X QN

equals idy ®uyu, so u = F(uy). Let C be the collection of X for which this is true.
Certainly € contains A4, and it is closed under finite direct sums. If X,Y € € and
X - Y - Z — 0is exact, then the exact commutative diagram

XM — YQIM — ZQQM —— 0
quidX ®U,A uylidy ®uA l
XN —> YN — ZQN — 0

shows that Z € €. By definition, every X in Modf 4 arises as a cokernel
A" -5 A" -5 X - 0,

and so it lies in €. We have shown that the functor M ~ F), is full.
Let F: Modf, — Mody be right exact, and let M = F(A4). Then M is a right
R-module by definition, and it becomes a left A-module through the map

F
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Note that, fora € A, r eR,m e M,
(am)r £ (F(a)(m))r = F(a)(mr) = a(mr),

and so M € 4,Modg. We shall show that F is isomorphic to Fy,.
For X in Modf 4, we regard Homy(M, FX) as a right A-module by

(f - a)(m) = f(am).

Then
def

fx =

is A-linear: forae A, me M,t: A - X,

F
(X ~ Hom, (A, X) — Homg(M,FX))

F(ta)(m) = F(tea)(m) = F()(F(a)(m)) = F(t)(am) = (F(t)a)(m).

Let gx : X ® M — FX be the R-linear map corresponding to fx under the canonical
isomorphism
Hom 4 (X, Homz(M, FX)) ~ Homy(X ® M, FX),

and let C be the collection of X such that gy is an isomorphism. Then € contains A4, is
closed under finite direct sums, and contains the cokernel of X — Y if it contains X and
Y. As before, this implies that € = ob Mod,, and so g is an isomorphism Fy; ~ F.

Tensor products of abelian categories: construction

In this section k is a field.

Let A be a finite-dimensional k-algebra and R a k-algebra (not necessarily commu-
tative). We now let 4Mody denote the category of (A, R)-bimodules such that the two
actions of k agree. For M in 4Modg, F), is k-linear, and so we have the following variant
of Proposition 10.15.

PROPOSITION 10.4 The functor
M ~» FM : AMOdR d REXk(MOde, MOdR)
is an equivalence of categories with quasi-inverse F ~ F(A,)

PROPOSITION 10.5 Let A, B be finite-dimensional k-algebras and R a k-algebra. The
functor
F w F(A,B) . ReXk(MOde X MOde, MOdR) - A®BM0dR

is an equivalence of categories.
PROOF The proof is a variant of that of Proposition 10.3. o
PROPOSITION 10.6 Let A and B be finite-dimensional k-algebras. Then

® : Modf 4 X Modfg — Modf 4g,5, (M,N) w» M ®; N,

is the tensor product of Modf 4, and Modf.
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PROOF We have to show that, for any small k-linear abelian category D, the functor
F + Fo@® : Rexi(Modf 455, D) = Rexi(Modf 4 X Modfg, D) (62)

is an equivalence of categories. If D — D' is fully faithful and exact, and the statement is
true for D’, then it is true for D. Now a variant of the full embedding theorem (Mitchell
1965, VI, 7.2) allows us to replace D with Mody, for some k-algebra R. In this case, (62)
has quasi-inverse

10.5 10.4
ReXk(MOde X MOde, MOdR) —> A®BMOdR —> REXk(MOde®B, MOdR). O

THEOREM 10.7 (DELIGNE 1990, 5.13) Let A and B be essentially small k-linear abelian
categories (k a field). If A and B are locally finite (6.15), then their tensor product exists and
is locally finite.

PROOF Write each of A and B as filtered unions of subcategories A = | J A, and B =
B asin (II, 3.12). Now A, X B; exists for each a, 8 (by 10.6), and the transition ma
gk a B y p

A, XBg > Ay KBy, a<a, B<f,
is fully faithful and exact because it can be identified with the map
Mod, g, — Mod;_ g3,
defined by a surjective map of k-algebras A, ® B; — A, ® B (see I, 3.13). Therefore,

li_l’)n(|Z|Z Ay xBg = A, XIBg)
a.p
has the required properties. o

PROPOSITION 10.8 Let A, B, and C be locally finite k-linear abelian categories. There are
canonical equivalences of categories
AKI(BXIC) «— (AKIB)XIC
AXB < BX A.

PROOF Obvious from the definitions. O

PROPOSITION 10.9 Let A and B be locally finite k-linear categories, and let (A [X B, [X]) be
their tensor product.

(a) The functor[X]: A X B — A[X B is exact in each variable.

(b) The functor [X induces isomorphisms
Hom, (X3, X,) ® Homg(Y;,Y;) ~ Hom(X; X Y3, X, X Y5),

all X;,X, € obA, Y,,Y, € obB.
(c) The functor [X makes (A [ B) the tensor product of A°? and B°P.

(d) For all small k-linear abelian categories D, the functor [X induces an equivalence of
categories
Lex(A [X] B, D) = Lex(A X B, D),

where Lex denotes the category of k-linear functors left exact (in each variable).
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PROOF It suffices to prove each statement for A = Modf 4 and B = Modfg, where A and
B are finite-dimensional k-algebras (see the proof of 10.7).

(a) As X = ®y, this is obvious.

(b) For finitely generated A and B modules, we have a bijection

Homy (M}, M,) ® Homy (N1, N;) ~ Homy(M; ® Ni, M; ® N;)
f®gr (m@ne f(m)® gh).

Under the bijection, maps that are A and B linear correspond to maps that are A @ B-
linear.
(c) For a finite-dimensional k-algebra A, the functor

M MYE Hom, (M, k) : (Modf 4)°* — Modf 4op
is an equivalence of categories because MVY ~ M and (A ® B)°P ~ A°P ® B°P. Therefore,
Modfzp & Modf;p ~ MOdeop®Bop ~ MOdf(A®B)0p ~ (MOde g MOde)Op .

This proves the statement.
(d) Under A — A°P, right exact functors go to left exact functors. Therefore, this
follows from (c) . O

PROPOSITION 10.10 Suppose that the functors F: AXB — Dand F': AKIB - D
correspond under (60), p. 95. If F is exact in both variables and k is perfect, then F’ is exact.

PROOF Again, it suffices to prove this in the key case 10.12 below. o

10.11 Let A and B be finite-dimensional k-algebras and S a simple A ®; B-module.
There exist a simple A-module M and a simple B-module N, both finite-dimensional
over k, such that S is a quotient of M @, N (Bourbaki A, 7.7, Pptn 8). The centres kj,
and ky of End4(M) and Endg(N) are finite field extensions of k. If k is perfect, they
are separable over k, and hence k;; ® ky is a semisimple k-algebra, which implies that
M @ N is a semisimple A ®, B-algebra (Bourbaki A, 7.4, Thm 2). In this case, S is a
direct summand of M @, N.

LEMMA 10.12 Let A and B be finite-dimensional k-algebras, and suppose that the functors
F: Modf 4 X Modfg — Modg and F’ : Modf 45 — Mody correspond under (62), p. 98.
IfF is exact in both variables and k is perfect, then F' is exact.

PROOF Let M = F(Ay, Bg) = F'((A ® B) 1) Then

FX,Y)=(X®Y)Q®ugs M
F,(Z) = Z®A®B M

We choose projective resolutions X* — X andY* — Y for X and Y, and form the complex
X' QY )®agpM. Let Torﬁ’B((X ,Y), M) denote the nth homology group of this complex.
After our assumption, Tor‘,f’B ((X,Y),M) = 0forn > 0. For Z € obModf ,g5, we define
Tor2‘®B (Z, M) similarly. We have to show that Torf,@B (Z,M)=0forn>0.IfZ =XQY
as above, then X* ® Y* — Z is a projective resolution, and therefore

AQB A,B
Tor,* (X ®Y,M) = Tor,,” (X,Y),M) = 0.
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An exact sequence
0-2'-7Z-2">0

in Modf 4gp gives a long exact sequence
- > Tori®8(Z', M) — Tori®%(z, M) — Tors®%(Z", M).

As every finitely generated A ® B-module has finite length, it suffices to show that

Torf} ®B(Z ,M) for all n > 0 and all simple A ® B-modules Z. Because

AQ®B AQ®B A®B
Tor, " (Z® Z' ,M) ~ Tor, > (Z,M) ® Tor, > (Z',M)
(Mac Lane 1963, V, §§7,8) this follows from Lemma 10.11. 0

NoTES The exposition in this subsection follows the original in Deligne 1990, §5, except that
we have been more careful in the passage to the inductive limits. See also Lattermann 1989, 3.5.
Tensor products of abelian categories in the sense of 10.1 have become known in the literature as
Deligne tensor products (see, for example, ncatlab.org).

Tensor products of abelian categories: an alternative approach

Let k be a commutative ring. Recall that a category is finitely cocomplete if it has finite
inductive limits. For example, abelian categories are finitely cocomplete.

10.13 (KELLY 1982) Let A and B be small k-linear finitely cocomplete categories. There
exists a k-linear finitely cocomplete category A « B and a k-bilinear functor

«: AXB— AXB,

right exact in each variable, with the following universal property: for all k-linear finitely
complete categories D, the functor

F ~ Fos: Rex(A « B,D) — Rex(A X B,D)
is an equivalence of categories.

10.14 (LOPEZ FRANCO 2013, THEOREM 3) Ifk is a field, and A and B are locally finite
k-linear abelian categories, then A « B is abelian and (A « B, ¢) is the tensor product of A
and B in the sense of 10.1.

10.15 This gives a second proof of Theorem 10.7. In fact, Lopez Franco (ibid. Theorem
1) shows that two small abelian categories have a tensor product in the sense of 10.1
if and only if their tensor product in the sense of 10.13 is abelian, in which case the
two tensor products coincide. Using this, he gives an example (ibid. Corollary 2) of two
Q-linear abelian categories whose tensor product in the sense of 10.1 does not exist.

Tensor products of tensor categories

Let (C, ®) be a locally finite k-linear rigid abelian tensor category. Then @ is k-bilinear
and exact in each variable (I, 6.2), and so it factors through C [X] C,

cxc 2. cxce

RlT

C
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When k is perfect, T is exact (10.10). After 10.9(a), [X is k-linear and exact in each
variable.
Let C; and C, be k-linear rigid abelian categories.

PROPOSITION 10.16 Let k be a perfect field. If C; and C, are tensorial categories over k,
then so also is C; X C,.

PROOF LetC = C,; [XIC,. Fori = 1,2, we have a tensor T; : C; [X] C; — C;. On taking
their exterior tensor product, we get a natural transformation T

T

CKC=— (C;XC)KX(C;XC)~(C;XC)HKX(C,XC,) C

)T,

which is k-linear and exact (10.10). The middle isomorphism comes from the canonical
isomorphisms in Proposition 10.8. On composing T with [X]: CX C — C[X]C, we get a
functor

®:CxC->C.

As unit object, we choose 1 [X] 1. It follows from (10.9(b)) that End(1 ® 1) ~ k.
It remains to prove that C is rigid. The equivalences (I, §5)

X;w X' CP > ¢

induce an equivalence
CP ~CPRCY —C,

denoted X ~ XV, which is characterized by
X, KX, =X KX), X €C.
We shall show that internal Homs exist by constructing a natural isomorphism
Hom(X ®Y,Z) ~Hom(Y,XV®Z), X,Y,ZeobC.

Let F,,F,: C° x C° x C — Vecf(k), denote the two functors. Both are left exact in
each variable, so this is equivalent to constructing an isomorphism between the functors

Fy,F,: CPxCP xCP x C)P x Cy X Cy — Vecf(k),

where
Fi(X1,X,5,Y1,Y,,Zy,Z,) = Hom((X; K X,) X (Y, X Y,),Z; X Z,)
~ Hom((Xl ® Yl) E (Xz ® Y2) ’Zl & Zz)
~ Hom(X; ® Y1,Z;) K Hom(X; ® Y,,Z5)
and

Fy(X1,X2,Y1,Y5,Z1,Z,) = Hom((Y; X Y,), (X) K X)) ® (Z; X Z»))
=~ Hom(Yl,XY ® Zl) & Hom(Yz,X;/ ® Zz)

For this, combine the isomorphisms (I, 4.6)

Hom(X; ® Y1,Z;) ~ Hom(Y,,X) ® Z;), X;,Y;,Z; €0bCy
Hom(XZ ® Yz,Zz) >~ Hom(Yz,X;/ ® Zz), Xz, Yz,Z3 (S Ob C2.
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It remains to show that the canonical morphism (24), p. 23,
¢: HomX,1)®Y - Hom(X,Y)

is an isomorphism for all X, Y € ob(C). We regard ¢ as a morphism of k-bilinear left
exact functors C°? x C — C. Then it suffices to show that ¢ y is an isomorphism for
X=X,XX,andY =Y, XY, with X;,Y; € obC;. When X is of the form X; X X, it
has a dual, namely, (X X X, evy, X evy,) and 8y, [X Jy,. From this the proposition
follows. O

COROLLARY 10.17 Let k be a perfect field. If C, and C, are tannakian categories over k,
then so also is C [X] D.

PROOF There exist fibre functors w; : C; — Mod(B;), where B, is a nonzero commutative
k-algebra. The functor

(X1,X3) w» 01(X7) ® w,(X;) 1 C; XxCy — Mod(B; ® B,)
is k-linear and left exact in both variables, and so it induces a k-linear left exact functor
X1 XX, » 01(X)) @ wy(X,): C [X.C, = Mod(B; ® B,).

We wish to define a natural isomorphism between w(X ® Y) and wX ®p gp, @Y. It
suffices to do thiswith X = X; X X, and Y = Y; X Y,. In this case, we have

(X1 KX5)® (Y1 XY,) 2a((X; @YX (X, ®Y3))
~0;(X; ®Y))Kw, (X, ®Y))
=~ (501X1 sz, 501Y1) X (szz s, CUzYz)
~ (01X ® W X5) @B, ®B, (0] ® w,Y>)
~w (X, X X5) ®B, @B, ® Y1 XY3).

We have shown that C, [X] C, has a fibre functor with values in the nonzero commutative
k-algebra B; ® B,. o

For the proof of Corollary 10.17 over nonperfect fields k, see Deligne 1990, 5.18. The
existence of a tensor product of tannakian categories is also an immediate consequence
of ITI, Theorem 1.1, whose proof, however, Corollary 10.17; see IV, §5.



Chapter III

General tannakian categories

The notion of a groupoid is a natural generalization of that of a group. In this chapter,
we show that affine groupoid schemes classify nonneutral tannakian categories in the
same way that affine group schemes classify neutral tannakian categories.

Throughout this chapter, k is the base commutative ring (usually a field). Unadorned
tensor products (resp. products) are over k (resp. Spec k).

1 Statement of the main theorem

Throughout this section, k is a field.

A groupoid in the category Set is a small category in which all morphisms are
isomorphisms. Thus giving a groupoid amounts to giving a set S (of objects), a set G
(of arrows), maps t,s : G = S (sending an arrow to its target and source respectively),
and a partial law of composition satisfying certain conditions. When S has only a single
element, G is just a group, and so we can think of a groupoid as being a “group with
many objects”.

A groupoid scheme is a groupoid in the category Aff, of affine schemes over k. Thus,
it consists of an affine k-scheme S, an affine k-scheme G, morphisms ¢,s: G = S, and
a partial law of composition o such that (S(T), G(T), t, s, o) is a groupoid (in Set) for all
affine k-schemes T. We usually refer to G as a k-groupoid acting on S. The morphism
(t,8): G — SxS allows us to regard G as an S X S-scheme. We say that G acts transitively
on S if there exists a faithfully flat morphism S’ — S x S such that Homgys(S’, G) # #;
we shall see that this is equivalent to G itself being faithfully flat over S X S.

The reader will find a detailed description of groupoids in §2. In §3, we define a
category Repf(S: G) of representations of G on locally free sheaves of finite rank on S.
This is a k-linear tensor category.

When (T, ®) is a tannakian category over k and w is a fibre functor on T over a
nonempty k-scheme S, we let Autf(w) denote the functor sending an S X S-scheme
(b,a): T — S xS to the set of isomorphisms of tensor functors a*w — b*w.

THEOREM 1.1 (DELIGNE 1990, 1.12) Let T be an essentially small tannakian category
over k and w a fibre functor on T over a nonempty affine k-scheme S.

(a) The functor Autf(w) of S X S-schemes is represented by a k-groupoid G acting
transitively on S.

(b) The functor T — Repf(S:G) defined by w is an equivalence of tensor categories.

103
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Conversely, if G is a k-groupoid acting transitively on a nonempty k-scheme S, then
Repf(S:G) is a tannakian category over k and G ~ Autf’(a)forget).

Thus the theorem provides a dictionary between tannakian categories over k equipped
with a fibre functor over S and k-groupoids acting transitively on S.

EXAMPLE 1.2 When S = Spec k, Theorem 1.1 becomes Theorem 3.1 of Chapter II.

NOTATION 1.3 Let T be a tannakian category over k. When w; and w, are fibre functors
over S, we let ﬂsom?(cul, w,) denote the functor of S-schemes

(T 4 S) Isom®(u*w1,u*co2).
When w; and w, are fibre functors over S; and S, respectively, we let

® ® ;
Isom,”(w,, w,) = f]somslxsz(pr; w,, pry @),

so, as a functor of S; X S,-schemes, Jsom?(coz, wy) is

(b.a) [ *
(T —> Sl X S2) -~ Isom (a Wy, b C()l).
For a fibre functor w over S, we put

Aut?(w) = Jsom?(w, w)

def X
Autf’(w) = f]soml?(cu, w) = Jsomfxs(prz , pry ).
Thus, Autf’(cu) is the functor of S-schemes

(T -5 8) » Aut®(u*w)

and Autf’(w) is the functor of S x S-schemes

(b.a) Qr % *
(T — SxS) w Isom®(a*w, b*w).
As a functor of k-schemes, flut,;@(co) sends a k-scheme T to
{(ba,p) | b,a: T—S, ¢:a*w-—">b*w}

According to the theorem, Autf’(w) isrepresented by an S X S-scheme (¢,5) : G — SXS

and the partial law of composition on Autf(w) makes (S, G, t, s, o) into a k-groupoid
acting on S.

Before sketching the proof of the theorem, we prove an important corollary.

COROLLARY 1.4 Let T be as in the theorem. Any two fibre functors on T over an affine
k-scheme S become isomorphic over some faithfully flat covering of S.

PROOF Let w; and w, be fibre functors on T over S; and S, respectively. The functor
sending a fibre functor over T o S; U S, to its restrictions to S; and S, is an equivalence
of categories. Thus, w; and w, arise from a fibre functor w over T, unique up to a unique
isomorphism. Let (G, T') be the groupoid representing Aut,‘?(w) as in (a) of the theorem.
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As G acts transitively on T, there exists a faithfully flat morphism T/ — T X T such that
Homyy (T, G) # @, i.e., such that Aut?(w)(T’ ) # §. Note that

TXT=(51XSl)u(SlXSZ)U(SZXSI)I_I(SZXSZ)

We now take S; = S, = S. Then the restriction of Aut,‘?(w) to the subscheme

A
SO SXS=85,X5,CTXT

of T X T is Jsom?(col, w,), and so ﬂsom?(col, w,)(T"") # @, where T" = Xrur S. AS
T" is faithfully flat over S, this completes the proof. o

We prove Theorem 1.1 in §6, after presenting various preliminaries in §2-§5. Before
outlining the proof, we review the proof in the neutral case.

Let T be a tannakian category over k and w a k-valued fibre functor on T. We want
to realize (T, w) as (Repf(G), wrorger) fOr some affine group scheme G. Initially, we forget
the tensor structure on T and simply regard it as an abelian category. A result of Gabber
(I1, 3.11) allows us to write T as a union of categories of the form Mod 4 with A a finite-
dimensional k-algebra. An elementary argument then allows us to replace Mod 4 with
coMod., where C is a coalgebra, and realize the whole of (the abelian category) T as the
category of comodules over a k-coalgebra C. Now the tensor structure on T provides C
with an algebra structure, and the existence of duals implies the existence of an antipode.

The proof in the general case is similar except that, at each stage, we must replace
an object by its more complicated “-oid” generalization, and to realize T (as an abelian
category) as a category of comodules, we appeal to the comonadic theorem in category
theory.

In §2 we develop the basic theory of affine groupoid schemes, and in §3 we show
(3.5) that the category of representations Repf(S:G) is tannakian. In §4 we explain how
to interpret representations of affine k-groupoids as comodules over coalgebroids in the
same way that representations of affine k-groups can be interpreted as comodules over
coalgebras.

In §5, we prove the comonadic theorem of Barr and Beck. This is a result in category
theory that provides a solution to the following problem: given a faithful functor F : C —
B, use F to define a structure on B with the property that C can be recovered from B and
the structure.

After these preparations, in §6 we prove Theorem 1.1. Let T be a tannakian category
over k and w a fibre functor on T over an affine k-scheme S. We first use the results on
abelian categories proved in Chapter II and the comonadicity theorem to show that the
abelian category T is equivalent to the category of comodules over the coalgebroid L(w)
of “endomorphisms of w”. Now the tensor structure on T allows us to provide L(w) with
an algebra structure, and the rigidity of T implies that Spec L(w) is a k-groupoid G acting
on S (rather than a k-monoidoid).

It remains to show that G is faithfully flat over S X S. For this, we use the statement (I,
9.8) that for a ring (A, m, e) in a tensorial category, the morphisme : 1 — A is faithfully
flat. In §10 of Chapter II, we constructed a tensorial category T [X] T with the property
that a fibre functor w on T over S = Spec B defines a fibre functor w X w on T [X] T over
S x S. The B @ B-algebra L(w) is faithfully flat because it is the image by w X w of an
Ind-object containing 1 of T@ T.

The remaining sections §7-§10 add various complements.
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REMARK 1.5 When one defines a groupoid scheme to be a groupoid in the category
of all (not necessarily affine) schemes over k and allows fibre functors over nonaffine
schemes, one arrives at the following statement.

Let T be an essentially small tannakian category over k and w a fibre functor
on T over a nonempty k-scheme S.

(a) The functor Autf’(a)) of S X S-schemes is represented by a k-groupoid
G acting transitively on S.

(b) The functor T — Repf(S:G) defined by w is an equivalence of tensor
categories.

Conversely, if G is a k-groupoid acting transitively on a nonempty affine k-

scheme S, then Repf(S: G) is a tannakian category over k and G ~ Autf’ (@forget)-
This is Deligne’s original statement (Deligne 1990, 1.12). As he remarks (ibid., 1.13), it
suffices to prove the statement with S affine. Moreover, Autf(a)) is represented by a
groupoid G affine over S x S (see IV, 1.22 below). Thus, requiring everything to be affine
changes little (and the curious reader can consult the original works of Deligne for the
more general statements).

2 Groupoid schemes

Throughout this section, k is a field.

Groupoids (in Set)

A groupoid (in Set) is a small category in which every morphism is an isomorphism.
Thus giving a groupoid amounts to giving a set S (of objects), a set G (of arrows), two
maps! t,s: G = S (sending an arrow to its target and source respectively), and a partial
law of composition,

(g,h) — goh: G&(tG - G, WhereGS>§[G={(g,h)€G><G|s(g)=t(h)},

satisfying the following conditions: composition of arrows is associative; each object has
an identity arrow; each arrow has an inverse. We often refer to (S, G) as a groupoid or to
G as a groupoid acting on S. The map (¢,5) : G — S X S allows us to regard G as a set
over S X S.

EXAMPLE 2.1 A group G defines a groupoid as follows: take S to be any singleton, so
that there are unique maps ¢t,s : G — S, and o to be multiplication on G. Conversely, if
(S,G) is a groupoid with S a singleton, then G is a group.

A groupoid (S, G) is said to be transitive if the map
(t,s): G > SxS,

is surjective, i.e., if for every pair of objects (b, a) of S there exists an arrow a — b.
Let G be a transitive groupoid. Write G, , for the fibre of G over (b, a); thus

Gpa=18€G|s(g)=a, t(g) =b}={g|g: a— b} =Hom(a,b).

'In French, t and s become b and s (but and source), and in German z and g (Ziel and Quelle).
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There is a law of composition

Gc,b X Gb,a - Gc,a

Hom(b, ¢) x Hom(a, b) - Hom(a, c).
This law makes G, o G, into a group, called the vertex or isotropy group, and
Gp 4 into a right principal homogeneous space under G,. The choice of an element
up, € Gy, defines an isomorphism adu, , : G, = G, independent of u;, , up to an
inner automorphism. The kernel G* of G is the family (G,),es. It can be viewed as a
relative group over S.

If G is transitive and G, is commutative for one (hence all) a € S, then G is said to
be commutative. In this case the isomorphism adu, , : G, — Gy is independent of
the choice of u, 4, and so there is a canonical isomorphism G, X S — G for any o € S.
Therefore, G2 is a constant group over S.

EXAMPLE 2.2 Let S be a topological space. The fundamental groupoid 11 of S is the
groupoid acting on S for which IT} , is the set of paths from a to b taken up to homo-
topy. The law of composition is the usual composition of paths. The group I, is the
fundamental group 7, (S, a). The fundamental groupoid IT acts transitively on S if S is
path-connected.

This is the archetype that should be kept in mind when thinking of groupoids.

EXAMPLE 2.3 Let Sbeasetandk afield. Let V = (V;),es be a family of k-vector spaces
indexed by S. For a,b € S, let

Gpq = Isom(V,, V).
Then G(V) & LI, pes Ob,a becomes a groupoid acting on S with s(Gp ) = a, t(Gp o) = b,
and G, X Gp, — G., the composition of isomorphisms. If the V, all have the same
finite dimension, then G(V') acts transitively on S.

A morphism of groupoids acting on S isamap f : G — H that, together with the
identity map S — S, forms a functor. When f, f' : G = H are morphisms of groupoids
acting on S, a morphism « : f — f’ is a natural transformation. Thus it is a family of
arrows o, . a — a in H, indexed by the elements of S, such that the diagrams

all
—_—

f(gb,a)

S «— Q

a
|#@a
b

ap
—_—

commute for all g, , € Gp,. In this way, the groupoids acting on a fixed S form a
2-category.

DEFINITION 2.4 Let G be a groupoid acting on S, and let V = (V,),es be a family of
k-vector spaces of the same finite dimension. A representation of G on V' is a morphism
p: G — G(V). Thus, for each g € G, we have an isomorphism p(g) : Vg = Vi),
such that

(a) for the identity element e, of G,, p(e,) : V, — V, is the identity map,
(b) p(goh) = p(g)op(h) if s(g) = t(h).
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EXAMPLE 2.5 Let (G, S, (¢, s), o) be a transitive groupoid, and let I be a group acting on
the system. Assume that I" acts simply transitively on S. Fix an element a € S, and let

E={feGlif)=a}¥| | Goya ¥ | Hom(ya,a)
Write 7 for the map E — T sending f € G, ,, toy, so
n(f) =y <= s(f)=yt(f).
Define the product of f; : y;a - aand f,: y,a - aby
f1-fa=Ffrorifa
Then f; - f, €G

and so

(f1- f2) = riva = 7(f)7(f2).

a,y172a°

Moreover,
(f1-f2) - fa=fronifronivafs=rf1-(f2-f3)
fridg=f=ids-f
foyift=idg =y i

so E is a group. We have constructed an exact sequence

15GygoE—5T—>1

of abstract groups and group homomorphisms.

REMARK 2.6 Let (S,G) be a transitive groupoid. For any a € S, the group G, is a
skeleton of the category (S, G). This example should discourage readers from considering
equivalent categories, even with a given equivalence, as being “the same”.

Groupoids internal to a category

A groupoid internal to a category is a diagram

e s
G n G £ S
5,S,t pry

inv

in the category such that the following equalities hold,

som = sopr,, fom ={topr,,

soe = idg = toe,

mo(idg Xgm) = mo(m Xg idg),

mo(idg Xse)o(idg, s) = idg = mo(e Xy idg)o(s, idg),

soinv =t, toinv = s,
mo(inv,idg) = eos,
mo(idg,inv) = eot
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The first collection of equalities expresses that the diagram is an internal category (s
and ¢ send an arrow to its source and target respectively, e sends an object to its identity
morphism, and m sends a pair of composable arrows to their composite), and the second
collection expresses that inv sends an arrow to its inverse (its existence means that
inverses exist).

EXAMPLE 2.7 A Lie groupoid is a groupoid t,s: G =3 S internal to the category of
smooth manifolds. Usually the maps ¢t and s are required to be submersions so that

G >S< G is a submanifold of G X G.
s,S,t

Groupoid schemes

A groupoid scheme over k is a groupoid internal to the category Aff; of affine schemes
over k.

DEFINITION 2.8 A groupoid scheme over k consists of

o affine k-schemes S and G,
o apair of morphisms ¢,5: G =3 S of k-schemes (making G into an S X S-scheme),

o amorphismo: G >S< G — G of § X S-schemes
8,5,t

such that, for all affine k-schemes T, the system

S(T), G(T), t,s:G(T)=z3S(T), o:G() SSZ<T)[G(T) — G(T)

is a groupoid (in Set). We usually call (S,G) a k-groupoid acting on S or an S/k-
groupoid.

2.9 The condition in the definition can be expressed in terms of diagrams.
(a) The associativity of composition says that the two morphisms

oxid
GXxGXG——GxG—G
s,S,t 8,5t id xo 8,5,t

are equal.

(b) The existence of identity maps says that there exists a morphisme: S - G
of S X S-schemes (regarding S as an S X S-scheme by A: S — S X S) such that both
morphisms

id xe

G~G x S 256G x G —=G
s,S,id s,S,t

exid
=56 x 6 —=¢G
id,S,t s,8,t

equal idg.
(c) The existence of inverses says that there exists a morphism inv: G — G of
k-schemes such that
soinv =t
toinv =5
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and the diagrams

G (inv,id) G x G G (id,inv) G x G
$,S,t $,S,t
N t
l 5 l I+
S ——— G S —— G

commute.
The morphisms e and inv, when they exist, are uniquely determined by (S, G, t, s, o).

REMARK 2.10 Without the condition (c), we get the notion of a monoidoid scheme
over k, i.e., a small category internal to the category Aff,.

DEFINITION 2.11 Let S be an affine k-scheme, and let G and H be k-groupoids acting
on S. A morphism f : G - H of S X S-schemes is a morphism of k-groupoids acting
on Sif f(T): G(T) — H(T) is a morphism of groupoids acting on S(T') for every affine
k-scheme T'. This condition can also be expressed by saying that the diagrams

GxGeLL mxH c— 1 .y
s,S,t s,S,t
\ / (63)
b N A
¢ — 1 . q S

commute.

DEFINITION 2.12 We can view a morphism G — H of S /k-groupoids as a functor from
G — H. When f, f' : G = H are morphisms of S /k-groupoids, a morphisma : [ — f’
is a natural transformation.

DEFINITION 2.13 We say that an S/k-groupoid G is transitive, or that G acts transi-
tively on S, if the morphism (¢,5) : G — S X S is covering for the fpqc topology, i.e.,
there exists a faithfully flat map T — S X S such that Homg, ¢(T, G) # @.

Obviously, G is transitive if (¢,5) : G — S X S itself is faithfully flat. Later (IV, 1.14,
1.35), we shall see that the converse is true.

EXAMPLE 2.14 When S = Speck, a k-groupoid acting on S is nothing but an affine
group scheme over k. It is automatically transitive.

Let G be a k-groupoid acting on S. For a scheme (b,a): T — S X S over S X S, we
write Gy, 4 for (b, a)*G. Note that b and a are objects of the category S(T), and G, , can
be thought of as the scheme of arrows a — b,

Gpq = “Hom(a, b)”.
The law of composition provides morphisms (of schemes over T)
Gc,b Xr Gb,a ad Gc,a-

This law makes G, o Gaa & (a,@)*G into an affine group scheme over T, which is flat

if G is transitive.
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EXAMPLE 2.15 Let S be an affine k-scheme and V a locally free Og-module of finite
rank. There exists a k-groupoid G(V') acting transitively on S such that, for any scheme
(b,a): T—> SxSoverS xS,

G(V)(T) = Isomgy, (a*V,b*V).

Fora =b =s € S, we have
G(V)s = GLVS’

where V is the fibre of V over s (a finite-dimensional x(s)-vector space).

Pullbacks of groupoid schemes

Let G be a k-groupoid actingon S, and letu : T — S be a morphism of affine k-schemes.
The pullback of Gbyuxu: TXT — SXS is a k-groupoid acting on T, which we denote
by Gr.

For example, let G be an affine group scheme over k, viewed as a k-groupoid acting

on Spec k. For any affine k-scheme S, we get a k-groupoid scheme
Gs € Gx(SxS)

acting on S, which is called the neutral groupoid scheme defined by G. In the special
case that G is the trivial group, Gg = S X S and is called the trivial S /k-groupoid.

ASIDE 2.16 There is a more abstract version of the above theory. Let E be a Grothendieck topos,
i.e., the category of sheaves of sets on some small site, and let 1 be a terminal object of E. A
groupoid (S, G, (s, t), o) in E is a bouquet if

(a) (S,G)is nonempty, i.e., the unique morphism S — 1 is an epimorphism, and

(b) (S,G)is connected i.e., the morphism (¢,5) : G — S X S is an epimorphism,

(Duskin 1982, 2013). A k-groupoid scheme acting transitively on an affine k-scheme S defines a
bouquet in the topos of sheaves of sets on Aff; for the fpqc topology.

3 Representations of groupoid schemes

Throughout this section, k is a field.

DEFINITION 3.1 Let G be a k-groupoid acting on an affine k-scheme S, and let V' be
a locally free sheaf of Og-modules of finite rank. A representation of G on V is a
morphism of S/k-groupoids G — G(V).

Explicitly, this means that for every affine k-scheme T and g € G(T), we have
a morphism p(g): Vo — Vo between the inverse images of V' with respect to
gos,got : T 3 S; these satisfy the following conditions (cf. 2.4),

(a) for the element e of G(S), p(e) is the identity map of V = V., = Vs

(b) p(goh) = p(g)p(h) if s(g) = t(h);
(c) the formation of p(g) commutes with base change T’ — T.

REMARK 3.2 We can use the explicit description to define a representation of G on any
quasi-coherent sheaf V on S. If G is transitive and for some s € S, the fibre V of Visa
vector space of dimension n over the residue field at s, then V is locally free of rank n
(see 1V, 1.23).
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3.3 Let G = SpecL, let S = SpecB, and let V be a finitely generated projective B-
module (=locally free sheaf of finite rank on S). To give a representation of G on V is
the same as giving, for every k-algebra R and g € G(R) = Hom(L, R), a homomorphism

of R-modules?
P8V Bpsg) R =V ®pyg R,

satisfying the following conditions,
(@) p(e) =idy,
(b) p(goh) = p(g)op(h) whenever goh is defined,

(c) p is compatible with base change, i.e., for any homomorphism of k-algebras
u: R - R/, the following diagram commutes

p(g)
V ®psg) R —— V ®pug) R
lV@u lV®u

p(g")

V ®g (o) R —5V ®B.i(g") R,

where g’ = G(u)(g) € G(R').3
As G is a groupoid, all p(g) are isomorphisms.
A morphism of representations (V, py,) and (W, py,) of G is a homomorphism of
B-modules ¢ : V - W such that

pv(g)
V ®g s R —=V ®s.i(g) R

l@@R l§0®R

pw(g)
W ®psg) R —— W ®p(g) R

commutes for all k-algebras R and g € G(R).
Let Repf(S:G) denote the category of representations of G on finitely generated
projective B-modules. We define the tensor product of two such representations by

V,ov) @ W, pw) =V Qg W, prg,w)

where py g /(g) is determined by the commutative diagram

pv(8)®rpw(g)
(V ®p59) B ®r W ®p59) ) ———— (V ®p(e) R) Qr (W ®p (q) R)

l_ vew(g) l_
(V ®p W) ®@p g R Prow’s (V ®5 W) ®p.g) R

2Here s(g) is the image of g under s(R) : G(R) — S(R) = Hom(B, R).
3When we use the same symbol for a map of affine schemes and the corresponding map of rings, we
have
s(g)défgos: B—-L—->R
g’défuog: B—->R->FR

s(g") def g'os =uos(g): B—>R.
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There are obvious associativity and commutativity constraints, and B, equipped with
the trivial action, is an identity object. We define the dual of a representation (V, p) to
be (VV, p¥), where p" is determined by the commutative diagram

eV (®)

VY @psg R VY @pug R
l (ov (@)™ l
% ®B,s(g) R)Y — v ®5,i(g) R)”.

In this way, Repf(S:G) becomes a k-linear rigid tensor category.

PROPOSITION 3.4 Let G be a k-groupoid acting transitively on S, and letu: T — S bea
morphism of affine k-schemes with T # (. Then Gy is a k-groupoid acting transitively on
T, and u induces an equivalence of categories

Repf(S:G) = Repf(T:Gr).
PROOF The proof uses gerbes - see IV, 1.24, below.* 0
For example, if there exists an s € S(k), then
Repf(S:G) = Repf(Gy),

where G; is the affine group scheme over k fixing s (the fibre of G over (s, 5)).

For example, let G be an affine group scheme over k, and let G be the neutral k-
groupoid scheme G x Spec(k ® k) acting on Spec(k). Then the restriction functor
Repf(G) = Repf(G) is an equivalence of categories.

PROPOSITION 3.5 If G is a transitive S /k-groupoid, then Repf(S : G) is a tannakian cate-
gory over k with the forgetful functor as a fibre functor over S.

PROOF After 3.4, we may suppose that S = Spec B, where B is a field. We know that
Repf(S:G) is a k-linear rigid tensor category.
We next show that it is abelian. Obviously, it is additive. Let

f
(V’ PV) — (Wa PW)
be a morphism in Repf(S:G). There is an exact sequence
0->Kerf—>V —>W - Cokerf -0

of B-vector spaces, and, for each g € G(R), a commutative diagram with exact rows

0 — Ker(f) ®B,s(g) R—->YV ®B,s(g) R—-W ®B,s(g) R — Coker(f) ®B,s(g) R —0
I 1
H =lpv(g) :lpw(g) i

0 — Ker(f) ®B,t(g)R - V®B,t(g)R o W®B,[(g)R — Coker(f) ®B,t(g)R — 0

(here we use that B is a field). The dashed arrows define an action of G on Ker f
and Coker f making them the kernel and cokernel of f in Repf(S:G). Obviously,

“The first section of Chapter IV is independent of the rest of this chapter - it could have been inserted
at this point.
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the canonical morphism Coker(Ker(f)) — Ker(Coker(f)) is an isomorphism, and so
Repf(S:G) is abelian. It is a k-linear rigid abelian tensor category, and the forgetful
functor w : Repf(S:G) — Vecfy is an exact faithful tensor functor.

It remains to show that End(1) = k. Let G = Spec L, and denote the maps B = L
defined by 5,t: G — S by the same letter. An endomorphism of 1 = B is given by
an element a of B, and End(1) is the equalizer of the pair of arrows s,t: B = L. The
diagram

i
N e
B®; B

commutes with i;(a) = a®1and i,(a) = 1®a. As k — B is the equalizer of the parallel
pair (i}, i,) and s ® ¢ is faithfully flat, hence injective, we see that End(1) = k. O

4 Representations of groupoids as comodules

Just as representations of affine group schemes can be realized as comodules over
coalgebras (II, §1), representations of groupoid schemes can be realized as comodules
over coalgebroids. From 4.6, k is a field.

TERMINOLOGY 4.1 Let R and S be rings (not necessarily commutative). An (R, S)-
bimodule is an abelian group M together with a left action of R and a commuting
right action of S:

(r-m)-s=r-(m-5s), reR,meM,seS.

Such a module is sometimes denoted pMg. If R, T, S are rings and My and Mg are
bimodules, then

rRMr ‘? Mg

is a well-defined (R, S)-bimodule. An (R, R)-bimodule is also called an R-bimodule.
When the rings are k-algebras (k a commutative ring), we require that the various
actions of k coincide.

DEFINITION 4.2 Let B be a ring, not necessarily commutative.> A B-coalgebroid (or
coalgebroid acting on B) is a B-bimodule L equipped with two B-bimodule homomor-
phisms (comultiplication and coidentity)

C. L—)L®L, i.e.,BLB—)BLB®BLB
B B
€. L—->B

such that the two composed maps

c®L
L —5 L@l — L®L®;zL
L&c

SWe shall only need commutative B, but allowing noncommutative rings forces us to distinguish left
from right correctly.
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are equal and the two maps

L — 5 L@l =25 BRyL~L

L —5 L®L 2 L@zB~L

equal the id;.
A morphism of B-coalgebroids (L, c,¢) — (L',c’,¢’)isahomomorphism f : L — L/
of B-bimodules such that the following diagrams commute,

L@l 2L ey 1 L—7

1 N

f

L ——— I/

When B is an algebra over a commutative ring k, a B/k-coalgebroid (or k-coalgebroid
acting on B) is a B-coalgebroid L such that the two k-module structures on L coincide.

DEFINITION 4.3 Let L be a B-coalgebroid. A representation of L is a right B-module
M equipped with a coaction of L, i.e., a homomorphism p: M — M ®g L of right
B-modules such that the two composed maps

PRL
M- ML — M®zLQsL (64)
M®c
are equal and the map
MQ®ec
M—-)M®BL—->M®BB M (65)

equals idy,;. We call (M, p) an L-comodule.
A morphism of L-comodules (M, p);) — (N, py) is a homomorphism of B-modules
f+ M — N such that the following diagram commutes

MesL L8 N@yL

e

M ——— N.

When L is a B-coalgebroid, we let coModf(L) denote the category of L-comodules
that are finitely generated and projective as right B-modules.

EXAMPLE 4.4 If B is commutative and the two B-module structures on L agree , then
L is a B-coalgebra (see II, §1), which helps explains the terminology. The notions of a
B-comodule agree in the two cases.

EXAMPLE 4.5 Let L be a B-coalgebroid. If L is flat as a left B-module, then category of
L-comodules is abelian and the forgetful functor is exact. The proof of this is the same
as that of Proposition 3.5.

Now let k be a field.
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EXAMPLE 4.6 Let G be a k-groupoid acting on S, and let G = Spec L and S = Spec B.
From the morphism (¢,s) : G — S X S, we get the structure of a B ®; B-module on L,
i.e., a B-bimodule structure such that the two k-module structures coincide. We write
the B-module structure defined by ¢ (resp. s) on the left (resp. right). The composition
law

G XG-G
s,S,t

corresponds to a map of B-bimodules

c:L->LQL
B

and the identity e : S — G corresponds to a map of B-bimodules
€: L— B.

A comparison of the diagrams in 2.9 and 4.2 shows that these structures make L into a
B/k-coalgebroid, which helps explains the terminology.

PROPOSITION 4.7 Let G = Spec L be a k-groupoid acting transitively on S = Spec B (so
L is a B/k-coalgebroid), and let M be a right B-module. There is a canonical one-to-one
correspondence between the representations of G on M and the representations of L on M.

PROOF A representation p of G on M is determined by its action on the “universal”
element
u ¥ id; € Hom(G,G) = G(L)

because, according to 3.3(c), the diagram

p(w)
MQ®pgsL —— M®p, L

lM ®g lM ®g

p(g)
M ®psg) R —— M ®p,(g) R

commutes for all g € G(R) = Hom(L, R). In turn, the L-linear map
p(u): MQpsL - MQg, L,
is determined by its restriction to a B-linear map
pv:M—>M®;g, L.

In the other direction, given a coaction p,; of L on a B-module M ana g € G(R) =
Hom(L, R), we define p(g) by the following diagram

PM®R
M ®p 5o R = M ®g, L s B®;(g) K
p(g)l |Moser (66)
M ®B,t(g) R M@mult. M ®B’t(g) K s(g)%ﬂg)R.

If p, is obtained from a p as in the first paragraph, then the action of id; given by
(66) returns p,,;. Conversely, let p be a representation of G on M. We get a coaction py,
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as in the first paragraph, and from p,, a representation g of G. Now p = g because they
agree on u = idg.

It remains to show that, under the correspondence p < py,, p satisfies the axioms
for a representation if and only if p,, satisfies the axioms for a comodule.

If g, h € G(R) with t(g) = s(h), then p(hog) is given by the diagram

R
M®sypR 228 M@s, L ® R 2%, M@y L®L ® R
’ T sBs(g) * sBt  sBs(g)
m lM®h®g®R
MQ®R®@mult.

M®pmR «—— M®pumyR &® R & R
s(h),B,t(g)  s(h).B,s(g)

and p(h)op(g) is given by

®R MQ®g®R
M®pypR 222 M®p, L ® R—5 M®gnR ® R

5,B,5(g) s(8).B.s(g)

lM@mult.
p(h)op(g) M ®B 1(g) R
lPM@R

M R——MQE R X R——— MQ®z;L ® R.
B,i(h) M@mult. B,i(h) s(h),B,s(h) M®h®R Bt s,B,s(h)

When we write py,(m) = >, m; ® ¢;, then these homomorphisms agree if and only if
1®h®YQO, m®c(t)=1@h®Z(D,p(m) R ¢))

for all k-algebra homomorphisms h,g: L — R with t(g) = s(h). This is obviously
equivalent to the maps in (64) agreeing.

Let p be a representation of G on M, and let p,, be the associated coaction. Then the
action of p(e) is given by the top row of the following commutative diagram

M®;yB —> M®g,L®;B 2 M®;B®zB —— M®;yB

l: lz id ®e¢

M—2 M@, L

It follows that the map in (65) is the identity if and only if € acts trivially on M. o

PROPOSITION 4.8 Let G = Spec L be a groupoid acting transitively on S = Spec B. The
functor

(M, p) ~» (M, ppr) : Repf(S:G) — coModf(L)

is an equivalence of categories

PROOF After proposition 4.7, it remains to show that a B-module homomorphism
f 1 M — N is G-equivariant if and only if it is a morphism of L-comodules, but this is

straighforward. o
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4.9 If we define the tensor product of L-comodules M, p;,) and (N, py) to be the L-
comodule (M @ N, pygn), Where py g is given by

M@z N 222, (M ®p, L) 8 (N @y L)

= I

(M ®pN)Q®g,; L Tom (M ®N)®p, (L & L),
id @m BRB

then the equivalence
Repf(S:G) = coModf(L)

respects tensor products.

NOTES The exposition of the proof of 4.7 follows that in Lattermann 1989, 1.4.7.

5 The comonadic theorem and applications

A faithful functor F : C — B creates a “shadow” of C on B, and it is sometimes possible
to recover C from B and the shadow. For example, in (II, Theorem 3.15), we were able to
recover C from its shadow (a coalgebra) in Vecf,. In the case we are interested in here,
the shadow is a “comonad” on B, and a standard result in category theory (Theorem
5.12) describes C as the category of “G-modules” in B.

Comonads

DEFINITION 5.1 A comonad on a category B consists of
o afunctorG: B — B,

o anatural transformation ¢ : G — GoG (the comultiplication),

o anatural transformation € : G — idg (the counit)
such that the two natural transformations

cG
G —— GoG — GoGoG
Gce

are equal and the two natural transformations

eG
G—G
Ge

G — Go

equal idg. The counit, if it exists, is uniquely determined by (G, c).
EXAMPLE 5.2 Fixaset E, and let G : Set — Set be the functor X w X X E. Then
(x,e) ~ (x,e,e): XXE >XXEXE
is a natural transformation ¢ : G — GoG, and
(x,e)»e: XXE—->X
is a natural transformation G — id. The triple (G, c, €) is a comonad.

REMARK 5.3 Let C be a category. There is a monoidal category whose objects are the
functors C — C, whose morphisms are the natural transformations, and whose tensor
productis o. A comonad is a comonoid in this category (monoid in the opposite category),
which explains the similarity of the above diagrams to earlier diagrams.
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Comonads from adjunctions

We refer the reader to A.1 for our notation concerning adjoint pairs.

F
PROPOSITION 5.4 Let C Z——— B be an adjoint pair with unitn: idc — UoF and
U

counite: FoU — idg. Then FoU is a comonad on B with comultiplication
FnU: FoU — FoUoFoU
and counit €.

PROOF The two composites in

FpUFU

FU -2, FUoFU ——, FUoFUoFU
FUFyU

agree because they both equal the horizontal natural transformation in
B B
v/ ﬂvﬁ v ﬂvﬁ
C C C

The two natural transformations

U

B—— E

—— B.

FnU eFU
FoU —— FoUoFoU 3 FoU
FUe

equal idpy by the triangle identities for the adjunction. o

EXAMPLE 5.5 For the standard adjoint pair

Set _F Ab F = forget the group structure
v U = form the free abelian group

the endofunctor FoU sends an abelian group A to the free abelian group on the underly-
ing set of A.

Statement of the comonadicity theorem

DEFINITION 5.6 Let (G, c,€) be a comonad. A coaction of G on an object X of B is a
morphism px : X — GX such that (coassociativity) the two morphisms

Px Cpx
—— GX T3 GoGX

Cx

X

are equal and (counit) the morphism

Px

X Gy —2 X

is the identity. We call such a pair (X, px) a G-comodule.
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A morphism of G-comodules (B, pg) — (B', pp/) is a morphism f : B — B’ such
that the following diagram commutes,

6B -1, gp'
TPB TPB’
!

B —— B

The category B¢ of G-modules in B is called the Eilenberg-Moore category of the
comonad (G, c,€).

F
DEFINITION 5.7 Let C —— B beanadjoint pair and (G, c, €) the associated comonad.
U

The (Eilenberg-Moore) comparison functor

®: C—BC
is defined to be
®C = (FC,Fnc)
®f = Ff.

It follows from the triangle identities and the naturality of 7 that ®C is a G-comodule
and ®f is a morphism of G-comodules.

F
DEFINITION 5.8 An adjoint pair C Z—— B is comonadic if the comparison functor
U

® : C — BY is an equivalence of categories.

F
Let C ——— B be an adjoint pair and define functors
U

G
BC e B
(_—
UG

FSf=f U°f =Gf.

Then the following diagrams commute,

C F B C v B
BG BC.

FO(B,pg) = B { U®B = (GB, Fnyp)

FG
LEMMA 5.9 The functors B¢ —— B are an adjoint pair.

UG
PROOF Consider the morphisms 7 : idge — U®0F%, ¢: FCoU® = G — idg, and
pp . (B,pg) = (GB,Fnyp). The triangle identities for (»,€) must be proven, which
means that the compositions

Fnyp Gep
(GB,Fnyp) — (GGB, Fnygg) — (GB, Fnyp)

and
€
B 6B B

are the identity for all B € obB, resp. (B, pg) € ob(B°). In the first case, this follows
from the triangle identities (147), p. 285, and in the second from the co-identity axiom.g
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DEFINITION 5.10 A split equalizer diagram consists of morphisms

f
A—h>BT; C (67)

\T/\[/

such that foh = goh, soh = idy, tog = idg, tof = hos.
5.11 In the diagram (67), h is the equalizer of f and g.° As split equalizer diagrams
remain so under all functors, 4 is, in fact, the universal equalizer of f and g.
F
THEOREM 5.12 (COMONADICITY THEOREM) Anadjointpair C . B iscomonadic
U

if and only if the following conditions hold:
(a) F reflects isomorphisms, i.e., f is an isomorphism whenever F f is.

(b) iftheimage by F of a parallel pair f, g of morphisms in C embeds in a split equalizer
diagram in B, then the pair f, g has an equalizer in C that is preserved by F.

We present the proof in the next subsection. For the proof of the opposite (dual)
statement, see Borceux 1994b, Theorem 4.4.4, Mac Lane 1998, pp. 147-150, or Riehl
2016, 5.5.1.

COROLLARY 5.13 Let F: C — B be an exact faithful functor of abelian categories. If F
admits a right adjoint functor, then the comparison functor

®: C—BY &)= (FC,Fnc)
is an equivalence of categories.
PROOF We check that F satisfies the conditions of Theorem 5.12. Let f : A — Bbea

morphism in C, and consider the exact sequence

0sKoALBoCoo.

This sequence remains exact when we apply F. If F f is an isomorphism, then FK =
0 =FC,s0K =0 = C, and f is an isomorphism. This proves (a), and the conditions
imply that every parallel pair in C has an equalizer in C that is preserved by F. O

Proof of the comonadicity theorem

Before beginning the proof, we need some definitions.

DEFINITION 5.14 A regular monomorphism is the equalizer of some parallel pair of
morphisms.

As the name suggests, regular monomorphisms are monomorphisms.

DEFINITION 5.15 Let F: C — B be a functor. An F-split equalizer is a parallel pair
f,g: A 3 Bin C together with an extension of F f,Fg: FA =3 FB to a split equalizer
diagram in B. If, in addition, there existsa t : B — A such that tof = tog =id,, then
f,g: A — Bissaid to be reflexive.

The first condition says that h equalizes f and g. Suppose that w : X — B also equalizes f and g, so
fow = gow. Let j = sow. Then hoj = hosow = tofow = togow = w, and so w factors through A — B.
The uniqueness of the factorization follows from the condition soh = id,.
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F
Let C Z— B be an adjoint pair and ® : C — B the comparison functor.
U

LEMMA 5.16 Forall C,C’ in C, ® induces a bijection
Homg(U, UFC") ~ Homgs (®C, DUFC').
PROOF We have

Hom¢(C,UFC") ~ Homg(FC,FC')
~ Homg(FY(FC,Fnc), FC")
~ Homge ((FC, Fnc), U°FC')
~ Homgq ((FC, F1c), (GFC', Fnygcr))
~ Homge (®C, PUFC’).

LEMMA 5.17 For all (B, pg) in BC,

CB
(GB, CB) - (GGB, CGB)
Gpp

is a reflexive FC-split equalizer.

PROOF The naturality of ¢ implies that Gpg and cg are morphisms of comodules. Their
common left inverse is Gez (which is a comodule morphism for the same reason). We
have

Gegocg = FUegoFnyp = F(Uegonyp) = id

because of the triangle identities (p. 285), and Gegocp = id because of the co-identity
axiom. It remains to show that

c
B—Ff ,p——C (68)
O N
€B €GB

isasplit equalizer diagram in B. However, this follows directly from the triangle equalities
and the comodule axioms. o

LEMMA 5.18 In the situation of Lemma 5.17,

o ‘s
(B, pg) —— (GB,cp) —>T (GGB, cgp)
PB

is an equalizer in BC.

PROOF Let f: (B, pp) — (GB,cp) be a morphism of modules with cgof = Gpgof.
After 5.17 and 5.11, there exists a unique map g : B’ — B such that pgog = f, and it
remains to show that g is a morphism of comodules. For this, we consider

B -2, 6B -, GGB
pB’T PBT CBT
B’ B — , GB.
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The outer rectangle commutes by assumption and the right-hand rectangle because of
coassociativity. It follows that

GppoGgopp = Gppoppog.
Since Gpg has left inverse Geg, the assertion follows. o

LEMMA 5.19 ForallCinC,

Nurc
UFC —— UFUFC
UFnc

is a reflexive F-split equalizer.

PROOF The triangle identities show that the two arrows have U, as a common left
inverse. The assertion now follows from Lemma 5.17, applied to the comodule (FC,7¢).q

LEMMA 5.20 Ifnc: C — UFC is a regular monomorphism for all C in C, then

e UFnC
C — UFC /7 UFUFC
Nurc

is an equalizer for all C.

dO
PROOF By assumption, 7)¢ is the equalizer of a pair A ——= B . We have to show that,

dl
for every morphism w : X — UFC,
UFncow = nypeow < d%w = dlow.
First of all nypcow = UFncow, and it follows

UFncoUFw = UFUFncoUFw.

‘We claim that

UFne UFnyrc
UFC ——— UFUFC —_—— UFUFUFC
UFUFnc
~_
Uerc Ueryrc

is a split kernel pair in C. This follows from (68) applied to (FC, Fnc) and (5.11). From
the claim it follows that UFw factors through UFC. Let h : X — UFC be a morphism
with UFw = UFncoh. It follows that

UFd°oUFw = UFd°oUFn.oh
= UFd'oUFncoh
= UFd'oUFuw.

Because of the naturality of 7, the following diagram commutes

dO
X —— UFC ——3 '
dl
lﬂx anFC lﬂo
UFd°

urx 2% UFUFC —— UFC'.

UFd!
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It follows that 7rod®ow = 7cod'ow, and from this the assertion follows because 7
is a monomorphism. Now the converse applies, d’ow = d'ow. Then w = nog for a
g: X — C. From this follows

NurcoW = NyrpcoNcog = UFnconcog = UFncow. o

LEMMA 5.21 Ifnc is a regular monomorphism for all C € ob C, then ® is fully faithful.

PROOF After Lemma 5.20,

e UF’?C
C —- UFC — UFUFC
Nurc

is an equalizer for all C € ob C, and after Lemma 5.18,

o DUF,
®C —— OUFC — ®UFUFC
Pnyrc

is an equalizer in BC. So, for all A € ob C, the rows in the commutative diagram

Hom(A,C) ———— Hom(A,UFC) ——— Hom(A,UFUFC)

| l! |

Hom(®A, ®C) —— Hom(®A, PUFC) —— Hom(®A, PUFUFC)

are equalizers. According to Lemma 5.16, the middle and right vertical arrows are
bijective, and so the left is also. O

PROOF (OF THEOREM 5.12) Let C € ob C. We first show that 7 is a regular homomor-
phism. According to Lemma 5.19,

Nurc
UFC —— UFUFC
UFnc

is a reflexive F-split kernel pair in C. According to hypothesis (b) of the theorem, there

d
exists an equalizer K — UFC. Because of the naturalness of 7, the morphism 7.
equalizes nyrc and UF7c, and so it factors through K,

d Nurc
K —— UFC —— UFUFC

fT % UFnc

C

According to (68) with B = FC, when we apply F to the bottom row we get an equalizer,
and after hypothesis (b), when we apply F to the top row, we get an equalizer in B.
Therefore is F f an isomorphism, which implies that f is an isomorphism. Thus 7,
is a regular monomorphism. According to Lemma 5.21, ® is fully faithful. Now let
(B, pg) € 0bBY. According to Lemma 5.17

Fnup
(FUB, Fnyg) — (FUFUB, Fnyrusg)
PB



5. The comonadic theorem and applications 125

is a reflexive FC-split kernel pair in B®. On the other hand, this pair is the image of

Nus
UB —— UFUB
Upg

under @. Therefore this is a reflexive F-split kernel pair in C, and the common left inverse
of both arrows is Ueg. After hypothesis (b), there exists an equalizer d : K — UB and

Fd RN
FK —*5 FUB —— B
FUpg

is an equalizer in B. After (68), o : B — FUB is the equalizer of the same pair, and
so there exists a unique isomorphism g : B — FK such that Fdog = pg. It remains to
show that g is a morphism of comodules. Consider

ruB 228, rurk YR FUFUB

PBT FUKT F’]UBT

B—2%  rk —f , FUB.

The right-hand square commutes because of the naturalness of 7, and the outer one
because of the coassociativity. The map pg is left invertible, and so Fd is also left
invertible. From this the commutativity of the left square follows. Thus ®K ~ (B, pg),
and we have shown that @ is essentially surjective. o

NOTES As noted, this section is standard category theory, although usually expressed for monads
rather than comonads. Our proof of the comonadicity theorem follows that in Lattermann 1989,
2.3.

Application to modules and comodules

5.22 Throughout this subsection, A and B are rings (not necessarily commutative), and
M = 4,Mjpis an (A, B)-bimodule, finitely generated and projective as a B-module, and
faithfully flat as an A-module. The B-dual of M,

M’ = zM', € Homg(M, B),

is a (B, A)-bimodule with the actions

! — ’

(b ,m )m) bn,q (m) aeAbeBmeM,m eM.
(m” - a)(m) = m'(am)

LEMMA 5.23 For any right B-module Y, the homomorphism

(y@m')» (mw—ym'(m)) : Yg %BMLX — Homp(M,Y),

is an isomorphism.

PROOF After replacing B with By for f in a suitable finite set of elements of B, we may
suppose that M is free as a B-module. For a fixed Y, both sides commute with finite
direct sums, and so it suffices to check this for M = B, where it is obvious. o
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When Y = M, the lemma says that

aMp ® gM'y ~ Endg(M), m@m' < (x » m-m'(x)). (69)
B

5.24 We have functors

FX=XQ,M

UY =Y QM. (70)

F
MOdA — MOdB
U

For X € ob(Mod,), Y € ob(Modg), there are canonical isomorphisms
Homp(X ® 4 M,Y) ~ Hom (X, Homg(M,Y)) ~ Hom,(X,Y ®3 M),
natural in X and Y. The first is defined by the pairing
(fi,x)» (me f(x®m)) : Homg(X ®4 M,Y) XX - Homg(M,Y),

and the second is induced by the isomorphism in Lemma 5.23. Hence (70) is an adjunc-
tion. The corresponding unit and counit are

N: X>XQUM M, nx)=x®936
€E:Y®M QM—-Y, ey ®m ®m)=ym'(m),
where § € M ® M’ corresponds to the identity map under the isomorphism (69).

5.25 We can now apply Proposition 5.4. Let L denote the B-bimodule

M)y %AMB,

The functor G & FoU sends a right B-module Y to Y ®g L, and GoG sends Y to
Y ®g gL ®p pLp. We have B-bimodule homomorphisms
c:L>L®zL, mM"@me—>m @5Qm

€:L—>B, m@me m'(m),
which make L a B-coalgebroid (with k = Z). The corresponding natural transformations
c: G- GoG
€: G—id

make G into a comonad. The functor F is faithful and exact because 4Mjp is faithfully
flat over A. From Corollary 5.13 we deduce the first statement of the following theorem.

THEOREM 5.26 Let M = 4Mp be an (A, B)-bimodule, finitely generated and projective as
a B-module, and faithfully flat as an A-module; let MY be its B-dual and L the coalgebroid
MY ® 4 M defined above. The functor

w . MOdA —> COMOdL, XA > (XA ® AMBHOX)’
A

where
ox(x@mM)=xQ@5Q@mMe X, M)Q (MY Q4 M),

is an equivalence of categories. Under the equivalence, A-modules of finite type (vesp. of
finite presentation) correspond to comodules of finite type (resp. of finite presentation) as
B-modules.
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Note that the diagram

MOdA

coMod;

X lﬁl‘get

MOdB

commutes.

PROOF It remains to prove the second statement.

If X is finitely generated over A, then there exists a surjection A” — X. On tensoring
this with M, we get a surjection M" — X ® 4 M. As M is finitely generated over B, so
alsoare M" and X ® 4 M.

If X ® 4 M is finitely generated as a B-module, then it has a finite set of generators

x®m, x€X, meM, i€l

The A-submodule X’ of X generated by the x; has the property that X’ ® ; M ~ X ® 4 M.
As M is faithfully flat over A, this implies that X’ = X.

Let X be finitely generated over A. Then X = A"/R for some n > 0, and X is
finitely presented if and only if R is finitely generated, and w(X) ~ 4,M%/w(R) is finitely
presented if and only if w(R) is finitely generated. Now use that R is finitely generated if

and only if w(R) is. O

REMARK 5.27 When A and B are k-algebras (k a commutative ring) and the two k-
module structures on 4 Mp coincide, the coalgebroid L o M} ® 4Mj is a k-coalgebroid.
A

EXAMPLE 5.28 In the case A = k is a field and B a k-algebra, we obtain from a finitely
generated projective B-module M, a k-coalgebroid L &MY ®y M whose coidentity is
the evaluation map. This coalgebroid coacts on M (the image of k by — ®, M) by

Po: M>MQ®gL, m—~dQ@mMEeEMOgM QM ~M Qg L.

Faithfully flat descent for noncommutative rings

We explain how to deduce a faithfully flat descent theorem for noncommutative rings
from the comonadicity theorem. This subsection can be skipped.

DEFINITION 5.29 Let f : A — Bbe aring homomorphism that makes B into a faithfully
flat left A-module. A descent datum on a right B-module Y is a homomorphism of right
B-modules py : Y - Y ®,4 B (where Y ® 4 B becomes a right B-module through the
action on B) such that the two composed maps

Py P&
Y Y ®4B > Y®,B®,y B
y®b—y®13®b
are equal and the map
byb
y - . vye,B X0 v

equals the identity map.
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With the obvious notion of morphism, the pairs (Y, p) consisting of a right B-module
and a descent datum form a category Desc(B/A). Theorem 5.26 with M = B now
provides a generalization of the faithfully flat descent theorem to non-commutative
rings.

THEOREM 5.30 (FAITHFULLY FLAT DESCENT) The functor
®: Mod, — Desc(B/A), X w (X®4B,px), px(x®b)=x®1Qb
is an equivalence of categories.
This follows from the next more precise statement.
LEMMA 5.31 Let (Y, py) be a right B-module equipped with a descent datum. Then
YEpeY o0 =y®1}
is an A-submodule of Y such that
Y ®,Bx~Y.

PROOF Consider the proof of 5.12. To an arbitrary (B, pg) € obBC, we attached an
E € obC, defined to be the equalizer of

NuB
UB —— UFUB
Ups

and we showed that ®F ~ (B, pg). In our case, the parallel arrows become

yeyQ1
Y —— Y®,B.
Py O

NOTES When the rings are commutative, it is possible to show that descent data in the above
sense correspond to descent data in the commutative sense (e.g., Waterhouse 1979, 17.1), and
so deduce faithfully flat descent for modules over commutative rings from the comonadicity
theorem. However, even for those familiar with the comonadicty theorem, this approach is
scarcely easier than the direct approach (ibid., 17.2). See Lattermann 1989, 2.4.10, 2.4.11.

6 Proof of the main theorem

After these preliminaries, we are ready to prove Theorem 1.1

The coalgebroid of endomorphisms of a fibre functor

In this subsection, we attach a coalgebroid L(w) to a fibre functor w on a tannakian
category. Recall that when k is a commutative ring and B; and B, are k-algebras, we
always require the two actions of k on a (B;, B,)-module to be equal.

6.1 We begin with a general definition. Let C be a small category and F : C°? X C —
D a functor. A cowedge e: F — w is an object w of D and a family of morphisms
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e, : F(c,c) » w, indexed by the objects ¢ of C, such that, for all morphisms f : ¢’ — ¢,
the following diagram commutes,

F(f.c
F(c,c)) e F(,ch

lF (ce.f) lec/

F(c,c) % L.

Givenacowedgee : F — wandamorphismh : w — v, we obtain a cowedge hoe : F —
v by composition. A cowedge e: F — w is a coend if it is universal, i.e., any other
cowedge ¢’ : F — w’ factors uniquely through a morphism 4 : w — w’. When C has
direct sums, a wedge can be viewed as a morphism

e: EB F(c,c) - w,

ceobC

and such a morphism is a coend if and only if it is the coequalizer of the pair of morphisms
e oF(f,c)
P Fed)T/—/—= P F.o.

(f : ¢/=c)earC e.oF(c,f)  ceobC

6.2 Let By, B, be k-algebras (k a commutative ring) and w;, w, functors from a small
category C to the categories of finitely generated projective right modules over By, B,,

w: C— ProjB1
w,: C— ProjB2 .

Let (Y)Y denote the B;-dual of w,(Y) - it is a left B;-module (5.22). We define
Ly (wq,w,) to be the coend of the functor

(Y, X) w w;(Y)Y ® w,(X): C? x C — {(B;, B,)-bimodules}.
Thus Ly (w;,w,) is a (B;, B,)-bimodule equipped with a morphism of (B, B,)-bimodules
01(X)Y ®r @2(X) = Li(wy, ;) (71)

for each X € ob C such that certain diagrams commute and L (w;, @,) is universal. More
concretely, it is the coequalizer of the parallel pair of morphisms

0 (V) ® 0,X) 3 @ @1(X)Y & wy(X).
(f: X->Y)earC XeobC

When it causes no confusion, we drop the k from Ly (w;, w,).
To give the morphisms (71) is equivalent to giving morphisms of B,-modules

/I(X) . Cl)z(X) —d CUl(X) ®B1 L(CUl, C02), X e obC. (72)

The commutativity of the diagrams means that A(X) is functorial in X, and the universal
property of L(w;, w,) says that, for all (B, B,)-bimodules U, the map

J e (idy, (x) @ f 0A(X))x
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sending a (B;,B;)-bimodule homomorphism f: L(w;,w,) — U into the system of
morphisms u(X), natural in X,

u(X)

C()z(X) W C()l(X) ®B1 L(CUl,C()z) m}

w1(X) ®p, U
is a bijection, so
Homg, p)(L(wy, ®,), U) = Nat(w,(—), w1(—) ®p, U).
6.3 For three functors w,, w,, w; , iterating (72), we obtain a morphism
w3(X) = @2(X) ®p, L(w;, @3) = w1 (X) ®p, L(w;, w3) ®p, L(w,, w3),
natural in X, and hence a morphism

L(wy, w3) = L(wy, ;) ®p, L(w,, w3). (73)

The coproduct (73) is coassociative: for four functors w,, w,, w3, w,, the diagram

L(wy, wy) L(wy, w;) ®p, L(w;, @4)

l l

L(w;, @3) ®p, L(ws, ws) —— L(w;, @;) ®p, L(w,, w3) ®p, L(ws, w,)

iscommutative. The evaluation maps w;(X VR B,%Y; (X) — Bjdefineacounite : L(wj,w;) —
Bj: the two maps
1®¢
L(w;, ) = L(wy, wy) ®p, L(w,, w3) — L(w,, ;)
e®1
L(w;, wp) = L(wy, ) 3, L(wy, wy) — L(wy, ;)
equal the identity map.

6.4 The important case for us is B; = B, and w; = w,. Let B = B; = B,. Then the map
(73) for w; = w, = w3 = w makes

Li(@) € Li(w, )

into a k-coalgebroid acting on B. Note that L, (w) is the coequalizer of

P )eex) = P «X) & wX).

(f: X->Y)earC XeobC

The map (72)
AX): wX) - w(X) Qg L(w)

is a coaction of L(w) on w(X), functorial in X. The universal property of L(w) says that,
for any k-coalgebroid L’ acting on B, to give an action of L’ on w(X), natural in X, is
the same as giving a morphism of coalgebroids L(w) — L’. We call L(w) = Li(w) the
coalgebroid of k-endomorphisms of w.
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EXAMPLE 6.5 When C has consists of a single object and its identity morphism, to give
w is the same as giving a finitely generated projective right B-module M. The coalgebroid
L(w) is MY ®; M and its coaction on M is that in 5.28. The universal property of L(w)
says that, for any k-coalgebroid L’ acting on B, the canonical isomorphism

HomB(M, M ®k L,) o~ Hom(B,B)(MV ®k M, L,)
makes coactions of L’ on M correspond to morphisms of coalgebroids MY ®, M — L’.

PROPOSITION 6.6 Let L be a coalgebroid acting on a division algebra B.
(a) EveryrepresentationV of L is a filtered union of subrepresentations of finite dimension
over B.

(b) The coalgebroid L is a filtered union of subcoalgebras of finite type as B @ B-modules.

PROOF (a) Let p: V — V @ L be a coaction. Each a € V ®p L is contained in a
subspace V; ®g L with V; finite-dimensional, and the smallest V; is the set of elements
A(a), where A runs over the morphisms L — B of left B-vector spaces. For a = p(v), this
V, contains v (take 1 to be the coidentity) and is stable: if p(v) = >, v; ® ¢; with the ¢;
linearly independent, then V is generated by the v;; the axiom for coactions gives

ZP(W)@&' =Zvi®c(€i)evl LKL,

and so p(v;) € V; @ L for all i.

(b) The comultiplication ¢ : L — L ®p L is a coaction of L on L (the regular represen-
tation). After (a), L is a filtered union of the subrepresentations V; of finite dimension
over B. The coaction of L on V; corresponds, after 6.5, to a morphism of coalgebroids
fi: Vl.v ®V,; — L. The coidentity e of L induces a linear form on V;, and f;(e|V;®x) = x.
The image of f; therefore contains V;. Because B is a division algebra, the image of f;
is a subcoalgebroid of L. The coalgebroid L is a filtered union of the images of the f;,
which completes the proof. o

FUNCTORIALITIES

6.7 (a) Consider homomorphisms f : B; — B;. and the corresponding extensions of

scalars w; cu;.. We have

L(w;, ;) ®p, @, 5, (B, ® B,) — L(w), w)). (74)
(b) Consider a functor T : D — C. The morphisms
w,(T(D)) = @1(T(D)) ® L(w;,w,), D €obD,
define a morphism of coalgebroids
L(w;0oT,w,0T) — L(w;, ®,). (75)

(c) IfCisafiltered inductive limit of categories C; and T is the natural functor C; — C,
then the morphisms (75) induce an isomorphism

Yl_r)nL(coloTi, w,0T;) = L(w,, w,). (76)
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(d) Assume that By, B, are commutative. Let (C;);c; be a finite family of categories,
and let

iel

{ coll 1 C = Projy,
1
@y

:C— PrOjB2

be functors. Define

), cui : C— Projy, (Q) co’l) ©)=Q, coi(C)
&, @, C— Proj, (®;@})(C) =, @5(O).

Then
L(Qw], ®w,) — ® L(w], w)).
B ®B,

Asin 5.22 et seq., let , Mg be an (A, B)-module, finitely generated and projective as
aright B-module, let ;M be its B-dual, and let L be the B coalgebroid ;M ® 4 4Mp.
We suppose that, for some commutative ring k, A and B are k-algebras and that the two
k-module structures on 4Mp coincide. For example, we could have k = Z, in which
case the hypothesis is automatic.

LEMMA 6.8 Let C be a full subcategory of the category of right A-modules, containing Ay,
and such, if E € ob C, then E @ 4 4Mjp is finitely generated and projective over B. Let w be
the functor E ~» E @ 4 4Mp. By 5.26, L coacts on the w(E), E € ob C, and hence we have a
morphism

L(w) - L. (77)

This morphism is an isomorphism.

PROOF When C consists only of the A-module A, this is the definition of the tensor
product over A. We now give the general proof.

Let D be the full subcategory of C having A4 as its only object. The functoriality
6.7(b) gives a map L(w|D) — L(w). As we just noted, we have L(w|D) — L, and the
triangle

L(w|D) 6.7(0)

m 7
L

commutes. The morphism (75) therefore admits a retraction, and it suffices to show that
L(w|D) maps onto L(w), i.e., that for all C in C, the image in L(w) of w(C)" ®; w(C) is
contained in w(A)Y ®; w(A). Every element of w(C)" ® w(C) is a finite sum ) a; ® x;
and each x; € C ® 4 4Mp is a finite sum )] a;; ® m;, and therefore a sum of elements
of the form f(y) with f: A —» C and y € w(A). It therefore suffices to show that an
element of w(C)¥ ®; w(C) of the form o ® f(y), f: A — C,y € w(A), has image in
L(w) contained in that of w(A)Y ®; w(A). By definition of L(w), the diagram

L(w)

0(C) @ w(A) =5 w(A) @ w(A)

182 |

w(C)Y ®; w(C) L

commutes. Applying thistoa ® y € w(C)"¥ ® w(A), we find that the image of a ® f()
in L is also the image of the element (o) ® y of w(A)Y ®; w(A). O
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Let B be a division k-algebra and L a k-coalgebroid acting on B. Let coModf(L)
denote the category of L-comodules of finite dimension as B-vector spaces, and let @
be the forgetful functor. Since L coacts on each w(X), the universal property of L(w)
furnishes a morphism u from L(w) to L.

PROPOSITION 6.9 The morphism u : L(w) — L is an isomorphism.

PROOF By construction, a coaction of L on a finite-dimensional V has a natural lift
to L(w). Applying 6.6 and passing to the inductive limit, we see that the restriction
“finite-dimensional” is unnecessary. Taking V' = L and the coactionc: L - L ®p L, we
obtainc; : L - L ®p L(w). Let a = (counit®1)oc; : L — L(w). As (1 ® u)oc; = ¢, we
have ua = id.

Let V be equipped with a coaction p, which lifts to a coaction g of L(w). Since
p: V -V ® L is amorphism of vector spaces with coaction, the diagram

v P VL

! I

X .
VLo — 2 VRL® Lo 2% v & L

commutes, and so § = (1 ® a)p. The morphism deduced fromp: VYV ® V — Lw admits

a
the factorization V¥ ® V' — L — Lw. The definition of Lw shows that a is surjective,
and therefore u is an isomorphism. o

Realizing (T, w) as a category of comodules

The next theorem generalizes (II, 3.15).

THEOREM 6.10 Let B be an algebra over a field k. Let A be an essentially small, locally
finite, k-linear abelian category and w : A — Proj(B) an exact faithful k-linear functor. Let
L(w) be the k-coalgebroid of k-endomorphisms of w (6.4). Then w defines an equivalence
of categories A — coModf(L(w)) carrying w into the forgetful functor.

PROOF Recall (I1, 5.7) that, for an object X of an abelian category, (X) denotes the strictly
full subcategory whose objects are subquotients of a finite direct sum of copies of X. It is
an abelian subcategory containing X.

For X in A, the category (X') admits a projective generator P (II, 3.11). Let A = End(P).
Then the functor Y + Hom(P,Y) is an equivalence of (X) with the category Modf 4
of right A-modules of finite type. Under this equivalence, P corresponds to A,. Put
AMp = w(P). By (the proof of) 3.6, the right exact functor w|(X) can be identified with
the functor E w» E ®,4 4Mp: Modf, — Modg. Note that, w being linear, the two
k-module structures on 4Mjp coincide.

After 6.8, L(w|X) is the k-coalgebroid BMX ®4 aMp of 5.26. By hypothesis, w|(X) is
exact and faithful. The A-module 4 Mjp is therefore faithfully flat over A. After 5.26 and
5.27, w induces an equivalence of (X) with the category of right B-modules of finite type
equipped with a coaction of L(w|(X)).

The category Ind(X) of Ind-objects of (X) can be identified with that of all right
A-modules Mod, (see B.8). The extension of L(w|(X)) to Ind-objects, co(“li_n)l”Xi) =
li_r)n w(X;)isagain E » E @4 4Mp. By 5.26, this extension is an equivalence of Ind(X)
with the category of right B-modules equipped with a coaction of L(w|(X)). This, and
the assumed properties of w, show that any right B-module of finite type, equipped with
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a coaction of L(w|(X)), is finitely generated projective, and that any right B-module with
a coaction is a inductive limit of finitely generated projective right B-modules, and, in
particular, is flat.

The exactness of w ensures that 4 My is A-flat. Moreover, for any right A-module N,
the right B-module N ® 4 4Mp is flat. The formula

L(@[(X)) = pM) ®4 aMjp

then shows that L(w|(X)) is flat for the two B-module structures.
IfY isin (X),i.e.,(Y) C (X), and a is the 2-sided ideal of A such that (Y) corresponds
to the A-modules killed by a (see 3.13), we have

L@|(Y)) = (A/a®4 aMp)" ®4/q (A/a ®4 aMp)
= (A/a®4 aMp)" ®4/q M3,

and (A/a ®4 4Mp)" is the kernel of the epimorphism zM; — (a ®4 4Mp)", and so
there is an exact sequence

0 — L(@(Y)) = L(@w|(X)) = (a ®4 aMp)" ®4 aMp — 0.

The morphism 6.7(b) of L(w|(Y’)) into L(w|(X)) is therefore injective, with kernel flat as
a left and as a right B-module.
A B-module of finite type with a coaction of L(w|(X)) corresponds to an object of
(Y') if the coaction
N = N ® L(w|(X))

factors through N ® L(w|(Y)).
The category A is the filtered union of the subcategories (X) and L(w) is the inductive
limit of the L(w|(X)) (6.7(c)). Passing to the limit, we obtain the theorem. O

EXAMPLE 6.11 Let A be a small locally finite k-linear abelian category, B an extension
field of k, and w : C — Vecfy an exact faithful k-linear functor. Then w factors into

i forget
C — coModf,) — Vecfp.

The functor i is an equivalence of categories.

Proof of the main theorem, except for the faithful flatness

6.12 Let B be a commutative ring. We shall use the construction of L(w;, w,) in 6.2 for
B; = B, = k = B. Later, we shall need to consider two commutative k-algebras B;, B,
and we shall take B to be the commutative algebra B; ®; B,.

Suppose that we have three categories A;, A,, A; and, for each category, two functors

w! 1 A; = Proj(B)
Wl :

Suppose also that we have a functor ® : A; X A, — Az and isomorphisms of functors

{ @ (X1) ®p w3(X3) = 03(X; ® X;)
w%(Xﬂ ®s CUJ2~(X2) - CU;(X1 ® X3).
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In 6.2, we defined B-modules LB(cui, coiz), and 6.7b and 6.7d furnish a B-bilinear product
Lp(w}, @) ®p Ly(w?, w3) — Lg(w;, w3). (78)
For any X; and X, in A; and A,, the morphism (72)
®3(X; ® X5) = 03(X; ® X;) ®p Lp(@], @3)

can be deduced from the analogous morphisms for co{(X ;) and wé(X i) by (78).

Let A be a tensor category and w; and w, two tensor functors A — Proj(B) (see
Chapter I). When we take A; = A and co; = w; (i = 1,2,3), the product (78) becomes a
product

Lp(w, ;) ®p Lp(wy, ;) = Lp(w;, @,). (79)

PROPOSITION 6.13 The product (79) makes Lg(w;, w,) into a commutative B-algebra.
PROOF For j = 1,2, we have essentially commutative diagrams,

AxA ETX) oA —® A

Mod(B) =——— Mod(B) ———— Mod(B)
The left-hand square is rendered commutative by the isomorphism of functors
w;(X) ®p w;(Y) = w;(Y) ®p w;(X),
and the right-hand square by the isomorphism
WX ®Y) = w;j(X) Qg w;(Y).

By the definition of a tensor functor, the isomorphism of composed functors makes
commutative the boundary of the diagram, and also the left-hand square once we identify
w(Y ® X) with w(X ® Y) using the commutativity of ® in A. Applying L(-,-) to the
diagram, we obtain the commutativity in (79). The associativity is obtained the same way.
If {1} is the subcategory of A consisting only of the identity object and the identity arrow,
then we obtain, by definition of tensor functor, that w;(1) —= Band Lg(w; [{1}, w,|{1}) =
B. The identity B —» Lg(w;, w,) of Lg(w;,w,) is defined by 6.7(b). o

6.14 Recall (1.3) that when A is a tensor category and w; and w, are tensor functors
from A to the quasi-coherent sheaves on an affine scheme S, we define om?(col, @,)

(resp. Jsom?(cul, w,)) to be the functor on Affg sendingu: T — S to the set of mor-
phisms (resp. isomorphisms) of tensor functors u*w; — u*w,. If w; and w, take values
in the category of locally free modules of finite rank, for example, if A is rigid (I, 7.4),
then these functors are representable by an affine scheme over S and

}(om?(col, wW,) =~ ﬂsom?(wl, @,).

6.15 Asin 1.3, when w; has values in the category of quasi-coherent sheaves on S;, we
put
}(omf(cuz, wp) = %omgxss(pr’; Wy, pry 1),

and similarly for Jsom. For w; = w,, we let

End(w) = Fom(w, w)
Aut(w) = Isom(w, w).
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PROPOSITION 6.16 Let A be a tensor category and w, and w, tensor functors A — Proj(B).
Put S = Spec B. The scheme Lg(w;, w,) represents the functor J om?(coz, w1).

PROOF Letu: T — S, T = SpecC, be an affine scheme over S. By definition (6.2), a
morphism f : Lg(w;,w,) — C of B-modules can be identified with a functorial system
of B-modules
fx 1 0(X) > 0;(X) ®p C.
Giving the fy is equivalent to giving C-linear morphisms
[yt 0(X)®p C — 01(X) ®5 C,

functorial in X, i.e., a morphism f” of functors u*w, to u*w,. It can be checked that f is
a morphism of algebras if and only if f’ is a morphism of tensor functors. o

6.17 Let k be a commutative ring, and let B; and B, be two commutative k-algebras.
Let A be a k-linear tensor category and w; and w, tensor functors from A to Proj(B;) and
Proj(B,). By extension of scalars, w; and w, define tensor functors A — Proj(B; ®; B,),
which we denote w; ® 1 and 1 ® w, respectively. We have

Li(wy, ;) = Lp, g, 5,(@1 ® 1,1 Q wy).
After 6.16, Spec Ly (w;, w,) represents the functor omf’(coz, w1 ), which is equal to
Jsoml?(col, w,) if A is rigid (see 6.14).
For three B; and w;, composition of morphisms
}Coml?(wg, w,) Xs, I}Comf(cuz, wy) = }Com];@(c%,cul)
corresponds to a morphism of k-algebras
¢ Li(wy,w3) = Li(wy, w;) ®p, Li(w,, ws3).

By definition, the morphism of L;(w, @,) ®p, Li(w,, w3)-modules deduced by extension
of scalars (by c) from

w3(X) O3, Li(wy, w3) = @1(X) ®p, Ly (wq,w3)
is the composite of the morphisms deduced by extension of scalars from
CO3(X) ®B3 Lk(wz, CU?)) - CL)z(X) ®B2 Lk(@z, CU3) and
w2(X) ®pa Li(wy, @;) = @1(X) ®p, Li(w;,wy).
This returns to the commutativity
w3(X); 01 (X) ®p, Li(w, )
w1(X) ®p, Li(w,, w3); 01(X) ®p, Li(w,w,) ®p, Li(w,, w3)
and c is therefore (73).

6.18 Let k be a field. Let T be a tensorial category over k and w a fibre functor on T over
S = Spec B, B a nonzero k-algebra. We prove that w induces an equivalence of T with
Repf(S:G), where G is the groupoid Autf’(a)).

In the above, we take A = T, B = B, = B, w; = w, = w. According to (I, 7.12),
T is locally finite, and so we can apply 6.10. After 6.17, Aut,?(w) is the spectrum of
L(w) = Ly(w;, ;). The action of Autf’(w) on w(X) is defined by the morphisms

wX) - oX) @z L(w, w)

which defined L (72). By 6.17 again, the law of composition of the groupoid Autf’(w) is
defined by the comultiplication of L(w), and 6.10 is equivalent to the required statement.
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Proof of the faithful flatness

PROPOSITION 6.19 Let C be a tannakian category over k and let w be a fibre functor with
values in a (commutative) k-algebra B # 0. Let Indw : IndC — Mod(B) denote the
extension of w to Ind C. For all nonzero objects T in Ind C, Ind(w)(T) is faithfully flat over
B.

PROOF The category C is abelian and its objects are noetherian (I, 7.12). On applying
Proposition B.6, we see that T = li_r)nXl- with X; € obC, X; C T. Fixan X; # 0, and
consider the exact sequence

0-X;>T—>T/X; >0

in Ind C. Because w is right exact, Ind w commutes with arbitrary inductive limits (B.4),
and so (Indw) (T) = h_r)n w(X;). We deduce an exact sequence

0 - wX; —» (Indw)(T) - (Ind w)(T /X ;) — 0.

Now Ind(w)(T) is an inductive limit of finitely generated projective (hence flat) modules,
and so is a flat B-module. Similarly, Ind(w)(T/X;) is a flat B-module. Moreover, the
finitely generated projective B-module w(X ;) is nonzero because w is faithful (7.7). If M
is an arbitrary nonzero B-module, then the sequence

is exact because (Ind w)(T /X ;) is flat.” As w(X )®pM # 0,we have (Ind(w)(T)) Qs M #
0, and so Ind(w)(T) is a faithfully flat B-module. o

COROLLARY 6.20 Let C be a tannakian category over a perfect field k, and let w be a fibre
functor with values in a (commutative) k-algebra B. Then L, (w) (see 6.4) is a faithfully flat
B ®y B-algebra.

PROOF Define T to be the coequalizer of the parallel pair of morphisms
P vrex—= P xex
(f: X->Y)earC XeobC

in Ind(C[X C) (cf. 6.2). According to (10.17), we have a fibre functor w [X]w on C[X]C, and
clearly Ind(w X w)(T) = L(w). If B # 0, then L(w) # 0, and so T # 0. Now Proposition
6.19 shows that L(w) is faithfully flat. O

COROLLARY 6.21 Let C be a tannakian category over a perfect field k, and let w be a fibre
functor with values in a k-algebra B # 0. Then there exists a faithfully flatmap f : B - B’
such that f*w ~ f*'.

PROOF See 1.4. o

"Let0 -» G — H — E — 0 be an exact sequence of right A-modules. If E is flat, then
0-GQF-HQRQJ/UF-EQ,F—-0

is exact for all left A-modules F. This is most naturally proved using the Tor functor, but, for a proof without
them, see Bourbaki AC, I, 2.5, Pptn 4.
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This completes the proof of Theorem 1.1 when k is perfect. For the case of a nonper-
fect base field, we refer the reader to Deligne 1990.

REMARK 6.22 We used the hypothesis that k is perfect to show that the functor AX]B —
D defined by a functor A X B — D, exact in both variables, is exact (10.10). This was used
in the proof (10.16) that a tensor product of tensorial categories over a perfect field is
tensorial and hence in the proof of the similar statement (10.17) for tannakian categories.
For an explanation of how to remove the perfectness hypothesis in 10.17, hence in the
proof of Theorem 1.1, see Deligne 1990, 5.18. It is not clear (to the author) what interest
there is in tannakian categories over nonperfect fields.

NoOTEs The exposition of the proof Theorem 1.1 and of its preliminaries largely follows the
original (Deligne 1990, §§1-6). See also Lattermann 1989.

7 Restatement for 2-categories

Let S be a nonempty affine scheme over k. Theorem 1.1 can be interpreted as saying that
the 2-category of k-groupoids acting transitively on S is biequivalent (not 2-equivalent)
to the category of tannakian categories equipped with a fibre functor over S.

DEFINITION 7.1 The 2-category §+pnd ¢ has
o objects the affine k-groupoids acting transitively on S;

¢ al-morphism from G to H is a morphism f : G - H of S X S-schemes such that
the diagrams (63), p. 110, commute;

¢ a2-morphism f — g is a natural transformation from f to g (viewing f and g as
functors of affine S x S-schemes).

DEFINITION 7.2 The 2-category T anng of S-pointed tannakian categories over Aff;
has

o objects the pairs (T, w), where T is an essentially small tannakian category over k
and w is a fibre functor on T over S;

¢ al-morphism from (T, w) to (T’, ") is an exact k-linear tensor functor from T to
T’ carrying w into ’;

¢ a2-morphism is a morphism of tensor functors.

The functors we defined in §1 extend in an obvious way to 2-functors

d: 9@nn;0p - Grpdg, (T,w)w~ Aut®(w)

V: Grpdg — 9@17,1@;01), G ~ Repf(S: G),
and we also defined functors 7 : id > Wo® and ¢ : Po¥ — id.

THEOREM 7.3 The system
L] (D . .
9ann50p pE— Crpdg, 7. id—> Pod, ¢: ®o¥ - id,
7

is an equivalence of 2-categories.

PROOF This is little more than a restatement of Theorem 1.1. O
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COROLLARY 7.4 Let T, and T, be tannakian categories over k, and let w, and w, be fibre
functors on T and T, over S. Then

Hom((Ty, @), (T2, @,)) = Hom(Aut®(w,), Aut®(w,))
is an equivalence of categories.

PROOF Immediate consequence of the theorem (see A.24). O

ToDo 4 TBA: add detailed proof of 7.3.

8 Properties of a tannakian category reflected in its band

Asin (I, §5, §6), there is a dictionary relating the properties of tannakian categories and
their morphisms to those of their bands. Here are some examples.

8.1 Let C be a tannakian category over k with band L.
(a) L is finite (i.e., locally represented by a finite group scheme) if and only only if
C = (X) for some object X.

(b) When k has characteristic 0, L is pro-reductive if and only if C is semisimple.

8.2 Letw : C' — Cbeamorphism of tannakian categories over k, bound by a morphism
ofbandsu: L — L'.

(a) u is faithfully flat (i.e., an epimorphism of bands) if and only if w is fully faithful
and its essential image is stable under forming subobjects.

(b) u is injective (i.e., locally represented by a monomorphism of groups) if and only
if every object of C is a subquotient of an object in the image of w.

See Saavedra 1972, I11, 3.3.3, p. 205.

9 Extension of scalars for tannakian categories

Recall (Appendix B) that, for any category T, there is a category Ind(T) whose objects are
the small filtered inductive systems of objects in T, and whose morphisms are given by

Hom((X,,). () = lim lim Hom(X,,, Y).
a B

When T is an abelian category whose objects are noetherian (for example, a tannakian
category), T is a full subcategory of Ind(T), limits of small filtered inductive systems in
Ind(T) exist and are exact, and every object of Ind(T) is the limit of such a system of
objects of T. Conversely, these conditions determine Ind(T) uniquely up to a unique
equivalence of categories.

Let (T, ®) be a tannakian category over k, and let w be a fibre functor on T with
values in a field K. Consider a diagram of fields

K — K

T

k—— K.
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Let X be an object of Ind(T) equipped with a homomorphism i : k/ — End;(X) of k-
algebras. We say that Y C X generates (X, i) as a k’-module if it is not contained in
any proper k’-module. Define T to be the category whose objects are the k’-modules
in Ind(T) that are generated as k’-modules by subobjects in T.

PROPOSITION 9.1 The category T is a tannakian category over k', the K-valued ﬁbre
functor w extends to a K'-valued fibre functor ' on T, and the K’ /k'-groupoid Aut . ®(w")
is the pullback of the groupoid K /k-groupoid Autf’ (w).

PROOF After Theorem 1.1, we may suppose that T = Repf(S:G), where S = SpecK,
and that w is the forgetful functor. Then the statement follows from B.17(c). O

EXAMPLE 9.2 Take k' = K’ = K, so T is a tannakian category over k and w is a k’-valued
fibre functor. The proposition then shows that T is a neutral tannakian category over
k', and that w extends to a k’-valued fibre functor »’ on T). The affine group scheme
attached to (T, @’) is the kernel of the groupoid attached to (T, w),

Aut®(") ~ Aut®(w)?.

10 Existence of a fibre functor over k&

THEOREM 10.1 Let T be an essentially small tannakian category over k and k¥ an alge-
braic closure of k. Then T has a fibre functor with values in k2.

Proof when T is algebraic (i.e., admits a tensor generator)

We first state a result from commutative algebra.

LEMMA 10.2 Let Ay be a ring and let A = hm A be the limit of a filtered inductive

system of Ay- algebras Let By bean Ay- algebra of ﬁnlte presentation, and set B; = By® 4 A
andB =By ®,4, A

(a) IfspecB — specA is surjective, then there exists an i such that spec B; — spec A; is
surjective.

(b) If B is flat over A, then there exists an i such that B; is flat over A;.

PROOF (a) EGA 1V, 8.10.5.
(b) EGA 1V, 11.2.6.1. o

10.3 We now prove Theorem 10.1 for an algebraic T. By assumption, T has a fibre
functor over a nonempty k-scheme S, which we may suppose to be the spectrum of a
field, and then we may suppose that T = Repf(S:G), where G is a groupoid of finite
presentation and faithfully flat over S X S (Theorem 1.1). Let S = Spec B, and write B as
aunion B = Ua B, of finite generated k-algebras B,. For some «, G is the pullback of
a groupoid of finite presentation over S, X S,, where S, = Spec B,. As G is faithfully
flat over S X S, G is faithfully flat over S, X S, for a sufficiently large (10.2). Now
T = Repf(S, : G,) (see 1.24). In particular, T has a fibre functor over S,. As S, has a
k2-point (Zariski’s lemma), it follows that T has a fibre functor with values in k2.

This is the proof Deligne 1990, 6.20. See Saavedra 1972, 111, 3.3.1.1, p. 204, for a
somewhat different proof, which is included in Appendix C (C.18)
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Proofin the general case

Let Ay be the set of all strictly full subcategories T, of T of the form (X Y® for some
X S ob T, ordered by inclusion, and let F,, be the set of all k*-valued fibre functors of

«- If Ty C Tg, then the restriction map Fg — F, is surjective, and we have to show that
hmF is nonempty. If Ay contains a countable cofinal subset, then this follows from
the axiom of dependent choice.

For the general case, we need the full axiom of choice (Zorn’s lemma). After I, 7.19
(or 9.2), we may suppose that k = k2.

Let A be the set of strictly full subcategories of T, stable by ®, subquotients, and
duals. For « € A, we denote by T, the corresponding subcategory (so T, = a). The
set A is ordered by inclusion. We already know the existence and uniqueness up to
isomorphism of the fibre functors for the T, « € Ay.

If T, C Tg, it makes sense to say that a fibre functor wg on T extends a fibre functor
w, on T,. If an extension up to isomorphism exists, then an actual extension exists too.

We consider the set of pairs (a, w,) with & € A and w,, a fibre functor on T, and we
write

(a,wq) < (B,wp) < T, C Tgand wg extends w.

To avoid set theoretical difficulties, we should consider only the fibre functors w, taking
values in the category of vector spaces k™, n € N.

The ordered set of pairs («, w,) is inductive: if I is a totally ordered subset, then
the union T of the T, («, w,) € I, lies in A and has a fibre functor w characterized by
w|T, = w,; moreover, (T, w) is an upper bound for I. By Zorn’s lemma the ordered set
of (a0, w,) has a maximal element (T, w;). To show that T, = T, it suffices to prove the
following statement.

10.4 Let T' bein Aand T" in Ay. Let(T',T") be the smallest element of A containing T'
and T, Then, every fibre functor w on T’ extends to (T', T").

We first prove a lemma.
LEMMA 10.5 Supposethat T’ isalsoin Ay. “Restriction”is then an equivalence of categories

triples (o', ", T) with o’ and " fibre func-
{fibre functorswon(T’',T"")} — tors on T and T and t an isomorphism of { .
the restrictions of o’ and 0" to T' N T

Note that ' n T” isalsoisin A f-

PROOF We may suppose that (T’, T”') is the category of representations of an algebraic
group G over k. There exist normal algebraic subgroups A and B of G such that T’
(resp. T”) is the subcategory of representations on which A (resp. B) acts trivially. To say
that T and T” generate (T, ") means that A N B = {e}. The intersection T N T” is the
category of representations on which AB acts trivially.

we claim that the triples («’, ", 7) are all isomorphic. As all @’ (resp. all w’") are
isomorphic, it suffices to show that (o', ", 7;) and («’, w”, 7,) are isomorphic. Indeed,
7, and 7, differ by an automorphism of @’| T’ N T, and such an automorphism lifts to
an automorphism of w’: the homomorphism

(G/A) (k) - (G/AB)(k)
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is surjective.
Thus, we have categories with just one isomorphism class of objects, and so it is a
question of comparing their automorphism groups. But

G — G/A

l l

G/B —— G/AB

is a pullback diagram because A N B = e, and so the same is true when we take k-valued
points. o

We now prove the statement 10.4. Let B be the set of T, (« € Ay) contained in T'.

We have
=JT (1= J(Te T,
BeB BeB

and equivalences

fibre functors wg on the Tg, plus a compatible system

{fibre functorson T’} = 4 of isomorphisms wg|T, = w, for T, C Tg, plus a
compatibility condition for Ts C T, C Tg
fibre functors on the (Tg, T”) plus similar}

{fibre functors on (T', T")} = { s
conditions.

There is a largest T N T": if T = Repf(G”), then each Tz N T” corresponds to a
normal algebraic subgroups Nz of G”, and among the Ng, there is a smallest one, namely,
N s 1 N 5 If B, is such that Tg N T” is the largest TgN T”, then, for any 8 > f3,, extending
wg = culTﬁ to (T, T”) amounts to extending wg|Tg N T to T” (lemma 10.5), that is, to
extending wg, from Tz N T” to T If we choose one such extension, then we get, up to
unique isomorphisms, a system of extensions of the wg to (T, T”), and by gluing them
an extension of w to (T, T").

This completes the proof of 10.4, which is all that is needed to conclude that T; = T.

NOTES

10.6 We require the category T to be essentially small only so that the “sets” occurring
in the proof are, in fact, sets. Readers willing to pass to a larger universe can ignore this
restriction.

10.7 When the band of T is smooth, then there exists a fibre functor with values in a
separable closure of k. Is the same true if the band is only pro-smooth?

10.8 If we could prove 10.3 without appealing to the Main Theorem 1.1, then we would
only need to prove the Key Lemma (IV, ??) in the finite case, which is elementary (does
not require 111, 10.2).

NoOTES Theorem 10.1 and its proof are from a letter of Deligne dated November 30, 2011.
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11 Galois groupoids

[Let G be an algebraic group over a field k of characteristic 0.] A Galoisgerbe® over
k is an extension of groups

1 - G(k) > G- Gal(k/k) - 1

together with a section o — g, for ¢ € Gal(k/K), where K is a suitable finite
extension of k, such that the o-linear automorphisms

y(©0): g+ g:88,", ge€G(k),

arise from K-structures on G. For each o € Gal(k/k) and each representative g,
the automorphism y(o) is required to be o-linear. It is understood that the finite
extension K can be replace by a larger finite extension K’, so that {g.} is actually
a germ of a section for the Krull topology on Gal(k/k). We call G the kernel of
the Galoisgerbe. A homomorphism of Galoisgerbes is a homomorphism of the
corresponding extensions carrying one section into the other and whose restriction
to the kernel is algebraic. An element g of the kernel defines by conjugation an
automorphism of the gerbe...Two homomorphisms ¢; and ¢, between two Galois-
gerbes are equivalent if ¢, = ad(g)o¢; with g in the kernel of the second gerbe.
Langlands and Rapoport 1987, p. 118.

Following Langlands and Rapoport 1987, we give in this section a down-to-earth
interpretation of groupoids, and hence of the classification of tannakian categories.

Throughout, k is a field of characteristic zero” and k is an algebraic closure of k. We
let T' = Gal(k/k). Finite extensions of k are required to be subfields of k. Recall that all
group schemes are affine and that an algebraic group over k is an affine group scheme
of finite type over k.

An algebraic scheme over k is a separated scheme of finite type over k. Recall that a
group scheme of finite type over a field is automatically separated (Milne 2017, 1.22).
An algebraic variety over k is a geometrically reduced algebraic scheme over k.

Review of Galois descent

Let V be an algebraic scheme over a field k; and leto : k; — k, be a homomorphism
of fields. We let oV denote the algebraic scheme over k, obtained by applying o to the
coefficients of the equations defining V, and for P € V(k;), we let P denote the point
on oV obtained by applying o to the coordinates of P.

11.1 Let V be an affine algebraic variety over k. Let A = T'(V, Oy,), and let o € T'. We
say that a bijection A : V(k) — V (k) is o-linear if there exists a o-linear automorphism
A of the k-algebra A such that

A fYAP) = o(f(P)), all f €A, P e V(k)(=Homg(A,k)). (80)

To give such a 4 is the same as giving an isomorphism A : oV — V of algebraic varieties
over k. Indeed, such an isomorphism defines an automorphism A of V(k),

__cang __ A(k) _
V(k) — (oV)(k) — V(k),
8Translated here as Galois groupoid. When Langlands and Rapoport wrote their article, the description
of tannakian categories in terms of groupoids (Deligne 1990) was unavailable.
9We could drop the condition and take k to be a separable algebraic closure of k provided we require
all group schemes to be smooth. Recall that algebraic groups over fields of characteristic zero are smooth,
and that V (k) is schematically dense in V when V is a geometrically reduced scheme of finite type over a
separably closed field k (Milne 2017, 1.17, 3.23).
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and a k-algebra automorphism A’ of A,

can, o(v,A)™
F(V’ OV) — F(O'V, OV) — F(Va OV)’

which are related by (80). Moreover, A is uniquely determined by 4, and a A arises from
a A if and only if there exists a A’ satisfying (80).
An action * : TxV (k) — V(k) of T on V (k) is said to be regular if, for all o € T, the
map
oP - oxP: (cV)(k) = V(k)

is regular, i.e., defined by a morphism oV — V of algebraic varieties over k. An action *
of I on V (k) is regular if and only if the map

P+ oxP: V(k) - V(k)

is o-linear for all o € T'. There is a one-to-one correspondence between regular actions
* of ' on V (k) and actions (o, f) = 9f : ' X A - A of T on A by semilinear k-algebra
homomorphisms, related by

©f)(oxP) = a(f(P)), allP e V(k).

For example, if W = Spec B is a variety over k, then the natural action of I on W (k) is
regular, and corresponds to the action of I on B ®; k through its action on k.

11.2 Let V be an algebraic variety over k. An action * of I on V (k) is said to be continu-
ous if there exists a subfield K of k finite over k and a model (W, : W — V) of V over
K such that the action of Gal(k /K) is that defined by W. This means that the bijection

p(k): W(k) - V(k)

is I'-equivariant, that is,
p(k)(aP) = g+ (p(k)(P)).

Two such models, over K and K’ say, become isomorphic over some finite extension of
K-K'.

Suppose that V is affine, and let A = T'(V, Oy,). The action of T on V is continuous if
and only if the corresponding action of I' on A is continuous for the Krull topology on I'
and the discrete topology on A.

It is easy to write down actions that are not continuous, but, in practice, those
“occurring in nature” are continuous.

11.3 Let V be an algebraic scheme over k. A k/k-descent system on V is a family of
isomorphisms ¢, : oV — V, o € Gal(k/k), satisfying the cocycle condition

Por = po0(0p,) forallo,t € Gal(k/k).

A model (V,, p) of V over a subfield K of k splits the descent system if ¢, = ¢~ oo for
all o fixing K. A descent system is continuous if it is split by some subfield K finite over
k. A descent datum is a continuous descent system. A descent datum is effective if it
is split by a model over k. When V is quasi-projective, every descent datum is effective
(see, for example, Milne 2024, 7.3).
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THEOREM 11.4 The functor V ~ (V, %) sending an affine algebraic variety V over k to an
affine algebraic variety over V over k equipped with an action of T on V (k) is fully faithful
with essential image the pairs (V, x) such that * is continuous and regular.

PROOF For the fully faithfulness, see, for example, Milne 2024, 4.5. For the description of
the essential image, let V be an affine algebraic variety over k equipped with a continuous
regular action of I. For each o € T, there is an isomorphism of algebraic varieties
¢, : oV — V sending oP to o % P. The family (¢p,), obviously satisfies the cocycle
condition, and it is continuous because the action is continuous. Therefore, it is a
descent datum on V. As V is affine, this descent datum is effective. o

In particular, algebraic groups over k correspond to algebraic groups over k equipped
with a continuous regular action of ' on their k-points. This gives a description of
algebraic groups over k that is close to the classical (pre-scheme) description. In a step
that some may consider retrograde, we extend this to a description of k-groupoids acting
transitively on Spec k.

Definition

11.5 Let G be an algebraic group over k. A k/k-Galois groupoid with kernel G is an
exact sequence of groups

1 - G(k) - G- Gal(k/k) — 1, (81)
together with a section o — g, : Gal(k/K) — G, where K is a suitable finite extension
of k, such that the automorphisms

- - def _ -
Yo: Gk) > GK), y,=(@g~ 8 8 8) o€ Galk/K),

define a K-structure on G. We also require that for every representative g, of o €
Gal(k /k), the automorphism y, of G(k) is o-linear. It is to be understood that K can be
replaced by a larger finite extension, so that (g, ), is actually a germ of a section for the
Krull topology on Gal(k /k).

11.6 In more detail, consider an extension G of Gal(k/k) by G(k). Let K C k be a finite

extension of k and s a homomorphism such that
Gal(k/K)
o
G —— Gal(k/k)
commutes. To say that the automorphisms
Yo: G(k) = G(k), y5(8)=s5-8-5;", o€ Gal(k/K),

define a K-structure on G means that there exists an algebraic group G, over K and an
isomorphism ¢ : Gy — G such that

p(08) = 7,(¢(g)), allo € Gal(k/K).

Two sections s : Gal(k/K) — Gands': Gal(k/K') — G are said to be equivalent if they
agree on Gal(k/K"") for some field K" containing K and K’ and finite over k. Now a
k /k-Galois groupoid with kernel G is an extension of Gal(k/k) by G(k) together with
an equivalence class of sections such that the following condition holds: if g, maps to
o € Gal(k/k), thenthemapg — g, - g- &' : G(k) = G(k) is o-linear.
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ToDo 5 Is it really necessary to include the germ of a section as part of the data, and not simply
require that there exists a section over some K?

11.7 A homomorphism of Galois groupoids G —  is a commutative diagram

1 — 5 G G < Gal(k/k) ——— 1
l ¢lhomomorphism ”
1 — H(k) i Gal(k/k —— 1
~ -

S~ -~

s/

such that ¢ preserves the germs of sections and such that the restriction of ¢ to G(k) is
regular (i.e., defined by a homomorphism of algebraic groups). From a different point-
of-view, a homomorphism of Galois groupoids is a homomorphism of algebraic groups
¢ : G — H together with an extension of (k) to a homomorphism G — J{ compatible
with the germs of sections!'® and inducing the identity map on the Galois groups.

11.8 Let G be a k/k-Galois groupoid with kernel G, and let g € G(k). Conjugation by g
defines an automorphism ad(g) of G. Indeed, for a sufficiently large finite extension K
of k, we have

8,88, =0o(g) =g,

and so conjugation preserves the germ of scctions.

11.9 Let G; and G, be Galois groupoids with kernels G, and G,, and let ¢,¢’ : G, = G,
be morphisms. A morphism ¢ — ¢’ is an element g of G,(k) such that ad(g)o¢ = ¢’,
i.e., such that

g-p(x)-g =¢'(x), allxeg.

In this way, the Galois groupoids form a 2-category.
Readers mystified by these definitions should skip to 11.29.
11.10 If G is an algebraic group over k, then
1 - G(k) —» G(k) X Gal(k/k) — Gal(k/k) — 1,

together equipped with the section o — (1,0) is a Galois gerb G; with kernel G. A

exists a section s to the homomorphism 7 : G — Gal(k/k) such that the automorphisms
Yo: G(k) = G(k), 7,(8)=s,-g-5;', o€ Galk/k),
define a k-structure on G.

11.11 Let
1 - G(k) » §— Gal(k/k) — 1

1©As k has characteristic zero, algebraic groups are smooth, in particular geometrically reduced, and so a
homomorphism of algebraic groups over k is uniquely determined by its action on the k-points. Otherwise
we would have included it as part of the data.
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be a k/k-Galois groupoid with kernel G. The choice of a section s in the germ determines
a model (G, ¢) of G over some finite extension K of k and a commutative diagram

1 —— Gy(k) —— G(k) X Gal(k/K) — Gal(k/K) —— 1
2l¢(l€) [homomorphism [
1 —— G(k) ¢ 7 Gal(k/k) — 1.

We call such a diagram a splitting of G over K.

11.12 Let E be an extension of Gal(k /k) by G(k). When k'’ is a subfield of k containing
k, we can form an extension of Gal(k /k") by G(k) by pullback. It is uniquely determined,
up to a unique isomorphism, by the diagram

1 — G(k) — E' — Gal(k/kK') — 1

| [

1 — G(k) E Gal(k/k) —— 1.

When E is a k/k-Galois groupoid, E’ becomes a k /k’-Galois groupoid with the obvious
germ of sections.

11.13 Let E be an extension of Gal(k/k) by G(k). When G — H is a homomorphism of
algebraic groups over k, we can form an extension E’ of Gal(k/k) by H(k) by pushout.
It is uniquely determined, up to a unique isomorphism, by the diagram

1 G(k) E Gal(k/k) — 1

[ |)

1 — H(k) — E' —— Gal(k/k) — 1.

When E is a k /k-Galois groupoid with kernel G, E’ becomes a k /k-Galois groupoid with
kernel H and the obvious germ of sections.

11.14 When G is an affine group scheme over k, we define a k /k-Galois groupoid with
kernel G to be an extension of groups

1- G(k) - G- Gal(k/k) —» 1
such that, for all algebraic quotients G - G, of G, the pushout
1- G,(k) = G, — Gal(k/k) - 1

is a k/k-Galois groupoid with kernel G,. In particular, this means that we are given a
compatible system of germs of sections on the G,,.

11.15 Let
— Ve -
1- Gk) - G— Galk/k) - 1
be a k/k-Galois groupoid. Assume that G is algebraic, and let s : Gal(k/k) — Gbe a

set-theoretic section to 7 such that the restriction of s to Gal(k/K) lies in the given germ
for some K C k finite over k.!! Then G is determined by the following data:

UFor example, choose a group-theoretic section to G — Gal(k/K) in the given germ, and extend to a
set-theoretic section on Gal(k/k).
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(a) the family (y,), of automorphisms of G (as an algebraic group over k) given by
Yo(@ =55-8-s;', o€Galk/k), geGk);
(b) the family (a, ), ; of elements of G(k) given by
SoS; = Qg 1Sor, 0,7 € Gal(k/k).
Indeed, every element of G can be written uniquely
g-s,, g€Gk), oeGalk/k),
and
(8- 85)(h-s:) = (grs(M) ) - S5z

11.16 A homomorphism ¢ : G — G’ of k/k-Galois groupoids is an isomorphism if and
only if it is an isomorphism on the kernels. Indeed, if ¢’ is an inverse for ¢, then ¢’ |G’
is an inverse for ¢|G. Conversely, suppose that ¢|G is an isomorphism, and choose a
section s asin 11.15. Then o - s, = ¢os, is a section for G’ with similar properties, and
clearly g - s, = (g - s;) = $(g) - s, is a bijection.

Representations of Galois groupoids

11.17 Let V be a vector space over k and let ¢ € Gal(k/k). An additive mapa: V — V
is said to be o-linear if a(c - v) = oc - a(v) for all ¢ € k and v € V. Note that if a; is
o;-linear and «, is o,-linear, then a,oq; is 0,0;-linear,

(azoa)(c - V) = ay(g1¢ - a1 (V) = 0,01¢ - a0y (V).

11.18 Let V be a finite-dimensional vector space over k. Let G, be the collection of all
additive isomorphisms g : V — V that are o-linear for some o € Gal(k/k). Then G,
becomes a group under composition, and there is an exact sequence

1 - GL(V) — Gy — Gal(k/k) — 1

in which 7 sends a o-linear map to o. The choice of a basis (v;); for V over k determines
a section

s(@)(X ¢ v) = D 0c - v

over some finite extension K of k. A different basis determines an equivalent section
and so, in this way, we get a Galois groupoid Gy, with kernel GLy,.

11.19 Let G be a Galois groupoid with kernel G. A representation of G on a finite
dimensional k-vector space V is a homomorphism of k/k-Galois groupoids p : G — Gy.
In other words, a representation of G on V is a representation py: G — GLy of Gon V'
together with an extension p of py(k) to a commutative diagram

1 G(k) (€] Gal(k/k) —— 1
G H
1 —— GL(V) Sy Gal(k/k) — 1

compatible with the germs of sections.
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11.20 A morphism of representations (V, p;,) and (W, py,) of G is a k-linear map
@: V — W such that

v 2w
lpv(g) pw(g)
v 2w

commutes for all g € G (equality of o-linear maps). Let Repf(G) denote the category of
representations of G on finite-dimensional k-vector spaces. It is a k-linear category.

11.21 Let G be an affine group scheme over k and G; the split Galois groupoid with
kernel G. The restriction functor

Repf(Gg) — Repf(G)

is an equivalence of categories. In particular, every representation of G on V extends to
a representation of G5, unique up to a unique isomorphism.

More generally, let G be a k /k-Galois groupoid with kernel G. The choice of a section
s over a finite extension K of k determines an equivalence of categories

Repf(Gg) — Repf(9)x)-
See Lattermann 1989, 4.2.7, 4.2.8, 4.2.9.
11.22 Let G be a k/k-Galois groupoid. The category Repf(S) of representations of G is

abelian and k-linear. It has a natural structure of a tensor category. For example, the
trivial representation

1 G(k) G —— Gal(k/k) — 1
l ] lptrivial ”_
1 —— Gp(k) Sk Gal(k/k) — 1.

in which pyiia(g) = 7(g) = o, viewed as a o-linear isomorphism k — k. Duals exist,
and obviously End(1) = k. The functor mapping a representation to its underlying
vector space is a k-valued fibre functor. Therefore, Repf($) is tannakian category over k.

The band of a Galois groupoid

11.23 Let G be a Galois groupoid with kernel an algebraic group G. Let (s, ), be a section
to 7z, asin 11.15. The automorphisms

Vo G(E) - G(E): YU(g) =58 Sc;l’ o€ Gal(k/k),

form a descent datum modulo inner automorphisms on G, and so define the structure of
a band on G (Appendix C, §5). This structure is independent of the choice of the section
(S5)s- The band B(G) of G is well-defined up to a unique isomorphism.

When the kernel is commutative, the family of automorphisms (y,), is a descent
datum on G, and so G acquires a model over k, well-defined up to a unique isomorphism.
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The cohomology class of a Galois groupoid

11.24 We fix a band B over k, and consider k/k-Galois groupoids equipped with an
isomorphism B =~ B(G). The cohomology set H2(k, B) is the set of isomorphism classes
of such systems. We shall see 11.29 that this agrees with the definition in Appendix C,

§6.

11.25 When B is commutative, we can identify it with a commutative affine group
scheme G over k. When G is of algebraic over k, H*(k, G) becomes the familiar Galois
cohomology group H?(Gal(k /k), G(k)). See the next subsection.

Galois groupoids admitting a special section

In this subsection, we study an important class of Galois groupoids, which includes all
those with commutative kernels.

Let G be a k/k-Galois groupoid with algebraic kernel G, and let (s, ), be a section
to 7, as in 11.15. We say that (s;), is special if the family (y,), satisfies the cocycle
condition (11.3),

Yor =Yoo(oy:), 0,7 € Gal(k/k).

Then (¥, ), is a continuous cocycle and so defines a model G, of G over k. Moreover,
def -1
Qs = Vo OV Vor

is a continuous 2-cocycle on Gal(k /k) with values in Z;(k), where Z;; is the centre of G.

Consider the category whose objects are the pairs (G, a), where G is an algebraic
group over k and a = (a, ;). rer is @ continuous 2-cocycle on T with values in Zg (k). A
morphism (G’,a’) - (G, a) is a pair (¢, f), where ¢ : G’ — G is a homomorphism of
algebraic groups over k and f = (f,),er is a continuous 1-cochain with values in G(k)
such that, for all o, 7 € Gal(k/k),

Agr° faa(fr)f;‘rl = §0(aé—,f)
ad(f5)oo™(p) = @.

Composition of morphisms is given by
(@, o(g", f1) = (pog’, [,

where f7 = p(f})fo. 0 €T.
For an object (G, a), we let G be the extension

1- G(k) - G- Gal(k/k) —» 1

defined by the 2-cocycle a: the elements of G are the pairs (g, o) € G(k) X Gal(k /k), and
(g 0)(h,7)=(g-0h-a,.,07).

For example, if a, ;, = 1 for all o, 7, then § is the split Galois groupoid G(k) X Gal(k/k).

PROPOSITION 11.26 The functor (G, a) ~ G from pairs (G, a) to k/k-Galois groupoids is
fully faithful; its essential image consists of the Galois groupoids admitting a special section.

PROOF Routine verification using descent theory. o
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REMARK 11.27 Let 2 be a commutative k/k-groupoid with kernel P. Letp : P — G be
a homomorphism of algebraic groups over k, and let Z,, be the centralizer of ¢(P) in G.
Assume that ¢ extends to a homomorphism ¢ : P — G, and let Iy = Aut(¢$). Then
Iy is an inner form of Z, whose cohomology class can be described as follows. Choose
a suitable section s, as before, and let (d, ;) be the corresponding 2-cocycle. When we
write ¢(s(p)) = (c,, p), we obtain a 1-cochain (c,) splitting the cocycle (¢(d, ;)):

Co PCr = go(dp,r) * Cor-

For p € P(k) we have

pp(p) = p(pp) = p(s(p) - p - 5(0)™) = (o, p) - (D) - (cpr )™ = ¢, - () - ;7

andsoc, € Z¢(I€). The formula displayed above shows that the image of (c,) in Z,, /p(P)
is a cocycle. Its class in H(k, Z,/®(P)) depends only on the isomorphism class of ¢,
and it is the cohomology class of I,.

The category of Galois groupoids

PROPOSITION 11.28 Let D be the category of k /k-Galois groupoids and C the full subcate-
gory of k /k-Galois groupoids with algebraic kernel.

(a) The objects of C are artinian.

(b) The functor

“©lim”G, w limG, : ProC — D
— —

is an equivalence of categories, with quasi-inverse the functor sending an affine group
scheme G to the projective system of its algebraic quotients.

PROOF Let G be a k/k-Galois groupoid with kernel G. The subobjects of G are in one-to-
one correspondence with the subgroup schemes of G (see 11.16), and so G is artinian if
G is algebraic. The rest of the proof is opposite to that of Appendix B, B.7. o

In other words, the category of k/k-Galois groupoids is the category of pro-objects
in the category of k/k-Galois groupoids with algebraic kernel.

Groupoids and Galois groupoids

Let S, = Speck, S = Spec k. The left action of ' & Gal(k/k) on k defines a right action
on S, and the map
SXT = SXg S, (s,0)(s,5-0) (82)

is an isomorphism of schemes. Here T' is to be interpreted as a pro-finite scheme over k.

Let G be a k-groupoid acting transitively on S, and assume that the kernel G2 is of
finite type over k. When we view (82) as a morphism of S-schemes (through projection
on the first factor), it identifies (S Xg, S)(S) with I' = Gal(k/k), and the morphism
(t,8): G = S Xg, S defines a map

72 G(k) = G(S) = (S x5, S)(S) ~ Gal(k/k) ET.

More precisely, G(k) is the set of sections to the morphism ¢ in the diagram

G L §x5 8§ <= ST

T
t lp '

S = Spec(k).
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The map G(k) — T is surjective because (¢, s) is faithfully flat and k is algebraically
closed.

Now (G(k),S(k),(s,t),0) is a transitive groupoid (in Set) with a canonical point
a € S(k), namely, the identity map. Therefore (see 2.5) there is a well-defined group
structure on G(k) for which the sequence

1 - G2(k) = G(k) = Gal(k/k) = 1

is exact.
In this way, a k-groupoid G acting transitively on S with kernel G* defines a k/k-
Galois groupoid,
1 - G* - G(k) — Gal(k/k) — 1,

with kernel G®. A morphism of k-groupoids acting transitively on S defines a morphism

of k /k-Galois groupoids.

PROPOSITION 11.29 The functor G ~ G(k) is an equivalence from the category of k-
groupoids acting transitively on S with algebraic kernel to the category of k /k-Galois
groupoids with algebraic kernel.

PROOF Descent theory (11.4) shows that the functor is fully faithful and essentially
surjective. o

The statement can be extended to all groupoids by passing to the pro-categories (see
11.28 and Appendix B, B.21).

Let G be a k-groupoid acting transitively on S = Spec(k). A section u of G over
S Xg, S is special if the map

ad(u) : pr;(G*) — pri(G*)

satisfies the cocycycle condition. When G corresponds to G under the equivalence in
Proposition 11.29, special sections of G correspond (one-to-one) with special sections of

g.

11.30 We sketch an alternative approach to the relationship between groupoids and
Galois groupoids.

Let S be a finite Galois covering of S, with Galois group I, and let P be a transitive
S/Sp-groupoid. Thus P is a scheme over S Xg S plus a partial law of composition
satisfying certain conditions. We have a commutative diagram

S &= SxI &= SxI'xT
U l(s,a)i—»(s,sa) l(s,al,az)H(s,sal,salaz)

S &= Sxg, 5 &= Sxg, SXg, S

in which the vertical arrows are isomorphisms. From this, we see that the partial law of
composition is a family of morphisms

P(oc) X o*P(t) — P(o71).
Now take S, = Spec(k), and define a multiplication on P by

a, * a; = a, - 0a,
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The conditions then show that we have an exact sequence
1-PQ)-»P->T-1

Now let S = Spec(k’) with k' C k a finite extension of k. According to the above
discussion, a transitive S/S,-groupoid defines a k/k-Galois groupoid together with a
splitting over k’.

Now let P be a k/k-groupoid. According to 10.3, P comes from a k’ /k-groupoid
some k'’ finite over k, and so defines a k/k-Galois groupoid together with a splitting over
k'. Every k/k-Galois groupoid comes in this way from a transitive k /k-groupoid (almost
by definition).

Tannakian categories and Galois groupoids

Let T be a tannakian category over k. We begin with two remarks.

11.31 A k-valued fibre functor on T(k) defines a k-valued fibre functor on C. Conversely,
a k-valued fibre functor on T defines a k ®j k-valued fibre functor on T (I, 7.19), and
hence a k-valued fibre functor on T (because k has characteristic zero). Any two k-valued
fibre functors on T are isomorphic (because the same is true of Cg)).

11.32 Let C, be an algebraic tannakian subcategory of C, say C, = (X)®. For some
subfield K of k finite over k, w restricts to a K-valued fibre functor on C,.

Let w be a k-valued fibre functor on C (assumed to exist). For o € Gal(k/k), define
% to be the fibre functor X w w(X) ®; , k. Then

92(%1) ~ 2%y,

Define
G = |_| Isom®("w,co),

el

and let 7 : G — Gal(k/k) be the map sending the elements of Isom®(°w, w) to o. From
an isomorphism f : “w — w and an element p of Gal(k /k), we obtain an isomorphism
Pf 1 PPw — Pw by applying the functor — ®¢ , k. We define the product of the elements
fi1: % —> wand f,: 2w, — w of G by the rule

f1f2
Cf — o 0102 T, G1 %
f1-fa=f10%s, Mo o, ' P
Then
n(f1- f2) =010, = n(f)7(f>),
and

(f1-Sf2) - fa=f10% 207 f3 = f1-(f2- f3)
fridy,=f=id,-f
[T =idy =" S,

and so G has a group structure for which 7 is a homomorphism. We have an exact
sequence

1 — Aut®(w) —» G- Gal(k/k) — 1.
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of abstract groups. The homomorphism 7 is surjective because any two fibre functors
on C with values in k are isomorphic. Every algebraic tannakian subcategory admits a
fibre functor with values in a finite extension K of k in k, which can be used to define a
section of 7 over Gal(k/K). From C and w we have constructed a k /k-Galois groupoid
9= Aut®(w) with kernel Aut®(w).

THEOREM 11.33 Let T be an essentially small tannakian category over k and w a k-valued
fibre functoron T.

(a) The extension § is a k /k-Galois groupoid with kernel Aut?(w).

(b) The functor T — Repf(G) defined by w is an equivalence of tensor categories.
Conversely, if G is a k /k-Galois groupoid, then Repf(G) is a tannakian category over k, the
forgetful functor is a fibre functor, and G ~ Autf(coforget).

PROOF Statement (a) is proved above. In proving (b), we may suppose that T is algebraic.
Then T has a fibre functor w over a finite exension K, and

T, Repf(9)
is an equivalence because it becomes an equivalence after we have extended scalars to K,
T ~—> Repf(G ~— Repf .
® 5 Repf(Gx) —— Repf(G))

The final statement is proved in 11.21. o

Note that the proof of Theorem 11.33 is independent of the results of this chapter. In
its statement, we assumed that the tannakian category has a fibre functor over k. The
proof (10.1) that this is always true uses 10.3, which relies on Theorem 1.1.

Let k” be a finite extension of k. Essentially small tannakian categories over k
equipped with a fibre functor over k’ correspond to k /k-Galois groupoids equipped with
a splitting over k’.

Galois groupoids for C/R

11.34 Let
T
1- G(C)— §— Gal(C/R) > 1

be a C/R-Galois groupoid with kernel G. Choose an s € G such that 7(s) = t (complex
conjugation). Let o : G(C) — G(C) be conjugation by s, and let ¢ = s2. Then o is r-linear,
c € G(C), and

o? =ad(c), oc)=c. *)
Every triple (G, o, c) satisfying these conditions arises in this way from a C/R-Galois

groupoid. When we replace the section s with sm, m € G(C), the pair (o, c) is replaced
by (oo ad(m), c(m)cm).

11.35 Let (G, o, c) be a triple satisfying the conditions in 11.34, and let G be the corre-
sponding C/R-Galois groupoid. Then Repf(9) is a tannakian category over R with a
C-valued (forgetful) fibre functor w such that G = Aut®(w). Together with Theorem
11.33, this gives a description of tannakian categories over R that we exploit in Chapter
V, §1.

ToDo 6 Add the 2-category statements.

NOTES This section is largely based on Langlands and Rapoport 1987 and Lattermann 1989.



12. Descent of tannakian categories 155

12 Descent of tannakian categories

12.1 Letk’/k be a finite Galois extension with Galois group T, and let C’ be a Tannakian
category over k’. A descent datum on C’ relative to k' /k is

(a) a family (B,),er of equivalences of tensor categories g, : C' — C’, 8, being
semi-linear relative to y, together with

(b) a family (u,/,) of isomorphisms of tensor functors i, : ., = B,,06, such
that

ﬁ}’”}"}’(X) W””—/;’(X)> ﬁy”(ﬁy’y(X))

luynyf,yoc) Jﬁyf/(uy/y(xn
Myt (B, (X))
By (B, (X)) ———— B,u(B,(B,(X)))
commutes for all X € ob(C).

12.2 A Tannakian category C over k gives rise to a Tannakian category C' = Cy over
k' together with a descent datum for which §,(X, ay) = (X, axoy~1). Conversely, a
Tannakian category C’ over k' together with a descent datum relative to k' /k gives rise to
a Tannakian category C over k whose objects are pairs (X, (a,)), where X € ob(C’) and
(a,: X — B,(X)),er is such that (u, ,)xoa,, = B,(a,)oa,, and whose morphisms
are morphisms in C' commuting with the a,. These two operations are quasi-inverse,
so that to give a Tannakian category over k (up to a tensor equivalence, unique up to a
unique isomorphism) is the same as giving a Tannakian category over k’ together with a
descent datum relative to k’ /k (Saavedra 1972, I1I, 1.2).

12.3 On combining 12.2 this statement with (3.1) we see that to give a Tannakian
category over k together with a fibre functor with values in k’ is the same as giving
an affine group scheme G over k’ together with a descent datum on the Tannakian
category Rep,,(G). Giving a descent datum on Rep,,(G) amounts to extending G to a
k' /k-groupoid, or extending G to a k/k-Galois groupoid equipped with a splitting over
K.

13 Tannakian categories whose band is of multiplicative
type
ToDo 7 Remove the repetition in this section.

In this section, we study tannakian categories whose band is of multiplicative type.
They form an important class - for example, the category of motives over a finite field
is conjectured to be of this type. Recall that an affine commutative band over k can be
viewed simply as a commutative affine group scheme over k. Throughout, k denotes a
separable closure of k.

Tannakian categories whose band is diagonalizable

We first consider the split case.
Let M be an abelian group. The functor of k-algebras

R ~ Hom(T', RX)
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is represented by an affine group scheme D(M) over k. Any group scheme isomorphic
to such a group scheme is said to be diagonalizable. If G = D(M), then

M = X*(G) &f Hom(Gg, G,,) (characters of G).
The functor G ~ X*(G) is a contravariant equivalence from the category of diagonal-
izable algebraic groups over k to the category of abelian groups, with quasi-inverse D.
Under the equivalence, finitely generated groups correspond to algebraic groups, Z cor-
responds to G,,, and Z/pZ corresponds to the étale group scheme Z/pZ if p # char(k)
and to the finite connected group scheme y,, if p = char(k).

Let G be a diagonalizable algebraic group over k. The simple objects of Repf(G) are
the one-dimensional spaces on which G acts through a character. The abelian group M
can be recovered from Repf(G) as the set of isomorphism classes of simple objects with
addition corresponding to tensor product (better as the set of “types” of isotypic objects —
two isotypic objects M and N have the same type if M ~ N" for some m,n € N).

For simplicity, in the rest of this subsection, we assume that k has characteristic 0.

PROPOSITION 13.1 An essentially small tannakian category T over k has diagonalizable
band if and only if

(a) itis semisimple, and

(b) the tensor product of any two isotypic objects is isotypic.

In this case, the set of types of isotypic objects M forms a group under tensor product, and
the band of T is D(M).

PROOF If T has diagonalizable band, then C) ~ Repf(D(M)) for some abelian group
M (apply 11, 3.1, and III, 10.1), and the above remarks show that (a) and (b) hold for
Repf(D(M)). It then follows from 6.17 that they hold also for C.

Conversely, suppose that (a) and (b) hold, and let M be the set of isomorphism
classes of simple objects. The conditions (a) and (b) say that C is has an M-gradation
whose homogeneous objects are the isotypic objects (cf. 9.2). The gradation defines a
homomorphism

D(M) - Aut®(idc) = Z(band of C),

and it remains to show that this induces an isomorphism of D(M) onto the band of C.
It suffices to check this locally for the fpqc topology, and so we may suppose that there
is a k-valued fibre functor w on C. Once we have shown that the simple objects of C
have (categorical) dimension 1, the functor w will define an equivalence of C with the
category of M-graded finite-dimensional k-vector spaces, and hence with Repf(D(M)),
as required. Let S be a simple object of dimension r, so dim (S ® S¥) = r? (by I, 5.4).
Then S ® SV is isotypic, hence trivial, and so Hom(1, S ® SV) has dimension r2. Recall
that End(S) = Hom(1,S ® S¥) ((14), p. 21). As w induces an isomorphism

End(S) —» End(w(S)) ~ M, (k)
and End(S) is a division algebra, we see that r = 1. O

REMARK 13.2 Let T be a tannakian category over k. If the band of T is diagonalizable,
then, for any isotypic object S of T, End(S) is a division algebra with centre k and

dimy(End(S)) = dim(S)?. (83)

Conversely, if T is semisimple and (83) holds for all isotypic objects, then the band of T
is diagonalizable.
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Let T be a tannakian category whose band is the diagonalizable group D(M). Then
T is determined up to tensor equivalence by its class in H*(k, D(M)). An element m of
M determines a homomorphism Z — M and hence a homomorphism

@, - H*(k,D(M)) = H*(k,D(Z)) ~ Br(k).

PROPOSITION 13.3 For any isotypic object E of type m, the homomorphism ¢,, sends the
class of T in H?(k, D(M)) to the class of End(E) in Br(k).

PROOF For a proof in terms of gerbes, see Saavedra 1972, 3.5.3. For a proof in terms of
Galois groupoids, see 13.17 below. o

From ¢,,, we get a pairing
H?(k,D(M)) x M — Br(k), x,m + @,,(x).

PROPOSITION 13.4 The homomorphism

H?*(k,D(M)) - Hom(M, Br(k)) (84)
defined by the above pairing is an isomorphism.
PROOF When M = Z, the homomorphism ¢, : H%(k,G,,) — Br(k) is the canonical
isomorphism H?(k, G,,) ~ Br(k). It follows that the proposition holds for Z, hence for
7D where I is any set, because both sides of (84) transform sums into products. For
the left-hand side, this follows from the interpretation of H? as equivalence classes of

gerbes.!?
In the general case, there is an exact sequence

0-27D 570 5 M -0,
and hence an exact sequence
0 - D(M) - G, - Gl, > 0.

As for H?, we have H'(k,G.,) ~ H'(k,G,,)!, which is zero, and so we have an exact
sequence

0 — H*(k, D(M)) —» H*(k,G,) — H*(k,Gp)".

On comparing this with the exact sequence
0 - Hom(M, Br(k)) —» Hom(ZY, Br(k)) - Hom(Z®, Br(k)),
we obtain the statement for M. O

COROLLARY 13.5 IfBr(k) = 0, for example, if k is algebraically closed or finite, then every
tannakian category over k with diagonalizable band in neutral.

12This requires that we use the fpqc topology. It is not true that H? for the fppf topology commutes with
products of affine group schemes over k.
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SUMMARY 13.6 Let C be tannakian category over k with band D(M). Then C is deter-
mined up to tensor equivalence by a homomorphism

u: M — Brk).

The category C is graded of type M. The homogeneous objects are the isotypic objects. For
each m € M, there is exactly one simple object (up to isomorphism) S,,, homogeneous of
degree m, and End(S,,) is a division algebra with centre k and invariant u(m) in Br(k).

Let d(m) be the order of u(m) in Br(k). When k is a local or global field, d(m) =

1/ dim(End(S,,,)), but not generally otherwise (period-index problem).
The Grothendieck ring of C is the subring K(C) C Z[M] determined by

Z n,[Sx] € K(C) < n,, =0mod d(m) for allm € M.
A canonical basis of K(C) is formed by the elements of the form d(m)[S,,].

13.7 When M = ZD ie. G = an, to give u amounts to giving elements &; € Br(k),
each i € I. Choose, for each i, a nonzero isotypic object E; of degree i, and let A; =
End(E;) be a central simple k-algebra with invariant ;. It is possible to reconstruct C
(up to tensor equivalence) from the A; (exercise).

Numeric study of Tannakian categories (Grothendieck)

We first study abelian categories. Let k be a field and A a locally finite k-linear abelian
category. Recall that an object of an abelian category is simple if it is nonzero and
contains no proper nonzero subobject.

13.8 If M is a simple object of A, then the abelian subcategory of A it generates is
equivalent to the category of finite-dimensional vector spaces over the division algebra
D = End(M). One sees therefore that the object M remains semisimple under an
extension k' /k if and only if D ®; k' is a product of matrix algebras over division
algebras. This is true for all k’ if it is true for one perfect field containing k, which is
equivalent to the centre Z of D being separable over k. One then says that M is absolutely
semisimple. A similar statement holds for semisimple M.

13.9 The Grothendieck group K(A) is the free abelian group generated by the set Z(A)
of isomorphism classes of simple objects of A. If k' is an extension of k, the way in which
a simple object M of A such that M}, is semisimple decomposes is seen in the structure of
D ® k' = D': if D’ is a product of algebras M,, (D;), where the D! are division algebras,
1 <i <r, then M), decomposes into r isotypic components (corresponding to the Dl.’ )
each having n; simple components Di’ . Assume that k’ is Galois over k. Then the classes
of the M| are conjugate among themselves under the action of Gal(k’/k) = II. We
therefore have a canonical bijection

T(A) ~ 5(A)/1L.

13.10 Assume that A is semisimple, that is, that every object is a sum of its simple
subobjects, and hence a finite direct sum of simple objects. If e is simple, then every
nonzero morphism e — e is an isomorphism. Therefore, End(e) is a division algebra. It
contains k in its centre, and is finite-dimensional over k. Let re denote the direct sum of
r copies of e. Then End(re) ~ M,(End(e)). If ¢’ is a second simple object, then either
e ~ ¢/ or Hom(e, ') = 0. Therefore, if x = > r;e; (r; > 0)and y = Y. s;e; (s; > 0) are two
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objects of A expressed as sums of copies of the simple objects e;, and e; % e; for i # J,
then

Hom(x, y) ~ [ [ M, ,,(End(e)).
Thus, the category A is described up to equivalence by
(a) the set Z(A) of isomorphism classes of simple objects in A;
(b) for each o € Z, the isomorphism class [D,] of the endomorphism algebra D, of a
representative of o.

We call Z(A) and ([D,)sexv) the numeric characters of A.

Let k., denote the centre of D,. The isomorphism class of D, as an k-algebra is
determined by the isomorphism class of k, as an extension of k and the class D, in
Br(k,).

SUMMARY 13.11 If A is semisimple, then the category A is determined up to equivalence
by the set ¥ = Z(A) and the map

0 = (Z5,{s € Br(Z5))

sending the class o of the simple object M to the centre Z, of End(M) and the class of
End(M) in Br(Z,) (the pair (Z,, {,) is defined up to a unique isomorphism).

13.12 Now suppose that A has a k-linear tensor structure. We call the numeric charac-
ters of A the following data:
(a) the set (up to a bijection) X of isomorphism classes of simple objects of A;
(b) the multiplication in K(A) = Z®; this amounts to giving for all 0,7 € Z, the
product
0T = Z Cg‘no (Cgr € N),
o

i.e., a system of natural numbers cg’r;
(c) the map

g = (ch gcr)’ gcr € Br(ZCf)
considered in (13.11);

(d) the function
dim: A—->Z

when A is assumed to be tannakian.

13.13 Note that to give () and (b) is equivalent to giving the commutative ring K(A)
together with its “effective subset”

K(A)*f = subgroup of K(A) generated by [M], M € obA,
= N®,

Indeed, X can be recovered starting from the datum K(A)* ¢ K(A) as the set of minimal
nonzero elements of K(A)®. The datum (3) then allows us to recover, as has been made
explicit above, the functorial variance of the ring K(A/) with respect to k’. Finally,
the datum in (d) allows us to recover in principal the characteristic polynomial (in
particular, the trace and determinant) of a semisimple object M of A in terms of the
reduced characteristic polynomial (resp. reduced trace, reduced norm) in the central
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simple algebra End(M;) corresponding to the isotypic components M; of M. Let M be
isotypic of rank n, and suppose that D = End(M) has centre Z of rank r over k; then
n = n'r where n’ is the rank of M over Z, and D is of rank d? over Z with d|n’:

dety f = NmZ/k(rdD/Zf)n//d
n/
Try f = Trzy(dp )2 f )E
Py (f, 1) = Nmy  (rdp /2 (f, 0)Y'/4, n'/d=n/dr.

13.14 Note that the knowledge of the numeric characters of a Tannakian category A
does not allow us to reconstruct it up to equivalence, even if k is an algebraically closed
field of characteristic zero (in which case the datum (c) is vacuous) and A is semisimple,
even in the particular case where moreover A is the category of representations of a
finite group.!® As an exception to this remark, we note however the case of a Tannakian
category A with diagonalizable band is determined by its numeric characters (then X
becomes a subgroup of K(A)*, which determines the band, and the datum (c) gives a
homomorphism ¥ — Br(k) which suffices to determine everything).

Tannakian categories whose band is a torus

Let k be a field of characteristic 0, and let G be a k/k-Galois groupoid. If the identity
component of the kernel of G is a reductive group, then Repf(9) is a semisimple locally
finite k-linear abelian category, and so is described, up to equivalence, by its numerical
invariants (see above). We explain how to compute these invariants when the kernel is a
torus. Let I' = Gal(k /k).

Let T be a torus over k - it is split by k. The category Rep(T) of representations of T
on finite-dimensional vector spaces is semisimple, and the simple representations are
classified by the orbits of I' acting on X*(T),

Z(Rep(T)) = T\X*(T).
If V', is the simple object corresponding to the orbit I'y, then k ®j Viy = @x/erx Vo,
where V,, is the one-dimensional k-vector subspace on which I acts through x’. Let
k(y) = k'@, where I'(y) is the subgroup of I fixing y. Then there is a canonical action
of k(y) on Vr,, and End(VrX) = k(y).

We have determined the numerical invariants of the category Rep(G) when G is the
split Galois groupoid with kernel T. For nonsplit groupoids, we need to take account of
the cohomology class of Gin H 2(k,T).

Again let T be a torus over k. Let y € X*(T), and let I'(y) and k() be as before.
Then Hom(k(y), k) ~ T'/T(x), and s0 X*((Gy)i(y)/k) = Z"/T00)_ The map

Z naaHZa)(

oel’'/T(x) o

defines a homomorphism
T = (G k-

13The first order for which there are two nonisomorphic noncommutative groups is 8, and their character
groups do not distinguish them. However, over an algebraically closed field of characteristic zero, a
connected reductive group is determined (up to isomorphism) by the set of isomorphism classes of its
finite-dimensional representations endowed with an obvious sum and product, i.e., by its semiring of
representations. See 8.9.
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From this, we get a homomorphism
H*(k, T) = H?(k, (Gy)i(x)/10) = H*(k(x), Gp) = Br(k(). (85)

PROPOSITION 13.15 Let G be an k/k-Galois groupoid whose kernel is a torus T. Then
Rep(9) is a semisimple locally finite k-linear abelian category. We have

Z(Rep(9)) =~ I\X*(T),

and if V., is a simple representation corresponding to the orbit Ty, then
End(V,) has centre k(), and its class in Br(k(Y)) is the image of cI(§) under the homo-
morphism (85).

PROOF When the kernel is split, we proved this in 13.6. As the kernel is split by k, the
general case follows from the discussion in 13.9. o

Tannakian categories whose band is of multiplicative type
REVIEW OF ALGEBRAIC GROUPS OF MULTIPLICATIVE TYPE

Let k be a field, and let T' = Gal(k/k). An algebraic group over k is of multiplicative
type if it becomes diagonalizable over some field containing k, in which case it becomes
diagonalizable over k. The functor G ~ X*(G) is a contravariant equivalence from
the category of algebraic groups of multiplicative type over k to the category of finitely
generated Z-modules equipped with a continuous action of I'. Let M be a finitely
generated abelian group. A continuous action of I" on M defines a continuous action of
I' on D(M), and hence a model of D(M) over k. In this way, we get a quasi-inverse to the
functor G - X*(G).

REVIEW OF EXTENSIONS

Let M be a multiplicative abelian group. An extension of G by M is an exact sequence
of groups
1-M-—>E = G- 1
We set
om=s(c) - m-s(o)}, ceG meM,

where s(0) is any element of E mapping to o. Because M is commutative, cm depends
only on o, and this defines an action of G on M. Note that

s(c)- m=om-s(g), allceG, meM.

Now choose a section s to 7, i.e., a map (not necessarily a homomorphism) s: G — E
such that 7os = id. Then s(o)s(¢”) and s(oo”’) both map to oo’ € G, and so they differ
by an element ¢(c,c’) € M,

s(o)s(a’) = ¢(o,0”) - s(oa’).

From
s(a)(s(a")s(a”)) = (s(o)s(a”))s(a”)

we deduce that
op(c’,d") - @(o,0'0") = ¢(o,0") - p(cc’, "),
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i.e., that ¢ € Z%(G,M). If s is replaced by a different section, ¢ is replaced by a coho-
mologous cocycle, and so the class of ¢ in H2(G, M) is independent of the choice of s.
Every such ¢ arises from an extension. In this way, H>(G, M) classifies the isomorphism
classes of extensions of G by M with a given action of G on M.

REVIEW OF THE BRAUER GROUP

Let L be a finite Galois extension of k, and let .A(L /k) be the collection of central simple
algebras A over k containing L and of degree [A: k] = [L: k]? (so L is a maximal
subfield of A).

Let A € A(L/k), and let E be the set of invertible elements « € A such that aLa™! =
L. Then each a € E defines an element x — axa~! of Gal(L/k), and the Noether-
Skolem theorem implies that every element of Gal(L/k) arises from an o € E. Because

[L: k] = \/m , the centralizer of L is L itself, and so the sequence
1-L*— EX— Gal(L/k) -1
is exact. Let y(A) be the cohomology class of this extension in H*(L/k, LX).
THEOREM 13.16 The map A — y(A) induces an isomorphism
Br(L/k) — H*(L/k,G,,).
On passing to the limit over the finite Galois extensions of k in k, we obtain an isomorphism
Br(k) ~ H%(k,G,,) (Galois cohomology group).

PROOF Standard result. o

TANNAKIAN CATEGORIES WHOSE BAND IS OF MULTIPLICATIVE TYPE

Let T be an essentially small tannakian category over a field k of characteristic zero, and
let w be a fibre functor of T over k. Assume that Aut?’(a}) is an algebraic group G of
multiplicative type. Then

1-Gk)- G-I -1

with
G= Autibw «f |_| Isom®(Cw, w)
oerl
is a k /k-Galois groupoid and the functor
T — Repf(9)

is an equivalence of tensor categories (11.33).

Let y € X*(G), let I'(y) be the subgroup of I fixing y, and let k() = kK*™@). Then y
is defined over k(), and from y : Gy(,) — G,, (of commutative algebraic groups over
k(x)), we get a homomorphism

H2(k(2), Giy)) = H*(k(X), G-

On combining this with the restriction map H?(k, G) - H?(k(x), G(,)) and the isomor-
phism H?(k(x), G,,) =~ Br(k(x)), we get a homomorphism

H?(k,G) — Br(k())). *)
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PROPOSITION 13.17 LetV(y) = @X, ery V. ThenV(x) is simple, End(V(y)) is a divi-

sion algebra with centre k(x), and the homomorphism (*) sends the class of T in H*(k, G)
to the class of End(V (x)) in Br(k(yx)).

PROOF This is a straightforward consequence of the above definitions (see the case of a
torus), -

THEOREM 13.18 The category T is a semisimple locally finite k-linear abelian category,
and the fibre functor w defines a bijection

2(T) ~ I\X*(G),

where G = Aut?(a)). If V() is the simple representation corresponding to the orbit Ty,
then End(V ()) is a division algebra with centre k( ), and its class in Br(k(y)) is the image
of the class of T under the homomorphism .

PROOF This summarizes previous results. o

When do the numerical characters determine a tannakian category up to a
numerical equivalence?

13.19 The question of deciding whether the numeric characters determine the Tan-
nakian category up to equivalence comes down, for a fixed G, to determining whether
an element £ € H?(k,G) is known when u,(£) is known forallu: G — (Gm)z, ik as
before. This is true when G is diagonalizable (pro-countable). We look at some other
examples.

13.20 Let G be a torus of dimension 1, therefore equal to either G, or G,, twisted by a
quadratic extension Z of k. In the second case, we have an exact sequence

N
0 — G — Gz —25 Gy 0

and we conclude, from the exact cohomology sequence and Hilbert’s theorem 90, that
Ker(u: H*(k,G) — H*(k,(G,,), /k) is zero. In this case, the numeric characters deter-
mine T up to equivalence.

13.21 Let P be the group of multiplicative type conjecturally attached to the category of
motives over F. An element of H*(Q, P) is zero if its image in H*(Q, (Gm)alr)/a) is zero
for all characters 7 of P. See the statement (*) and its proof following Lemma 3.15 in
Milne 1994.

14 Generalizations

This section is not yet written. It will be only a few pages, perhaps none.

Generalizations.

Summary of what is known (beginning with Saavedra) about the above theory over a
more general base, especially Dedekind domains.
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Applications

For example: Any subvariety of an abelian variety gives rise to a reductive group via the
convolution of perverse sheaves. For smooth subvarieties these Tannaka groups have
recently been used to obtain arithmetic finiteness results for varieties over number fields
and the big monodromy criterion.

Construction of the Langlands dual group

It is possible to construct the Langlands dual group over Z as the group attached to a
tannakian category over Z.

Tannakian interpretation of the Langlands program

Discuss the hoped for “tannakian category of automorphic representations”.



Chapter IV

The gerbe of fibre functors

There are three main steps in the basic theory of general tannakian categories.
(a) Relate pointed tannakian categories to groupoids.

(b) Relate groupoids to pointed gerbes.

(c) Relate tannakian categories to gerbes.
Given (b), steps (a) and (c) are more-or-less equivalent, but we include both approaches.
Groupoids can be viewed as being a down-to-earth version of gerbes, especially in their
Galois form.

In Chapter III, §1-§6, we explained (a), which is the approach taken in Deligne 1990.
In the first section of this chapter we explain (b), and in the next two sections, we explain
(c).

Throughout this chapter, k is a field unless indicated otherwise. Unadorned tensor
products are over k, and unadorned products are over Spec k. We let Aff, denote the
category of affine k-schemes and Affg the category of schemes affine over an affine
scheme S.

1 Gerbes and groupoids

In this section, we review the definition of gerbes and explain their relation to groupoids.

Gerbes

We begin by reviewing some terminology from Giraud 1971 (see also Appendix C).

1.1 Let ¢ : F — Aff, be a fibred category over Aff,. For any morphisma: T — Sin
Aff, there exists an “inverse image” functor a* : Fg — Fr such that

Homyy, (Z,a*X) ~ Hom,(Z,X), forX €Fg, Z € Fr.

Here Fy is the fibre ¢~1(S) over S and Hom,(Z, X) consists of the f such that ¢(f) = a.
Composites of inverse image functors are inverse image functors.

1.2 Let¢p: F — Aff and ¢’ : F/ — Aff, be fibred categories over Aff,. A functor
a: F — F' such that ¢’oa = ¢ is cartesian if it preserves inverse images, i.e., for any
morphism a : T — S of affine k-schemes and X € obFg, ar(a*X) is the inverse image
of ag(X). Here ay : Fy — F7 is the restriction of . We view « as a family of functors
ag . Fg — F%, indexed by the affine k-schemes S, compatible with base change.

165
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1.3 A fibred category is a prestack if, for every affine k-scheme S and pair of objects
X,Y of Fg, the functor sending an affine S-scheme a: T — S to Hom(a*X,a*Y) is a
sheaf for the fpqc topology on Affs. It is a stack if, in addition, for every faithfully flat
morphism T — S in Aff, the functor sending an object of Fg to an object of Fr equipped
with a descent datum is an equivalence of categories (i.e., descent is effective on objects).
In other words, a fibred category is a stack if both morphism and objects, given locally
for the fpqc topology on Aff, patch to global objects.

EXAMPLE 1.4 There are the following are stacks.
o MoD — Aff, with MODg the category of I'(S, Og)-modules (= quasi-coherent
sheaves on S);
o PrOJ — Aff, with PrROJg the category of finitely generated projective I'(S, Og)-
modules (= locally free sheaves of finite rank on S);

o AFF — Aff, with AFFg = Affg, the category of affine S-schemes.

1.5 A gerbe over Aff, is a stack G — Aff; such that
(a) every fibre Gg is a groupoid,
(b) for some nonempty S, Gg is nonempty, and

(c) any two objects of a fibre Gg are locally isomorphic.
The last condition means that the inverse images of the objects under some faithfully
flat map T — S are isomorphic. A morphism of gerbes over Aff, is a cartesian functor.

1.6 LetG — Aff, be agerbe. A representation of G is a cartesian functor R : G - MOD.
Thus, to give R amounts to giving, for each affine k-scheme S, a functor from Gg to the
category of quasi-coherent sheaves on S, these functors being required to be compatible
with base change. A morphism between two representations is a natural transformation
of functors. We let Repf(G) denote the category of representations of G on locally free
sheaves of finite rank (cartesian functors G — PROJ).

Thus, an object ¢ of Repf(G) determines (and is determined by) functors ¢ : Gg —
Proj, one for each k-algebra R, and isomorphisms

$r(g°Q) < ¢r(Q) ®r R/,

natural Q € ob(Gg), defined whenever g: R — R’ is a homomorphism of k-algebras.
There is an obvious rigid tensor structure on Repf(G), and End(1) = k.

1.7 Let f: F —» Aff, and g: G — Aff; be fibred categories over Aff,. The category
Cart(F, G) has objects the cartesian functors u: F — G and morphisms the natural
transformations m : u — u’ such thatidg *m = id;.

There is a 2-category F 16, with objects the fibred categories over Aff; and

Hom(F, G) = Cart(F, G)

for all objects F, G (Giraud 1971, 0, 1.8). We define G e#6 to be the sub 2-category of
F 16, with objects the gerbes over Aff; and the same Hom categories.

EXAMPLE 1.8 Let G be an affine group scheme over k, and let TOrRS(G) be the gerbe
over Affg such that TORS(G)y is the category of G-torsors over U. Let G, be G viewed as a
right G-torsor, and let @ be an object of Repf(TORS(G)). The isomorphism G — Aut(G,)
defines a representation of G on the vector space ®,(G,), and it is not difficult to show
that ® ~ @, (G,) extends to an equivalence of categories

Repf(TORS(G)) — Repf(G).
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EXAMPLE 1.9 Let T be a neutral tannakian category over k. The fibre functors on T
form a gerbe FIB(T) over Aff;, and the canonical functor

T — Repf(FIB(T)), X w (@ » w(X)) (86)

is an equivalence of tensor categories. That FIB(T) is a gerbe (any two fibre functors are
locally isomorphic for the fpqc topology) follows from I, 8.1. For the rest, we can take
T = Repf(G) for some affine group scheme G over k.

Descent within gerbes

Let G be a gerbe over Aff, for the fpqc topology. Since any two objects are locally
isomorphic, if one object in G has a certain property and the property is local for the
fpqc topology, then all objects will have the property. We make this explicit.

1.10 Let P be a property of affine schemes. We say that P is local for the fpqc topology
if, for any finite surjective family of flat morphisms U; — U of affine schemes,

P holds for U < P holds for each Uj;.

This is equivalent to saying that P is local for the Zariski topology and, for any faithfully
flat morphism U’ — U,

P holds for U < P holds for U’.

There is a similar definition for other objects. For example, a property P of quasi-
coherent sheaves is local for the fpqc topology if it is local for the Zariski topology and,
for any faithfully flat morphism a : U’ — U of affine schemes and quasi-coherent sheaf
MonU,

P holds for M on U <= P holds for a*M on U’.

For quasi-coherent sheaves, the properties “finite type”, “finitely presented”, “flat”, and
“locally free of finite rank” are all local for the fpqc topology.

LEMMA 1.11 Let G be a gerbe over Aff,. Let Q € obGg and Q' € ob Gg/, where S and S’
are nonempty affine k-schemes. Then there exists an affine k-scheme T and faithfully flat
mapsa: T — Sandad' : T — S’ such that a*Q ~ a'*Q’.

PROOF Note that pr) Q and pr; Q' are both objects in the fibre of G over S x S’, and so
there exists a faithfully flat map b : T — S x S’ such that b* pr; Q ~ b* pr; Q'. We can
take a = pr, ob and a’ = pr, ob,

The projection maps are faithfully flat because the structure maps S — Speck and
S" — Speck are. o
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1.12 Similarly, if Q;, Q, € obGg and Q}, Q) € ob Gy, then there exist faithfully flat
mapsa: T — Sanda’: T — S’ such that a*Q; ~ a’*Q} and a*Q, = a’*Q}.

LEMMA 1.13 Let U be an affine scheme and F a sheaf on U for the fpqc topology. If for
someV affine and faithfully flat over U, the restriction of & to V is representable, then F is
representable on U (by an affine scheme over U).

PROOF Let X be an affine scheme over V representing the restriction of # to V. The
canonical isomorphism prj(F|V) — pry(F|V) (over V Xy V) satisfies the cocycle con-
dition (Appendix C, §3). By the Yoneda embedding, this defines an isomorphism
pr; X — pr; X (over V Xy V) satistying the cocycle condition, i.e., a descent datum
on X relative to V /U. This descent datum is effective by faithfully flat descent. Thus,
we get a scheme X, affine over U such that X, and ¥ define the same sheaf over V. This
implies that they define the same sheaf on U. O

1.14 Let G be a gerbe over Aff,. For an affine k-scheme S and Q;, Q, € ob Gg, we let
JIsomg(Q;, Q) denote the functor of affine S-schemes

(T = S) ~ Isomg (a*Q;, a*Q,).

For Q € obGg, we let Autg(Q) = Jsomg(Q, Q), so it is the functor

(T = S) ~» Isomg, (a*Q,a*Q).

It follows from 1.12 and 1.13, that if there exist an S # @ and Q;, Q, € ob Gg such
that Jsomg(Q,, Q,) is representable by an affine scheme over S, then the same is true
for every S’ and Q’, Q’, € ob Gs,. We then say that G has affine band or, more simply,
that it is an affine gerbe. Thus, a gerbe G is affine if and only if for one (hence every)
S # @ and Q € Gg, Autg(Q) is representable by an affine group scheme over S.

The gerbe attached to a groupoid

1.15 Let (G, S, (t,s), o) be a k-groupoid acting on S (in the sense of I1I, 2.8; in particular,
affine). By definition, for any affine k-scheme T, the quadruple

(S(T), G(T), (t,s),0)

is a groupoid (in sets). For varying T, these categories form a fibred category over Aff,,
which we denote by G°(S: G), or just G°.
Thus, for an affine k-scheme T,

0bGY. = S(T) E Hom(T, S),

and, for a,b € obG). = S(T),
Homgy (a,b) = {h € G(T) | soh = a, toh = b}.

For a morphism f : T/ — T of affine k-schemes, the inverse image functor f* sends an
object a € S(T) to aof € S(T”) and a morphism h € G(T) to hof.

LEMMA 1.16 For any two objects a, b ofG(% o S(T), the presheaf Homy(a,b) on T,
T L1y Homgs (f*a, f*b),

is a sheaf for the fpqc topology. Hence G°(S :G) is a prestack.
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PROOF We have to show that, for a,b € S(T) and f : T’ — T faithfully flat, the map
HomGg(a, b) — Hompese(rr /1)(f*a, f*b)
is bijective. But the left-hand side is
{h: T - G|soh=a, toh=b}
whereas the right-hand side is
{h': T" - G | soh’ = a, toh’ = b and pr, oh’ = pr, oh’}.

The mapping from the first to the second is composition with f. Now f is faithfully flat,
in particular, an epimorphism, so

soh =a < sohof = aof,
toh=a & tohof = aof.
It therefore suffices to show that the sequence
pr,
Hom(T,G) —— Hom(T’,G) —— Hom(T’ Xy T',G)
pr,

is exact, but this follows directly from the exactness of

p1y f
T'xeT" — 3T —— T
pr,
for faithfully flat f (see, for example, Waterhouse 1979, 13.1).
Alternatively, note that
Homgo (f*a, f*b) ={h: T' - G | soh = aof, toh = bof}
T/
= HomSXs(Tl, G)
~ Homp(T", G Xgyxs T),

GXstT — G

/)V
! l(t,s)

y A R R GO VS

which says that the presheaf Homy(a, b) on T is represented by the T-scheme G Xgys T,
and hence is a sheaf (1.13).

O

1.17 Let G(S:G) be the associated stack of G°(S : G) (Appendix C, §3). Because G°(S:G)
is a prestack, G(S : G) contains it as a full subcategory and is characterized by the property
that every object of G(S: G) is locally in G°(S: G). It follows that the fibres of G(S:G)
are groupoids. For any stack H over Aff;, the inclusion functor i : G® — G induces an
equivalence of categories

Hom(G, H) = Hom(G°, H), (87)
compatible with base change, i.e., an equivalence of stacks over Aff;,

HoM(G, H) => HoM(G?, H). (88)
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1.18 Let G be a k-groupoid acting on S. From (87) with H =PROJ we get an equivalence
of categories
Repf(G(S:G)) = Repf(G°(S:G)).
Let R be a representation of GP. For each k-scheme T and objecta: T — S of G%,
we get an isomorphism
R(a) - a*R(idy),
and R is determined by the sheaf R, « R(idg) on S and the isomorphisms
R(g) = (a"Ry = b*Ry)
defined by the arrows a — b in in G‘%. These R(g) form a representation of G, and the
functor
R w (R(idy), (R(g))g)

is an equivalence of categories
Repf(G) ~ Repf(G°) = Repf(S:G). (89)

PROPOSITION 1.19 Let G be a k-groupoid acting on S # (. The stack G(S: G) is a gerbe if
and only if G is transitive.

PROOF We know that G(S : G) satisfies the conditions (a) and (b) to be a gerbe (1.5), and
so it remains to check that any two objects of G(S : G) are locally isomorphic. We show
that

G is transitive <= pr,, pr, locally isomorphic < all a, b locally isomorphic.

To say that the objects pr, and pr, in ngs are locally isomorphic means that there
exists a faithfully flatmap f : T - Sx Sandan h: T — G such that

soh =pr,of, toh=pr,of,

i.e.,, such that h € Homgyg(T,G). Thus the condition for pr; and pr, to be locally
isomorphic is the definition of “transitive” (2.13).

Assume that pr; and pr, are locally isomorphic. We show that any two a,b €
ob Gy (T an affine k-scheme) are locally isomorphic. After passing to a faithfully flat
cover, we may assume that a,b € ob G‘% = S(T). From

b

T 2% SxS — S,
U
a

we see that b = (b,a)" pr, and a = (b, a)* pr,. If pr, and pr, become isomorphic on a
faithfully flat covering U — S X S, then a and b become isomorphic on the faithfully
flat covering T Xgys U — T. o

PROPOSITION 1.20 Let G be a k-groupoid acting transitively on S # @. The canonical
functor

Repf(S: G) — Repf(G(S: G))
is an equivalence of categories.

PROOF A representation of G defines a cartesian functor G°(S : G) —PRroJ, which ex-
tends uniquely to G(S : G). In this way, we get a functor Repf(S : G) — Repf(G(S: G)),
and “restriction” provides a quasi-inverse. o



1. Gerbes and groupoids 171

The groupoid attached to a pointed gerbe

1.21 Let G be an affine gerbe over Aff,, and let Q € ob Gg for some S # (. Consider
the presheaf on Aff,,

Auti(Q): T w {(b,a,9) | b,a: T = S, ¢: a*Q — b*Q}.
For an S x S-scheme (b,a): T — S X S, we have

Aut (Q)(T) = Isomg, (a*Q, b*Q) = Tsomyys(pr; Q, pry Q)(T).

Because G is affine, Jsomg,s(pr; Q, pr Q) is represented by an affine S x S-scheme G
(1.14). The universal element in Aut,(Q)(G) is a triple (¢, s, ) with t,s: G = S and
®: s*Q — t*Q an isomorphism. To an arbitrary f : T — G, there corresponds a triple

(sof . tof(s0f)*Q 1L (tof) Q).

Composition of isomorphisms provides a natural transformation

Auti(Q) X Auti(Q) — Auti(Q),

which corresponds to a morphism of S X S-schemes

m.: G X G-G.
s,S,t

The identity automorphism of Q corresponds to a morphism e: S — G with soe =
toe = idg. The conditions (a) and (b) of (I, 2.9), are satisfied because composition of
isomorphisms is associative, and the identity acts as a neutral element. We therefore
obtain a groupoid (G, m, e) over S. Moreover, because the objects pr”lk Q and prz Q of
Ggys are locally isomorphic for the fpqc topology, G is transitive (see the proof of 1.19).
We call G the groupoid of k-automorphisms of Q.

This construction is inverse to that in 1.15. If G is a k-groupoid acting transitively
on S # @, then G(S:G) is an affine gerbe with distinguished object Q = idg in G(S: G)s,
and G ~ Aut;(Q). On the other hand, if G is an affine gerbe over k and Q is an object of
Gg, some S # @, then Aut, (Q) is represented by a k-groupoid G acting transitively on S,
and the canonical functor G°(S:G) — G induces an equivalence of gerbes

G(S:G) = G. (90)
We describe this correspondence in more detail in 1.33.

REMARK 1.22 Let (G, S, (¢, s), o) be a groupoid in the category of schemes over k, not
necessarily affine. If S is affine and the kernel G is affine, then G is affine. Indeed, the
condition implies that the gerbe G(S : G) is affine, and G is isomorphic to the groupoid
of k-automorphisms of the object idg of G(S:G)g.

Some applications of gerbes

The next result is an almost trivial consequence of the definition of a gerbe, but has
important applications.
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PROPOSITION 1.23 Letu : G; — G, be a morphism of gerbes over Aff,. If for some S #
and Q € ob Gy, the map Auts(Q) — Auts(u(Q)) defined by u is an isomorphism, then u
is an equivalence of categories.

PROOF If follows from 1.11 that if Aut4(Q) — Auts(u(Q)) is an isomorphism for one
nonempty S and object Q of G5, then it is an isomorphism for every nonempty S and
object Q of Gy5.

Let Q,Q" € ob G;g. We shall show that the map Isomg (Q, Q") — Isomg, (uQ, uQ’")
defined by u is a bijection. This will show that u is fully faithful. After possibly passing
to a faithfully flat cover, we may suppose that Q and Q’ are isomorphic in G;3. Then
Isomg (Q, Q') is a principal homogeneous space for the group Autg(Q)(S), and similarly
Isomg, (uQ, uQ') is a principal homogeneous space for Autg(u(Q))(S). As Autg(Q)(S) =~
Autg(u(Q))(S), this implies that the map Isomg, (Q, QH - Isomg, (uQ, uQ’) is bijective.

It follows from 1.11 again that, because one object Q € ob G,g is in the image of u,
every Q' € ob G,y is in the essential image.

Thus, u is fully faithful and essentially surjective, and hence an equivalence of
categories. O

Here are some applications of the proposition.

1.24 Let G be a k-groupoid acting transitively on S, and let G be the pullback of G by
u: T — S,where T # (@ (see p. 111). The morphism of prestacks over Aff,

u: GYT:G) — G°%S:G),

induces an isomorphism of the sheaf of automorphisms of id; € ob G%(T:Gy) with
the sheaf of automorphisms of u € obG°(S:G). The induced morphism of gerbes
u: G(T:G) — G(S:G) has the same property, and therefore is an equivalence of cate-
gories by the proposition. Applying (89), we obtain an equivalence of categories

Repf(S:G) — Repf(T:Gr). 91)

1.25 A morphism of transitive groupoids is an isomorphism if its restriction to the
kernels is an isomorphism. In more detail, letu : G; — G, be a morphism of k-groupoids
acting transitively on S, and let u® : GlA - G2A be its inverse image under the diagonal
morphism A: S — S x S (so u® is a homomorphism of affine group schemes over S). If
u® is an isomorphism, then u induces an equivalence of gerbes G(S: G;) — G(S:G,), and
it follows from 1.21 that u is an isomorphism. (See III, 11.16, for the similar statement
for Galois groupoids.)

1.26 Let G be a gerbe with affine band. There exists a spectrum S of a field such that Gg
is not empty. Let Q € obGg and G = Aut;(Q) (so G is a k-groupoid acting transitively
on S). The gerbe G is equivalent to G(S: G) (1.21), and every gerbe with affine band is
equivalent to a gerbe G(S:G) with S the spectrum of a field and G a k-groupoid acting
transitively on S.

1.27 Let G be a k-groupoid acting transitively on S. It follows from 1.26 that the subob-
jects of G (in the sense of category theory B.5) are in one-to-one correspondence with
the affine subgroup schemes of G*. Therefore, G is artinian if G2 is of finite type over k.

1.28 Here is a more precise form of 1.23: a morphism of gerbes is faithful (resp. covering,
resp. fully faithful) if and only if the morphism on bands is injective (resp. surjective, i.e.,
an epimorphism, resp. an isomorphism). See Giraud 1971, IV, 2.2.6, p. 216.
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Comparison of the 2-categories of groupoids and pointed gerbes

Let S be a nonempty affine scheme over k. We show that the 2-category of k-groupoids
acting transitively on S is biequivalent (not 2-equivalent) to the category of pointed
gerbes.

DEFINITION 1.29 The 2-category G#nd ¢ has

o objects the affine k-groupoids acting transitively on S;

¢ al-morphism from G to H is a morphism f : G — H of S X S-schemes such that
the diagrams (63), p. 110, commute;

o a2-morphism f — gis a natural transformation from f to g (viewing f and g as
functors of affine S X S-schemes).

DEFINITION 1.30 The 2-category §e»fig of S-pointed gerbes over Aff; has
o objects the pairs (G, Q), where G is an affine gerbe over Aff; and Q € obGg;

o amorphism from (G, Q) to (H, R) is a pair (F, ), where F is a cartesian functor
F: G — Hand u is an isomorphism FgQ — R;

o a2-morphism F — G is a cartesian natural transformation.

1.31 We first define a 2-functor ®: §»nd, — Gerbg. Let G be an affine k-groupoid
acting transitively on S. We let ®(G) = G(S:G) (see 1.17 et seq.) and we take idg € S(S)
to be the distinguished object of Gg.

Let f : G — H be a morphism of affine k-groupoids acting transitively on S. For any
affine k-scheme T, f defines a functor

G%(S:G)r = (S(T),G(T),(t,s),0) — G*(S : H)y = (S(T),H(T), (t,s),0).

These are compatible with base change, and so, for varying T they define a cartesian
functor
F°: GY(S:G) - G%S: H),

which, by the universality of the associated stacks, extends uniquely to a cartesian
functor F: G(S:G) — G(S: H). We set ®(f) = F. Then F¢(idg) = idg, and we set
u: Fq(idg) — idg equal to the identity map.

1.32 We now define a 2-functor ¥ : Gerfig - G#ndg. Let G be an affine gerbe over
Aff,, and let Q € ob(Gg). We let ¥G = Aut,(Q), the groupoid of k-automorphisms of Q
(see 1.21).

Let (F, i) be a morphism from (G, Q) to (H, R). Given an affine scheme (a,b): T —
S x Sandag € Aut (Q)(T), we define ¢ by the following diagram

a*(FQ) —2> b*(FQ)

R —2 5 b*R

Then ¢ — ¢ is a natural transformation from Aut,(Q) to Aut;(R). As it respects
the identity, source, target, and composition, it corresponds to a morphism f of the
corresponding groupoids. We let ¥(F, u) = f.
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THEOREM 1.33 There is an equivalence of 2-categories
@ . . .
Grpdg o = > Gerby dg,a, = Yo®, ®oW¥ — idg,,q; -

PROOF We define Wo® ~ id. Let G be an affine k-groupoid acting transitively on S, and
let Q = idg be the distinguished object of the affine gerbe ®(G). For any affine k-scheme
T,

Aut (Q)T) ={(b,a,p) | b,a: T = S, ¢: a*Q = b*Q}
={(b,a,f)| b,a € S(T), f € G(T)withsof = a, tof = b}
= |_| HomeS(T, G)
(b,a)E(SXS)(T)
= Hom (T, G).

Therefore, G represents the functor Aut;, (Q).
From a morphism f : G — H of k-groupoids acting transitively on S, we get a natural
transformation

@02 bQ) > (@R b*R) : At (Q) — Aut(R),

which equals that induced by f. Hence, $Yo® ~ id.

We define ®o¥ ~ id. Let (G, Q) € ob(€erbg). The functor Aut,(Q) is represented
by an affine k-groupoid G acting transitively on S . From G we get a prestack G°(S: G)
with obG%(S:G); = S(T) and ar G%(S : G); = G(T). We define a cartesian functor

A%: GY%S:G) =G
by setting A2 : G°(S:G)r — Gy equal to
ae ST~ a*Q
3 f €G(T) = (s0£)'Q L (t0f)Q).

By construction, A° is faithful. We have a stack G(S:G), a faithful cartesian functor i,
and a cartesian functor A such that the following diagram commutes up to isomorphism,

G'(S:G) —— G(S:6)

Nlﬂ

G.

The functor A is faithful on the subcategory i(G°(S : G)) of G(S:G). Let X € ob Gy, and
let pr, and pr, be the projections from T X S to T and S respectively. They are faithfully
flat because the structure morphisms T — Speck and S — Speck are. By definition,
there exists a faithfully flatmap f : T’ — T'xS and an isomorphism f* pr; Q — f* pry X.
This means that X corresponds to a descent datum on (pr, o f)*Q. This comes from a
descent datum on an object in G(S : G)7/, which because G(S : G) is a stack, comes from
an object in G(S: G)r, that corresponds under A to an object in the isomorphism class
of X. One shows similarly that A is faithful on the whole of G(S: G). Therefore 4 is an
equivalence of categories. It is easy to check that 4 is natural in G(S : G). It follows that
doV ~ id. O
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Let B be a band over k. The cohomology set H?(k, B) is defined to be the set of
B-equivalence classes of gerbes over Aff, banded by B (see Appendix C, §6). We define
the cohomology class of a k-groupoid G acting transitively on S to be the cohomology
class of the associated gerbe G(S:G).

PROPOSITION 1.34 Let G and G’ be k-groupoids acting transitively on S. A morphism
¢ : G = G'2 of bands over k extends to a morphism of groupoid schemes if and only if it
maps the conomology class of G to that of G’.

PROOF Almost by definition, ¢ extends to a morphism of gerbes if and only if it maps
the cohomology class of G to that of G’. Now use the relation (1.33) between groupoids
and gerbes. a]

PROPOSITION 1.35 A groupoid G over S is transitive if and only if it is faithfully flat over
SXxS.

PROOF That the condition is necessary is obvious - in the definition (II, 2.13) we can
take T = G.

For the sufficiency, let T be a closed point of S (the spectrum of a field),a: T —» S
the embedding, and Q an object of Gg. Consider the presheaf Autr(a*Q) on Affr: if
t: T' - TisaT-scheme, then

Autr(a*Q) = Aut(t*a*Q).
Then

Autr(@*QNT") = {f : T' > G | sof = tof = aot}
= Homsxs(T,,G)
= HomT(T’,G Xsxs T)

Therefore, Autr(a*Q) is representable by an affine group scheme over T (see also the
proof of 1.16). The presheaf Jsom(pr, Q, pr, Q) on Affg,g is represented by G:

Isom(t* pr} Q, t* pr; Q) = Homg,s(T', G)

for all schemes ¢t : T’ — S x S affine over S X S. As any two objects of of G are locally
isomorphic, Jsom(pr] Q, pr; Q) is a torsor under Aut(a*Q), so the functors are locally
isomorphic and so are the representing objects. Because Aut(a*Q) is faithfully flat over
T and faithful flatness is a local property for the fpqc topology, G is faithfully flat over
SxS. O

NOTES Lattermann 1989, 1.3.7, asserts that functors ® and ¥ in 1.31 and 1.32 define an equiv-
alence of the underlying 1-categories of §#nd ¢ and Gerbyg. This is incorrect - the objects of
Gerbyg are only equivalent (not isomorphic) to objects in the image of ®.! The correct statement,
as above, is that they define an equivalence of 2-categories. A similar remark applies to the
assertion (Lattermann 1989, 4.2.13) that the 1-categories of Galois groupoids and pointed gerbes
are equivalent and to the assertion (Langlands and Rapoport 1987, §4, p. 152) that the 1-categories
of “Galoisgerben” and pointed Giraud-gerbes are equivalent.

!Note that the gerbes in the image are split. While every gerbe is equivalent to a split gerbe, it need not
be isomorphic to one (as far as I know).
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2 The gerbe of fibre functors
Fix a field k.

THEOREM 2.1 Let T be an essentially small tannakian category over k.
(a) The fibre functors on T form an affine gerbe FIB(T) over Aff,.

(b) The canonical functor T — Repf(FIB(T)) is an equivalence of tensor categories.

Conversely, if G is an affine gerbe over Aff, then Repf(G) is a tannakian category and the
canonical functor G —F1B(Repf(G)) is an equivalence of gerbes.

PROOF Statement (a) follows from III, 1.4.

In (b), the canonical functor T — Repf(FIB(T)) sends an object X of T to the repre-
sentation w w w(X) of FIB(T). Choose a fibre functor w over an affine k-scheme S # @,
and let G be the groupoid Autf’(w). Then G(S : G) ~F1B(T), and the composite of the
equivalences

T ﬁ Repf(S: G) j Repf(G(S : G)) ~ Repf(FIB(T))

is the required equivalence.

Let G be an affine gerbe over Aff;, and let G be the groupoid of k-automorphisms
of some Q € obGg, S # @ (see 1.21). Then the final statement for G follows from the
similar statement for G (111, 1.1). o

In the remainder of this section, we explain the original proof of Theorem 2.1 (Saave-
dra 1972, Chapter III, 3.2, pp. 192-204) in the case that T has a fibre functor over an
algebraic extension of k.

Some linear algebra

2.2 Let R be a ring (commutative with 1) and Alg, the category of R-algebras. An R-
module is defined to be a functor M : Alg, — Absuch that each M(R’) is equipped with
an R’-module structure and these structures are compatible with homomorphisms of R-
algebras. In particular, for each R-algebra R’, we have an R’-module M(R’), and, for each
homomorphism ¢ : R" — R of R-algebras, we have a homomorphism M(R") - M(R")
of R’-modules.

For example, an R-module M defines two B—modules,2

W(M): R » Mp € M®g R, and

M ‘R~ HomR-linear(M5 R/) = HomR’-linear(MR’aR,)~

The R-modules form a category Mod(R). An R-module is said to be represented by an
R-module M if it is isomorphic to M.
For R-modules M, N, we define Hom(M, N) to be the R-module

R HomR’-linear(MR” NR’)~

If N is finitely generated and projective, then Hom(M, N) is represented by the R-module
M @z NY.

Do not confuse the R-module M def Hom(M, R) with the R-module M.
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2.3 Let C be a category. When F : C — Mod(R) is a functor and R’ is an R-algebra, we
let Fp, denote the functor obtained by composing F with — @ R’ : Mod(R) — Mod(R’),
SO

FRI(X) = F(X) ®R R,.

When F and G are functors C — Mod(R), we let Hom(F, G) denote the R-module such
that
Hom(F,G)(R") = Hom(Fy/, Gg).

2.4 Let C be an essentially small category and F and G functors C — Proj(R). The R-
module Hom(F, G) is representable. Indeed, it is the projective limit of the representable
R-modules Hom(F(X), G(Y)), where X and Y run over a set of representatives for the
isomorphism classes of objects in C. Specifically, Hom(F, G) is the equalizer of

[[HomFx),6(x) —= [[ Hom(F(X),G(Y)).
X fiX-Y

2.5 Let C; and C, be essentially small categories, and let
Fl’Gl . Cl s PI‘O_](R)
Fz,Gz . C2 - PrOJ(R)
be functors. Let C = C; X C,, and let F, G be the functors C — Proj(R) such that
F(X,Y) = F1(X) ®g F»(Y)
G(X,Y) = G1(X) Qg G,(Y).

Let M;, M,, and M be the R-modules representing Hom(F,, G;), Hom(F,, G,), and
Hom(F, G) (see 2.4). The morphism of R-modules

M - M; ®x M,
induced by the obvious morphism of R-modules
Hom(F,, G;) ® Hom(F,, G,) — Hom(F,G)
is an isomorphism. The proof is straightforward.

2.6 Let C be an essentially small tensorial category over k and w: C — Vecf(k’) a
k’-valued fibre functor, where k’ is a field containing k. The k'-module End(w) is
represented by a k’-algebra B, i.e., End(w) = B (see 2.4). The obvious k’-algebra structure
on w defines a k’-coalgebra structure A : B — B® 4B on B, and the functor ® : CxC — C
defines a k’-algebra structure B ®,» B — B on B such that A is a morphism of algebras
(apply 2.5withC;, = C, =Cand F;, = F, = G; = G, = w). Now G’ = Spec B is an
affine monoid scheme over k’ such that

G' ~ End®(w) = Aut®(w),

and so G’ is, in fact, a group scheme over k’. Cf. Saavedra 1972, 11, 1.3.3.3.

NoTEs This subsection summarizes part of Saavedra 1972, II, §1 (especially 1.3.2.1, 1.3.3.1).
Instead of R-modules, we could require R to be a field and work with linearly compact K-vector
spaces (Saavedra 1972, 11, 1.4, p. 101).
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Review of extension of scalars

2.7 Let C be a k-linear abelian category, and let R be a finite-dimensional k-algebra.
We define Cy to be the category whose objects are the pairs (X, a), where X is an
object of C and «a is a k-linear R-module structure on X, i.e., a homomorphism of k-
algebras R — End(X). A morphism (X, o) — (Y, 8) isa morphism f : X — Y such that
foa(r) = B(r)of for all r € R. The category C(zy is an R-linear abelian category, and
there is a canonical k-linear functor

iR/k: C—)C(R), X*"?R®kX

2.8 Let C be a tensorial category over k and k’ a finite extension of k. For objects X and
Y of C(k’)’ let
XQ®uY=CokerX kK'Y 2 XQ®Y).

Then Cy) is a k’-linear tensor functor and i/ Jk - € = Cy is a tensor functor. It maps
unit objects to unit objects and duals to duals. The category C;/ admits internal homs:
if X’ = (X,a) and Y’ = (Y, 8) are objects and Y are objects of C(, then Hom(X’,Y")
is the intersection of the kernels of the morphisms

feAf—f1: HomX,Y) > Hom(X,Y)

as A runs over a basis for k’ over k. For any X in C, XV =1 Fom(X, 1) is the dual of X in
the sense of I, 4.4, and so Cy) is a tensorial category over k’ (I, 7.15).

Proof of the main theorem when there is a fibre functor over an algebraic extension

2.9 Let C be a tensorial category over k and k' a finite extension of k. Letw: C —
Modf (k') be a k’-valued functor on C, and let ' be its k’-linear tensor extension to C,

Cor —L Modf (k")

i /kT /

C.

If X is an object of C, then w(X) is a k’-vector space (by definition). When (X, «) is an
object of Cy), it acquires an additional k’-structure from «, hence a k' ®; k’-module
structure, and
W (X, ) E k' Qg k ®(X).

2.10 Let G’ be the affine group scheme over k' representing the functor Aut®(w’) (as
in 2.6). Obviously, w takes values in the category of G’-modules. Thus, we have an
exact faithful k-linear tensor functor @ : C — Repf(G’) such that the following diagram
commutes

C —2 Repf(G")
w lwc,zforget

Modf (k).

Similarly, ' takes values in Repf(G’), and so defines a functor & : Cy — Repf(G’).
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2.11 We define a fibred category G over Aff, as follows. For S € ob Aff;, we let Gg
denote the full subcategory of FIB(C)s whose objects are the fibre functors » that factor
locally through w. If S = Spec(R), this means that there exist diagrams

K —— R Modf(k’) =5 Modf(R")
T Tfaithfully flat wT T—@ xR
k —— R C —~ 5 Modf(R)

such that the first commutes and the second commutes up to an isomorphism, i.e.,
w®u R ~vQzR.

Clearly, G is a fibred subcategory of FIB(C) over Aff,. The condition for v to lie in
Gg is local for the fpqc topology on Aff;, and so G is a substack of FIB(C). In fact, G is
gerbe. Certainly, its fibres are groupoids, and the fibre Ggpe. (s is nonempty because it
contains w. It remains to show that any two objects v;, v, € ob Gg become isomorphic
in Gg for some S’ faithfully flat over S. We are given diagrams

Modf(k’) —— Modf(R;) Modf(k’) —— Modf(R,)

‘| T ‘| T

c —2 . Modf(R) C —” . Modf(R)

such that R; is faithfully flat over R and w ®;s R; ~ v; @z R; fori = 1,2. Consider the
commutative diagram

R, ®r R,
Ry R,
R
and note that R; ®g R, is faithfully flat over R. We have

@ @ (Ry ®r Ry) ~ v; ®r (R; ®r Ry)

@ Qpr (R ®r Ry) & v, ®r (R; ®r Ry).
This does not imply that the two fibre functors at right are isomorphic because the
two fibre functors at left need not be isomorphic (the homomorphisms k' — R; ®x R,

defining them may differ), but they are locally isomorphic for the fpgc topology (11, 8.2),3
which is all we need.

2.12 Let G/ denote the restriction of G to a gerbe over Aff;,. The exact faithful k-linear
tensor functor @ : C — Repf(G’) defines a morphism of gerbes over Aff;,,

FIB(Repf(G")) = G . (92)

3Here we use that End(1) = k without which the statement would be false.
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This is an equivalence. In fact, the forgetful functor w® on Repf(G’), which is an object

over Spec k’ of the first gerbe, is sent by this morphism to w, and so it suffices to prove
that the morphism of sheaves

Aut® (@) - Aut®(w)

is an isomorphism (apply 1.23), but this morphism can be identified with the identity
automorphism of G’.

2.13 Let X be an object of C. The functor sending an object v : C — Modf(R) of Ggpec g
to v(X) is a representation of the gerbe G. We obtain in this way a k-linear tensor functor

C — Repf(G). (93)

This is faithful: if X € ob C is sent to the zero object, then, in particular, w(X) = 0, and
soX =0.

2.14 Consider the functors
Cary — Repf(G) iy ~ Repf(G 1) < Repf(FIB(Repf(G'))) © Repf(G"),

where a is obtained from (93) by extension of scalars, b is obvious, c is obtained from
(92) by passing to the categories of representations, and d is the equivalence in 1.9 with
T = Repf(G’). The composite is faithful, and equals &'. Therefore, o’ is a faithful
k’-linear tensor functor of tensorial categories, and hence is exact by III, 10.9, and I,
10.15.

2.15 We now prove that the functor

(93)
C — Repf(G)

is an equivalence of tensor categories.
It suffices to prove that @' : Cysy — Rep(G’) is an equivalence, but, as G’ = Aut®(w’),
we know from II, Theorem 3.1, that ' defines such an equivalence.

2.16 We finally show that G = F1B(C), i.e., that every R-valued fibre functorv: C —
Proj(R) factors locally through w. We assume that R # 0, otherwise there is nothing to
prove.

Let R" = k’ ®; R. There is a canonical isomorphism of k’-linear categories

MOdf(R)(k/) ~ MOdf(R’)
Therefore we have a diagram, commutative up to a tensor isomorphism,

i
c k—/k> C(k’)

T
Modf(R) —— Modf(R"),
where v’ is an R’-valued fibre functor on C;y =~ Repf(G’). This fibre functor is locally

isomorphic for the fpqc topology to the forgetful functor w® by II, Theorem 8.1, which
concludes the proof.
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We have shown that FIB(C) is a gerbe, and that the functors
C — Repf(G) — Repf(FI1B(C))
are equivalences.

REMARK 2.17 (a) In his definition of a tannakian category over k, Saavedra (1972, III,
3.2.1, p. 193) omits the condition k ~ End(1). Without that condition, fibre functors
need not be locally isomorphic* and Theorem 2.1 fails.

(b) Saavedra (1972, 111, 3.2.2.2) claims to show that the functor w’ of 2.9 is faithful
and exact. In fact, his argument only shows that it is faithful. To deduce that it is exact,
we had to appeal to III, 10.9, and III, 10.15.

Except for (a) and (b), our proof of Theorem 2.1 follows Saavedra’s original proof.

REMARK 2.18 Using ind-categories, as in Saavedra 1972, the same proof will work for
an arbitrary extension k’ of k once one has shown that Cy) is tensorial (i.e., duals exist).

3 The classification of tannakian categories in terms of
gerbes

Let k be a field. We show that the 2-category of tannakian categories over k is equivalent
to the 2-category of affine gerbes over Aff,. In particular, there is a dictionary between
tannakian categories over k and affine gerbes over Aff,.

DEFINITION 3.1 The 2-category Ge#6; has
o objects the affine gerbes over Aff;

o 1-morphisms the cartesian functors of fibred categories;
o 2-morphisms the natural transformations between 1-morphisms.
In particular, for any affine gerbes G and H over Aff,, we have a category Hom(G, H)

whose objects are the cartesian functors from G to H and whose morphisms are the
natural transformations between cartesian functors.

DEFINITION 3.2 The 2-category I ann, of tannakian categories over k has
o objects the essentially small tannakian categories over k;

o 1-morphisms the exact k-linear tensor functors;

¢ 2-morphisms the morphism of tensor functors (I, 3.2).
In particular, for any tannakian categories C and D over k, we have a category Hom(C, D)
whose objects are the exact k-linear tensor functors from C to D and whose morphisms

are the morphisms of tensor functors.
There are canonical 2-functors

G ~ Repf,(G)

Cert™® - Tann, F
(G— H) = (X — XoF)
C w FIB(C)

T ann® - Cert, F
(C— D) » (w — woF).

“For example, let K be a finite Galois extension of k, and view Vecf(K) as a “tannakiadnfcategory over
k. If o is a nontrivial element of Gal(K /k), then the fibre functors V «~» V and V ~ oV = ®x ., K on
Vecf(K) are not locally isomorphic.
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THEOREM 3.3 The 2-functor
C » Fi1B(C): 9annzp — Gerty

is an equivalence of 2-categories. Explicitly, for any essentially small tannakian category C
over k, the canonical functor
C — Repf(F1B(C))

is an equivalence of tensor categories over k, and for any affine gerbe G over Aff,, the
canonical functor
G — FiB(Repf(G))

is an equivalence of fibred categories over Aff,.

PROOF The explicit statements were proved in Theorem 2.1, and they imply that FIB is
an equivalence of 2-caegories (A.28). O

Under the equivalence, neutral gerbes correspond to neutral tannakian categories.
COROLLARY 3.4 For any tannakian categories C and D over k, the functor
Hom(C, D) — Hom(F1B(D), F1B(C))
defined by FIB is an equivalence of categories.
PROOF This is an immediate consequence of the theorem (see Proposition A.24). 4

EXAMPLE 3.5 Let C be a neutral tannakian category over k. Theorem II, 8.1 shows that
the choice of a fibre functor w with values in k determines an equivalence of fibred
categories FIB(C) —TORS(G), where G represents Aut®(w). This shows that FIB(C) is
an affine gerbe, and the commutative diagram of functors

C ———— Repf(FIB(C))

le Nl

Repf(G) «<—— Repf(ToRS(G))

shows that C — Repf(FIB(C)) is an equivalence of categories.

Summary

Let k be a field.

3.6 The tannakian categories over k form a 2-category J w77 with the 1-morphisms
being the exact k-linear tensor functors and the 2-morphisms the morphisms of ten-
sor functors. Similarly, the affine gerbes over k form a 2-category §e»¢ with the 1-
morphisms being the cartesian functors of fibred categories and the 2-morphisms being
the equivalences between 1-morphisms. The 2-functor

Tann™ - Cert
sending a tannakian category to its gerbe of fibre functors is an equivalence of 2-categories.

Now let S be a nonempty affine k-scheme.
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3.7 The tannakian categories over k equipped with a fibre functor over S form a 2-
category 7 anng with the 1-morphisms being the exact k-linear tensor functors pre-
serving the distinguished fibre functors and the 2-morphisms the morphisms of such
tensor functors. Similarly, the affine k-groupoids acting transitively on S form 2-category
Grndg with the 1-morphisms being morphisms of k-groupoids acting on S and the
2-morphisms the natural transformations between 1-morphisms. The 2-functor

(?fann:g)()p - Grndg
sending (T, w) to Autf’(w) is an equivalence of 2-categories.

Now assume that k has characteristic zero, and let S = Spec k, where k is an algebraic
closure of k.

3.8 The tannakian categories over k equipped with a k-valued fibre functor form a
2-category I awnng with the 1-morphisms being the exact k-linear tensor functors
preserving the distinguished fibre functors and the 2-morphisms the morphisms of
tensor functors. Similarly, the k /k-Galois groupoids form a 2-category €€+ n-d Rk with

the 1-morphisms being the morphisms of k /k-Galois groupoids and the 2-morphisms
the morphisms of such morphisms. The 2-functor

(gann;)()p - f@f@#pd,ﬁ/k

sending (T, w) to the Galois groupoid of conjugates of w is an equivalence of 2-categories.

4 Algebraic geometry in a tannakian category

Throughout this section, k is a field.

Affine T-schemes

Recall (I, 9.13) that, for a tensorial category T over k, we have the notion of an affine
T-scheme (affine scheme in Ind T).

4.1 Let T be a tannakian category over k, and let w; and w, be fibre functors on T over
an affine k-scheme S. Recall that the functor sending an affine S-scheme u : S’ — S to
the set of isomorphisms from u*w; to u*w, is represented by a scheme Jsom?(a)l, ,),
affine over S. For a fibre functor w over S, we let Aut?(w) denote ﬂsom?(w, w). The
main result of Chapter II says the following: if w is a k-valued fibre functor on T, then w
induces an equivalence to tensor categories

T—> Repf(flut?(cu)).

The interpretation (I, 9.17) of T-schemes as equivariant affine k-schemes is then available.
Unfortunately, this is scarcely convenient and depends on the choice of the fibre functor
w. Here we prefer to work with all fibre functors.

EXAMPLE 4.2 (DELIGNE 1989, 5.10) Let G be an affine group scheme over k, let X be a
finite-dimensional representation of G, and let X also denote the corresponding vectorial
group scheme Spec(Sym™(X")). An extension

0-X->E->1-0
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of the trivial representation (k with the trivial action) by X determines an equivariant
X-torsor, namely, the inverse image of 1 € k in E. This construction is an equivalence of
categories.

We deduce a similar statement for a tannakian category T over k: for any X in T,
there is an equivalence from the category of extensions of 1 by X to that of X-torsors,

(extensions of 1 by X) — (X-torsors).

We define a functor as follows. Let A be the vectorial T-scheme defined by the identity
object. It is also the image (see I, 9.15) of the affine line Spec k[T'] over k, and the point
T = 1defines a point 1: (pt) > A. An extension of E of 1 by X defines a vectorial
scheme E mapping onto A. The action by translation of E on itself induces an action of
X on E stabilizing the fibre P T Ex 4 (pt) at 1 of E — A. This fibre is the torsor sought.

This description is independent of the choice of a fibre functor, but once we choose a
fibre functor, the interpretation (I, 9.15) shows that it is an equivalence.

Interpretation in terms of gerbes; constructions
4.3 Let T be a tannakian category over k. Recall that we have proved the following
statements.

(a) The fibre functors form a gerbe FIB(T) over Aff, for the fpqc topology: they form
a stack (fibre functors given locally on S patch to a fibre functor on S); over some
S # @, there exists a fibre functor; any two fibre functors over S become isomorphic
on a scheme T faithfully flat and affine over S.

(b) Each object X of T defines a morphism of stacks w w w(X)
{fibre functors over S (variable)} — {vector bundles over S}.

This construction is an equivalence of T with the category Repf(FIBT) of these
functors. In other words, it is “the same” to give an object X of T or to give, for
each fibre functor w over a k-scheme S, a vector bundle over S functorial in w, and
compatible with base change S’ — S.

(c) By passage to ind-objects, a fibre functor w on S defines a tensor functor, again
denoted w, from Ind T to the category of quasi-coherent sheaves on S. Each object
X of Ind T defines a morphism of stacks

{fibre functors over S (variable)} — {quasi-coherent sheaves over S}.

This construction is an equivalence of Ind T with the category of these functors
(i.e., with the category of cartesian functors from the stack FIB(T) over Aff, to the
stack MoOD),

(d) The passage from T to FIB(T) has an inverse. Let G be an affine gerbe. Let Repf(G)
be the category of morphisms of stacks

G — (vector bundles over S variable).
Then Repf(G) is a tannakian category, and

G = FiB(Repf(G)).
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It follows from (c) that to give an affine T-scheme X (resp. an affine group T-scheme
G, resp. a T-torsor under G) is the same as giving, for each fibre functor w over an affine
k-scheme S, an affine scheme X, (resp. an affine group scheme G, resp. a torsor under
G,) over S, natural in w, and compatlble with base changes S’ — S. For example,
X = Sp(A) corresponds to the system X, = Spec(co(A))
To construct a morphism F : X — Y between affine T-schemes, it suffices to con-
struct, for every fibre functor w, a morphism X, — Y, natural in w. If w is a fibre functor
over S, it suffices, for every affine S-scheme T, to construct a map

Xo(T) = Yo(T),
natural in T. Here X(T) = Homg(T, X).
4.4 For (X,) as above, each X, /S automatically has the following property (concerning
X/S).

(*) There exists an extension k’ of k and a scheme u : T — S faithfully flat over S,
such that the inverse image u*X = T Xg X of X over T is the inverse image over T
of a k’-scheme by a morphism of T to k.

Indeed, there exists a fibre functor w, over an extension k’ of k and, because FIB(T) is a
gerbe, w and w,, become isomorphic over some T faithfully flat over S x Spec(k’), so the
inverse images of X, and X, over T are isomorphic,

X, —— Xy xsT —— X,

l | |

S T Spec(k’).

In other words, locally for the fpqc topology, X comes from a scheme over an field
extension of k. A similar statement holds for schemes equipped with additional data.

4.5 Suppose that we have a construction E taking an affine scheme (possibly with
additional data) over an affine k-scheme S to another affine scheme over S (possibly
with additional data). If the construction applies to all schemes (with additional data)
satisfying 4.4(*) and is compatible with base change, we can apply it to an afﬁne T-scheme.
Given such a T-scheme X, apply E to the schemes X, to getasystem Y, = H(Xw) which
arises from a T-scheme, denoted Z(X). Rather than trying to make this more precise, we
give some examples.

EXAMPLE 4.6 For G an affine group scheme over S, let 2(G) be the Nth term ZV(G)
in the descending central series for G. This construction is not compatible with base
change for an arbitrary G/S, but it is for affine group schemes satisfying 4.4(*). Thus, for
any affine group T-scheme G, we have an affine T-scheme ZV(G) such that w(ZV(G)) =
ZN(w(G)) for all fibre functors w.

EXAMPLE 4.7 Let H be a normal subgroup scheme of G, and let (G, H) = G/H. Even
when H is not normal, we may consider G/H provided it is affine. The same discussion
as in 4.6 applies.

EXAMPLE 4.8 For affine group schemes over an affine k-scheme satisfying 4.4(*), the
property of being unipotent is stable under base change. Thus, it makes sense to say that
an affine group T-scheme is unipotent. Similarly, it is possible to define the unipotent
radical R,,G of an affine group T-scheme G, and even its semisimple quotient G/R,G.
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APPLICATION 4.9 Over an arbitrary base S, giving an extension & of O by a vector bundle
V is equivalent to giving a torsor under the vectorial group scheme defined by V. This
construction is compatible with base change. It follows that in any tannakian category,
giving an extension E of 1 by an object V is equivalent to giving a torsor under the
T-vectorial scheme V. We have already proved this in 4.2 for a neutral T.

Relation between the two points of view

4.10 Here is the relation between the points of view (I, 9.17) and (4.3) in the case
that T = Repf(G). Let w, be the forgetful fibre functor. For w a fibre functor over S,
JIsom®(w,,w) is a G-torsor P over S. Conversely, a G-torsor P over S defines a fibre
functor
wp: Vw VPEVACP  (V twisted by P)

over S.

If P(S) # @, then V¥ is a vector bundle over S equipped, for each p € P(S), with an
isomorphism

p(p): Ve 0Os = VF,

such that p(pg) = p(p)p(g) for g € G(S). The case P(S) = @ can be treated by descent,
and so we have an equivalence

F1B(Repf(G)) ~ (G-torsors over S variable).

If X is a T-scheme, identified by I, 9.17, to a G-equivariant affine scheme, then for
every fibre functor wp, wp(X) is the twist X of X by P.

4.11 For a torsor P and corresponding fibre functor wp, we have
Aut®(wp) = Aut(P) ~ G
(twist of G for the inner action of G on itself).

PROOF When P(S) # ), each p € P(S) defines an isomorphism p(p) of P with the
trivial G-torsor G, therefore of Aut(P) with G (left translations of G). We have p(pg) =
o(p)oinn(g): the automorphism of P that sends p - g to p - gh sends p to p - ghg™!. This
satisfies 4.11 for P(S) # @, and the general case follows by descent. O

Tensor products of tannakian categories

4.12 From 4.3 we get a dictionary between tannakian categories over k and gerbes with
affine band. We define the tensor product of two tannakian categories by

FI1B(T; X T,) ~ FI1B(T;) X FIB(T,).

Giving an object X of T; ® T, is equivalent to giving, for w, and w, fibre functors over S
of T, and T,, a vector bundle X, , on S, the formation of X, ,, being functorial in w,
and w, and compatible with base change.

We have a tensor product

EIZ TIXT2—>T1®T2,

such that, for fibre functors w; and w, on T; and T,, there is a fibre functoron T, ® T,
sending X; X X, to w;(X;) ® w,(X,). In Chapter II, §10, we showed that T; ® T, is the
universal target of such a tensor product with suitable properties.

If T,, T, are Rep(G,), Rep(G,), then T; ® T, ~ Rep(G; X G,).



4. Algebraic geometry in a tannakian category 187

The fundamental group of a tannakian category

Let T be a tannakian category over k. For each fibre functor w over a k-scheme S,
Aut?(w) is an affine group scheme over S (see 4.1). Its formation is compatible with
base change, i.e., for any morphism T — S,

Aut?(wT) ~ Aut?(w)T.

By 4.3(c), the system of affine group schemes Aut?(cu) arises from an affine group
T-scheme.

DEFINITION 4.13 The fundamental group 7(T) of T is the affine group T-scheme such
that

w((T)) =~ Aut®(w). (94)

functorially in w.

Let X € obT. For each fibre functor w over S, w(7(T)) = Aut®(w) acts on w(X).
We deduce an action (9.16) of 7(T) on X, functorial in X and compatible with tensor
products. By passage to ind-objects, these actions furnish an action of 7z(T) on all ind-
objects. We deduce an action of 7(T) on all affine T-schemes. The action of 7z(T) on
the T-scheme 7(T) is the action of 77(T) on itself by inner automorphisms. Indeed, for
any fibre functor w, the action by functoriality of Aut®(w) on itself is its action by inner
automorphisms.

EXAMPLE 4.14 Let G be an affine group scheme over k, and let T = Rep(G). After
4.11, the fundamental group 7(T), viewed as an equivariant affine group scheme, is G
equipped with the inner action on itself. The action of 77(T) on a representation V of G
is the given action of G. It is G-equivariant,

h(gv) = hgh™! - ho.

4.15 Letu: T; — T be an exact k-linear tensor functor between tannakian categories
over k. For any fibre functor w on T over a k-scheme, wou is a fibre functor on T, over S,
and there is a canonical homomorphism

Aut®(w) - Aut®(wou) (95)
On applying u to the group T;-scheme 7(T,), we get a group T-scheme u(7(T)) and

(95) is a morphism, functorial in w, of w(7x(T)) into wou(z(T)) = w(u(x(T,))). By 4.3, it
defines a morphism of T-schemes

U: n(T) » u(x(Ty)). (96)
For any object X; of Ty, the action of 77(T;) on X, induces an action of u(7z(T;)) on u(X;).
The action of 7z(T) on u(7(T,)) is the action by conjugation defined by U. It suffices to
check this after applying a fibre functor.

THEOREM 4.16 With the preceding notation, u induces an equivalence of T, with the
category of objects of T equipped with an action of um(T;) extending the action of (T).
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PROOF Suppose that T is neutral, say, T = Rep(G), and let w be the forgetful functor.
Let G; = Aut®(wou). The morphisms (95) define

f:G -Gy, (97)

which can also be obtained from (96) by applying w. Via the equivalences T ~ Rep(G),
T, ~ Rep(G;), the functor u is the restriction to G (by f) of the action of G;, and 4.16
becomes to the following triviality: for a vector space V, to give an action of G; on V' is
equivalent to giving an action of G plus a G-equivariant action of G, factoring through
the action of G.

For the general case, we refer the reader to Deligne 1990, 8.17. O

4.17 Letu: T; — T be an exact k-linear tensor functor between tannakian categories
over k. If u is fully faithful and identifies T; to a full subcategory of T stable under
subquotients, then the morphism U : 7(T) — uz(T,) is an epimorphism (= faithfully
flat). Moreover, Proposition 4.16 shows that u identifies T; with the subcategory of T
formed of the objects on which the action of 7(T) induces the trivial action of H o
Ker(U : n(T) - um(T,)). See Saavedra 1972, 11, 4.3.2(g).

EXAMPLE 4.18 Let T; = Vecf(k) and consider the functor V.~ V ® 1: T; — T. Then
7(T;) = {e} and the functor is an equivalence of Vecf(k) with the subcategory of objects
of T on which 7z(T) acts trivially (cf. 9.15).

Semisimplicity
In this subsection, T is a tannakian category over a field k of characteristic zero.

EXAMPLE 4.19 Suppose that T has a fibre functor w, with values in k. The semisimple
objects of the abelian category category of representations of the affine group scheme
Aut®(w,) are those on which the unipotent radical R, Aut®(w,) acts trivially. Therefore
the subcategory T; C T of semisimple objects is stable under tensor products, and is
again a tannakian category over k. The morphism (96) corresponding to the inclusion is

(T) - n(T)/R,7(T).

EXAMPLE 4.20 Let T be an object of dimension 1 of T. To give a representation p of G,
is the same as giving a graded vector space V = @ V/, with (A)v/ = A/v/ for v/ € V/,
and we define

u: Rep(G,)—>T

by V -~ @(V/ ® T®/). From there, we get a morphism
(T) - G, (98)

such that the action of 77(T) on T factors through G,,, with A acting as multiplication by
A. In (98), G,, is regarded as a group T-scheme asin I, 9.15.

If, for all n > 0, we have Hom(1, T®") = 0, we can apply 4.17 to deduce that (98) is
an epimorphism.

If the T®" (n € Z) are the only simple objects of T, and no two are isomorphic,
we can conclude from (4.19) and (4.20) (in characteristic 0), that (98) realizes 7(T) an
extension of G, by a unipotent group.



4. Algebraic geometry in a tannakian category 189

4.21 Again, let T be a tannakian category over a field k of characteristic 0 and, to simplify,

suppose again that T is neutral. Let T be the category of semisimple objects of T. The
group T-scheme R, 7r(T) acts trivially on (Run(T))ab, which is a group T%-scheme. It is
commutative and unipotent, and we can identify it with a pro-object in T, for example,
by writing it as a projective limit of vectorial group T-schemes.

PROPOSITION 4.22 Let T be a neutral tannakian category over a field k of characteristic
zero. For any semisimple object X of T,

Ext'(1,X) = Hom((R,7(T))?, X). (99)

PROOF We first explain the statement. In (99), on the left X is an object of T and on the
right it is the corresponding vectorial T-scheme. We have

Hom(R,7(T),X) = Hom(R,7(T))*°, X) = Hom(Lie(R,7(T)), X).

If a group G acts on an extension E of A by B and acts trivially on A and B, then the
maps p(g) —1: E — E factor through morphisms from A to B. The statements 4.3, 4.5
allow us to repeat this “in T”.

If E is an extension of 1 by X, the action 4.13 of R,7(T) C (T) on E is trivial on 1
and X (see 4.19). It defines a morphism

R,7(T) » Hom(1,X) = X.

This construction defines the arrow (99).

Injectivity of (99): if the class of an extension E has trivial image under (99), the
action of R, 7z(T) on E is trivial: E is semisimple and the extension is trivial.

Surjectivity of (99): we may suppose that T = Repf(G). Write G as a semi-direct
product of a proreductive group scheme G* by R,G (Levi decomposition; here we use
characteristic 0). For (X, p) a representation of G = G/R,G and a a G*-morphism of
R,G? into X, we define an extension E of the trivial representation by the representation
X by making u - g (g € G%, u € R,G) acton 1 ® X by (44 pte )- 1ts image by (99) is
the morphism a. o

NOTATION 4.23 For V a vector space over k and X in T, Hom(V, X) is the pro-object of
T, projective limit of the WY ® X for W a subspace of finite dimension of V.

EXAMPLE 4.24 Let T be the category Rep(G,,). Let T(n) be the k-vector space on which
A € G, acts by multiplication by A". For any pro-object X of T, if we put V(n) =
Hom(X, T'(n)), then we have

X = [[ Homv(n), T(n)). (100)

4.25 Let T be a neutral tannakian category over k of characteristicO and T' € ob T. We
assume that T has dimension 1 and we put T(n) = T®". We assume that the morphism
4.20 of 7(T) into G,, is an epimorphism with unipotent kernel, i.e., that the conditions
of last paragraph of 4.20 are satisfied. Let U = Ker(7(T) — G,,). Applying 4.22 and 4.23
and identifying U2 with its Lie algebra, we find that

U = ] 7om®Ext'(1,T(n)). (101)
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The fundamental groupoid

4.26 To two fibre functors w;, w, of T over S, we attach the affine scheme Isom? (wy, w1)
over S. This construction is compatible with change of base. By 4.3 and 4.12, it defines a
T ® T-scheme G(T) such that

(w1 ® wp)(G(T)) = 750”’1?(502, wy).

It is the fundamental groupoid of T.
For any mapping between finite sets ¢ : I — J, we define T(¢) : T® — T®/ by

T(e)®X) = K;( @) Xi),

e()=j

where the tensor product over the i € ¢~1(j) is taken in T, and is 1 if ™ 1(j) = @.
Put j,, = T(p) for

v:{1,2} >{1,2,3}, 1+—a, 2~ b.
Composition of isomorphisms defines
j1,2(G(T)) X j23(G(T)) = j1,3(G(T)) (102)
inTRTRT. Forp: {1,2} - {1}, T(p) is
T:TRT->T,XK,; Y » X®Y.

‘We have
T(G(T)) = =(T). (103)

For any fibre functor w over S, (pr} w, pr; ) defines a fibre functor  won T@ T
over SXS. The image of G(T) by wXlw is the groupoid Autf’ (w) Ly S0Mgys(pr; @, prs @)
over S, and the groupoid structure is deduced from (102).

4.27 In Chapter II, we gave the following description of the algebra A in Ind(T @ T)
whose spectrum is G(T). As as an ind-object, it is the target of the universal morphism

XV@X—>A (XinT) (104)
making, for all f: X — Y, the following diagram commutative
vex L2 xvex
[1o7 | (105)
YVY — A

For any fibre functor w over S, the groupoid Autf’(a)) «f Jsomgg’xs(pr; w, pry @) is
therefore the spectrum of (w [X] w) (A), that is, the quasi-coherent sheaf of algebras L on
S % S which, as a quasi-coherent sheaf, is the universal target of morphisms

pr} w(X)¥ ® pr; w(X) — L (XinT)
satisfying a compatibility similar to (105) forall f: X — Y.

Notes This section closely follows the original source, Deligne 1989, 5.9-6.14.
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5 Morphisms from one tannakian category to a second

5.1 An exact k-linear tensor functor u: T; — T, of tannakian categories defines a
homomorphism 7(u) : 7(T,) = u(x(T,)) (4.15). Moreover:
(a) uinduces an equivalence of T, with the category of objects of T equipped with an
action of uz(T,) extending the action of 7z(T) (see 4.16);

(b) m(u) is flat and surjective if and only if u is fully faithful and every subobject of
u(X), for X in T, is isomorphic to the image of a subobject of X (cf. 8.2);

(c) m(u)is a closed immersion if and only if every object of T, is a subquotient of an
object in the image of u (cf. 8.2).

5.2 Let T be a tannakian category over k. Recall that, by definition, an affine group
T-scheme G is a (commutative) Hopf algebra A in Ind T. We define a representation
of G to be a right comodule over A, i.e., an object V of T together with a morphism
p:V — V ® A such that certain diagrams commute (II, 1.12). With the obvious
notion of morphism, we obtain a category Rep(G) of representations of G (in T). For
example, if T = Vecf(k), then G is an affine group scheme over k in the usual sense, and
Rep;(G) = Repf(G). Note that in this last case Rep(G) contains T as the subcategory
of objects on which G acts trivially, and that there is a forgetful functor to T with the
property that the the composite

forget
T —— Rep(G) — T

is the identity functor. Similarly, in the general case, Rep(G) contains T as the subcate-
gory of objects on which G acts trivially, and that there is a forgetful functor to T with
the same property.

5.3 Letu: T; — T, be an exact k-linear tensor functor of tannakian categories over k.
When T, = Vecf(k), u induces an equivalence of T; with RepTz(G), where G = Aut®(u).
In the general case, we can ask whether there is an affine group T,-scheme G such that
u induces an equivalence T, — RepTz(G). A quasi-inverse to such an equivalence will
restrict to a functor s : T, — T; such that uos ~ idy,. Thus, a necessary condition is the
existence of such an section s. The condition is also sufficient.

THEOREM 5.4 Letu: T, — T, be an exact k-linear tensor functor of tannakian categories
over k. Suppose that there exists an exact k-linear s: T, — T, and an isomorphism
a @ uos — idr,. Then there is an affine group T,-group G such that u factors into

u

T, — RepTZ(G) Trgef) T,.

PROOF LetU: 7n(T,) —» u(n(T;))and S: 7(T;) — s(z(T,)) be the morphisms defined
by u and s. The morphism 7(T,) — (uos)(7(T,)) defined by uos is equal u(S)oU, and it
is an isomorphism because the composite

2(T2) 2% (uos)(m(T,)) —2 a(T,)

is the identity map. So, if we define the group T,-scheme G to be the kernel of u(S), then

u(m(Ty)) = G X 7(T,)
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and the action of 77(T,) on G by conjugation is the restriction of its action by conjuga-
tion on u(7(T;)), which is the natural action. So this action is also the natural action.
According to Theorem 4.16, u induces an equivalence of T; with the category of objects
of T, equipped with an action p of G X 7(T,) whose restriction to 7z(T,) is the natural
action.

An arbitrary action p of G X 7(T,) on an object of T, is given by actions p; and p, of
G and 7(T,) with the property that

p2(8)e1(p) = p1(gpg Hpa(g), allg € G(R), p € n(T,), R a k-algebra.

But in the case that p, is the natural action, this condition is always satisfied, because
the action of 7(T,) on G by conjugation is equal to the natural action and p; respects
the natural action. This shows that u induces an equivalence of T, with RepTZ(G) as
required. O

Theorem 5.4 is Corollary 5.3 of Jafari and Einollahzadeh 2018. The group G depends on
the choice of s (ibid., 5.5).

EXAMPLE 5.5 For a smooth algebraic variety over C, let E(X) denote the category of
admissable variations of mixed Hodge structures on X. It is a tannakian category over
Q. Let x € X. We have an exact Q-linear tensor fibre functor F : E(X) — E(x). The
functor sending an object of E(x) to the corresponding constant local system is a section
for F, and so there exists an affine group E(x)-scheme nf (X, x) such that F defines an
equivalence of tensor categories

EX) ~ RepE(x)(n'f(X, x)).
See Arapura 2010 for more details and more examples.

5.6 Let C and D be tannakian categories over k, and let« : H — G be a morphism from
band of D to that of C. Then the morphisms C — D banded by « form a gerbe banded by
the centralizer of «. See Giraud 1971, IV, 2.3.2.

5.7 Foragroup G, aright G-object X, and a left G-object Y, X ACY denotes the contracted
product of X and Y, i.e., the quotient of X X Y by the diagonal action of G, (x,y)g =
(xg,g"'y). When G — H is a homomorphism of groups, X A® H is the H-object obtained
from X by extension of the structure group. In this last case, if X is a G-torsor, then
X AC H is also an H-torsor. See Giraud 1971, I11 1.3, 1.4.

5.8 Let T be a tannakian category over k, and assume that the fundamental group 7 of T
is commutative. A torsor P under 7 in T defines a tensor equivalence T - T,X w PA™X,
bound by the identity map on Bd(T), and every such equivalence arises in this way from
a torsor under 7 (cf. Saavedra 1972, III 2.3). For any k-algebra R and R-valued fibre
functor w on T, w(P) is an R-torsor under w(7) and w(P A™ X) =~ w(P) A w(X).

ToDo 8 This section will be expanded. Add examples with Galois groupoids.

6 Quotients of tannakian categories

Given a tannakian category T and a tannakian subcategory S, we ask whether there
exists a quotient of T by S, by which we mean an exact tensor functorg: T — Q from T
to a tannakian category Q such that
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(a) the objects of T that become trivial in Q (i.e., isomorphic to a direct sum of copies
of 1 in Q) are precisely those in S, and

(b) every object of Q is a subquotient of an object in the image of q.

When T is the category Repf(G) of finite-dimensional representations of an affine group
scheme G the answer is obvious: there exists a unique normal subgroup H of G such
that the objects of S are the representations on which H acts trivially, and there exists
a canonical functor g satisfying (a) and (b), namely, the restriction functor Repf(G) —
Repf(H) corresponding to the inclusion H < G. By contrast, in the general case, there
need not exist a quotient, and when there does there will usually not be a canonical one.
In fact, we prove that there exists a q satisfying (a) and (b) if and only if S is neutral, in
which case the g are classified by the k-valued fibre functors on S. Here k f End(1) is
assumed to be a field.

From a different perspective, one can ask the following question: given a subgroup
H of the fundamental group 7z(T) of T, does there exist an exact tensor functorg: T — Q
such that the resulting homomorphism 7(Q) — q(7(T)) maps 7(Q) isomorphically onto
q(H)? Again, there exists such a q if and only if the subcategory T of T, whose objects
are those on which H acts trivially, is neutral, in which case the functors g correspond
to the k-valued fibre functors on TH.

The two questions are related by the “tannakian correspondence” between tannakian
subcategories of T and subgroups of 7(T) (see 6.5).

Preliminaries

We fix a field k and consider only tannakian categories over k.

GERBES

6.1 Leta: G; — G, be a morphism of gerbes over Affy, and let w, be an object of G, .
Define (w, | G;) to be the fibred category over Aff, whose fibre over s: S — Speck
has as objects the pairs (w, a) consisting of an object w of 0b(G, ) and an isomorphism
a: s*wy = a(w)in G, g; the morphisms (w, a) — (v, b) are the isomorphisms ¢ : @ — v
in G; 5 giving rise to a commutative triangle,

) a(w)
=
¢ s*(wg) alp)
b
v a(v)
Gis Gas

If the morphism of bands defined by « is epi, then (w, | G;) is a gerbe, and the sequence
of bands
1 - Bd(wy | G;) — Bd(G;) — Bd(G,) - 1 (106)

is exact (Giraud 1971, IV 2.5.5(i)).

6.2 Recall that a gerbe is said to be affine if its band is locally defined by an affine group
scheme. It is clear from the exact sequence (106) that if G; and G, are affine, then so
also is (wqg | Gy).
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6.3 Recall (III, 1.4) that the fibre functors on a tannakian category T form a gerbe FIB(T)
over Affj. Each object X of T defines a representation w ~ w(X) of FIB(T), and in this
way we get an equivalence T — Rep(FIB(T)) of tensor categories (2.1). Every affine gerbe
arises in this way from a tannakian category (2.1).

FUNDAMENTAL GROUPS

6.4 Recall (4.13) that the fundamental group 7(T) of a tannakian category T is an affine
group scheme in Ind T such that

w(7(T)) =~ Aut®(w)

functorially in the fibre functor w on T. The group 7(T) acts on each object X of T,
and w transforms this action into the natural action of Aut®(w) on w(X). The various
realizations w(7r(T)) of 7(T) determine the band of T.

6.5 For a subgroup® H C x(T), we let TH denote the full subcategory of T whose
objects are those on which H acts trivially. It is a tannakian subcategory of T and
w(TH) = 7(T)/H. 1t follows from 4.16, that every tannakian subcategoryi: T; — Tof T
is of the form TH with H = Ker(z(i) : 7(T) — i(7(T;))). In this way, we get a one-to-one
correspondence between the subgroups of 7(T) and the tannakian subcategories of T.

For example, the objects of T*(") are exactly the trivial objects of T, and there exists
a unique (up to a unique isomorphism) fibre functor y7 : T — Vecf(k), namely,
yT(X) = Hom(1, X).

6.6 Forasubgroup H of 7(T) and an object X of T, we let X*? denote the largest subobject
of X on which the action of H is trivial. Thus X = X if and only if X is in TH.

6.7 When H is contained in the centre of 7z(T), it is an affine group scheme in T7(M_ and
so " identifies it with an affine group scheme over k in the usual sense. For example,
yT identifies the centre of 7(T) with Aut®(idy) (cf. 9.2).

Quotients

For any exact tensor functor q: T — T/, the full subcategory T? of T whose objects
become trivial in T’ is a tannakian subcategory of T (obviously).

We say that an exact tensor functor g : T — Q of tannakian categories is a quotient
Junctor if every object of Q is a subquotient of an object in the image of g; equivalently,
if the homomorphism 7(q) : 7(Q) — q(xT) is a closed immersion (see 5.1(c)). If, in
addition, the homomorphism 7(q) is normal (i.e., its image is a normal subgroup of
q(T)), then we say that q is normal.

EXAMPLE 6.8 Consider the exact tensor functor w/ : Repf(G) — Repf(H) defined by a
homomorphism f : H — G of affine group schemes. The objects of Repf(G)“’f are those
on which H (equivalently, the intersubsection of the normal subgroups of G containing
f(H)) acts trivially. The functor w/ is a quotient functor if and only if f is a closed
immersion, in which case it is normal if and only if f(H) is normal in G.

SNote that every subgroup H of 7(T) is normal. For example, the fundamental group 7 of the cat-
egory Repf(G) of representations of the affine group scheme G = Spec(A) is A regarded as an object of
Ind(Repf(G)). The action of G on A is that defined by inner automorphisms. A subgroup of 7 is a quotient
A — B of A (as a bi-algebra) such that the action of G on A defines an action of G on B. Such quotients
correspond to normal subgroups of G.
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PROPOSITION 6.9 An exact tensor functor q : T — Q of tannakian categories is a normal
quotient functor if and only if there exists a subgroup H of (T) such that 7(q) induces an
isomorphism (Q) — q(H).

PROOF <«=: Because q is exact, q(H) — q(zT) is a closed immersion. Therefore 7(q) is
a closed immersion, and its image is the normal subgroup q(H) of q(zrT).

=>: Because q is a quotient functor, 7(q) is a closed immersion. Let H be the kernel of
the homomorphism 7(T) — 7(T9) defined by the inclusion T? < T. The image of 7(q)
is contained in q(H), and equals it if and only if g is normal. To see this, let G = g7 (T),
and identify T with the category of objects of Q with an action of G compatible with that
of 7(Q) C G. Then g becomes the forgetful functor, and T = T@. Thus, g(H) is the
subgroup of G acting trivially on those objects on which 7(Q) acts trivially. It follows
that 7(Q) C q(H), with equality if and only if 7(Q) is normal in G. o

In the situation of the proposition, we sometimes call Q a quotient of T by H.
Let g : T — Q be an exact tensor functor of tannakian categories. By definition, g

def
maps T4 into Q7(Q, and so we acquire a k-valued fibre functor w? = y?0(q|T9) on T¢:
wq

/\
T4 —— Q7@ —5—> Vecf, wI(X) = Homg(1, gX).

qIT, 4

In particular, T? is neutral. A fibre functor w on Q, defines a fibre functor woq on T,
and the (unique) isomorphism y? — |Q™@ defines an isomorphism a(w): w? —
(woq)|T4.

PROPOSITION 6.10 Letq: T — Q be a normal quotient, and let H be the subgroup of 7w(T)
such that 7(Q) ~ q(H).

(a) ForX,Y inT, there is a canonical functorial isomorphism
Homg(gX, qY) ~ w!(Fom(X, Y)H).
(b) The map w — (woq, a(w)) defines an equivalence of gerbes
r(q) : FIB(Q) — (w? | FIB(T)).

PROOF (a) We have,

Homg(gX, qY) =~ Homg(1, Fom(gX, qY )" @) (14), p. 21
~ Homq(1, (qFom(X,Y))1HD) {, 5.6)
~ Homg(1, g(Fom(X, Y)7))
~ wl(Fom(X,Y)H) (definition of w?).

(b) The functor FIB(T) — FIB(T!) gives rise to an exact sequence
1 — Bd(wg | FIB(T)) — Bd(T) - Bd(TH) - 0

(see 6.1). On the other hand, we saw in the proof of (6.9) that H = Ker(z(T) — 7 (TH)).
On comparing these statements, we see that the morphism r(q) of gerbes is bound by an
isomorphism of bands, which implies that it is an equivalence of gerbes (1.23). o
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PROPOSITION 6.11 Let (Q, q) be a normal quotient of T. An exact tensor functorq’ : T —
T’ factors through q if and only T4 5 T9 and w9 ~ ¥ | TI.

PROOF The conditions are obviously necessary. For the sufficiency, choose an isomor-
phism b : w? — w? |T4. A fibre functor w on T’ then defines a fibre functor woq’ on T
and an isomorphism a(w)|T%0b : w? — (woq’)|TY. In this way we get a homomorphism

FIB(T') — (w9 | FIB(T)) ~ FIB(Q)
and we can apply (6.3) to get a functor Q — T’ with the correct properties. O

THEOREM 6.12 Let T be a tannakian category over k, and let w, be a k-valued fibre functor
on TH for some subgroup H C 7(T). There exists a quotient (Q,q) of T by H such that
w9 ~ @o-

PROOF The gerbe (w, | FIB(T)) is affine (see 6.2). From the morphism of gerbes
(w,a) = w: (wg | FIB(T)) — FIB(T),
we obtain a morphism of tannakian categories
Rep(FIB(T)) — Rep(w, | FIB(T))

(see 6.3). We define Q to be Rep(w, | FIB(T)) and we define g to be the composite of the
above morphism with the equivalence (see 6.3)

T — Rep(FIB(T)).

Since a gerbe and its tannakian category of representations have the same band, an
argument as in the proof of Proposition 6.10 shows that 7(q) maps 7(Q) isomorphically
onto g(H). A direct calculation shows that w9 is canonically isomorphic to w. o

We sometimes write T/w for the quotient of T defined by a k-valued fibre functor w
on a subcategory of T.

EXAMPLE 6.13 Let (T, w, T) be a Tate triple (see Chapter V below), and let S be the full
subcategory of T of objects isomorphic to a direct sum of integer tensor powers of the
Tate object T. Define w, to be the fibre functor on S,

X ~ lim Hom( P 1n.x).

n —n<r<n

Then the quotient tannakian category T/, is that defined more explicitly in V, 11.9,
below.

REMARK 6.14 Let q: T — Q be a normal quotient functor. Then T can be recovered
from Q, the homomorphism 7(Q) — q(7z(T)), and the actions of q(7z(T)) on the objects

of Q (apply 5.1(a)).

REMARK 6.15 A fixed k-valued fibre functor on a tannakian category T determines a
Galois correspondence between the subgroups of 7(T) and the equivalence classes of
quotient functors T — Q.

EXERCISE 6.16 Use (5.7, 5.8) to express the correspondence between fibre functors on
tannakian subcategories of T and normal quotients of T in the language of 2-categories.
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ASIDE 6.17 Let G be the fundamental group 7(T) of a tannakian category T, and let H be a
subgroup of G. We use the same letter to denote an affine group scheme in T and the band it
defines. Then, under certain hypotheses, for example, if all the groups are commutative, there
will be an exact sequence

-~ = HYk,G) - H'(k,G/H) - H*(k,H) — H*(k,G) - H?*(k,G/H).

The category T defines a class ¢(T) in H?(k, G), namely, the G-equivalence class of the gerbe of
fibre functors on T, and the image of ¢(T) in H2(k, G/H) is the class of T#. Any quotient of T by
H defines a class in H?(k, H) mapping to ¢(T) in H?(k, G). Thus, the exact sequence suggests
that a quotient of T by H will exist if and only if the cohomology class of T is neutral, i.e., if
and only if T is neutral as a tannakian category, in which case the quotients are classified by
the elements of H'(k, G/H) (modulo H'(k, G)). When T is neutral and we fix a k-valued fibre
functor on it, then the elements of H!(k, G /H) classify the k-valued fibre functors on TH, Thus,
the cohomology theory suggests the above results, and in the next subsubsection we prove that a
little more of this heuristic picture is correct.

The cohomology class of the quotient

For an affine group scheme G over a field k, H"(k, G) denotes the cohomology group
computed with respect to the flat topology. When G is not commutative, this is defined
only for r = 0,1, 2 (Giraud 1971).

PROPOSITION 6.18 Let (Q, q) be a quotient of T by a subgroup H of the centre of 7(T).
Suppose that T is neutral, with k-valued fibre functor w. Let G = Aut®(w), and let go(w?)
be the G /w(H)-torsor Fom(w|T?, w9). Under the connecting homomorphism

H'(k,G/H) - H*(k,H)
the class of go(w9) in H'(k, G /H) maps to the class of Q in H*(k, H).

PROOF Note that H = Bd(Q), and so the statement makes sense. According to Giraud
1971, 1V, 4.2.2, the connecting homomorphism sends the class of go(w?) to the class of the
gerbe of liftings of go(w?), which can be identified with (w? | FIB(T)). Now Proposition
6.10 shows that the H-equivalence class of (w? | FIB(T)) equals that of FIB(Q) which
(by definition) is the cohomology class of Q. O

Semisimple normal quotients

Everything can be made more explicit when the categories are semisimple. Throughout
this subsection, k has characteristic zero.

PROPOSITION 6.19 Normal quotients of semisimple tannakian categories are semisimple.

PROOF A tannakian category is semisimple if and only if the identity component of its
fundamental group is pro-reductive (cf. 6.18), and a connected normal subgroup of a
reductive group is reductive (because its unipotent radical is a characteristic subgroup).

Let T be a semisimple tannakian category over k, and let w, be a k-valued fibre
functor on a tannakian subcategory S of T. We can construct an explicit quotient T/w,
as follows. First, let (T/w,)’ be the category with one object X for each object X of T,
and with

Hom /4,y (X,Y) = wo(Fom(X, Y)),
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where H is the subgroup of 77(T) defining S. There is a unique structure of a k-linear
tensor category on (T/w,)’ for which g: T — (T/w,) is a tensor functor. With this
structure, (T/w,)’ is rigid, and we define T/w, to be its pseudo-abelian hull. Thus, T/w,
has
objects: pairs (X, e) with X € ob(T) and e an idempotent in End(X),
morphisms: Homy, ((X,e),(Y, f)) = fo Homt/, y (X, Y)ce.

Then (T /w,, q) is a quotient of T by H, and w? ~ w,.

Let w be a fibre functor on T, and let a be an isomorphism w, — «|TH. The pair
(w, a) defines a fibre functor w, on T/w, whose action on objects is determined by

wa(X) = CU(X)

and whose action on morphisms is determined by

Hom(X,Y -------—-----%-om— - > Hom(w,(X), w,(Y))

def ]

wo(FHom(X, Y)H) —2 a(FHom(X,Y)H) —=— FHom(w(X),n(Y))*H

The map (w, a) = w, defines an equivalence (w, | FIB(T)) — FIB(T/w).

Let H; C Hy C n(T), and let w, and w; be k-valued fibre functors on T and T
respectively. A morphisma : w, — w;|T defines an exact tensor functor T/w, — T/w,
whose action on objects is determined by

X (in THo) X (in TH),
and whose action on morphisms is determined by
Homy /o, (X,Y) =------—-—mmmmmmm oo > Homy,, (X,Y)

def

wo(Fom(X, Y)H0) —— w)(Homi(X,Y) ) —— w,(Fom(X,Y)H))

When H; = H,, this is an isomorphism (!) of tensor categories T/wy — T/w;.

Let (Qq, q;) and (Q,, g,) be quotients of T by H. For simplicity, assume that 7 « (T)
is commutative. Then FHom(w?,w%) is 7 /H-torsor, and we assume that it lifts to a
m-torsor P in T,so0 P A™ (w/H) = Hom(w?,w?). Then

XePAX qp
T———T—Q

realizes Q, as a quotient of T by H, and the corresponding fibre functor on T# is PA7 % ~
w1, Therefore, there exists a commutative diagram of exact tensor functors

X—PA'X
T————T

o e

Q — Q

which depends on the choice of P lifting Hom(w?, w%2) in an obvious way.

EXERCISE 6.20 Re-express the theory of quotients in terms of (Galois) groupoids.

NOTES This section adapted from Milne 2007a.



Chapter V

Polarizations; Tate triples

Consider an abelian variety A over an algebraic closure [ of [F,. For a prime number
¢ # p,we have a finite-dimensional Q,-vector space V', A, and, for any polarization of A,
we have a pairingp : V,AXV,A — Q. As Q, is not a subfield of R, it makes no sense to
ask if g is positive-definite. However, ¢ induces an involution of the finite-dimensional
Q-subalgebra End(A) ® Q of End(V,A), and Weil proved that this involution is positive.
Indeed, this is the key to his proof of the Riemann hypothesis for abelian varieties over
finite fields. In this chapter, Weil’s ideas are extended to tannakian categories.

From another perspective, the category of motives (however defined) over a field
is a tannakian category over Q equipped with, for each prime number [ (including p),
a canonical realization functor to a tannakian category over Q;. A polarization on the
category plays the role of the missing realization at the infinite place.

Throughout this chapter C is a tannakian category over R and C’ is its extension to
C: C’ = C(c). Complex conjugation on C is denoted by 1 or by z - Z.

1 Preliminaries

TERMINOLOGY 1.1 An additive map f: V — W of C-vector spaces is semilinear if
f(zv) = zf(v) for z € C and v € V. An additive functor F: C; — C, of C-linear
categories is semilinear if F(zx) = Zpyx, where zy denotes the action of z € Con X. A
morphism of C-schemes « : T — S is semilinear if f — foa : I'(S, O5) — I'(T, Or) is
semilinear as a map of C-vector spaces.

Positive involutions

Let A be a finite-dimensional R-algebra (not necessarily commutative).
1.2 An involution of A is an R-linear map % : A — A such that
1" =1, (ab)* =b*a*, a** =a, foralla,be A.
The involution is said to be positive if Tr 4 ;g (aa*) > 0 for all nonzero a € A.
PROPOSITION 1.3 If A admits a positive involution, then it is semisimple.

PROOF Let I be a nilpotent ideal in 345 We have to show that I = 0. Suppose not, and let
u be a nonzero element of I. Then v = uu* lies in I and is nonzero because Tr 4 /r(v) > 0.
Asv = v*, we have TrA/R(vz) >0, TrA/R(v“) > 0, ...contradicting the nilpotence of I.4

199
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Let * be an involution on A, and let V be an A-module. An R-bilinear form ¢ : V' X
V — R s said to be balanced if

Y(a*u,v) = Pp(u,av) foralla € Aand u,v € V.

A hermitian form on V is a balanced symmetric R-bilinear form. For example,if A = C
and x* is complex conjugation, such a form can be written uniquely as Tr¢ /g o¢ with
¢: VXV — C ahermitian form in the usual sense. A hermitian form  is positive-
definite if (v, v) > 0 for al nonzerov € V.

PROPOSITION 1.4 Assume that A is semisimple. The following conditions on an involution
x of A are equivalent:

(a) some faithful A-module admits a positive-definite hermitian form;
(b) every A-module admits a positive-definite hermitian form;

(c) theinvolution = is positive.

PROOF (a)=(b). Let V be a faithful A-module. Every simple A-module occurs as a direct
summand of V, and so every A-module occurs as a direct summand of a direct sum of
copies of V. Hence, if V carries a positive-definite hermitian form, then so does every
A-module.

(b)=>(c). Let V be a A-module with a positive-definite hermitian form ( | ), and choose
an orthonormal R-basis ey, ..., e, for V. Then

Trr(a*alV) = Zi(eila*aei) = Zi(aeilaei),

which is > 0 unless a acts as the zero map on V. On applying this remark with V' = A,
we obtain (c).

(c)=>(a). Condition (c) says that the hermitian form (a,b) — Tr,/r(a*b) on the
(faithful) A-module A is positive-definite. o

An element of a finite-dimensional semisimple R-algebra A is said to be totally
positive if the roots of its characteristic polynomial P, are all > 0. This condition is
equivalent to a being invertible in A and a square in R[«].

Real algebraic groups

1.5 Let G be an algebraic group over R. Recall (II, 9.7) that G is said to be compact if
G(R) is compact and every connected component of G has a real point. Then G(R) is
Zariski dense in G and the functor

Repf,(G) — Repf(G(R))

sending a representation of G to the corresponding continuous representation of G(R)
is an equivalence.

1.6 (DELIGNE 1972, 2.5) Every algebraic subgroup H of a compact algebraic group G
over R is compact.
To prove this, we use that the map

(g,€)— g-exp(it): G(R) X Lie(G) —» G(C)
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is bijective. It suffices to prove that for all h = g - exp(i¢) € H(C), we have ¢ € Lie(H).
Since h € H(C), we have exp(2i¢) = h~'h € H(C). View G(C) as the set of real points
of an algebraic group over R, and letJ C H(C) be the Zariski closure in this group of
JE {exp(nit) | n € 2Z}. The elements g of J, therefore also those of J, satisfy g~! = g,
and so Lie(J) C i Lie(G). The Lie algebra Lie(J) is abelian, and exp(Lie(J)) is a group,
necessarily of finite index in J, and so there exist an n € N and ¢’ € Lie(J) such that

exp(nit) = exp(¢’).
We then have i¢ € Lie(J) C Lie(H) and ¢ € Lie(H), which completes the proof.

1.7 Let G be an algebraic group over R. If G is compact, then every finite-dimensional
real representation of G - GL(V) carries a G-invariant positive-definite symmetric
bilinear form. Conversely, if one faithful finite-dimensional real representation of G
carries such a form, then G is compact. Indeed, G is then an algebraic subgroup of an
orthogonal group (which is compact).

1.8 We can restate 1.7 for complex representations of the real algebraic group G. If G is
compact, then every finite-dimensional complex representation of G carries a G-invariant
positive-definite hermitian form.! Conversely, if some faithful finite-dimensional com-
plex representation of G carries a G-invariant positive-definite hermitian form, then G is
compact. Indeed, G is then an algebraic subgroup of a unitary group (which is compact).

Cartan involutions

1.9 Let G be an algebraic group over R, and let g — g denote complex conjugation on
G(C). Let 0 be an involution of G (as an algebraic group over R). There is a unique real
form G© of G such that complex conjugation on G®)(C) is g — 6(g). An involution is
said to be Cartan if G© is compact (in the sense of 1.5).

1.10 Let G be an algebraic group over R. There exists a Cartan involution of G if and
only if G° is reductive, in which case, any two are conjugate by an element of G(R).

1.11 Let G = GLy with V a finite-dimensional real vector space. The choice of a basis
for V determines a transpose operator M — M', and M +~ (M*)~! is obviously a Cartan
involution, and 1.10 implies that all Cartan involutions of G arise in this way.

1.12 Let G be a connected algebraic group over R and G — GLy a faithful representation
of G. Then G is reductive if and only if G is stable under g — g' for some choice of a
basis for V, in which case g — (g')~! is a Cartan involution of G; all Cartan involutions
of G arise in this way from the choice of a basis for V (Satake 1980, I, 4.4).

1.13 Let G be a real algebraic group, and let C be an element of G(R) whose square is
central (so that ad(C) is an involution). A C-polarization on a real representation V of
G is a G-invariant bilinear form ¢ such that the form ¢,

(u,v) » p(u,Cv),

is symmetric and positive-definite.

1For a sesquilinear form ¢ to be G-invariant means that o(gu, gv) = ¢(u,v), g € G(C), u,v € V,i.e., ¢
is G-invariant when viewed asamap V ® V — C.
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PROPOSITION 1.14 Ifad(C) is a Cartan involution of G, then every finite-dimensional real
representation of G carries a C-polarization; conversely, if one faithful finite-dimensional
real representation of G carries a C-polarization, then ad(C) is a Cartan involution.

PROOF We first remark that an R-bilinear form ¢ on a real vector space V extends to a
sesquilinear form ¢’ on V(C), namely,

¢ : V(C)xV(C) > C, where¢'(u,v) = pc(u, 0).

Moreover, ¢’ is hermitian (and positive-definite) if and only if ¢ is symmetric (and
positive-definite).

Let p: G — GL(V) be a real representation of G. For any G-invariant bilinear form
@ onV, ¢c is G(C)-invariant, and so

o' (gu,gv) = ¢’(u,v), allg € G(C), u,veV(C). (107)
On replacing v with Cv in this equality, we find that
¢'(gu,C(C71gC) = ¢'(u,Cv), allg € G(C), u,v e V(C). (108)
This can be rewritten as
p(gu, (ad C)9v) = pr.(u,v),

where goé = (pc)'. This last equation says that qo’c is invariant under G@4©),

If p is faithful and ¢ is a C-polarization, then qo’c is a positive-definite hermitian form,
and so G@E)(R) is compact (1.8). Thus ad C is a Cartan involution.

Conversely, if G@1E)(R) is compact, then every real representation G — GL(V)
carries a G@4©)(R)-invariant positive-definite symmetric bilinear form ¢ (1.7). Similar
calculations to the above show that g1 is a C-polarization on V. O

NoTES It is difficult to find references for Cartan involutions in the nonconnected case.

Maximal compact subgroups

1.15 Let G be an algebraic group over C.

(a) Any two maximal compact subgroups of G(C) are conjugate (Hochschild 1965,
XV, 3.1).

(b) If G° is reductive, then every maximal compact subgroup K of G(C) is a compact
real form of G, i.e., K = Gy(R) for some compact algebraic group G, over R such
that Gyc = G (Springer 1979, 6.5).

2 Tannakian categories over R

2.1 Let C be a tannakian category over R, and let C’' = Co- Recall (I, §7) that an object

of C’ is an object of C together with an action of C. For such an object X, we let X denote
the same object but with the complex conjugate action. In this way, we get a semilinear
tensor functor X « X : C’ — C’, and a canonical tensor isomorphism uy : X — X such
that

Hx = ix. (109)
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The category C can be recovered from the triple (C’, X ~ X, uyx) as the collection of pairs
(X, a) with X an object of C’ and a : X — X an isomorphism such that doa = uy (i.e.,
a descent datum on X). Every triple (C’, X w X, uy) satisfying (109) arises in this way
from a tannakian category over R.? Recall (111, 10.1) that C’ is automatically neutral.

EXAMPLE 2.2 Let G be an affine group scheme over C. Given a semilinear isomorphism
o: G(C) - G(C)and ac € G(C) such that

o?=ad(c), oc)=c (110)

we can construct a triple as in 2.1:
(a) let C'=Repf(G);
(b) given a representation of G on V, define a representation of G on V by the rule
8v = a(g)v;
(c) define uy tobethemapcv = 0: V= V.
Let m € G(C). Then ¢’ = oo ad(m) and ¢’ = o(m)cm again satisfiy (110). The element

m defines an isomorphism of the functor V'~ V (rel. to (o, ¢)) with the functor V + V
(rel. to (¢’, ")) by

mv— 0: V(rel. to (o,¢)) = V (rel. to (¢/,c")).

This isomorphism carries uy, (rel. to (o, ¢)) to uy (rel. to (¢/,¢’)), and hence defines an
equivalence of C (rel. to (o, ¢)) with C (rel. to (¢’,c’)).

PROPOSITION 2.3 Let C be a tannakian category over R, and let C' = C(¢). Choose a fibre
functor w on C' with values in C, and let G = Aut?(w).
(a) There exists a pair (o, ¢) satisfying (110) and, such that under the equivalence C' —
Repf(G) defined by w, the functor X « X corresponds to V ~ V and w(fix) = fex)-
(b) The pair (o,c) in (a) is uniquely determined up to replacement by a pair (¢’,c’)
with ¢’ = goad(m) and ¢’ = o(m)cm, some m € G(C).

PROOF (a) Let @ be the fibre functor X w w(X) and let T = Hom®(w, ®). According
to (8.1), T is a G-torsor, and Proposition 7.7 shows that it is trivial. The choice of a
trivialization provides us with a natural isomorphism w(X) — &@(X) and therefore with
a semi-linear natural isomorphism Ay : w(X) — «(X). Define o by the condition that
o(g)x = AXogXO/l;(l for all g € G(C), and let ¢ be such that cy = w(uy) toldgoldy.

(b) The choice of a different trivialization of T replaces Ay with Ayomy for some
m € G(C), o with oo ad(m), and ¢ with a(m)cm. O

SUMMARY 2.4 To pass from the top row to the bottom, choose a fibre functor w over C.

C(over R) «—21— (C',X » X, uy)

111.33 12.2,2.3

G = Autd(@) < (G = At (), 0,¢).

2For example, choose a fibre functor w on C’ with values in C, and let G = Aut®(w), so C’ ~ Repf(G).
From the structure on C’, we get a pair (o, ¢) satifying (110), which can be used to extend G to a C/R-
groupoid (III, 11.34). Now take C = Repf(9).
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3 Bilinear and sesquilinear forms

We review some definitions and formulas concerning bilinear and sesquilinear forms
on tannakian categories. The formulas can be proved by applying a fibre functor. They
also hold in tensorial categories, but then the proofs may require drawing diagrams. See
Saavedra 1972, V, 2.1, 2.2, for more details.

Bilinear forms in tannakian categories.

Let C be a tannakian category over a field k (for example R), and let T be an invertible
object of C. A bilinear form with values in T is a morphism

$: X®X —>T.
There are bijections®
Hom(X ® X,T) = Hom(X, X" ® T)

P ¢~ PT(X)Y) = P(x,y)
¢ Te(0)) = ¢, x).

The form ¢ is said to be nondegenerate if ¢~ (equivalently ~¢) is an isomorphism. The
parity of a nondegenerate bilinear form ¢ is the unique morphism ¢4 : X — X such
that

g $~ ="¢oz,
¢(x,y) = @y, £¢x).
Then
P(epx, £4Y) = (X, ).
The transpose u® of u € End(X) relative to ¢ is determined by
po(u ® idy) = po(idy ®u?)
{ B(ux,y) = $(x,uty).

There are the formulas
wv)? =v?u?, (dy)? =idy, WP? = £¢u£;1, (e4)? = E;l,

so u — u? is a bijective k-linear antihomomorphism End(X) — End(X).
If ¢ is a nondegenerate bilinear form on X, then any other nondegenerate bilinear
form can be written

¢a(x,y) = p(ax,y)

for a uniquely determined automorphism a of X. There are formulas

g o = po(a ® id)

u?s = (aua ), & = (a®)leza.

Therefore, when ¢ is in the centre of End(X), ¢, has the same parity as ¢ if and only if
a® = a.

3In more detail, ¢~ is the image of ¢ under the canonical isomorphism
Hom(X; ® X,,T) ~ Hom(X,,X; ®T), X, =X,=X.

For a fibre functor w and x € w(X), we have w(¢~)(x) € w(X)¥ @ w(T) ~ Hom(w(X), w(T)), and we require
that

w(@))P) = w()(x, ),
ally € w(X).
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Sesquilinear forms on vector spaces

A sesquilinear form on a complex vector space V is a biadditive mapping
p: VXV >C

such that
¢(ax,by) = abg(x,y) forx,y € V,a,b € C.

The form is nondegenerate if the mapping
xe plx,=): V>V

is an isomorphism. Then, the transpose u¢ of an endomorphism u of V relative to ¢ is
the unique endomorphism u? such that

$(ux,y) = p(x,uty), allx,y V.

We transfer these definitions to a tannakian category. Note that we can regard ¢ as a
C-bilinear map V x V — C, and hence as a C-linear map V ®. V — C.

Sesquilinear forms in tannakian categories

Let C be tannakian category over R and (C’, X — X, uy) the associated triple (2.1).

Let (1,e),e: 1T® 1 — 1, be a unit object for C’. Then (i, e) is again a unit object,
and the unique isomorphism of unit objects a : (1,e) — (T, @) is a descent datum. We
use it to identify 1 with 1.

A sesquilinear form on an object X of C’ is a morphism

P:XQ®X - 1.

On applying —, we obtain a morphism X ® X — 1, which can be identified (using uy)
with a morphism
P X®X - 1.

Let ¢~ and ~¢ be the morphisms X — X" such that*

{ 7)) = ¢(x®y)
")) = ¢y ® x)

The form ¢ is said to be nondegenerate if ¢~ (equivalently ~¢) is an isomorphism. The
parity of a nondegenerate sesquilinear form ¢ is the unique morphismeg : X — X such
that

(111)

¢~ = "ogy;
{ ¢(x,y) = ¢(y,€4X). (112)

Note that 5o -
o Eqb ® gqb = Q,
{ P(epX, Epy) = ¢(x,) (113)

“Take ¢~ to be the morphism corresponding to ¢ under the canonical isomorphisms

Hom(X ® X, 1) ~ Hom(X, Hom(X, 1)) = Hom(X, X").
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The transpose u® of u € End(X) relative to ¢ is determined by

1y = . e
{ ¢po(u ® idg) ¢°(ldl®u ); (114)
p(ux,y) = ¢(x,u?y).
There are formulas
wv)? =vPu®, (dy)? =idy, WP?= £¢u£;1, (£¢)¢ = E;l (115)

and so u — u? is a semilinear bijective antihomomorphism End(X) — End(X).
If ¢ is a nondegenerate sesquilinear form on X, then any other nondegenerate
sesquilinear form can be written

B = $o(a®id),  ¢o(x.y) = $(ax,y) = $(x,a%y) (116)

for a uniquely determined automorphism «a of X. There are the formulas
ubs = (aua ), e = (a®)leza. (117)
Therefore, when ¢4 is in the centre of End(X), ¢, has the same parity as ¢ if and only if

OC¢=OC.

Bilinear forms versus sesquilinear forms

Let V be a vector space over R, and let Ve = V @ C. An R-bilinear formgp: VXV - R
can be extended to a sesquilinear form ¢ : V¢ X V¢ — C by setting

l)b(u’ U) = qDC(u’ 6), u,v e Vc.

Moreoever, ¥ is hermitian (and positive-definite) if and only if ¢ is symmetric (and
positive-definite). In this way, we get a one-to-one correspondence between the bilinear
forms on V' and the sesquilinear forms on V.

Let C be a tannakian category over R and (C’, X w X, uy) its extension to C (asin 2.1).
Let (X, a) be an object of C’ with a descent datum a. A sesquilinear formy : X ® X — 1
on X defines a bilinear form

id ®a _ ¥
X®X - XX —1

on X with values in 1 that descends to the object in C.

4 Welil forms

Let C be a tannakian category over R and (C’, X w X, uy) its extension to C (as in 2.1).
Let X be an object of C’. Then End(X) is a finite-dimensional C-algebra.

DEFINITION 4.1 A nondegenerate sesquilinear form ¢ : X ® X — 1 is a Weil form if
(a) its parity &4 is in the centre of End(X) and

(b) Try(uou?) > 0 for all nonzero u in End(X).

PROPOSITION 4.2 Let ¢ be a Weil form on X.
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(a) The map u — u® is an involution of End(X) inducing complex conjugation on
C = C -idy, and (u,v) —~ Try(uov?®) is a positive-definite hermitian form on
End(X).

(b) End(X) is a semisimple C-algebra.

(c) Any commutative sub-R-algebra A of End(X) composed of symmetric elements (i.e.,
elements such that u® = u) is a product of copies of R.

PROOF (a) Condition (a) says that u +— u? is an involution (see (115)) and condition (b)
says that the hermitian form is positive-definite..

(b) Let I be a nilpotent ideal in End(X). We have to show that I = 0. Suppose on the
contrary that thereisa u # 0in I. Then v = uu® € I and is nonzero because Try(v) > 0.
As v = v%, we have that Try(v?) > 0, Try(v*) > 0,... contradicting the nilpotence of I.
See also 1.3.

(c) The argument used in (b) shows that A is semisimple and is therefore a product
of fields. Moreover, for any u € A, Try(u?) = Try(uu®) > 0. If C occurs as a factor of A,
then Try |C is a multiple of the identity map, which contradicts Try(u?) > 0. o

Two Weil forms, ¢ on X and 3 on Y, are said to be compatible if the sesquilinear
form ¢ @Y on X @Y is again a Weil form.
Let ¢ and 3 be Weil forms on X and Y respectively. Then ¢ and 3 define isomor-
phisms
Hom(X,Y) > Hom(X ® Y, 1) « Hom(Y, X).

Let u € Hom(X,Y), and let u’ be the corresponding element in Hom(Y,X). Then
¢ and 1 are compatible if and only if, for all u # 0, Try(uou’) > 0. In particular, if
Hom(X,Y) = 0, then ¢ and 3 are automatically compatible.

PROPOSITION 4.3 Let ¢ be a Weil form on X, and let ¢, = ¢po(a ® idy) for some o €
Aut(X).
(a) The form sesquilinear form ¢, has the same parity as ¢ if and only if a is symmetric,
ie,a=a.
(b) Assume «a is symmetric. Then ¢, is a Weil form if and only if a is a square in
R[a] € End(X).
(c) If ¢, is a Weil form with the same parity as ¢, then ¢, is compatible with ¢.
(d) For any Weil form ¢ on X, the map a — ¢, defines a one-to-one correspondence

between the set of totally positive symmetric endomorphisms of X and the set of Weil
forms on X that have the same parity as ¢ and are compatible with ¢.

PROOF (a) According to (117), the parity of ¢, is (oc¢)_1e¢oc. As ¢ is in the centre of
End(X), this equals ¢4 if and only if a? = a.
(b) As a = a®, (117) and (115) show that u®= = a~! - u? - «. Thus, ¢, is a Weil form
if and only if
Try(u-at-u®-a)>0,allu # 0, u € End(X).

If « = 82 with 8 € R[«], then
Try(ua uta) = Try (B HB uba™)
= Trx(B'ula (™)  (Tryx(vw) = Trx(wv))
= Trx((Buf™)?(B~'upB)) > 0
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for u # 0. Conversely, if ¢, is a Weil form, then Try(u?a) > 0 for all u # 0 in R[«],
which implies that « is a square in R[«].

(c) Let u be a nonzero endomorphism of X. Then u’ = u®«, and so ¢ and ¢, are
compatible if and only if Try(u - u®«) > 0 for all u # 0, but this is implied by ¢,’s being
a Weil form.

(d) According to (116), every nondegenerate sesquilinear form on X is of the form ¢,
for a unique automorphism « of X. Thus, the proposition is an immediate consequence
of the preceding statements. o

The relation of compatibility on the set of Weil forms on X is obviously reflexive
and symmetric, and the next corollary implies that it is also transitive on any set of Weil
forms on X having a fixed parity.

COROLLARY 4.4 Let ¢ and ¢’ be compatible Weil forms on X with the same parity, and let
¥ be a Weil form on Y. If ¢ is compatible with v, then so also is ¢’.

PROOF This follows easily from writing ¢’ = ¢,. o

EXAMPLE 4.5 Let X be a simple object in C’, so that End(X) = C, and let ¢ € End(X).
If X is isomorphic to XV, so that there exists a nondegenerate sesquilinear form on X,
then (116) shows that the sesquilinear forms on X are parametrized by C; moreover,
(117) shows that if there is a nonzero such form with parity €, then the set of sesquilinear
forms on X with parity ¢ is parametrized by R; finally, (4.3) shows that if there is a Weil
form with parity €, then the set of such forms falls into two compatibility classes, each
parametrized by R..

VARIANT 4.6 Let X, be an object in C and let ¢, be a nondegenerate bilinear form
do: Xy ® Xy — 1. The form ¢, is said to be a Weil form on X, if

(a) its parity g4 is in the centre of End(X,) and

(b) TrXO(uou¢0) > 0 for all nonzero u € End(Xj).

Two Weil forms ¢, and ), are said to be compatible if ¢, @ 1), is also a Weil form.

Let X, correspond to the pair (X, a) with X € ob(C’). Then ¢, defines a bilinear
form ¢ on X, and

e o 1®a™!
P xex 2 xex5 )

is a nondegenerate sesquilinear form on X. If ¢ is a Weil form, then ¥ is a Weil form on
X that is compatible with its conjugate ¥, and every such ¢ arises from a ¢,,; moreover,

EI,D = E¢0.

5 Polarizations

Let C be a tannakian category over R and (C’, X ~ X, uy) its extension to C (as in 2.1).
Let Z be the centre of the band attached to C. Thus Z is a commutative affine group
scheme over R such that
Z(C) ~ Centre(Aut®(w))

for any C-valued fibre functor w on C’. Moreover, Z represents Aut®(idc).

DEFINITION 5.1 Let ¢ € Z(R) and, for each X € ob(C’), let II(X) be an equivalence
class (for the relation of compatibility) of Weil forms on X with parity e. Then IT is a
(homogeneous) polarization on C if
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(a) forall X, ¢ € II(X) whenever ¢ € II(X), and

(b) forall X andY,¢p P eIX P Y)and ¢ ® Y € TI(X ® Y) whenever ¢ € TI(X)
and ¢ € II(Y).

We call ¢ the parity of IT and say that ¢ is positive for I1 if ¢ € II(X). Thus the
conditions require that ¢, ¢ @ ¥, and ¢ ® 1 are positive for IT whenever ¢ and ¢ are.

PROPOSITION 5.2 Let IT be a polarization on C.
(a) The categories C and C' are semisimple.

() Ifp e I(X)andY C X, then X = Y @ Y+ and the restriction ¢y of ¢ to Y is in
T(Y).

PROOF (a) Let X be an object of C’'and letu : Y < X be a nonzero simple subobject of
X. Choose ¢ € TI(Y) and ¢ € TI(X). Consider

0 u\ .
u_<0 O).X@Y—>X€BY

0 0
PO —

Then Try(u'u) = TrY€|9X(l)¢€‘9‘75 ov) > 0, and so ©'u is an automorphism w of Y. The map
p = wtou’ projects X onto Y, which shows that Y is a direct summand of X. We have
shown that X is semisimple. Thus C’ is semisimple, and the same argument, using the
bilinear forms (4.6) shows that C is semisimple.>

(b) Let Y’ = Y n Y, where Y is the largest subobject of X such that ¢ is zero on
Y ® Y1, and let p: X — X be the projection of X onto Y’ (by which we mean that
p(X) cY'and p|Y’ =idy/). AspiszeroonY’ ® Y,

and letu’ : X — Y be such that

0= ¢o(p ® p) = po(id ®p?p),

and so p®p = 0. Therefore, Try(p?p) = 0, and so p, and Y, are zero. ThusX = Y § Y+
and ¢ = ¢y @ qbf;. Let ¢; € II(Y) and ¢, € TI(Y1). Then ¢; @ ¢, is compatible with ¢,
and this implies that ¢, is compatible with ¢y O

EXAMPLE 5.3 Suppose that C is defined by a triple (G, o, ¢), as in (2.1), so that C' =
Repf(G). A sesquilinear form ¢ : X ® X — 1 defines a sesquilinear form ¢’ on X in
the usual, vector space, sense by the formula

¢/(X,Y) = ¢(x ®}_})’ x,y€X. (118)

The conditions that ¢ be a G-morphism and have parity ¢ € Z(R) become respectively

¢'(x,y) = ¢'(gx,07'(g)y), geG(O),
Py, x) = ¢(x,ec7y).

When G acts trivially on X, the last equation becomes

(119)

(v, x) =¢'(x,y),

5Alternatively, use that End(X) is semisimple for all X; see VI, 6.4.
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and so ¢’ is a hermitian form in the usual sense on X. When X is one-dimensional, ¢’
is positive-definite (for otherwise ¢ ® ¢ & TI(X)). Now (5.2b) shows that the same is
true for any X on which G acts trivially, and (4.3) shows that {¢' | ¢ € II(X)} is the
complete set of positive-definite hermitian forms on X. In particular, Vecf has a unique
polarization.

REMARK 5.4 Let IT be a polarization on C with parity e. Then IT defines, for each simple
object X of C’, an orientation of the real line of sesquilinear forms on X with parity ¢
(see 4.5), and IT is obviously determined by this family of orientations.
Choose a C-valued fibre functor w on C’, and choose for each simple object X; a
¢; € II(X;). Then
X)) = {rei | r € Ry}

If X is isotypic of type X;, then w(X) = W ® w(X;) for some finite-dimensional vector
space W on which Aut®(w) acts trivially, and

{w(@) | ¢ € ICO} = { ® w(¢))' | P hermitian 3 > 0}.

If X = @ X®, where the X® are the isotypic components of X, then

(x) = P ).

VARIANT 5.5 Let ¢ € Z(R) and, for each X|, € ob(C), let II(X,)) be a nonempty compati-
bility class of bilinear Weil forms on X, with parity ¢ (see 4.6). Then I1 is a homogeneous
polarization on C if
(a) forallX andY, ¢DY, € II(X DY) and ¢, ®Y, € II(X ®Y) whenever ¢, € TI(X)
and ¥, € II(Y).
As {X | (X,a) € ob(C)} generates C’, the relation between bilinear and sesquilinear
forms noted in (4.6) establishes a one-to-one correspondence between polarizations in
this bilinear sense and in the sesquilinear sense of (5.1).
In the situation of (5.3), a bilinear form ¢, on X, defines a sesquilinear form ¢’ on
X = X, ® C (in the usual vector space sense) by the formula:

P (2101, 205) = 212,¢0(V1,02), V1,0, €Xy, 71,2, €C.

ToDo 9 Discuss polarizations on tannakian categories over subfields of R.

6 Description of the polarizations

Let C be an algebraic tannakian category over R, and let (G, o, c¢) be the triple attached to
a fibre functor, as in 2.3. Let K be a maximal compact subgroup of G(C). As all maximal
compact subgroups of G(C) are conjugate (1.15), there exists an m € G(C) such that
o~ }(K) = mKm™!. After replacing o with oo ad(m), we may suppose that o(K) = K.
Subject to this constraint, (o, ¢) is determined up to modification by an element m in
the normalizer of K.

Assume that C is polarizable. Then C’ is semisimple (5.2(a)), and so G° is reductive
(11, 6.18). It follows that K is a compact real form of G (1.15). Let o denote the semilinear
automorphism of G that sends a g € G(C) to its conjugate relative to the real structure
on G defined by K. Note that o determines K. The normalizer of K is K - Z(C), and so
ceK-Z().

Fix a polarization IT on C, and let ¢ be its parity.
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Let X be a simple representation of G, and let ¢ be a positive-definite K-invariant
hermitian form on X. For any ¢ € II(X), the associated form ¢’(x, y) o ¢(x ® y) can
be expressed

¢'(x,y) = P(x, By)

for some § € Aut(X). The equations (119) can be re-written as

B-gx =0@x B allg € K(R)
B* =B ex-cy!

where 8* is the adjoint of g relative to 1,
b(Bx,y) = P(x, *y).

As K(R) is Zariski dense in K(C), X is also simple as a representation of K(R), and so
the set c¢(X, IT) of such f is parametrized by R, (see 4.5).
An arbitrary finite-dimensional representation X of G can be written

Xx=@P wiex,

(120)

where the sum is over the distinct simple representations X; of G and G acts trivially on
each W;. Let gbl.’ and 3; be K-invariant positive-definite hermitian forms on W; and X;
respectively, and let p = € zpl.’ ® ;. Then for any ¢ € I1(X),

¢'(x,y) =P(x, By), B € Aut(X),

where f = EB,B{ ® B; with §8; € c¢(X;,IT) and ﬁl.' positive-definite and hermitian relative
to z,bl.’ . We again let c(X, IT) denote the set of § as ¢ runs through I1(X). The condition
(5.1(b)) that

(X)) ® I(X,) C I(X; ® X,)

becomes
c(X, 1D ® c(X,,IT) C c(X; ® X, ID).

LEMMA 6.1 There exists a b € K with the following properties:
(a) bx € c(X,II) for all simple X;
(b) o = ggoad(b), where ox denotes complex conjugation on G relative to K;
(c) ele=0b-b=Db%

PROOF Leta = ec™! € G(C). When X is simple, the first equality in (120) applied twice
shows that

‘Bz.g.xzgz(g).‘gz.xzc.g.c_l.Bz.x
for B € ¢(X,1I), g € K, and x € X; therefore
(c7'BPgx = glc™'BH)x,

and so ¢! 82 acts as a scalar on X. Hence af? = ec~!32 also acts as a scalar. Moreover,
B%a = BB* (by the second equation in (120)) and so

Trx(ap?) = Trx(B?a) > 0;
we conclude that ay3? € R.,. It follows that there is a unique g € ¢(X, IT) such that

ay =72, Bgx = o(@xB, (g E€K), B* =p~! (ie.,p is unitary).
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For an arbitrary X, we let X = @ W,; ® X as before, and set § = ) id ®3;, where
B is the canonical element of ¢(X;, IT) just defined. We still have

ax =B, Bgx =o(@xB (gE€K), B € c(X,II).

Moreover, these conditions characterize B: if 8’ € ¢(X, IT) has the same properties, then
B’ = Y. 7: ® B; (this expresses that f'gy = a(g)xf’, g € K) withy; =1 (as §* = a;')
and y; positive-definite and hermitian. Hence y; = 1.

These conditions are compatible with tensor products, and so the canonical § are
compatible with tensor products: they therefore define an element b € G(C). As b is
unitary on all irreducible representations, it lies in K. The equations 2 = a;(l show
that b*> = a! = ¢~'c. Finally, Bgy = 0 (g)y B implies that o(g) = ad(b(g)) for all g € K;
therefore oo ad(b)™! fixes K, and as it has order 2, it must equal o. o

THEOREM 6.2 Let C be a tannakian category over R, let w be a C-valued fibre functor
on C, and let I1 be a polarization on C with parity €. For any compact real form K of
G d=efjlut®(co), the pair (o, €) satisfies (110), and the equivalence C' — Repf(G) defined

by w carries the descent datum on C' defined by C into that on Repf -(G) defined by (o, €):

w(X) = wX), w(uy) = Mar(x)-

For any simple X in C/,
{w(®) | ¢ € TI(X)}

is the set of K-invariant positive-definite hermitian forms on w(X).

PROOF Let (C,w) correspond to the triple (G, g;,¢;) (see 2.3a), and let b € K be the
element constructed in the lemma. Then o; = ogoad(b)andc=¢-ob-b=0b-¢-b.
Therefore, (o, €) has the same property as (o;,c;) (see 2.3b), which proves the first
assertion. The second assertion follows from the fact that b € c(w(X), IT) for any simple
X. 5

7 Classification of polarized tannakian categories

THEOREM 7.1 (a) An algebraic tannakian category C over R is polarizable if and only if
its band is defined by a compact real algebraic group K.

(b) For any compact real algebraic group K and € € Z(R), where Z is the centre of K,
there exists a tannakian category C over R whose gerbe is banded by the band B(K) of K
and a polarization I1 on C with parity e.

(c) Let (C1,I1;) and (C,, IT,) be polarized algebraic tannakian categories over R with
isomorphic bands B, and B,. If there exists an isomorphism B, — B; sending (I1;) to
¢(I1,) (as elements of Z(B;)(R)), then there is a tensor equivalence C; — C, respecting the
polarizations and the actions of B, and B, (i.e., such that FIB(C,) — FI1B(C,) is a banded
by B, — By), and this equivalence is unique up to isomorphism.

PROOF We have already seen (5.2)that if C is polarizable, then C’ is semisimple, and
so, for any fibre functor w with values in C, the identity component of G o Aut®(w) is
reductive, and so has a compact real form K. This proves the necessity in (a). Statement
(b) is proved in the first lemma below, and the sufficiency in (a) follows from (b) and the
second lemma below. Statement (c) follows from Theorem 6.2. 0
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LEMMA 7.2 Let K and € be as in (b) of the theorem, and let G = K¢. For g € G(C), let
o(g) = ¢/(g), where o’ is the Cartan involution corresponding to K. The pair (o, €) then
satisfies (110) and the tannakian category C defined by (G, o, €) has a polarization with

parity e.

PROOF Since 2 = id and ¢ fixes all elements of K, it is obvious that (o, €) satisfies (110).
There exists a polarization IT on C such that, for all simple X, {¢’ | ¢ € TI(X)} is the set
of positive-definite K-invariant hermitian forms on X.¢ This polarization has parity €.

Let C be an algebraic tannakian category over R, and let (C',X +— X,u) be the
corresponding triple, as in 2.1. Let Z be the centre of the band B of C. For any z € Z(R),
the triple (C’, X + X, uoz) defines a new tannakian category “C over R.

LEMMA 7.3 Every tannakian category over R whose gerbe is banded by B is of the form
2C for some z € Z(R). There is a tensor equivalence C — 2 C respecting the action of B if
andonly ifz/z71 € Z(R)>.

PROOF Let w be a C-valued fibre functor on C, and let (G, o, ¢) be the corresponding
triple, as in 2.3. We may suppose that the second category C; corresponds to a triple
(G,01,¢1). Let y and y, be the functors V — V defined by (o, ¢) and (o, ¢;) respectively.
Then yl_loy defines a tensor automorphism of w, and so corresponds to an element
m € G(C). We have ¢ = ogy0ad(m), and so we can modify (o;,c;) in order to get
o, = 0. Let u and u, be the natural isomorphisms V — V defined by (o, ¢) and (o, ¢;)
respectively. Then u|'ou defines a tensor automorphism of idc, and so p; 'op = z71,
z € Z(R). We have u; = uoz.

The second part of the lemma is obvious. o

REMARK 7.4 In Saavedra 1972, V, 1, there is a table of tannakian categories whose bands
are simple, from which it is possible to read off those that are polarizable (loc. cit. V,
2.8.3).

Cohomological interpretation

Let C be a tannakian category with band B. Assume that B is defined by a compact real
algebraic group K, and let Z denote the centre of B.

7.5 As Z is an algebraic subgroup of a compact real algebraic group, it is also compact
(1.6). It is easy to compute its cohomology. One finds that

HY(R,Z) = ,Z(R) £ Ker(2: Z(R) — Z(R))

H?*(R,Z) = Z(R)/Z(R)>.

7.6 The general theory (Saavedra 1972, 111 2.3.4.2, p. 184) shows that there is an iso-
morphism H'(R, Z) — Autg(C), which can be described explicitly as the map sending
z € ,Z(R) to the automorphism w,

(XaaX) = (XaaXZX)
=

In the notation of 6.1, b = 1.
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7.7 The tannakian categories banded by B are classified up to B-equivalence by H(R, B),
and H*(R, B), if nonempty, is an H(R, Z)-torsor. The action of H3(R, Z) = Z(R)/Z(R)?
on the set of B-equivalence classes is made explicit in (7.3).

7.8 Let Pol(C) denote the set of polarizations on C. For IT € Pol(C) and z € Z(R) we
define zII to be the polarization such that

P(x,y) € zIIX) <= ¢(x,zy) € [I(X).
It has parity €(zIT) = z2¢(IT). The pairing

(z,IT) — zI1: Z(R) X Pol(C) —Pol(C)
makes Pol(C) into a Z(R)-torsor.

7.9 LetIT € Pol(C) have parity ¢ = ¢(IT), and let ¢’ € Z(R). There is a polarization on
C with parity ¢’ if and only if ¢’ = ez for some z € Z(R).

8 Neutral polarized categories

The results in the last section can be made more explicit when the tannakian category is
neutral.

Let G be an algebraic group over R, and let C € G(R). A G-invariant sesquilinear
formy: VXV — ConV € ob(Repf.(G)) is said to be a C-polarization if

¥C(x,y) € ¥(x,Cy)

is a positive-definite hermitian form on V. If every object of Repf ~(G) has a C-polarization,
then C is called a Hodge element.
As usual, we let Z denote the centre of G.

PROPOSITION 8.1 Assume that G(R) contains a Hodge element C.

(a) There is a polarization Tl on Repf(G) for which the positive forms are exactly the
C-polarizations. It has parity C>.

(b) Forany g € G(R) and z € Z(R), C' = zgCg~'is also a Hodge element and 1 =
ch.

(c) Every polarization on Repf (G) is of the form Il¢, for some Hodge element C’.
PROOF Let 3 be a C-polarization on V' € ob(Repf(C)); then
P(x,y) =9(Cx,Cy)

because ¥ is G-invariant, and

P(Cx,Cy) = Pp(Cx,y) = Py, Cx) = P(y, C2x).
This shows that ¢ has parity C2. For any V and g € G(R),
P(, C2x) = P(x.)
= Y(gx,8y)
= 1h(gy, C2gx)
= (., g71C2gx).
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This shows that C? € Z(R). For any u € End(V), u¥ = u¥", and so Tr(uu¥) > 0ifu # 0.
This shows that 3 is a Weil form with parity C2. Statement (a) is now easy to check.
Statement (b) is straightforward to prove, and statement (c) follows from it and (7.3). g

PROPOSITION 8.2 The following conditions on G are equivalent:
(a) there exists a Hodge element in G(R);
(b) the category Repf(G) is polarizable;
(c) G isan inner form of a compact real algebraic group K.
PROOF (a)=(b). This is proved in (8.1).
(b)=>(c). To say that G is an inner form of K is the same as to say that G and K define
the same band; this implication therefore follows from (7.1a).

(c)=(a). Let Z be the centre of K (and therefore also of G) and let K = K /Z. That
G is an inner form of K means that its cohomology class is in the image of

HY(R,K*) > HY(R, Aut(K)).
More explicitly, this means that there is an isomorphism y : K¢ — G¢ such that
7 =yoc, somec € K2(C).

According to Serre 1964, III, Thm 6, H'(R,K?!) ~ H'(Gal(C/R), K*(R)), which is
equal to the set of conjugacy classes in K24(R) consisting of elements of order 2. Thus,
we can assume that ¢ € K(R) and ¢? = 1. Consider the cohomology sequence

KR) - K¥R) - HY(R,Z) - H'(RK).

The last map is injective, and so K(R) — K?4(R) is surjective. Thus ¢ = ad(C”) for some
C’' € K(R) whose square is in Z(R). Let C = y(C’); then C = 7(C") = y(C'") = C and
7 'oad(C) = y~!. This shows that C € G(R) and that K is the form of G defined by C;
the next lemma completes the proof. o

LEMMA 8.3 An element C € G(R) such that C?> € Z(R) is a Hodge element if and only if
the real form K of G defined by C is a compact real group.

PROOF Identify K¢ with G¢ and let § and g* be the complex conjugates of g € G(C)
relative to the real forms K and G. Then

g" =ad(C™")(g) = c'gC.
Let ¥ be a sesquilinear form on V' € ob(Repf-(G)). Then 3 is G-invariant if and only if

P(gx,8y) =P(x,y), g€ G).

On the other hand, ¥ is K-invariant if and only if

PC(gx,g*y) = 9°(x,y), g€ G(O).

These conditions are equivalent. Therefore, V has a C-polarization if and only if V has
a K-invariant positive-definite hermitian form. Thus C is a Hodge element if and only
if, for every complex representation V of K, the image of K in Aut(V) is contained in
the unitary group of a positive-definite hermitian form; this last condition is implied
by K being compact and implies that K is contained in a compact real group, and so is
compact (1.13). O
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REMARK 8.4 (a) The centralizer of a Hodge element C of G is a maximal compact sub-
group of G, and is the only maximal compact subgroup of G containing C; in particular,
if G is compact, then C is a Hodge element if and only if it is in the centre of G (Saavedra
1972,V, 2.7.3.5).

(b) If C and C’ are Hodge elements of G, then there exists a g € G(R) and a unique
z € Z(R) such that C’ = zgCg™! (Saavedra 1972, V, 2.7.4). As I1» = zIl, this shows
that [T, = I if and only if C and C’ are conjugate in G(R).

VARIANT 8.5 It is possible state the above results in terms of bilinear forms. A G-
invariant bilinear form ¢ : V, X Vy — R on V, € ob(Repf(G)) is a C-polarization
if
def
¢C(x, ) = $(x,Cy)

is a positive-definite symmetric form on V. If every object of Repf(G) admits a C-
polarization, then C is called a Hodge element. If G(R) contains a Hodge element C,
then there is a polarization I1¢ on Repf (G) (in the sense of 5.5) for which the positive
forms are exactly the C-polarizations. Every polarization on Repf(G) is of the form IT¢/
for some Hodge element C’.

9 Symmetric polarizations

A polarization is said to be symmetric if its parity is 1.
Let K be a compact real algebraic group. As 1 is a Hodge element (8.3), Repf(K)
has a symmetric polarization IT for which (X, € Repf(K)),

I1(X,) = {K-invariant positive-definite symmetric bilinear forms on X},
and Rep(K) has a symmetric polarization IT for which (X € Repf(K)),
I1(X) = {K-invariant positive-definite hermitian forms on X}.
See 8.1(a) and 8.5.

THEOREM 9.1 Let C be an algebraic tannakian category over R, and let I1 be a symmetric
polarization on C. Then C has a unique (up to isomorphism) fibre functor w with values
in R transforming positive bilinear forms for 11 into positive-definite symmetric bilinear
forms. Moreover, w defines a tensor equivalence C — Repf (K), where K o Autg(a)) isa
compact real algebraic group.

PROOF Let w; be a fibre functor with values in C, and let G = Aut®(w;). Because C
is polarizable, G has a compact real form K. According to (6.2), cu; :C' > Repf(G)
carries the descent datum on C’ defined by C into that on Repf(G) defined by (o, 1).
It therefore defines a tensor equivalence w : C—Repf(K) transforming IT into the
polarization on Repf (K) defined by the Hodge element 1. The rest of the proof is now
obvious. Briefly, let w; and w, be two such fibre functors. o

REMARK 9.2 Suppose that C has a polarization II. Then it follows from (7.8) that C has
a symmetric polarization if and only if ¢(IT) € Z(R)?.
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10 Polarizations with parity ¢ of order 2

10.1 For u = +1, define a real u-space to be a complex vector space V' together with
a semilinear automorphism o such that 02 = u. A bilinear form ¢ on a real u-space is
u-symmetric if ¢(x,y) = u¢(y, x) — thus a 1-symmetric form is a symmetric form, and
a —1-symmetric form is a skew-symmetric form. A u-symmetric form on a real u-space
is positive-definite if $(x,ox) > 0 for all x # 0.

10.2 LetV, be the category whose objects are pairs (V, a), where V = VO@V'lisa 7 /27-
graded vector space over C and a: V — V is a semilinear automorphism such that
a’x = (—1)%e®)x, With the obvious tensor structure, V, becomes a tannakian category
over R with C-valued fibre functor w, : (V,a) ~ V. Note that Aut?(a)o) =, ={1,¢}.

There is a polarization IT = II,, on V, such that, if V' is homogeneous of degree m,
then II(V, a) consists of the (—1)™-symmetric positive-definite forms on V.

THEOREM 10.3 Let C be an algebraic tannakian category over R, and let I be a polariza-
tion on C with parity €, where ¢> = 1, ¢ # 1. There exists a unique (up to isomorphism)
exact k-linear tensor functor w : C — V, such that

(a) w carries the gradation on C defined by ¢ into the gradation on V,, i.e., w(g) acts as
(=)™ on w(V)™;

(b) w carries I into T,,, i.e., ¢ € TI(X) if and only if w(¢) € T, (w(X)).

PROOF Note that V, is defined by the triple (u,, 0y, €y), Where g, is the unique semilinear
automorphism of u, and ¢, is the unique element of w,(R) of order 2. We can assume
(by 2.3) that C corresponds to a triple (G, g, €). Let G, be the subgroup of G generated by
¢; then (G, 0|Gy, €) ~ (Uy, 09, &), and so the inclusion (G, o|Gy, €) < (G, g, ¢) induces
a functor C—V,, having the required properties.

Let w and ' be two functors C — V|, satisfying (a) and (b). There exists an iso-
morphism 1: w — &' from w to o’ viewed as C-valued fibre functors (II, 8.3). As
Ax 1 w(X) — «'(X) commutes with action of ¢, it preserves the gradations; as A com-
mutes with w(¢), all ¢ € TI(X), it also commutes with o; it follows that A is an isomor-
phism from w to ' as functors to V. o

REMARK 10.4 By definition, V, = Repf(G,), where G, is the (unique) nonsplit C/R-
Galois groupoid
1= gy > Go = Gal(C/R) — 1

with kernel u,. Let C be an algebraic tannakian category over R with a polarization II.
Choose a C-valued fibre functor w for C, and let G = Autg (w) regarded as a C/R-Galois
groupoid,

1-G - G- Gal(C/R) - 1.

If the parity € of IT is such that e2 = 1, ¢ # 1, then there is a unique isomorphism from u,
to the subgroup of G generated by ¢, and the homomorphism u, < G extends uniquely
to a homomorphism G, — G of C/R-groupoids. From this, we get exact tensor functors

C —2 Repf(G) — Repf(Gy) = V,.

The exact tensor functor C — V,, sends II to the canonical polarization on V,, and is
uniquely determined up to isomorphism by this property.
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11 Tate triples

Definition and examples

11.1 A Tate triple T over k is a triple (C, w, T') consisting of

o atannakian category C over k,
¢ aZ-gradationw: G,, —» Aut®(idc) on C (called the weight gradation),

¢ an invertible object T (called the Tate object) of weight —2.

For any X € ob(C) and n € Z, we set X(n) = X ® T®". A fibre functor on T with
values in a k-algebra R is a fibre functor w : C — Mod(R) together with an isomorphism
w(T®?) — «(T), i.e., the structure of a unit object on w(T). If T has a fibre functor with
values in k, then T is said to be neutral. A morphism of Tate triples (C,,w,,T;) —
(C,, w,, T,) is an exact k-linear tensor functor » : C; — C, preserving the gradations
together with an isomorphism 7(T;) — T,.

EXAMPLE 11.2 The triple (Hodg, w, R(1)) in which
¢ Hodp is the category of real Hodge structures (I, 9.14),

o wis the weight gradation on Hodg, and

¢ R(1) is the unique real Hodge structure with weight —2 and underlying vector
space 27iR,

is a neutral Tate triple over R.

EXAMPLE 11.3 (a) The category of Z-graded vector spaces over Q with the Tate object

def

Q1) ¥ 27i0

is a neutral Tate triple T over Q.
(b) For | a prime number, the category of Z-graded vector spaces over Q; with the
Tate object
QM) = (imp) ®7 Q) p =L € Q¢ =1},
r
is a neutral Tate triple T; over Q.
(c) The category of Z-graded vector spaces over a field k with the Tate object

kar(1) =k

is a neutral Tate triple Ty over k.
See Deligne 1982, §1, for the significance of these examples (they are the natural
targets of the Betti, l-adic étale, and de Rham cohomologies).

EXAMPLE 11.4 Let V be the category whose objects are pairs (V, a) with V a Z-graded C-
vector spaces and a semilinear automorphism a such that a?v = (—1)"v ifv € V". With
the obvious tensor structure, V becomes a tannakian categoryover R,and w : (V,a) —» V
is a fibre functor with values in C. We have G,, = Aut?(a)), and V corresponds (as in
2.3a) to the triple (G,,,g — &, —1).

Letw: G,, — G, be the identity map, and let T = (C, z —~ z), where C is viewed as
a homogeneous vector space of weight —2. Then (V, w, T) is a non-neutral Tate triple
over R.



11. Tate triples 219

Neutral Tate triples

Giving a Tate triple and a fibre functor over k is essentially the same as giving an affine
group scheme over k and additional data, as we now explain.

11.5 Consider a triple (G, w, t), where
¢ G is an algebraic group over a field k,

o w: G, - Gisacentral homomorphism,

¢ t: G — G, is a homomorphism such that tow = —2, i.e., such that t(w(s)) = s72,

s € G,,(k).
Let T be the representation of G on k such that g acts as multiplication by t(g). Then
(Repf(G), w, T) is a Tate triple over k with the forgetful functor as a k-valued fibre functor.

11.6 Let T = (C,w, T) be a Tate triple over k, and let w be a k-valued fibre functor on
T. LetG = Autf(a)). Then w is a homomorphism G,, - Z(G) C G, and the action of
G on T defines a homomorphism ¢ : G — G,, such that wot = —2. The equivalence
C — Repf(G) of tannakian categories over k defined by w extends to an equivalence of
Tate triples.

Thus, to give a Tate triple over k and a k-valued fibre functor is essentially the same
as giving a triple (G, w, t) with tow = —2.

In general, a Tate triple T determines a band B, a homomorphism w : G,, — Z into
the centre Z of B, and a homomorphism ¢ : B — G,,, such that tfow = —2. We say that T
is banded by (B, w, t).

The quotient of a Tate triple by its Tate object

Let (C,w, T) be a Tate triple. On setting T = 1, we obtain a quotient tannakian category
Co equipped with a Z/27-gradation defined by an element ¢ € Aut(idc,), g2 =—1.1Itis
possible to recover (C, w, T) from (C,, £). We first consider the neutral case.

11.7 Let (G, w,t) be a triple with tow = —2, and let G = Repf(G) - it has the structure
of a Tate triple (11.5). Let Gy = Ker(t : G - G,,,), and let Cy = Repf(Gy). The restriction
of w to a homomorphism €: u, — G, defines a Z/2Z-gradation on C,. The tensor
functor Q : C — C, defined by the inclusion G, < G has the following properties:

(a) if X is homogeneous of weight n, then Q(X) is homogeneous of weight n (mod 2);

() Q(T) =1;

(c) if X and Y are homogeneous of the same weight, then
Hom(X,Y) 5 Hom(Q(X), Q(Y));

(d) if X and Y are homogeneous with weights m and n respectively and Q(X) ~ Q(Y),
then m — n is an even integer 2k and X (k) = Y;

(e) Q is essentially surjective.
The first four of these statements are obvious. For the last, note that
G = (GO X Gm)/lqu

and so we only have to show that every representation of u, extends to a representation
of G,,, but this is obvious.
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REMARK 11.8 (a) The identity component of G is reductive if and only if the identity
component of G is reductive. If G, is connected, then so also is G, but the converse is
false (e.g., Gy = Uz, G = Gp,).

(b) It is possible to reconstruct (C, w, T') from (Cy, €): an object of C is an object of C,
together with a Z-gradation compatible with its Z/27-gradation (see 6.14).

(c) The following pushout diagram makes it clear how to reconstruct (G, w, t) from

(GO’ E):

1 1 G, — G, 1
: w N
Pk
1 G, G Gy, 1.

Note that to give a homomorphism € : u, — G of algebraic groups is the same as
giving an element ¢ € G(k) such thate? = 1.

PROPOSITION 11.9 Let T = (C,w, T) be a Tate triple over k with C algebraic. There exists
a tannakian category C, over k, an element € in Aut‘g’(idco) with €2 = 1, and a functor
Q: C - C, having the properties 11.7.

PROOF Indeed, the quotient of C by the tannakian subcategory generated by T has these
properties (IV, 6.13). We make the construction explicit. For any fibre functor w on C
with values in a k-algebra R, Jsom(R, w(T)), viewed as a sheaf on SpecR, is a torsor for
G,,- This association gives rise to a morphism of gerbes

F1B(C) 4 TORS(G,,),

and we define G, to be the gerbe of liftings of the canonical section of TORS(G,,), i.e.,
G, is the gerbe of pairs (w, §), where w is a fibre functor on C and £ is an isomorphism
t(w) = Gy, (Giraud 1971, 1V, 3.2.1). The category C, «f Repf(G,) of representations of G,
is tannakian (IV, 2.1). If Z = Aut®(idc) and Z, = Aut®(idc, ), then the homomorphism

av ar: Z - Aut(T) = G,

determined by t has kernel Z;, and the composite tow = —2. Welete = w(—1) € Z,,.
There is an obvious (restriction) functor Q : C — C,. In showing that Q has the

properties 11.7, we can make a finite field extension k — k’. We can therefore assume

that T is neutral, but this case is covered by (11.6) and (11.7). O

EXAMPLE 11.10 If (V,w, T) is the Tate triple defined in 11.4, then (Vy,¢) is the pair
defined in 10.2.

REMARK 11.11 The functor w w |C, defines an equivalence from the gerbe of fibre
functors on the Tate triple T to the gerbe of fibre functors on C,.

As in the neutral case, T can be reconstructed from (C,, €), but there is a stronger
result.

THEOREM 11.12 The functor T ~ (C,, €) is an equivalence from the 2-category of Tate
triples to the 2-category of Z /27-graded tannakian categories.

PROOF See SaavedraV, 3.1.4. o
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Tate triples over R

11.13 Let T = (C,w, T) be a Tate triple over R, and let w be a fibre functor on T with
values in C. On combining 2.3 with 11.6 we find that (T, @) corresponds to a quintuple
(G,o,c,w,t) in which

(a) Gisan algebraic group over C;
(b) (o,c) satisfies (110), i.e., g% = ad(c), o(c) = c;
(¢c) w: G, — G is a central homomorphism; that the gradation is defined over R

means that w is defined over R, i.e., o(w(g)) = w(g);

(d) t:G— G,y is such that tow = —2; that T is defined over R means that t(o(g)) =

t(g) and there exists an a € G,,(C) such that t(c) = g(a) - a.

Let G, = Ker(t), and let m € G(C) be such that t(m) = a~!. After replacing (o, ¢) with
(goad(m),a(m) - ¢ - m) we find that the new c is in G,,. The pair (Cy, @|C,) corresponds
to (GO’ GlGOa C).

12 Polarizations on Tate triples

In this section, T = (C, w, T) is a Tate triple over R with C algebraic. We use the earlier
notation; in particular C" = C(¢). Let U be an invertible object of C" that is defined over
R, i.e., U is endowed with an identification U ~ U. Then in the definitions and results
of §4 concerning sesquilinear forms and Weil forms, it is possible to replace 1 with U.

DEFINITION 12.1 Suppose that for each X € ob(C’) homogeneous of degree n, some
n € Z,we have an equivalence class I1(X) of Weil forms X ® X — 1(—n) of parity (—1)".
Then I is a (graded) polarization on T if

(a) forall X, ¢ € II(X) whenever ¢ € TI(X);

(b) for all X and Y homogeneous of the same degree, ¢ ® 3 € II(X @ Y) whenever
¢ € II(X) and ¢ € TI(Y);

(c) for all homogeneous X and Y, ¢ ® ¥ € II(X ® Y) whenever ¢ € II(X) and
P € II(Y);

(d) themapT @ T — T®% = 1(2), defined by T ~ T, is in TI(T).

PROPOSITION 12.2 Let (Cy, €) be the quotient of T by its Tate object (11.9). There is a
canonical bijection
Q: Pol(T) — Pol.(Cy)

from the set of polarizations on T to the set of polarizations on C, of parity «.

PROOF For any X € ob(C’) that is homogeneous of degree n, 11.7(b) and 11.7(c) give
an isomorphism

Q: Hom(X ® X, 1(—n)) - Hom(Q(X) ® Q(X), 1).
We define QII to be the polarization such that, for any homogeneous X,

QII(QX) =1{Q¢ | ¢ € II(X)}.

It is clear that IT — QII is a bijection. 0
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COROLLARY 12.3 The Tate triple T is polarizable if and only if C, has a polarization 11
with parity e(IT) = € (mod Zy(R)?).

PROOF Apply 7.9. o

COROLLARY 12.4 Foreach z € ,Zy(R) and polarization IT on T, there is a polarization
zI1 on T defined by the condition

d(x,y) € zII(X) < ¢(x,zy) € TI(X).

The map
(z,IT)  zIT1: ,Zy(R) X Pol(T) — Pol(T)

makes Pol(T) into a pseudo-torsor for ,Zy(R).
PROOF Apply 7.8. O

THEOREM 12.5 Let I1 be a polarization on T, and let w be a fibre functor on C' with values
in C Let (G, w, t) correspond to (Tc),w) (11.5, 11.6). For any real form K of G such that
KO = Ker(t) is compact, the pair (o, €), where € = w(—1), satisfies (110), and w defines
an equivalence between T and the Tate triple defined by (G, ok, €, w, t). For any simple X
inC/,

{w(g) | ¢ € XD}

is the set of Ky-invariant positive-definite hermitian forms on w(X).
PROOF Apply 6.2. o

REMARK 12.6 Theorem 7.1 implies the following: a triple (B, w, t), where B is an affine
algebralc band over R and tow = —2, bounds a polarizable Tate triple if and only if
BO = Ker(t B — G,,) is the band defined by a compact real algebraic group; when
this condition holds, the polarizable Tate triple banded by (B, w, t) is unique up to a
tensor equivalence preserving the action of B and the polarization, and the equivalence is
unique up to isomorphism. The Tate triple is neutral if and only if e w( 1) € Zy(R)>.

The neutral case

Let (G, w, t) be a triple as in (11.5) defined over R, and let G, = Ker(t) and € = w(—1).
A Hodge element C € Gy(R) is said to be a Hodge element for (G,w, ) if C> = ¢. A
G-invariant sesquilinear form ¢ : V XV — 1(—n) on a homogeneous complex repre-
sentation V of G of degree n is said to be a C-polarization if

PC(x,¥) € P(x, Cy)

is a positive-definite hermitian form on V. When C is a Hodge element for (G, w, t) there
is a polarization I on the Tate triple defined by (G, w, t) for which the positive forms
are exactly the C-polarizations.

PROPOSITION 12.7 Every polarization on the Tate triple defined by (G, w, t) is of the form
1, for some Hodge element C.

PROOF See 8.1 and 8.2. 0
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Fibre functors on polarized Tate triples

PROPOSITION 12.8 Let T be a Tate triple over R and I1 a polarization on T. Ifw(—1) = 1,
then there is a unique (up to isomorphism) fibre functor w on T withvalues in R transforming
the positive bilinear forms for 11 into positive-definite symmetric bilinear forms.

PROOF With the notation of 12.2, QIT is a symmetric polarization on Cy, and so we can
apply 9.1. o

In the next proposition, V is the Tate triple defined in 11.4. There is a polarization
IT.,, on V such that, for any homogeneous (V, a),

.., (V, a) = {(—1)%8"-symmetric positive-definite forms on V}.

THEOREM 12.9 Let T be a Tate triple over R and I1 a polarization on T. If w(—1) # 1,
then there exists a unique (up to isomorphism) exact R-linear tensor functorw: C - V
such that

(a) w is a morphism of Tate-triples, and
(b) w carries IT into T1,y,.
PROOF Briefly, the polarization QII on Cy has parity ¢ = w(—1) # 1, and so we can

apply 10.3.
In more detail, the functor

V & Repf(G) —> Vo & Repf(Go)

is defined by a homomorphism of C/R Galois groupoids,

1 — w(C) So Gal(C/R) —— 1
| l ||
1 —— 6,(C) G Gal(C/R) —— 1.

The top row is the unique nontrivial extension of Gal(C/R) by {£1}, and the second row
is obtained from the first by pushout.

Let T = (C,w, T) and IT be as in the statement. Let w be a C-valued fibre functor of
C and let §(w) be the C/R-Galois groupoid Autg (O). Its kernel is G & Autg (w), and
w is a homomorphism G,, - Z(G) C G. As in the proof of 10.3, the map p,(w) — G(C)
sending —1 to w(—1) extends to a homomorphism of groupoids,

1 — w(C) 9o Gal(C/R) —— 1
| | H
1 —— GO () Gal(C/R) —— 1.

The homomorphism w : G, — G extends the inclusion y, < G, and so the homomor-
phism G, — G(w) extends to the pushout,

1 —— G,,(C) i Gal(C/R) —— 1

=] II

1 —— G(C) —— G(w) — Gal(C/R) — 1.
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The exact k-linear tensor functor
C —2 Repf(G(w)) — Repf(G) = v.

satisfies (a) and (b).

If w and o’ are two functors C — V satisfying (a) and (b), then exists an isomorphism
A: w— o' from w to o’ viewed as C-valued fibre functors (II, 8.3), and the conditions
(a) and (b) imply that A is an isomorphism from w to ' as functors to V. O

EXAMPLE 12.10 Let T be the Tate triple (Hodg, w, R(1)) defined in 11.2. A polarization
on a real Hodge structure V of weight n is a bilinear form ¢ : V' XV — R(—n) such that
the real-valued form (x, y) — (27i)"¢(x, Cy), where C denotes the elementi € S(R) =
C¥*, is positive-definite and symmetric. These polarizations are the positive (bilinear)
forms for a polarization IT on the Tate triple T. The functor w : Hodr — V provided
by the last theorem is V — (V @ C,v — C0). (Note that (Hodg, w, R(1)) is not quite
the Tate triple associated, as in (11.5), with (S, w, t) because we have chosen a different
Tate object; this difference explains the occurrence of (277i)" in the above formula; IT is
essentially the polarization defined by the canonical Hodge element C.)

13 Polarizations on quotient categories

We write V for the category of Z-graded complex vector spaces endowed with a semilinear
automorphism a such that a?v = (—1)"v if v € V". It has a natural structure of a Tate
triple (11.4). The canonical polarization on V is denoted IT".

A morphism F : (T;,w;, T;) = (T,, w,, T,) of Tate triples is an exact tensor functor
F: T, - T, preserving the gradations together with an isomorphism F(T;) ~ T,. We
say that such a morphism is compatible with graded polarizations IT; and I1, on T; and
T, (denoted F : II; ~ II,) if

Y e II,(X) = Fyp € II,(FX),

in which case, for any X homogeneous of weight n, IT;(X) consists of the sesquilinear
formsy : X ® X — 1(—n) such that Fy € I1,(FX). In particular, given F and II,, there
exists at most one graded polarization IT; on T; such that F : II; ~ II,.

Let T = (T,w, T) be an algebraic Tate triple over R such that w(—1) # 1. Given a
graded polarization IT on T, there exists a morphism of Tate triples {r; : T — V, unique
up to isomorphism) such that &7 : IT — I1V (Theorem 12.9). Let ey be the composite

Gm) T\ (G 7
TWOm) = ywibn) 5 Vecf(R),

where T%(©n) is the full subcategory of objects on which w(G,,) acts trivially (see IV, 6.5).
Then w is a fibre functor on T(Gm),

A criterion for the existence of a polarization

PROPOSITION 13.1 Let T = (T, w, T) be an algebraic Tate triple over R such that w(—1) #
1, and let £ : T — V be a morphism of Tate triples. There exists a graded polarization 11
on T (necessarily unique) such that & : TI — TIV if and only if the real algebraic group
Aut®(yV o | T¥(Cm)) is compact.
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PROOF LetG = /lut"% (7Y o | Tw(Gm), Assume IT exists. The restriction of IT to T¥(Cm) is a
symmetric polarization, which the fibre functor yVo& maps to the canonical polarization
on Vecfg. This implies that G is compact (1.7).

For the converse, let X be an object of weight nin T(c). A sesquilinear form) : EX®
£(X) - 1(—n) arises from a sesquilinear form on X if and only if it is fixed by G. Because
G is compact, there exists a ) € IT1V(£(X)) fixed by G (1.7), and we define IT1(X) to consist
of all sesquilinear forms ¢ on X such that £(¢) € ITV(£(X)). It is now straightforward to
check that X — TI(X) is a polarization on T. o

COROLLARY 13.2 Let F: (T;,wy, T1) = (T,, w,, T,) be a morphism of Tate triples, and
let 1, be a graded polarization on T,. There exists a graded polarization I1; on T, such that

F : II; v 11, if and only if the real algebraic group Autg (VV°§H2 oF|T'iD(G’”)) is compact.

Polarizations on quotients

The next proposition gives a criterion for a polarization on a Tate triple to pass to a
quotient Tate triple.

PROPOSITION 13.3 Let T = (T, w, T) be an algebraic Tate triple over R such that w(—1) #
1. Let (Q,q) be a quotient of T by H C 7(T), and let w? be the corresponding fibre functor
on TH (1V;, 6.10). Assume H D w(G,,), so that Q inherits a Tate triple structure from that
on T, and that Q is semisimple. Given a graded polarization I1 on T, there exists a graded
polarization TI' on Q such that q : T1 — IT" ifand only if w9 ~ wp|TH.

PROOF =: Let IT’ be such a polarization on Q, and consider the functors

T4y, £ 0TIV,

Both £ 0q and &p; are compatible with IT and ITV and with the Tate triple structures
on T and V, and so £0q ~ & (Theorem 12.9). On restricting everything to T%(®m) and
composing with y¥, we get an isomorphism wp, o(q|T%©n)) ~ wy;. Now restrict this to
TH, and note that

(wrpo(g|T¥Cm)) ITH = (0 |QFD)o(g|TH) o wi

because wpp |Q7(Q ~ yQ.
&: The choice of an isomorphism w? — wp| T determines an exact tensor functor

T/w? — T/wy.

As the quotients T/w? and T/wy; are tensor equivalent respectively to Q and V, this
shows that there is an exact tensor functor £ : Q — V such that £oq ~ &p;. Evidently
Aut®(yV o£|QW(m) is isomorphic to a subgroup of AutS (y¥ o | T¥(®m)). Since the latter
is compact, so also is the former (1.6). Hence ¢ defines a graded polarization IT' on Q
(Proposition 13.1), and clearly g : II — IT'. O

NOTES This section has been extracted from Milne 2002.
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14 The Doplicher-Roberts theorem

Let C be a tensorial category over R. As noted in §3, the theory there of bilinear and
sesquilinear forms extends to tensorial categories. In particular, we have the notion of a
Weil form on an object of C or C’ £ C(c) and the notion of a polarization on C.

THEOREM 14.1 (?) Let C be a tensorial category over R and 11 a polarization on C with
parity 1. Assume that C admits a tensor generator. Then C has a unique (up to isomorphism)
R-valued fibre functor w transforming positive forms for Il into positive-definite symmetric
bilinear forms; w defines a tensor equivalence C — Repf(K), where K &t Autp(w) is a
compact real algebraic group.

PROOF The first step (Doplicher and Roberts 1989a,b) is to show that the dimension
of each object is an integer > 0 and that if V', ..., V; have dimension n,, ..., n,, there
exists a @-functor from the category of representations of [ [ GL,, into T. Now Deligne’s
theorem (I, 10.1) shows that C is a tannakian category, and Theorem 9.1 completes the
proof. O

NoTEs I'll complete this section when I understand the Doplicher-Roberts theorem. It would
be good to include the following.

(a) A precise statement of the Doplicher-Roberts theorem in the language of this work.
(b) The proof of the first step in the above proof.

(c) Explain why the theorem is important to physicists (and our knowledge of the real world).

ASIDE 14.2 From Deligne 1990. June 1990: A very different approach to results close to those in
paragraph 7 has been developped by Doplicher and Roberts. In a language a little different from
theirs: they consider a tensorial category T over R, polarized in the sense of Saavedra, and prove
that it is the category of representations of a compact group equipped with its natural polarization.
The start of their proof, parallel to the start of paragraph 7, observes that the dimension of each
object is an integer > 0 and that if V1, ..., V. have dimension ny, ..., 1, there exists a ®-functor
from the category of representations of | [ GL,, into T sending the standard representation of
GL,, to V;. The first point acquired, their results can be deduced from those of paragraph 7 and
Saavedra (Chap. VI). Their proof is very different.

NOTES This chapter largely follows Saavedra 1972, Chapt. V, and Deligne and Milne 1982, §§4,5.



Chapter VI

Motives

As noted in the introduction, Grothendieck introduced tannakian categories to provide a
framework for the study of motives. The theory of motives has become a very large topic.
Here we include only a small fragment. In particular, we discuss only pure motives. For
more comprehensive introductions to motives, see André 2004 or Murre et al. 2013.

1 Algebraic cycles and correspondences

Throughout this section, we fix a field k. All algebraic varieties are smooth and projective
over k. We let V(k) denote the category of smooth projective varieties over k, and V' (k)
the category of connected smooth projective varieties over k.! Note that V(k) becomes a
tensor category with

o X®Y =XXY,

o the associativity constraint X X (Y X Z) - (X X Y) X Z, (x, (¥, 2)) — ((x,¥), 2),
o the commutativity constraint X XY —» Y X X, (x,y) — (y, x).

Algebraic cycles

1.1 Let X be an algebraic variety. The group of algebraic cycles Z(X) on X is the
free abelian group generated by the closed integral subschemes Y of X. It is graded by
codimension,

zX)=@P z’x), 0<r<n.
r

If X = | | X; is the decomposition of X into its connected components, then
Z(X) ~ @i Z(X)). (121)

The closed integral subschemes of X are in canonical one-to-one correspondence
with the points of X: to a closed integral subscheme, attach its generic point; to a point
of X, attach its closure. We sometimes regard the points of X as forming a basis for Z(X).

Then dim(x) ¥ dim {x}.

1.2 When Y is a closed irreducible subscheme (not necessarily reduced) of X, the local
ring Oy , at the generic point of Y is artinian, and the class of Y in Z(X) is defined to be

[Y] = length(Oy ,)Yreq-

1Recall that an algebraic variety over k is a geometrically reduced separated scheme of finite type over
k. A map of algebraic varieties, we mean a morphism (over k), sometimes called a regular map.

227
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1.3 When X is connected of dimension n, the degree map ( ) : Z(X) — Z is defined by

(x) = { [k(x): k] if codim(x) =n (i.e. x aclosed point),
0 if codim(x) < n.

1.4 When f: X — Y is a map of algebraic varieties, we define f, : Z(X) - Z(Y) to be
the Z-linear map such that, for a basis element x of Z(X),

£, :{ [k(x) @ k(f()] - f(x) if dim((f(x)) = dim(x),
* 0 if dim(f(x)) < dim(x).

1.5 When Y and Z are closed integral subschemes of X and W is an irreducible compo-
nent of Y N Z such that

codim(W) = codim(Y) + codim(Z), (122)

we define
i(Y,Z;W) = > (~1)'length Tor{ (R/a,R/b),

where R = Oy, ,, and a and b are the ideals of Y and Z in R. We say that Y and Z intersect
properly if (122) holds for all irreducible components W of Y N Z, and we then set

Y-Z=) (Y, Z;W)W.
In this way, we obtain a partially defined intersection product
a,b-a-b: Z(X)XZ(X) - Z(X).
If a and b are homogeneous of degrees i and j, then a - b is homogeneous of degree i + j.

1.6 Let f: X — Y be a map of algebraic varieties. By the graph of f, we mean either
the closed immersion
x> (x,f(x): X >XXY

or its image I'y. If Z is a closed integral subscheme of Y, we let
fH(2) = px.(X XZ-Ty)
when this is defined. In this way, we get a partially defined Z-linear map
f 1 Z(Y) - Z(X).
When f is flat, we can extend f* to the whole of Z(Y') by setting
@ =12
where f~1(Z) is the closed subscheme X Xy Z of X.

1.7 Let f : X — Y be a map of algebraic varieties. The operations f, and f* are related
by the projection formula

[(f*®)-a)=b- f.a), ae€ZX), beZ(Y), (123)

whenever both sides are defined.



2. Motives 229

1.8 An adequate equivalence relation is a family of equivalence relations ~x on the
graded groups Z(X) that is respected by both f* and f, and by intersections, and that
satisfies the following condition: for all a,b € Z(X), there exist a’ ~x aand b’ ~x b
such that a’ - b’ is defined.

Let ~ be an admissible equivalence relation. There is a unique multiplication on

Z.(X) € Z(X)/~ such that

Z(X) x ZX)---->Z(X)

| | |

Z.(X) x Z.(X)—Z.(X)

commutes. It makes Z_(X) into a graded ring.

Let f: X — Y be a map of algebraic varieties. Then f*: Z_(Y) - Z_(X) is a
homomorphism of graded ringsand f,, : Z_(X) — Z_(Y) isa homomorphism of abelian
groups.

IfX —f> X’ L X" are maps of algebraic varieties, then

fiofs=(f"0f)s, frof™ =(fof)"

Thus, Z.. is a contravariant functor of graded rings and a covariant functor of abelian
groups, with the two structures being related by the projection formula (123).

1.9 Two algebraic cycles Z and Z’ on X are said to be rationally equivalent (denoted
Z ~¢ Z') if one can be transformed into the other by a series of rational deformations.?
They are algebraically equivalent (denoted Z ~,j, Z ") if one can be transformed into the
other by algebraic deformations. They are homologically equivalent relative to some
Weil cohomology theory H (denoted Z ~y Z') if they have the same cohomology class
for H, and they are homology equivalent (denoted Z ~y,,, Z’) if they are homologically
equivalent relative to every Weil cohomology satisfying weak Lefschetz (see below for
this terminology). They are numerically equivalent (denoted Z ~,, Z’) if their
intersection numbers with any subvariety of complementary dimension coincide. We
have

~rat™~alg™ ~hom ™ ~num -

Rational equivalence is the finest adequate equivalence relation and numerical equiva-
lence is the coarsest.

ToDoO 10 Add references.

2 Motives
We fix an admissible equivalence relation ~ and write C(X) for C._(X) &f Z.(X)® Q.
2.1 For algebraic varieties X and Y with X connected, we let

Cr(X, Y) — CdimX+r(X X Y)

219 fmore detail, Z ~,, O if there is a cycle W on X X P! and two points a,b € P!(k) such that
W(a) = pr;(a) and W(b) are defined and Z = W(a) — W(b).
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(correspondences of degree r from X to Y). When X = | |, <7 Xi is the decomposition of
X into its connected components, we let

r —_ r .
XY= _ &)
For algebraic varieties X, Y, Z, there is a bilinear pairing
fig gof: C"X,Y)XC(Y,Z) - C"(X,Z)
with
gof (pXZ)*(Pny pyzg)
Here, the p are the projection maps from X XY X Z,

XXY «—— XXYXZ — YXZ

l Pxz

XXZ.

These pairing are associative, and so we get a category CV(k) of correspondences, which
has one object hX for each variety over k, and whose Homs are defined by

Hom(hX,hY) = C°(X,Y) = CimX(X x V).

Let f : X — Y be amap algebraic varieties. The transpose of the graph of f is an element
of C%(Y, X), and X ~ hX is a contravariant functor.

2.2 The category CV(k) is Q-linear with direct sums,
hX @ hY = h(X X Y).

There is a Q-linear tensor structure on CV(k) for which
o hXQ®hY =h(XXY),
o the associativity constraint is induced by X X (Y X Z) » (X X Y) X Z,
o the commutativity constraint is induced by X XY — Y X X,
o the unit object is h(point).
2.3 The category CV(k) is not pseudo-abelian (much less abelian). Recall that a category

is pseudo-abelian if it is additive and if, for every idempotent endomorphism e of an
object M, there is a decomposition

M=M1®M2

with e|M; = idy;, and e|M, = 0. Then M, is the image eA of A. To construct the category
M* (k) of effective motives, we enlarge CV(k) by adding images of idempotents. More
precisely, we define M*(k) to be the category w1th one object h(X, p) for each algebraic
variety X and idempotent p in the ring End(hX ) & cdimX (X X X), and with

Hom(h(X, p), h(Y,q)) = go Hom(hX, hY)op = goC°(X,Y)op.

When we identify hX with h(X, A), CV(k) becomes a subcategory of M* (k), and h(X, p)
becomes the image of p : hX — hX. The rule

h(X,p) @ h(Y,q) = (KX ® hY,p ® q) € h(X X Y, p X q).

makes M*(k) into a Q-linear pseudo-abelian tensor category.
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2.4 The category M*(k) is not rigid. In M*(k), the motive hP! decomposes as hP! =
h°P! @ h?P!, and it turns out that to obtain duals for all objects, it suffices to “invert”
h2P!. This is most conveniently done by defining the category M(k) of motives to have
one object h(X, p, m) for each pair (X, p) as before and integer m, and whose Homs are
defined by
Hom((X, p,m),(Y,q,n)) = qoC"™" "(X,Y)op
- qocdim(X)+m—n(X X Y)Op

The tensor product on M* (k) extends to M(k),
hX,p,m)®@ h(Y,q,n) = h(X XY,pXq,m+ n).
When X is connected of dimension n, there is a canonical decomposition
hX = h°X @ WX & h"X
(Saavedra 1972, VI, 4.1.2). For example,
hP! = h°P! @ W?PL.

We define the Lefschetz motive L to be h*P!, and note that in passing from M*(k) to
M(k), we have inverted L to get the Tate motive T. For X connected of dimension n,
h°X ~ 1 and h"X ~ L®"

When we identify h(X, p) with h(X, p, 0), MT (k) becomes a subcategory of M(k). We
set M(n) = M @ T®", so (h"X)(n) ~ 1 when X is connected of dimension n.

THEOREM 2.5 The category of motives M(k) is a Q-linear rigid pseudo-abelian tensor
category.

PROOF Let X be a connected algebraic variety over k. Let
h(X)¥ = h(X)(n)
and define
evy : h(X)V @ h(X) - 1

to be the composite

hX)Y ® h(X) = h(X x X)(n) = h(X)(n) = RX)(n) ~ 1.

There exists a coevaluation map § : 1 — h(X) ® h(X)" satisfying (21), p. 22. This con-
struction extends to M(k) because of the universal properties of the functors V' (k) — V(k)
(for direct sums), CV(k) - M*(k), and M*(k) — M(k) (Saavedra 1972., VI, 4.1.3.5). g

Alas, as we shall see, it is not abelian except when ~= num, in which case it is
semisimple.

Anideal J in an F-linear category T is a family of F-subspaces 7(A, B) C Hom(A, B),
A, B € obT, stable under left and right composition by morphisms in T. The quotient
category T/J has the same objects as T but with

Homy/4(A, B) = Homy(A, B)/J(A, B).

When T is a tensor category, we say that J is a tensor ideal if it stable under tensor
products with morphisms of the form id- ® f and f ® id¢, C € obT. It is then stable
under tensor products with any morphism, and T/J acquires a tensor structure from T.
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PROPOSITION 2.6 Every tensor ideal J in M,;(k) is of the form 7 for some adequate equiv-
alence relation ~. The category M_(k) is then the pseudo-abelian envelope of M, (k)/J ..

PROOF See, for example, André 2004, 4.4.1.1. o

NOTATION 2.7 Let F be a field of characteristic zero, and replace Q with F in the above;
for example, set C(X) = Z_(X) ®7 F. We then get a category of motives M_ (k) that is
a F-linear rigid pseudo-abelian tensor category. The following notation is common,

CHM(k) = M (k) (Chow motives)
NM(k) = Mpum (k) (numerical motives).

ToDo 11 Add proofs and references.

3 Weil cohomology theories

Definition, and relation to fibre functors

3.1 We fix a field k and a field Q of characteristic zero. A contravariant functor X ~
H*(X) from the category of smooth projective varieties over k to the category of finite-
dimensional, graded, anti-commutative Q-algebras is said to be a Weil cohomology
theory if it carries disjoint unions to direct sums and admits a Poincaré duality, a Kiinneth
formula, and a cycle map.
Poincaré duality Let X be a connected smooth projective variety over k of dimension d.
(a) The vector spaces H%(X) are zero except for 0 < s < 2d, and H*¥(X) has
dimension 1.
(b) Let Q(—1) = H?(P'). For any Q-vector space V and integer m, let V(m) =
V ®0 Q(—=1)® ™ or V ®q Q(—1)"®™ according as m is positive or negative.
Then, for each X, there is given a natural isomorphism nx : H 2d(x)(d) — Q.
(c) The pairings
H'(X) x H**(X)(d) » H*(X)(d) = Q
induced by the product structure on H*(X) are non-degenerate.

Let ¢ : X — Y be a morphism of smooth projective varieties over k, and let ¢* =
H*(¢) : H*(Y) - H*(X). Because the pairing in (c) is nondegenerate, there is a unique
linear map

¢, H*(X) - H**(Y)(c), c=dimY —dimX

such that the projection formula

Ny(@(x)UYy) = nx(x U ¢*y)

holds for all x € H24™X=25(X)(dim X —5), y € H>(Y)(s).
Kiinneth formula Let p,q: X XY — X,Y be the projection maps. Then the map

Xy p'xUqy: HFX)QH*(Y) » H*(X XY)

is an isomorphism of graded k-algebras.
Cycle map There are given homomorphisms

cly : CL (X) = H*(X)(r)

satisfying the following conditions:
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(a) (functoriality) For any regular map ¢ : X — Y,
p*ocly = clyod*, ¢.ocly = clyop,.
(b) (multiplicativity) For any X,Y
Clxyy(Z X W) = cly(Z) & cly(W).

(c) (non-triviality) If P is a point, so C;;, (P) = Q and H*(P) = Q, then clp is the
natural inclusion map Q < Q.

In the functoriality statement, the ¢* and ¢, on the right of the equality signs refer to
the standard operations on the Q-algebras of algebraic cycles modulo rational equivalence
(see 1.8).

An element of H* (X)(r) is said to be algebraic (resp. integrally algebraic) if it is
in the image of cly : CL (X) — H*(X)(r) (resp. the image of Z! (X) — H* (X)(r)).

3.2 A Weil cohomology theory is said to satisfy weak Lefschetz if for every X, there

exists an integer dy(X) such thatif f : Y < X is a smooth hypersurface section of X of
degree d > dy(X), then f*: H!(X) — H'(Y) is an isomorphism for i < dimX — 2 and
an injection fori = n — 1.

PROPOSITION 3.3 Leti: Z < X be asmooth closed subvariety of X. Then clx(Z) = i.(1;),
where 1, is the identity element of the algebra H*(X).

PROOF Let P = Speck and let ¢ : Z — P be the structure map. Then
1z = ¢*(1p) = ¢*(clp(P)) = clz(¢"P) = clz(2).

Therefore
i,(17) = i,(clz(2)) = clx(i.(2)) = clx(2). 0

PROPOSITION 3.4 Let A be an abelian variety of dimension g over k.
(a) The dimension of H'(A) is 2g, and the inclusion H'(A) — H*(A) extends to an
isomorphism of k-algebras /\ H'(A) — H*(A).
(b) For any endomorphism a of A, the characteristic polynomlal Pyo(T)ofaonAis
equal to the characteristic polynomial of o acting on V(A) 'H La)V.

PROOF Statement (a) is proved in Kleiman 1968, 2A8.
For (b), it follows from the axioms that an isogeny y : A — A acts on H?8(A) as
multiplication by degy. Let

def

P(T) ¥ det(H!(x) — T|H'(A))

be the characteristic polynomial of a acting on H'(A). Then P(n) = det(a — n) for all
integers n. But o — n acts on /\2g H'(A) = H?*(A) as multiplication by det(a — n).
Therefore, P(n) = deg(a — n) for all integers. But this is the condition characterizing
P4 4(T),and so P(T) = P, ,(T). Since « has the same characteristic polynomial on V(A)
ason H'(A) (End(A) acts on V(A) on the left and on H'(A) on the right), this completes
the proof. O

The field Q is called the coefficient field for the Weil cohomology theory. Note that
if X ~» H*(X) is a Weil cohomology theory with coefficient field Q, and Q" O Q, then
X w H*(X) ®q Q' is a Weil cohomology theory with coefficient field Q’.
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The Lefschetz trace formula

We fix a Weil cohomology theory H. Let X and Y be varieties of dimension n and m. For
u € H*(X x X) of degree 0, we let Tr;(u) denote the trace of u acting on H'(X).

PROPOSITION 3.5 Letv € H*(X XY), and w € H*(Y X X) be correspondences of degrees
d, —d respectively. Then

2n
(- why = Y (~1) Try(wov).

i=0

PROOF We may regard v and w as elements of H*(X) ® H*(Y) and H*(Y) ® H*(X)
respectively, and we may suppose that

v € H*"(X) ® HI(Y) = Hy(X) ® H/(Y) = Hom(H!(X), H/(Y))
w € H*™ (V) ® H'(X) = H;(Y) ® H'(X) ~ Hom(H/(Y), H!(X).

where j = i + d. Choose a basis e}, e,, ... for H(X), and let f;, f>, ... be the dual basis for
H?{(X),s0{f¢-ex) = 8y and (e, - fi) = (—1)!5, (the algebras are anti-commutative).
Write

o=, f¢®ye € H"(X) @ HI(Y)
w = Zk X, @ e, € HI(Y) ® H{(X), so
w = Zk(—l)ijek ® Xg.

Then
w-w) =3, (DU @y, - e ®xi)
= Zkf(ff e Ve * Xx)
= Z€<yf " X¢)
On the other hand

v(e) = (Zf fe ®W) (er) = Z€<ek fe)ye = (=1
(wov)(er) = (~Dw(yi) = (~1) (Y, xe ® e)yie) = (~1)'(¥i - XeJer + -+
and so

Try(wov) = (=1) ), (e - xi0) = (~1w - w). ]

PROPOSITION 3.6 Let u € H*(X X X) be a correspondence of degree zero.

(a) (Trace formula)
Try () = (—1)iu - 721,

(b) (Lefschetz fixed-point formula)
2n
(u-A) = (1) Tr(w).
i=0

PROOF Both statements are special cases of 3.5. o
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COROLLARY 3.7 Let X be a smooth projective geometrically irreducible variety of dimension
nover 4, and let H be a Weil cohomology theory. Then

Zx/F,T) = T PO /Ry, IO,
where P'(X /F,,T) = det(1 — TF | H'(X).

PROOF Apply Proposition 3.6 to graph of the Frobenius map. O

Weil cohomologies over finite fields
Following Katz and Messing 1974), we explain some consequences of Deligne’s proof of

the Weil conjectures.

3.8 Let X be a smooth projective geometrically irreducible variety of dimension n over
Fy. Let ¢ be a prime number # char(F,), and let F' denote the Frobenius element relative

to [F4 acting on H;(X) &ef H' (X, Q). For a polynomial g(T) = [[[A-oT)andr > 1,

we let g(T)") = [],(1 — &/ T). Deligne (1980) proved the following statements.
(a) For every integer i > 0, the polynomial

i def i
PL(X/F,,T) = det(1 — TF | HL(X))

lies in Z[T], and its reciprocal roots have complex absolute value g'/2.

(b) For every integer d > 2 and Lefschetz pencil (X,),;ep1 of hypersurface sections of
degree d of X, the polynomial P?‘I(X /Fq,T) is the least common multiple of the
complex polynomials f(T) with the property that, whenever ¢ € [ is such that

X, is smooth, f(T)") divides P} (X, /Fgr, T).

(c) (strong Lefschetz) For all hyperplane sections L € H ; (X), the map
L' HY(X) - HIY(X)
is an isomorphism.

THEOREM 3.9 Let H be a Weil cohomology theory satisfying weak Lefschetz, and let X /I,
be as above. Then, foralli > 0,

det(1 — TF | H'(X)) = det(1 — TF | H,(X)),
ie., Pi(X/[Fq, T) = Pi,(X/[Fq, T). In particular, det(1 — TF | H'(X)) is independent of H
and
dimg H'(X) = dimg, H,(X).
PROOF Katz and Messing 1974, Theorem 1. O

COROLLARY 3.10 Statements 3.8(a),(b),(c) hold with H, and P', replaced by H' and P'.

PROOF Ibid., Corollary 1. o



236 Chapter VI. Motives

4 The standard (classical) Weil cohomology theories

ToDo 12 I plan to expand section this to show how each of the standard Weil cohomology
theories defines a tensor functor to a standard local Tate triple. See [SVp].

Let X be a (smooth projective) algebraic variety over an algebraically closed field k.

k Q H(X)
Betti cohomology | kc C Q H3(X(C), Q)
étale cohomology | arbitrary | Qp, ¢ # char(k) | H /(X ®; k3, Qp)
de Rham cohomology | char =0 k HY, (X, Q5 /Q)
crystalline cohomology | char # 0 ff(w)) ngys(X /W) @y k

The standard Weil cohomology theories satisfy weak Lefschetz.
Let Q(1) = H2(P')V. For example, for the Betti cohomology theory Q(1) = 27iQ,
and for the étale cohomology theory Q,(1) = (l(iE Men()) ®z, Qp. In every case, Q(1)
is a one-dimensional vector space over k.
The Betti cohomology group Hy(X)(m) &g (X(C), Q(m)) has a canonical structure
of polarizable rational Hodge structure.
The de Rham cohomology groups H/j (X)(m) o H" (X245 Q% /k)(m) are finite-dimensional

k-vector spaces. For any homomorphism o : k — k' of fields, there is a canonical base
change isomorphism

K’ @ Hi, (X)(m) — H' (6X)(m), (124)
When k = C, there is a canonical comparison isomorphism

€ ®q Hy(X)(1m) — Hi (X)(m). (125)

For each prime number ¢ # char(k), the étale cohomology groups H 2 X)(m) &

H (X, Q¢ (m)) are finite-dimensional Q,-vector spaces. For any homomorphismo : k —
k' of algebraically closed fields, there is a canonical base change isomorphism

HI(X)(m) — Hi(0X)(m), oX & X @,k (126)

When k = C, there is a canonical comparison isomorphism
Qr @q Hy(X)(m) — Hy(X)(m). (127)
Here Hy(X) denotes the Betti cohomology group H"(X*", Q).

ASIDE 4.1 Take the equivalence relation to be rational equivalence. Let H be a Weil cohomology.
There is the notion of a motive being finite-dimensional, and, if M is finite-dimensional, then
all of the elements of the kernel of

End(M) — End(H(M))
are nilpotent. Discuss the nilpotence conjecture.

PROPOSITION 4.2 To give a Weil cohomology theory with coefficients in Q containing F is
the same as giving a tensor functor

H*: CHM(k)r — Z-Vecf(Q)
such that H(1(=1)) = 0 fori # 2.
PROOF TBA. O

THEOREM 4.3 Let M € CHM(k)r and i € N. Then the dimension of the Q-vector space
H'(M) is independent of the standard Weil cohomology H*.
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5 Artin motives

Let VO(k) be the category of zero-dimensional varieties over k. Define CVO(k) and M°(k)
as for CV(k) and M(k), but with V°(k) for V(k). The objects of M°(k) are called Artin
motives.>

Let k be a separable closure of k, and let I' = Gal(k/k). The zero-dimensional
varieties are the spectra of finite products of finite separable extensions of k, and the
functor X -~ X (k) is an equivalence of V°(k) with the category of finite sets equipped
with a continuous action of I (Grothendieck’s version of Galois theory).

For an X in V°(k), Q¥ & Hom(X(k), Q) is a finite-dimensional continuous repre-
sentation of I'. When we regard I" as a (constant, pro-finite) affine group scheme over k,
QX0 € Repf,(I). For X, Y € ob(VO(k)),

Hom(h(X), h(Y)) & CO%(X X Y)
= (QX®xY ()T
= Homy (@Xa%), @m%)) _
Thus,
h(X) « Q¥® : cV°(k) - Repfy(T)
is fully faithful, and Grothendieck’s version of Galois theory shows that it is essentially

surjective. Therefore, CVO(k) is abelian and M°(k) = CVO(k). ‘We have shown:

PROPOSITION 5.1 The category of Artin motives MO (k) equals CVO(k). The functor h(X) w
Q*® defines an equivalence of tensor categories M°(k) > Repf o, (T).

REMARK 5.2 Let M be an Artin motive, and regard M as an object of Repf@(l’). Then

Hg(M) = M (underlying vector space) if k = C;
H,(M) =M ®q Q¢, as a I''module;
Hgr(M) = (M ®q k).

Note that, if M = h(X), where X = Spec(A), then
Hgix(M) = (@® @g k) = (A®, k) = A.

REMARK 5.3 The proposition shows that the category of Artin motives over k is equiva-
lent to the category of sheaves of finite-dimensional Q-vector spaces with finite-dimensional
stalk on the étale site Spec(k)e;.

6 Motives for numerical equivalence.

Throughout this section, H is a Weil cohomology theory with coefficient field Q, and
A} (X) denotes the Q-subspace of H 2r(X)(r) spanned by the algebraic classes. We let
Heven(X) — ®i>0 H2i(X) and Hodd(X) — @ H2i+1(X).

i>0

3Because they correspond to representations of the Galois group of k, which were studied by Emil
Artin.
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Semisimple categories

6.1 Let A be a ring (not necessarily commutative). An ideal in A is nil if its elements
are all nilpotent. A finitely generated nil ideal is nilpotent.

The Jacobson radical R(A) of A is the intersection of the maximal left ideals in
A. Equivalently it is the intersection of the annihilators of simple A-modules. It is a
two-sided ideal in A. Every left (or right) nil ideal is contained in R(A). For any ideal a
of A contained in R(A), R(A/a) = R(A)/a. The radical of an artinian ring A is nilpotent,
and it is the largest nilpotent two-sided ideal in A. A ring is said to be semisimple if its
Jacobson radical is zero. See Bourbaki A, VIII, §6.

DEFINITION 6.2 A category is said to be semisimple if it is abelian and every object is a
direct sum of simple objects.

LEMMA 6.3 Let a: M — N be a nonzero morphism in an additive category, and let
A = End(M @ N). If A is semisimple, then there existsa f : N — M such that foa # 0.

PROOF Otherwise the nonzero left ideal A(29) c (29), and so is nil. o

PROPOSITION 6.4 Let A be a pseudo-abelian category whose objects are artinian. Then A
is semisimple if and only if the ring End(X) is semisimple for all X.

PROOF If A is semisimple, then every object X is a finite direct sum X = P, m;S;
of its isotypic subobjects m;S;: this means that each object S; is simple, and S; is not
isomorphic to S; if i # j. Because S; is simple, End(S;) is a division algebra, and because
End(X) = ], My, (S)), it is semisimple.

Conversely, suppose that the endomorphism rings are semisimple, and let N be a
nonzero object of A. If N is not simple, then it properly contains a nonzero subobject S,
which we may suppose to be minimal, hence simple. Let a be the inclusion S < N. As
End(S @ N) is semisimple, there existsa § : N — S such that Soa # 0. As S is simple,
Boc is an isomorphism, and we may suppose that Soa = idg. Now aof3 is an idempotent
endomorphism of N, which decomposes it into a direct sum N = S @ N’. If N’ is not
simple, we continue. O

NOTES Proposition 6.4 is extracted from Harada 1970. Some finiteness condition is needed in
the proposition: in the category of vector spaces modulo finite-dimensional vector spaces, every
monomorphism splits, but there are no simple objects.

Semisimplicity

For a smooth projective variety X and admissible equivalence relation ~, we let A’ (X)
denote the Q-vector space Z-,(X) ® Q.

6.5 The space A],,(X) is finite-dimensional over Q. More precisely, if f;,..., fs €
Aﬁ;; (X) span the subspace Q - AI‘fI_r (X) of H?3=2"(X)(d — r), then the map
X (X fr.,x0 fo) ALX) - Q°
d—r

has image A L (X).

6.6 Let A, (X,Q) = Q - Ay. Define A}, (X, Q) to be the quotient of A7, (X, Q) by the
left kernel of the pairing

ALX, Q) X AT (X, Q) = AR (X,Q) = Q
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induced by cup product. Then A}, (X) — Aj,n(X, Q) factors through A}, (X),

ApX) — Afum(X)

l i

A;_I(X7 Q) — A;um(Xa Q)’

and I claim that
Q®ALm(X) = ALum(X, Q)

is an isomorphism. As A}, (X, Q) is spanned by the image of A},(X), the map is obvi-
ously surjective. Let ey, ..., e,, be a Q-basis for A] ,,(X), and let f,..., f,, be the dual
basis in A%;" (X). If Zl"ll aie;, a; € Q,is zeroin Af, (X, Q), thena; = (3 a;e;) - f; =0
for all j.

THEOREM 6.7 (JANNSEN 1992) For any smooth projective variety X over a field k, the
Q-algebra A}y, (X X X) is semisimple.

PROOF Let B = A;,,,(X X X). Recall (6.5) that B has finite dimension over Q, and (2.1)
that multiplication in B is composition o of correspondences. By definition of numerical
equivalence, the pairing

f.g—{(f-g: BXB—->Q

is nondegenerate. Let f be an element of the Jacobson radical R(B) of B. We have to
show that (f - g) = 0forall g € B.

Let H be a Weil cohomology with coefficient field Q. Let A = A7 (X X X, Q); then A
is a finite-dimensional Q-algebra, and there is a surjective homomorphism

AT AL xX,Q) = ALm(X X X,Q) ~Q® B

(see 6.6). This maps the radical of A onto that of Q ® B (see 6.1). Therefore, there exists
an f’ € R(A) mappingto1 ® f. Forall g € A,

(f'- 8" =D (=1 Tr(f'og | H'(X)) (128)

by Proposition 3.5. As f’og lies in R(A), it is nilpotent (see 6.1), and so (128) shows that
(f'-g")y=o. o

COROLLARY 6.8 The category M_(k) of motives over k is semisimple if and only if ~ is
numerical equivalence.

PrROOF The sufficiency follows from 6.4 and 6.7. For the necessity, let ' be the ideal in
M. (k) corresponding to numerical equivalence. If « : M — N is nonzero, then there
existsa §: N — M such Soa # 0 (by 6.3) and so a € N (M, N). Hence N’ = 0. -

ASIDE 6.9 In fact, M_(k) is abelian if and only if ~ is numerical equivalence (see André 1996).

6.10 Let X be a smooth projective variety over a field k. We say that X satisfies the sign
conjecture for H if there exists an algebraic cycle e on X XX such thateH*(X) = H**"(X).
Smooth projective varieties over a finite field satisfy the sign conjecture for the standard
Weil cohomology theories, as do abelian varieties over any field.



240 Chapter VI. Motives

THEOREM 6.11 Assume the sign conjecture. The kernel of the Q-algebra homomorphism

def 4 S
A=AL(XXX)— Apym(X X X)

is the radical of A, and it is a nilpotent ideal.

PROOF As Ay (X X X) is semisimple, R(A) C Ker(S). For the converse, it suffices to
show that Ker(S) is a nil ideal (see 6.1). Let f € Ker(S) — we want to show that f is
nilpotent. Clearly, we may suppose that f is homogeneous. If deg(f) # 0, then it is
obviously nilpotent, and so we may suppose that deg(f) = 0. By assumption, f - e’ =0
for all j (here is where we use that e is algebraic), and so

0=(f-e)= Z(—l)i Tr(foe|H'(X)) = Tr(f|H*V*"(X)).

Therefore Tr(f|H®*"(X)) = 0 and, similarly, Tr(f|H°4(X)) = 0. Since this is true for
all powers of f, we see that the image fj; of f in H**(X x X)(d) is nilpotent.

Let QAg be the Q-subspace spanned by the image of A in H*(X X X)(d). Thisis a
finite-dimensional Q-algebra, and the Q-span of {f; | f € Ker(S)}is a nil ideal in QA,
and so it is contained in R(QA;) (see 6.1). Now R(QAy;)" = 0 for some r. As Ker(S)
maps into R(QAg), it follows that Ker(S)" maps into R(QAg)" = 0. As A - QAy is
injective, this shows that Ker(S)" = 0. O

When the sign conjecture holds, we can modify the commutativity constraint in
M..(k) so that, for any € End(M) and Weil cohomology theory H, we have

Tr(et|M) = Tr(H®®") 4 Tr(H)
instead of Tr(He"e") — Tr(H°d).

THEOREM 6.12 Let My, (k) denote the category of numerical motives over k generated by
the algebraic varieties over k satisfying the sign conjecture. With the modified commutativity
constraint, My, (k) is a semisimple tannakian category over Q.

PROOF From 1.16 and 6.8, we know that M,,,(k) is a semisimple tensorial category
over Q. With the modified commutativity constraint, dim(M) is an integer > 0 for all
M, and so we can apply Theorem 10.1 of Chapter I. o

Note that the characteristic polynomial of an endomorphism of an object of NMot(k)
is well defined, and equals its characteristic polynomial under any Weil cohomology
theory.

7 The Hodge and Tate conjectures

The Betti, £-adic étale, and p-adic crystalline Weil cohomology theories all define tensor
functors from CHM(k) to a tannakian category. The Hodge conjecture says that, for
k = C, the first functor is full, and the Tate conjecture says that when k is finitely
generated over the prime field, then the last two are full. When we apply the functor
Hom(1, —) to these statements, we arrive at the following conjectures.

CONJECTURE 7.1 (HODGE' (X)) Let X be a smooth projective variety over C, and letr € N.
The Q-subspace of H ;’(X ) generated by the classes of algebraic cycles is

HY (X)nH"™"(X).
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CONIJECTURE 7.2 (TATE" (X, ¢)) Let X be a smooth projective variety over a field k, finitely
generated over the prime field, and let r € N. For all ¢ # char(k), the Q,-subspace of
Hgt’ (X, Qp(r)) generated by the classes of algebraic cycles is

al
HY (Xya, Qg (r))Cal® /1),

CONIJECTURE 7.3 (TATE" (X, p)) Let X be a smooth projective variety over a finite field
k of characteristic p # 0, and let Hg, (X /B) be the crystalline conomology group with
coefficients in the field of fractions of W (k). The Q,-subspace of H,ys(X /B) generated by
the classes of algebraic cycles is

Hlyy (X /B,

8 The standard conjectures

Grothendieck gave a series of lectures on motives
at the IHES. One part was about the standard
conjectures. He asked John Coates to write down
notes. Coates did it, but the same thing happened:
they were returned to him with many corrections.
Coates was discouraged and quit. Eventually, it
was Kleiman who wrote down the notes in Dix
Exposes...

Illusie, NAMS, 2010, p. 1110.

ToDo 13 I plan to rewrite this section.

For m € Z, we let (m)* = max(0, m). In other words, (m)* equals m if m > 0 and 0
otherwise.

For a smooth projective variety X over k and a Weil cohomology theory H, we let
AL(X) denote the Q-subspace of H!(X) generated by the classes of algebraic cycles. Note
that A;I(X ) ~ A!(X). When X has dimension n, we let A*(X) denote the graded ring
with A'(X) = A"(X x X) (self-correspondences of degree i).

The Kiinneth standard conjecture

Let X be a smooth projective variety over k and H a Weil cohomology theory. The
Kiinneth projector n;( is the projection of H*(X) onto H!(X),

H*(X) - H(X) - H*(X).

CONIJECTURE 8.1 (C(X)) The Kiinneth projectors 71;'( are algebraic.

CONJECTURE 8.2 (C*(X)) The even Kiinneth projector 7'[;(' & Zl. ﬂ)z(i is algebraic.

These are called the Kiinneth standard conjecture and the sign conjecture respec-
tively.
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CONSEQUENCES OF C(X)

8.3 If X satisfies C(X), then A(X X X) is stable under the Kiinneth decomposition.
Indeed,

n—i
j=0

The converse is also true.

PROPOSITION 8.4 Let u be the endomorphism of H'(X) defined by an integral algebraic
cycle on X x X (i.e., an element of Z"(X x X)). If m®"~* is algebraic, then the characteristic
polynomial P(T) f det(1 — uT | H'(X)) has coefficients in Z; moreover, these coefficients
are given by universal polynomials in the rational numbers

™. 72, m=1,...,dim H(X).

PROOF The Newton identities (see below) express the coefficients of P(t) as polynomials
with rational coefficients in the power sums

Sp=a" +a) + -
of the eigenvalues a; of u on H'(X). By the trace formula (3.6(a)),

S,, = Tr(w™|H(X)) = (-D){u™ - 72" € Q. 5

8.5 (THE NEWTON IDENTITIES (WIKIPEDIA)) Consider the polynomial,

H (T — ai) = Z(—l)fejT”_],
i=1 j=0

where the coefficients e; are the symmetric polynomials in the a;. Let
p] = a{ + - +ail,

Then the coefficients of the polynomial can be expressed recursively in terms of the
power sums as

€y = 1,
—€1 = —D1,
1
€ = 5(91131 — D2)s

1
—e; = —5(92171 —e1py + p3),

1
ey = Z(e3p1 —e,py +e1p3 — Pa),
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It follows that

€1 = D1,
1 1 1
- 612
1 1 1 1
€3 = Epi — P12+ 3P3 - E(pi = 3P1p2 +2p3),

1 1 1 1 1 1
eq =P} = PiP2+ D5+ P13 — ;Pa = (P} —6P{ps +3p; +8p1p; — 6pa),

i

n
n (=p)™
=G0 3 T
my+2my+--+nmp=n j=1 ml"l !
mq20,...mup >0

CASE OF A FINITE BASE FIELD

THEOREM 8.6 Let X be a smooth projective variety over I, of dimension n. There are
unique projectors 7y in C; (X X X) such that H(ry,) projects H*(X) onto H'(X) for
every Weil cohomology theory satisfying weak Lefschetz. Moreover, the ;. are Q-linear
combinations of the graphs of the Frobenius endomorphism and its iterates.

PROOF According to Theorem 3.9, there are polynomials P;(T) € Q[T]such that P;(T) =
det(T —F | H'(X)) for every Weil cohomology theory H satisfying weak Lefschetz. These
polynomials are relatively prime because their roots have different values, and so there
are polynomials P!(T) € Q[T] such that

1 mod P;(T)

PT) = { 0 mod P;(T) for j # i.

For any H, P'(F) acts on H'(X) as 1 and on H/(X), j # i, as 0. We can take 7, to be the
graph of P{(F). The P are uniquely determined up to a polynomial Q such that Q(F)
acts trivially on all H satisfying weak Lefschetz. O

COROLLARY 8.7 Let X be a smooth projective geometrically irreducible variety over [y of
dimension n, and let H be a Weil cohomology theory satisfying weak Lefschetz. For any
integrally algebraic cycle Z on X X X of codimension n, the characteristic polynomial of the
induced endomorphism of H'(X) lies in Z[T] and is independent of H.

PROOF Apply Theorem 8.4. o

SUMMARY 8.8 Conjecture C is known over finite fields for any Weil cohomology theory
satisfying weak Lefschetz, for example, a standard Weil cohomology theory. It follows
that the Kiinneth projectors are almost-algebraic (see 11.1 for this terminology). In
characteristic zero, if Conjecture C(X) holds for one standard Weil cohomology theory,
then it holds for all (by the comparison theorems).

The strong Lefschetz theorem and its consequences

Let X be an absolutely irreducible smooth projective variety of dimension n over k. Fix
a Weil cohomology. Let H be a hyperplane section, let & = cly(H) € H>(X)(1), and let L
the operator of degree 2

awa-&: HY(X) - H*(X).
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THEOREM 8.9 (STRONG LEFSCHETZ) Foralli < n = dim X, the map
Lt HY(X) = H"'(X)(n —1)
is an isomorphism.

8.10 The strong Lefschetz theorem has been proved for the standard Weil cohomology
theories. When k has characteristic zero, it suffices (by the comparison theorems) to
prove it for k = C and Betti cohomology, where it was proved by transcendental means
by Hodge. In arbitrary characteristics, it suffices (by specialization) to prove it for k the
algebraic closure of a finite field, and then it suffices to prove it for étale cohomology
(see 3.10). In this case, it was proved by Deligne (1980).

In the remainder of this section (8.11-8.42), we assume that the strong Lefschetz theorem
holds for H.

8.11 For j < n — 1, we have a diagram

Ln—i

~

Hl(X) Hl+2}(X) H2n l(X)

and so L/ : H'(X) — H'*?%/(X) is injective and L~/ : H*2/(X) — H*"7{(X) is surjec-
tive. Therefore,

- < B for2i<n
< Bajt for2j+1 < n.

—_
Il
=

[}
IA
)
[ 8]
IA

B < B3

IA

LEMMA 8.12 Consider homomorphisms A . B —ﬁ> C of vector spaces. If Boc is an
isomorphism, then B = a A @ Ker(fB).

PROOF Let b € aA NnKer(B). Then b = a(a) for some a € A and 0 = 3(b) = fala), so
a = 0. Therefore b = 0. Let b € B. Then there exists an a € A such that 8(b) = fa(a).
Now b = a(a) + (b — a(a)) and b — a(a) € Ker(p). O

For i < n, define
Pi(X) ={a € H(X) | L""*(a) = 0}

The elements of P!(X) are said to be primitive. On applying the lemma to

Hl Z(X) Hl(X) H2n 1+2(X)

~

we find that
HY(X) ~ P{(X) & LH2(X).

On repeating the argument with H~2(X) ... we obtain a decomposition

H'X)=PX)®LP*X)® L’ P X)) D .
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More precisely, if i < n, then
HI(X) = @ LIP-H(X).
j>0
In other words, every a € H(X) can be written uniquely in the form

a=ay+La; +L%a,+ =) Llg, (a; € PFHX)).
j20

Ifi > n, then

HI(X) — Li—nP2n—i +Li—n+1P2n—i—2 4 ... = @ LJPI_ZJ(X)

j=i—n
In other words, every a € H(X) can be written uniquely in the form

a= Li_”ai_n + Li_n+1ai_n+1 + - = Z Ljaj (aJ c Pl_ZJ(X)) .

j2(i—n)*
The operator A : H'(X) — H'72(X) is defined by
Ax = Z L 1x;

j>1,i-n
where x = Y Lix ; is the primitive decomposition of x € H {(X). For0 <i <n,Ais

determined on H' by the diagram

HI(X) —2 g2n-i(x)
| I+
Hl Z(X) H2n l+2(X)

and on H?"=*2 by the diagram

Hi(X) —2 g2n-i(x)

d |

Hl Z(X) H2n l+2(X)

Clearly, A is surjective on H'(X) and injective on H2"~+2,
Similarly, there are operators (here x = Y, L/x jEH iX)

.

A H(X) - H2X), Ax= Y, jn-i+j+DL
j>1,i—n

) Hl(X) N H2n—i(X)’ % X = Z (_1)(i—2j)(i—2j+1)/2Ln—i+jxj

jz@-n)y*

pl i H(X) » PI(X),  plx=8;xG_pyforj=0,..2n

\

REMARK 8.13 (a) In the definition of #, the sign (—=1)(=2)(=2/+1)/2 = _1ifj —2j is even
but not divisible by 4, and is +1 otherwise.

(b) Let a € H'(X), and write a = Y, Lia;. Then

Jjz(i—n)*

a; = p—it2ipn=itig (129)

(straightforward calculation).
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PROPOSITION 8.14  (a) Fori < n, A" ': H*(X) - HX) is inverse to L"~" and

A" LIPY(X) — PY(X) is inverse to a multiple of L.
(b) Foralli, **=id and A =% L .
(c) For j = 0,...n, the operator pl is a projector onto PI(X); for j = n,...,2n, pl =

p2n—jAn—j-
@ AN, % 70,72 p ..., pt € Z[L, p?, ..., p*"] (ring of noncommutative poly-
nomials).
PROOF Straightforward from the definitions and (129). o

PROPOSITION 8.15 We have
Q[L,A] = Q[L,°A] = Q[L, *] = Q[L, p", ..., p*],
and this Q-algebra contains p°, ..., p" ' and 7°, ..., w*".

PROOF The Q-algebra generated by L and p”, ..., p** contains A, A, *, °, ---, 72", and
PP, ..., p" 1 by 8.14(d). As it contains L and *, it also contains A =+ L *. Finally, as it
contains L and A (resp. “A), it contains p", ..., p*" by 8.14(a) and the next lemma. o

LEMMA 8.16 Fori < n, let 0': H*(X) — H*(X) be a map of degree —2(n — 1) that

induces the map L"'P{(X) — P(X) inverse to L"'. Then p**! is given by a universal
noncommutative polynomial with integer coefficients in L and 6°, ..., 6'.

PROOF The statement follows by induction on i from the following easily verified for-
mulas:

2n—i
= Z ) =id— Z Z L) pArt+2ipn=it]
j= C¢li2n—i] j>(C—n)*
2n—i — . 0i — (id — Jpit2jTi—n+j\,.,.
pT =g0' = (1d > LipH*¥L )qol, or maybe

Jj>14n—i

p2n—i:§0i6i<id_ Z Ljpi+2jLi—n+j)¢i_ o

Jj>14+n—i

PROPOSITION 8.17 (a) °A is the unique operator of degree —2 such that

[A, L] Z(n — i)l (130)

(b) Let X, Y, and X X Y satisfy the strong Lefschetz theorem, and polarize X X Y with
the Segre immersion Lyyy = Lx ® id +id ®Ly. Then

CAXXY = CAX ® ld + ld ® CAy.

PROOF (a) It follows easily from the definition that °A satisfies (122). On the other hand,
any operator A satisfying (122) is easily seen by induction to satisfy

-1 2n

[A,L7] = LI~} Z Din—ri~, (131)

¢=0i=0
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Assume that A has degree —2, and let a € P!(X). Then L"*21a = AL"*?q —
rL"*lg = 0, where r is the integer given by (131); hence la = 0. Then, for any
Jj=1,

ALla = [A,L/]la + L'Aa = ‘AL/a.

Thus, 4 = °A.
(b) This follows formally from (a). O

DEFINITION 8.18 Let k be a field. An 81,-triple in a k-algebra A is a nonzero triple
(x, h,y) of elements such that

[x.yl=h, [hx]=2x, [hy]=-2y.
In particular the span of {x, &, y} is a Lie algebra isomorphic to 31,.

COROLLARY 8.19 Let L € A*(X) be the Lefschetz operator defined by a smooth hyperplane
section of X, and let h = ijo(j —n)r;. Then [h,x] = ix forx € AY(X), and there is a
unique operator °A of degree —2 in A such (L, h,“A) is an 81,-triple in A(X).

PROOF Restatement of (a) of Proposition 8.17. O

The standard conjecture of Lefschetz type

Fix a Weil cohomology theory H with coefficient field Q, and write A'(X) for the image
of cly : Ciat(X) — HA(X)(i).

STATEMENT OF THE CONJECTURE

Let X be a smooth projective variety of dimension n and L a Lefschetz operator. The
main variants of the standard conjecture of Lefschetz type are the following:

A(X,L): The map L" % : A(X) - A™(X) is an isomorphism for all i < n/2.
B(X): The operator A is algebraic.

As we shall see, the two conjectures are essentially equivalent. The Conjecture B(X)
implies conjecture C(X) (see 8.25), which is sometimes regarded as a weak version of
the standard conjecture of Lefschetz type.

CONSEQUENCES OF A(X, L)

When n = 3, we get the following picture

Define
Al (X)=AX)NPAX) ={a € A(X) | L"?*1q = 0}.

prim
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Applying Lemma 8.12, we get a decomposition

AX)=A  (X)DOLA  (X)® -

prim prim
In other words, every a € A{(X) can be written uniquely in the form

a=ay+La;+- =) Lig; (a; € ATI(X)).

VARIANTS OF A(X, L)

PROPOSITION 8.20 Let X be a smooth projective variety and L a Lefschetz operator. The
following conditions are equivalent:

(a) AX,L);

(b) A*(X) is stable under the primitive projections p", ..., p*";

(c) A*(X) is stable under the operator *;

(d) A*(X) is stable under the operator A;

(e) A*(X) is stable under the operator °A.
PROOF As A*(X) is stable under the action of L, the equivalence of (b), (¢), (d), and (e)
follows from Proposition 8.15. The implication (d) = (a) follows from 8.14(a). Finally,

if (a) holds, then A*(X) is stable under 8! = A"~ '7?"~ for i < n, and so it is stable under
p", ..., p*" by 8.16. -

VARIANTS OF B(X)

THEOREM 8.21 Let X be a smooth projective variety and L a Lefschetz operator. Then the
following statements are equivalent:

B(X,L): The operator A is algebraic.
°B(X,L): The operator “A is algebraic.

O(X,L): Foreachi < n, there exists an algebraic correspondence 6" inducing the isomor-
phism H*"{(X) — H'(X) inverse to L.

v(X): Foreachi < n, there exists an algebraic correspondence 6" inducing an isomorphism
H" (X)) - H'(X).

PC(X,L): The operator p' is algebraic for 0 < i < 2n.
x (X, L): The operator * is algebraic.

As the statement v(X) does not involve L, we see that if any one of the remaining statements
holds for one L, then they all hold for all L.

PROOF We proceed according to the diagram

B(X) = 0(X). Assume B(X), and set 6 = A", Then 0' is algebraic and it induces
the inverse to L.
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6(X) = B(X). This follows from the equality

A= Z(ﬂi—lei+2Lr—i+1ﬂi 4 2ol roitlgit2 =ity
i<r

6(X) < v(X). That 8(X) implies v(X) is trivial, and so assume v»(X) and set
u = v'oL"~. Then u is algebraic, and so by Theorem 8.4 its characteristic polynomial
P(t) has rational coefficients. By the Cayley-Hamilton theorem, P(u) = 0. Hence u™!
is a linear combination of the powers u/ for j > 0, and the combining coefficents are
rational numbers. So u~!is algebraic, and it is the inverse of L"~* on H?*~{(X); thus 6(X)
holds.

‘B(X) = v(X)is obvious.

0(X) = PC(X).Infact, the p’ are given by universal (noncommutative) polynomials
with integer coefficients in L and the &' (8.16).

PC(X) = “B(X) and * (X). This is obvious.

% (X) = B(X) because A =% oLo =, O

RELATIONS BETWEEN THE CONJECTURES A, B, AND C

8.22 Letu € H*(X X Y), and briefly write u* for the map H*(X) - H*(Y) defined by
u, so that, for c € H*(X),

{ u*(c) = q.(p*(c) - w),
u*(c)={(c-a)p ifu=a®b>b.
Now define u,, : H.(X) - H.(Y) by
u(d) = q.(v- p*(d)), d € Hs(X)=H""°(X)
u,(d) = (-1 -dyaifu=>b®a e HA(X) ® HXY).
Ifu € H*(X x Y), then
u* =u,,

but not in general otherwise.
Letu € H*(X XY),sou'! € H*(Y X X). Then

W (e)-d) = (- (u), ()
(W),(@) - ¢ = (d - u*(©))

It suffices to prove thisforu = a ® b € H*(X) ® H?(Y),c € H(X),and d € H5(Y) =
H24m(Y)=8(y) Then u! = (—1)*#b ® a. We have

ce H*X), deHY),

u*(c) ={c-a)b
(u*(c)-d) =(c-axb-d)

and
(), () = (~D*(=1)**(b - d)a
(e (u), (@)= (=D)%(c-a)b-d)
which equals (b - d)a because (b - d) = 0 unless § = 8. Hence

(e (), () = (c-a)b-d) = (u*(©)- d).
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PROPOSITION 8.23 Letu € H*(X X Y) and v € H*(Z X W). Then the tensor product
ofu: H*(X) » H*(Y)and v: H*(Z) - H*(W) corresponds to the map H*(X X Z) —
H*(Y x W) defined by the cycle

UuQu=pu-qgqve H*X XZXY xXW).
PROOF This follows easily from the definition,

(u ® v)(a ® b) = (=1)* Ve Wy(a) @ v(b) (132)
foru e H(X xY)and v € H/(Z x W). -
PROPOSITION 8.24 Let x € @ H¥(X x W), and y € H*(Y X Z). Regard x as a map
H*(X) > H*(W)andy asamap H*(Y) - H*(Z), so x ® y isa map

HA(X X Y) ~ HX) ® H*(Y) "2 H*(W) @ H*(Z) = H*(W X Z).

Letu e H*(X XY). Thenv «f (x ® ¥)(u) equals youox' as a map H*(W) - H*(Z),

H*(X) —— H*(Y)
o E

H*(W) —— H*(2).

PROOF By linearity, we may suppose thatu =a ® b € H*(X) ® H*(Y), so

v=x(a)®yb)e H'(W)Q H*(Z) = H*(W X Z).
Then, for c € H*(W),

v(c) = (x(a) ® y(b))(c) definition (123)
= (c-x(a))y(b) definition (123)
= (x'(c) - a)y(b) 8.22.
On the other hand,
(youox')(c) = y(a ® b)(x'(c)) definition (123)
= y((x'(c) - a)b) definition (123)
= (x'(c) - a)y(b) definition (123). -

PROPOSITION 8.25 For a given X and L,

B(X) = A(X,L)andC(X),
AXXX,L®1+1Q®L) = BX).

PROOF Recall that B(X) is equivalent to 6(X).
0(X) = A(X,L). The map L"%: A(X) - A"{(X) is injective. As algebraic
correspondences map A*(X) into itself, 6(X) implies it is also surjective, hence A(X, L).
6(X) = C(X).There is an equality

= Gi(l - 7rj>L”_i<1 - 7ri>.
j>2n-1 j<i
Now 8(X) implies that 7! is algebraic by induction on i.
AX XX, L®1+1Q®X) = B(X). The correspondence ‘A ® 1 + 1 ® A carries
A*(X x X) into itself by 8.17(b) and 8.20. However, ‘A ® 1 + 1 ® “A carries the class of
the diagonal subvariety A into 2 A by 8.24. Thus “B(X) holds, and so B(X) holds. O
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COROLLARY 8.26 Let X be a smooth projective variety. If Conjecture AX,L®1+1Q L)
holds for one Lefschetz operator L on X, then A(X™, L) holds for all m and all Lefschetz
operators L on X™.

PROOF We have

AX,L®1+1Q®L) = BX)
= B(X™)forallm >0
= AX™,L")forallm > 0andall L'. O

COROLLARY 8.27 Conjecture A(X, L) holds for all X and L if and only if conjecture B(X)
holds for all X.

In particular, A(X, L) does not depend on L, and so we can denote it by A(X).

COROLLARY 8.28 Conjecture A(X) holds for all X over k if and only if B(X) holds for all
X over k, in which case C(X) holds for all X over k.

KNOWN CASES

8.29 The Lefschetz standard conjecture is known for curves, surfaces X such that
dim H'(X) = 2dim PicO(X ), and generalized flag manifolds. It is known for a product if
it known for the factors, and it is known for any smooth hyperplane section of a variety
for which it is known.

For abelian varieties, the Lefschetz standard conjecture was proved by Grothen-
dieck. That all the relevant classes, including the graphs of homomorphisms, are in
fact Lefschetz, was proved in Milne 1999 (see the next section). In O’Sullivan 2011, it
is shown that with every a € C,,;;,(A)g lifts canonically to an & € C,,(A)q; moreover,
the assignment a — & respects the algebraic operations and pullback and push forward
along homomorphisms of abelian varieties.

The standard conjecture of Hodge type

As before, all varieties are projective and smooth over k. We fix a Weil cohomology
theory H satisfying the strong Lefschetz conjecture and let A'(X) = C},(X).

STATEMENTS

For 2i < n = dim(X), let

Al (X)={a € A(X) | L"%*qg =0}

prim

The standard conjecture of Hodge type says the following:
IY(X,L): The bilinear form

a,b— (=DiL"%g.-b): Al (X)xA; X)-Q

prim rim

is positive definite.
I(X,L): I'(X,L) holds for all i < n/2.
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PROPOSITION 8.30 Assume that H satisfies weak Lefschetz. Fix i, and suppose that, for all
varieties of dimension 2i, the quadratic form

a,be (-Da-b: A, (X)xA, (X)— 0
is positive definite. Then I'(X, L) holds for all X and L.
PROOF Apply the hypotheses to a smooth i-dimensional section of X by a linear space.g

PROPOSITION 8.31 Let X be a smooth projective variety of dimension n, and let p be such
that 2p < n. Assume A(X, L). Then the following statements are equivalent:
(a) I9(X, L) holds forall q < p;
(b) the quadratic form
a,b— (a-xb): AP(X)X AP(X) - Q

is positive definite (hence the canonical pairing AP(X) X A" P(X) — Q is nondegen-
erate).

PROOF Recall that A(X, L) gives a decomposition

AP(X) = AP (X)BLAP (X))@ LAY ()@ .

prim prim prim
Let
a= Z Liai with a; (S AII))I;IIII’
i
— j ; p=J
b= Lib; withb; € Al
J
Note that
b Zj(_l)(ZP—Zj)(Zp—ZjH)/Z L2+, = Zj(_l)(p—j) L"=2P+ip;,
Therefore,

axb= Zij(_l)P—jLn—2p+i+jai . bj~

Ifi # j, then
L"=?PLiq; - L/b; = 0; (133)

for example, ifi < j, then it equals L"~(3P=20*+/=iq;.b,;, which is zero because L"~(?P~20)+1q; =
0.

Thus
(axb) =D (—1)PYL=@P=2g, . b;),
i>0
from which the statement is obvious. O

There is another conjecture, which is sometimes considered part of the standard
conjectures and sometimes part of the Tate conjectures.

CONJECTURE 8.32 (D(X)) Let H be a Weil cohomology theory. Homological equivalence
with respect to H coincides with numerical equivalence,

NH:N

num -

COROLLARY 8.33 If X satisfies I(X, L), then the conjectures A(X, L) and D(X) are equiva-
lent.
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THE HODGE STANDARD CONJECTURE AND POSITIVITY
Let X, Y be polarized varieties. The bilinear forms
(e, x") P Trg(x-* x"): HX) @ HX) - Q
.Y = Try(y- =y HY) @ H(Y) —
are nondegenerate (by Poincaré duality and the fact that  is an isomorphism (8.14(b)).

THEOREM 8.34 Let X and Y satisfy B(X) and B(Y). Letu : H*(X) — H*(Y) be a corre-
spondence, and let v’ : H*(Y) — H*(X) be its transpose with respect to the above pairings,
sou’ =sxy oulo xy . Ifu is algebraic, then v’ is algebraic, and

Tr(uou’) = Tr(u'ou) € Q;
if, moreover, [ X X Y,Ly ® 1+ 1 ® Ly) holds, then
u#0 = Tr(u'ou) > 0.

PROOF Recall (8.21) that B(X) and B(Y) imply that xx and =y are algebraic, and so v’
is algebraic if u is. Now Tr(u’ou) € Q because of the trace formula 3.6(a).

We prove the second statement. From the strong Lefschetz theorem, we obtain
decompositions

HX)=PX)& - ®LP X &
HY)=PY)® - @LP>YV)P .
B(X) implies that the projection operators
gy 1 H*(X) —» LIP2(X),
where j = max(0,i — n) and n = dim(X) are algebraic by 8.14(c), 8.21; moreover,
iy

(g5 oucqy)' = gyou'ogy

ie.,

(H*(X) X Lipi-2 (X) € H*(X) =5 H*(Y) 2, L LP- 2(Y) ¢ H*(Y))

rs U

=H*(Y) — o Lspr- 3(Y) ¢ H*(Y) = H*(X) & ipi-2 (X) c H*(X).

by the orthogonality of primitive elements (133). Therefore
Tr(u'ou) = ). Tr <(qr1slouoq 1h)’o(q ouoqy ))
= 3 Tr (g} ouogyY o(giouogy)),

i
and so we may assume that u = qY ouqu

Letv = A} ouoAy” ™J Then v’ = =Ly oy 'oL},; s0 Tr(v'ov) = Tr(u’ou). Replacing
uwithv,i— 2] W1th i, and r — 2s with j, we may assume that u € P/(X) ® P/(Y).
By 3.5 we now have

Tr(u'ou) = (=1)Xu- #x ouo *y); (134)
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by 8.24,

Furthermore, it is easily seen that, if
LX)(Y =Lx®1+1®Ly,

then u € PH/(X x Y) and

( . ln+—n: i ) ((ex ® #y)u) = (—1)i<i+1)/2(—l)j(j+1)/2L;;iy+m—ju

= (=Y stxyy U

Since u is algebraic, i + j is even and (—1)" = (—1)'. Therefore, I(X X Y, Lyyy) implies
that
(=D u- *x ouo *y) >0

when u # 0, which completes the proof.
To recap:

Tr(u'ou) = (—1){u- *x ouo %y) by (67)

= (—Du - (xx ® *y)u) by (28)
= (=1 u- #xyy u), ¢ >0

Indeed, I(X X Y, Lyxy) says that

(=) D20y sysy u) > 0.

COROLLARY 8.35 Assume that X satisfies B(X), and that X X X satisfies (X X X,L ®
1+1Q® L). Then C(X X X) holds, and the Q-algebra A* e CngJr*(X X X) of algebraic
correspondences is semisimple. In fact, every subalgebra of A*(X) that is closed under the

. . def . . .
involution u — u’' == oulo x is semisimple.

PROOF Indeed, the involution u — u’ on A* is positive, and so this follows from the
next lemma. 0

LEMMA 8.36 Let A be a finite-dimensional algebra over Q and u — u’ an involution on Q.
If there exists a Q-linear (trace) map o : A — Q such that c(uv) = o(vu) and o(u'u) # 0
when u # 0, then A is semisimple.

PROOF Let u be a nonzero element of the radical of A. Then v = uu/ is nonzero, because
o(uu’) # 0, and nilpotent, because it also belongs to the radical. But v’ = v, and so
v? = v’ # 0; similarly, (V%)% # 0, v® # 0,and so on, constradicting the nilpotence of v.

ToDo 14 Remove duplication.

COROLLARY 8.37 Let X and Y be varieties satisfying the strong Lefschetz theorem and
B(X), B(Y). Let
u: Hi(X) - H/(Y)

be an algebraic correspondence.
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(a) IfI(XXY,Ly®1+1QLy) holds and u is injective, then u has an algebraic left inverse
v: HI(Y) - H'(X). Consequently, if a € H'(X) is such that u(a) is algebraic, then
a is algebraic.

() IfIX XY,Ly ® 1+ 1 Ly) holds and u is surjective, then u has an algebraic right
inverse v: H/(Y) — H'(X). Consequently, if b € H/(Y) is algebraic, then there
exists an algebraic a € H'(X) such that b = u(a).

PROOF (a) Let y = u'ou and x = uou’. Then x’ = x; hence, s is semisimple by 3.12,
and so Ker(x) = Ker(x?) = Ker(uoyou'). Since u is injective, u’ is surjective; it follows
that y : H'(X) — H'(X) is injective, and is an automorphism. Hence, by 8.4 and the
Cayley-Hamilton theorem, y~lis algebraic. Therefore, v = y~ M is a left inverse u, and
it is algebraic. The proof of (b) is similar. o

LEMMA 8.38 LetE = @L_n E” be a graded noncommutative ring (with 1). There is at
most one complete set of orthogonal idempotents {7°, ..., 7®"} in E satisfying the following
conditions:

(a) E” = @, n"*Ex’, and

(b) fori =0, ...,n, there exist v\ € E*"~2 and w' € E~?"=2) sych that
(w'v' — Dt = 0 = (v'w! — 1),

PROOF The condition on the 7' means that
- roifi=j
irj — ’
TR { 0 otherwise
and 70 + --- + 7" = 1. By (a), u € E° ifand only if u = Y 7'ur’, hence if and only if
miu = mlurr’ = un' for all i. In particular, the 7! lie in the centre Z(E°) of E°.
We prove the uniqueness by induction on i < n. Suppose that 7%, ..., 7'~

i+l 2" are uniquely determined by the conditions. Let

pl=1- Z 7%= Z <.

aéli,2n—i] a€li,2n—i]

and

By (a), p'E?"%ipl = 227l If E>"~2iziy = 0, then w'viz! = 0, so, by (b), 7lu = 0.
Therefore, the right annihilator of 7 is uniquely determined. However, 7t € Z(E°),
and an idempotent in a commutative ring is uniquely determined by its annihilator.
Similarly, 72"~ is uniquely determined. -

THEOREM 8.39 Assume that H satisfies weak Lefschetz. Then the following two conditions
are equivalent:

(i) the standard conjectures hold, i.e., B(X) and I(X, L) hold for all varieties X over k;

(ii) for all varieties X over k and all integers p such that 2p < n = dim(X), D(X) holds
and the quadratic form

a,b— (=1)P(L"?Pa - b)
is positive definite on the set of a € AP(X) = CL,,(X) such that L""2P*1q = 0.
Moreover, if these conditions hold for several Weil cohomology theories satisfying weak
Lefschetz, then
(a) theoperators A, °A, %, p°, ..., p
do not depend on the theory.

2n -0

, %, ..., m*" are the classes of algebraic cycles that
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(b) The Betti numbers b; = dim H'(X) do not depend on the theory.

(c) The characteristic polynomial of an endomorphism induced by a rationally (resp.
integrally) algebraic cycle has rational (resp. integer) coefficients that do not depend
on the theory.

(d) Ifthe map H(X) — H/(Y) induced by an algebraic cycle is bijective (resp. injective,
resp. surjective) in one theory, then it bijective (resp. injective, resp. surjective) in every
theory. In fact, the inverse (resp. one left inverse, resp. one right inverse) may be
induced by an algebraic cycle that does not depend on the theory.

PROOF The equivalence of (i) and (ii) results immediately from 8.33 (and 8.28). If
these conditions hold, then 7°,..., 72" are the classes of algebraic cycles by 8.25. By 8.38
applied to the ring of algebraic correspondences, these cycles are uniquely determined
modulo homological or, what is the same, numerical equivalence. By 8.21, A is the
class of an algebraic cycle, which, therefore is uniquely determined modulo numerical
equivalence by (130). Finally, p", ..., p*" (resp. A, %, p°, ..., p"~!) are given by universal
(noncommutative) polynomials with rational coefficients in L and “A by 8.14 and 8.16
(resp. in L and p", ..., p** by 8.14). Thus (a) holds.

By (a), the 7! are intrinsically determined. Therefore, (b) results from the formula
b; = (—=1){A - £2"71), and (c) results from the proof of 8.4. Further, a correspondence
u: H*(X) - H*(Y) induces a map u’ : H(X) — H/(Y) if and only if ngun)i( = 0 for
¢ # j,and u’ is injective (resp. surjective, resp. bijective) if and only if there exists a
correspondence v : H*(Y) — H*(X) such that vun';'( = 7T§( (resp. ...); hence, (d) results
from 8.35. O

ALGEBRAS WITH POSITIVE INVOLUTION

Let B be a k-algebra with involution * and V' a left B-module. A k-bilinear form ¢ : V X
V — k satisfying is said to be balanced if

Y(b*u,v) = P(u,bv) forallb € B,and u,v € V. (136)

In general,

A hermitian (resp. skew-hermitian) form on a (left) A-module is V is a bi-additive
map ¢ : V XV — A such that ¢(au, bv) = ap(u,v)b* and ¢p(v,u) = $(u,v)* (resp.
$(v,u) = —¢(u,v)*) foralla,b € A and u,v € V. As in the bilinear case, a (nondegen-
erate) hermitian or skew-hermitian form ¢ on V' defines an adjoint involution x4 on
B < End, (V) by $(a**u, v) = p(u, av).

(a) When = is of the first kind, this gives a one-to-one correspondence between the in-
volutions of the first kind on B and the forms ¢ on V, hermitian or skew-hermitian,
up to a factor in F*. If ¢ is hermitian, then * and *4 have the same type, and if ¢
is skew-hermitian then they have the opposite type (e.g., if * on A is of type (C)
then x4 on B is of type (BD)).

(b) When = is of the second kind, this gives a one-to-one correspondence between the
extensions of * |F to B and the hermitian forms on V up to a factor in F* fixed by
*x,
Suppose that = is of the second kind. Then F is of degree 2 over the fixed field F, of .
Choose an element f of F \ F, whose square is in Fy. Then f* = —f, and a pairing ¢ is
hermitian (resp. skew-hermitian) if and only if f¢ is skew-hermitian (resp. hermitian).
Thus (b) also holds with “skew-hermitian” for “hermitian”.
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Let (C, %) be a semisimple R-algebra with involution, and let V' be a C-module. In
the next proposition, by a hermitian form on V we mean a C-balanced symmetric R-
bilinear form ¢ : V XV — R. For example, if C = C and * is complex conjugation, then
such a form can be written uniquely as ) = Trg /g o¢p wWith ¢ : V' XV — C a hermitian
form in the usual sense. Such a form ¢ is said to be positive-definite if (v, v) > 0 for
all nonzerov € V.

PROPOSITION 8.40 Let C be a semisimple algebra over R. The following conditions on an
involution * of C are equivalent:

(a) some faithful C-module admits a positive-definite hermitian form;
(b) every C-module admits a positive-definite hermitian form;

(¢) Tre/r(c*e) > 0 for all nonzeroc € C.
PROOF SeeV, 1.3. O

DEFINITION 8.41 An involution satisfying the equivalent conditions of (8.40) is said to
be positive.
APPLICATIONS TO MOTIVES

Recall that decompositions of rings, R = @i R;, correspond to decompositions, 1 = Zl. e,
of 1 into a sum of orthogonal central idempotents; then R; = e¢;Re; = Re;. Let Rbe a
semisimple algebra.

Let H be a Weil cohomology theory satisfying the strong Lefschetz theorem and

Conjecture C, and let A(X) = Cgm(x)(X X X) (algebraic correspondences of degree 0).
For idempotents e in A(X) and f in A(Y), we let

Hom((X, e),(Y, f)) = foCUMX)(X x Y)oe.
We write h!(X) for the motive (X, 7r'); thus
End(h{(X)) = 7o A(X)or.

Let X be a smooth projective variety. Assume B(X), and fix a Lefschetz operator L.
Then =* is a morphism of motives (8.21)

%1 hi(X) — k" (X)(n —1),

and we define
¢ W(X) @ h(X) — T(—i)

to be the composite of
. , d®xp _ . . Tr
h(X)® hi(X) — h(X)Q h*"'(X)(n—1i) —» h*"(X)(n —i) — T(—i).

POLARIZATIONS

PROPOSITION 8.42 Assume B(X), and let L be a Lefschetz operator. The map u — u’ =

ou'o # is an involution on End(hi(X)) & ﬂiocgim(x)(X x X)or!. It is positive if and only

IfIX XX,L®1+1® L) holds.
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PROOF Only have to prove necessity. Letu = u; ®u, € P/(X)®P/(X). Then Tr(u'ou) =
(=D (u- *x u *x). Now

kx U xxy= (tx @ #x)(U) = £ *xux U.
Now I(X X X,L ® 1 + 1 ® L) says that
(=Du- #xxx u) > 0.

So
(=D¥u- #xyx u) = Tr(u'ow).

The Weil forms one gets in this way are all compatible.

KNOWN CASES

8.43 Conjecture I(X) is known over C for Betti cohomology by Hodge theory. Hence,
by the comparison theorem, it is known in characteristic zero for all the standard Weil
cohomology theories.

In arbitrary characteristic, I(X) holds for surfaces. A purely algebraic proof, which
works in arbitrary characteristic, was given in 1937 by B. Segre. Independently, in 1958,
Grothendieck gave a similar proof.

For an abelian variety A, I'(A, L) was proved by Weil (1948). It is known that the
pairing a,b — a- * b: A/(X) x A(X) — Q is positive on Lefschetz classes, and that the
Hodge conjecture for CM abelian varieties implies the Hodge standard conjecture for
abelian varieties over finite fields (Milne 2002).

The standard conjecture of Hodge type follows from known results for abelian
varieties of dimension < 3. For an abelian variety of dimension 4 in characteristic
D, Ancona (2021) proves that the intersection product

Zrzlum(A)@ X Zrzlum(A)Q - Q

has signature (o, — p; + 1,0; — 1) with p; = dim Z,, (A)q. Hence the Hodge standard
conjecture for cycles modulo numerical equivalence.

For an abelian variety A over [F, there is a set S(A) of prime numbers with density
> 0 such that Conjecture D holds for all powers of A and all ¢-adic étale cohomology
theories with ¢ € S(A) (Clozel 1999).

NOTES The unattributed results in this section go back to the lectures of Grothendieck. The
exposition follows Kleiman 1968 and Kleiman 1994.

9 Motives of abelian type

In this section, we study the motives defined by abelian varieties.

The Lefschetz standard conjecture holds for abelian varieties

9.1 Let A be an abelian variety of dimension g, and let C,,:(A) be the Chow ring (Q-
coefficients). Let D, (A) be the Q-subalgebra generated by the divisor classes — we call
its elements Lefschetz classes. The Lefschetz classes are stable under products and
pullbacks, but not necessarily pushforwards. We shall construct Lefschetz classes in
C.:(A) such that, when we apply any Weil cohomology theory, we get the standard
classes 7;, A, €A, * etc.
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9.2 Choose a symmetric ample divisor D on A, and let M = m*D — p*D — q*D. Let 1p
be the polarization defined by D. For 0 <i < 2g, define

_—(_1)i 1 * =+ . g* i - i—2j
pi_mmax(&gg)sjsi jig =1+ i —2jn” (Ds=HD) - g7 (DD - M~

(-) = Pic(-) ® Q, so that p; € C*

rat

Here [*] denotes the class of * in C! (A x A). Then

rat
(Scholl 1994, §5),
Do+ P+ + Py =244 (137)

(identity in Cfat(A X A)). Each p; is Lefschetz, and, for any Weil cohomology theory, the
cycle class map takes (137) to the Kiinneth decomposition of the diagonal,

7T0+7T1+"'+7T2g=A.

In particular, A, is Lefschetz. If ¢ : A — B is a morphism of abelian varieties (not
necessarily a homomorphism), then Ay is Lefschetz, and so the formula

(Fulton 1984, 16.1.1) shows that I'y is also Lefschetz.

9.3 Following Scholl 1994, 5.9, we define for 0 < i < 2g,

1 . . o
- *([DID - g*(IDI) - [M2.
fi= 2 saTrrpa—ay? - a o’ M)
(i-g)<js<;
Then f; is Lefschetz, and \/cie_g%l)) fi is the inverse of the strong Lefschetz isomorphism
“cup with [D]87"” (cf. ibid. 5.9.1). Thus
1 . . . ‘
A= ———=| > (~Difiy p* D]+ 3 (=1)fpe - g [DE],

v/ deg(Ap) | 2<i<e g<i<2g

which is Lefschetz. Also, the Fourier transform correspondence (Kiinneman 1994, p193),
F = exp|c;(P)] € C,i(A X AY), P = Poincaré line bundle,

is Lefschetz.

Lefschetz classes on abelian varieties

9.4 Let H be a Weil cohomology theory with coefficient field Q. A Lefschetz class on
X (relative to H) is an element of Q-algebra generated by the divisor classes. Products
and pull-backs of Lefschetz classes are Lefschetz, but not necessarily pushforwards.

9.5 Let A be an abelian variety over k and H a Weil cohomology theory with coefficient
field Q. Let V(A) = H'(A)V. From the canonical isomorphisms (of Q-vector spaces),

H'(A) ~ Hom(V(A),Q), HA")~rHY(A), H*(A")= [\ H(A"),

we see that there is a natural left action of GL(V(A)) on H(A") for all r,s. Using
the identification G,, = GL(Q(1)), we extend this to an action of GL(V(A)) X G,, on
H5(AN)(m).
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9.6 The Lefschetz group L(A) of an abelian variety A over k is defined to be the largest
algebraic subgroup of GL(V(A)) X G, fixing* the elements of D} (A") C H*(A")(s) for
allr, s.

9.7 Let C(A) denote the centralizer of EndO(A) in End(V(A)). Then C(A) is a Q-algebra,

stable under the involution T defined by an ample divisor D, and the restriction of  to
C(A) is independent of the choice of D. Let G(A) be the algebraic subgroup of GLy (4
such that

G(A)R) ={y € C(A)®R | vy € R*}
for all Q-algebras R. Then

H>*(A")(x)°™ = D}(AN) ® Q. (138)
The proof is a case by case argument (Milne 1999).

9.8 Themapy ~ (7,7'y): G(A) — GLy(4) XG,, sends G(A) isomorphically onto
L(A),
G(A) ~ L(A).

Clearly G(A) maps into L(A), but, because G(A)° is reductive, (138) shows that G(A) is
the group fixing the Lefschetz classes.

9.9 On combining the last two statements, we find that
HZ*(Ar)(*)L(A) — D;(AV)Q.

THEOREM 9.10 Let A be an abelian variety of dimension n. The classes L, A, A, *,
P, ..., p*, and 7°, ..., m*" are all Lefschetz.

PROOF The class L is Lefschetz by definition. Asit is Lefschetz, it is fixed by L(A). Hence,
its “inverse” A is also fixed by L(A), and so is Lefschetz. It follows from Proposition 8.15
that the remaining classes are also Lefschetz. o

9.11 Let A be an abelian variety over C. Then MT(A) C L(A), and if equality holds then
all Hodge classes on the powers of A are Lefschetz. In particular, the Hodge conjecture
holds for A and its powers. For example, if A is an elliptic curve, then

GL, if End’(4) = Q

MT(4) = (Gu)pjo it End’(A)=E #Q

= G(A),
and so the Hodge conjecture holds for all powers of A.

The category of Lefschetz motives.

9.12 We get a canonically polarized Tate triple LMot(k).

ToDo 15 To be explained.

“In the sense of group schemes.
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Weil classes

9.13 Let A be a complex abelian variety and v a homomorphism from a CM-field E into

End’(A). The pair (4, v) is said to be of Weil type if H1%(A) is a free E ®g C-module.
In this case, d & dimg H'(A, Q) is even and the subspace Wx(A) & /\g HY(A, Q) of
H4(A, Q) consists of Hodge classes (Deligne 1982, 4.4). When E has degree 2 over Q,
these Hodge classes were studied by Weil (1977), and for this reason are called Weil
classes. A polarization of (A, v) is a polarization A of A whose Rosati involution stabilizes
v(E) and acts on it as complex conjugation. The Riemann form of such a polarization
can be written

(x,Y) g TrE/@(f¢(x5 J’))

for some totally imaginary element f of E and E-hermitian form ¢ on H,(A, Q). If A can
be chosen so that ¢ is split (i.e., admits a totally isotropic subspace of dimension d/2),
then (A, v) is said to be of split Weil type. A pair (A, v) of Weil type is split if and only if

disc(¢) = (—1)4mA/IE: Q1 modulo Nm(EX).

9.14 (Deligne 1982, §5.) Let E be a CM-field, let ¢, ..., qbzp be CM-types on E, and let

A =[], A;, where A4; is an abelian variety of CM-type (E, ¢;). If 3}, ¢;(s) = p for all
seT¥ Hom(E, @al), then A, equipped with the diagonal action of E, is of split Weil
type. Let I = {1,...,2p}and H"(A) = H"(A, Q¥). In this case, there is a diagram

Wi ) ® 0" L (AT H(4,0)) @ 0% — () H(A, D) @, Q" = H(4)

(\ (|
D (R @) —— D (R H' )

teT iel JCIXT  (i,t)el
[J1=2p

Hodge classes on CM abelian varieties

Following Deligne (1982) and André (1992), we prove that all Hodge classes on CM
abelian varieties can be expressed in terms of Weil classes.

9.15 Let A be a CM abelian variety over C. By definition, this means that EndO(A)
contains a product of CM-fields E such that H'(A, Q) is free of rank 1 as an E-module.
For example, after possible replacing A with an isogenous variety, we may suppose
that it is a product of simple abelian varieties A; (not necessarily distinct), and take
E = [, End’(4)).
Let S = Hom(E,C) and let H'(4) = H'(A, C). Then
H'(A)=H'A,Q®C= _H'(A), H'(A),= H(A)®,C.
S
Here H'(A), can be identified with the (one-dimensional) C-subspace of H'(A) on

which E acts through s.
We have
HY(A) = D H'(A),,  HN(A) = D H'(A);,
se® seP

where @ is a CM-type on E, i.e., a subset of S such that S = ®11®. The abelian variety A is
said to be of CM-type (E, ®). Every such pair (E, @) arises in this way from a CM abelian
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variety, unique up to isogeny. We sometimes identify a CM type with its characteristic
function ¢ : S — {0,1}.

9.16 With Aand E C EndO(A) as above, we fix a finite Galois extension F of Q in C

containing all conjugates of E, and we now let H'(A) = H'(A, F) and S = Hom(E, F) =
Hom(E, C). Then
def

HY(A) ~ HY(A,Q)®F = QBSGS HY(A),, H.A), £ H'(4,Q) ®;, F.

Here H'(A), can be identified with the (one-dimensional) F-subspace of H!(A) on which
E acts through s.
We have isomorphisms of F-vector spaces

H'(A) ~ /\; H'(A) = P H'(A), H'(Aa = Q) H'(A), (139)

seA

where A runs over the subsets of S of size |A| = r. Here H"(A), can be identified with
the (one-dimensional) subspace on which a € E actsas [ ], e S(a@).
Let HY =@ _, H'(A); and H*' = @ _4 H'(A);, and let

sed
e = \'HY @ \'HOL
Then
H(A) =P  _ H,

and this becomes the usual Hodge decomposition when tensored with C (over F). More-
over,

Pq ~ r
HP9 @AH (A)s
where A runs over the subsets of S such that

|[AN®| =pand |ANP| =q.

Let BP = H?P(A, Q) N HPP, Tt is the Q-vector space of Hodge classes of degree p on
A. In the decomposition (139),

p = 2p
BPQF = P H?(A),
where A runs over the subsets of S such that
|(toA) N ®| = p = |(toA) N ®| for all t € Gal(K/Q). ™)
Let A be a subset of S satisfying (*). For s € A, let Ay = A ®p F. Then Ay is
an abelian variety of CM-type (F, ®,), where ¢,(t) = ¢(tos)fort € T < Hom(F, F).
Because A satisfies (*¥),

D¢ () =D p(sot)=p, allt€T,

SEA SEA
and so A, & Hs <a A5 equipped with the diagonal action of F is of split Weil type. The
canonical homomorphisms f;: A - A define a homomorphism f, : A — Aj,.
The map f : H'(As, Q) — H'(A, Q) is the E-linear dual of f . Direct calculation
shows that f(Wx(A,)) ® F is contained in BP(A) ® F and contains H 2P(A),. As the
subspaces H?P(A), span BP ® F, we have proved the following statement.

THEOREM 9.17 Let A be a CM abelian variety over C. There exist abelian varieties A, of
split Weil type and homomorphisms f, : A — A, such that every Hodge class t on A can
be written as a sumt = ), f1(ts) with t, a Weil class on Ap.
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Deligne’s theorem on absolute Hodge classes

THEOREM 9.18 (DELIGNE 1982) Suppose that for each abelian variety A over Candr € N
we have a Q-subspace C"(A) of the Hodge classes of codimension r on A. Assume:

(a) C"(A) contains all algebraic classes of codimension r on A;

(b) pull-back by a homomorphism o : A — B of abelian varieties maps C"(B) into
C'(A);

(c) let m: A — S be an abelian scheme over a connected smooth complex algebraic
variety S, and let t € T'(S,R¥ 7, Q(r)); if t, lies in C"(Ay) for one s € S(C), then it
liesin C"(Ay) for all s.

Then C"(A) contains all the Hodge classes of codimension r on A.

COROLLARY 9.19 If hypothesis (c) of the theorem holds for algebraic classes on abelian
varieties, then the Hodge conjecture holds for abelian varieties. (In other words, for abelian
varieties, the variational Hodge conjecture implies the Hodge conjecture.)

PROOF Immediate consequence of the theorem, because the algebraic classes satisfy (a)
and (b). 0

The proof of Theorem 9.18 requires three steps.

STEP 1: SPLIT WEIL CLASSES OF CODIMENION r ON A LIE IN C"(A)

Let (A, v, 1) be a polarized abelian variety of split Weil type. Let V = H;(A, Q), and let
¥ be the Riemann form of 4. The Hodge structures on V for which the elements of E act
as morphisms and % is a polarization are parametrized by a period subdomain, which is
hermitian symmetric domain (Milne 2013, 7.9). On dividing by a suitable arithmetic
subgroup, we get a smooth proper map 7 : A — S of smooth algebraic varieties whose
fibres are abelian varieties with an action of E (ibid., 7.13). There is a Q-subspace W of
(s, Rdn*@(g)) whose fibre at every point s is the space of Weil classes on A,. One fibre
of 7 is (A, v) and another is a power of an elliptic curve. Therefore the lemma follows
from 9.11 and hypotheses (a) and (c). (See Deligne 1982, 4.8, for the original proof of
this step.)

STEP 2: THE THEOREM HOLDS FOR ABELIAN VARIETIES OF CM-TYPE

Let ¢ be a Hodge class on A. According to 9.17, we can write t = ; f1(ty) with ¢, a
Weil class on A,. Therefore t € C"(A) by hypothesis (b). (See Deligne 1982, §5, for the
original proof of this step.)

STEP 3: COMPLETION OF THE PROOF OF THE THEOREM

Let t be a Hodge class on a complex abelian variety A. Choose a polarization A for A.
LetV = H;(A,Q) and let h, be the homomorphism defining the Hodge structure on
H,(A, Q). Both t and the Riemann form ¢, of 4 can be regarded as Hodge tensors for V.
The period subdomain D = D(V, hy,{t, t,}) is a hermitian symmetric domain (Milne
2013, 7.9). On dividing by a suitable arithmetic subgroup, we get a smooth proper map
7. A — S of smooth algebraic varieties whose fibres are abelian varieties (Milne 2013,
7.13) and a section ¢ of R¥7r,Q(r). For one s € S, the fibre (A4, t); = (A, t), and another
fibre is an abelian variety of CM-type (Milne 2013, 8.1), and so the theorem follows from
Step 3 and hypothesis (c). (See Deligne 1982, §6, for the original proof of this step.)
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Relations between the conjectures

9.20 The standard conjecture of Lefschetz type for abelian schemes over smooth projective
curves over C implies the Hodge conjecture for abelian varieties (Abdulali 1994, André
1996).

9.21 The Hodge conjecture for CM abelian varieties (over C) implies the Hodge standard
conjecture for abelian varieties (Milne 2002).

9.22 If the standard conjecture of Lefschetz type holds for all smooth projective varieties
over finite fields, then

(a) all Hodge classes on complex abelian varieties are almost-algebraic;
(b) the standard conjecture of Hodge type holds for abelian varieties;

(c) the Tate conjecture holds for abelian varieties over finite fields;
(Milne 2020c).

The category of motives of abelian type
To be denoted AM(k).

ToDo 16 This section is not yet written.

10 Motives for absolute Hodge classes

Given the lack of progress on these conjectures, one looks for alternatives to al-
gebraic cycles.® We describe the category of motives based on absolute Hodge
classes.

Throughout this section, k is a field of characteristic zero with algebraic closure k
and Galois group I' = Gal(k/k). All varieties are complete and smooth, and, for X a
variety (or motive) over k, X denotes X ®y k.

Absolute Hodge classes

kxA
the topological spaces H ; (X)(m) relative to their subspaces H' (X, Z,)(m). Thisis a
finitely generated free module over the ring k X A ;. For any homomorphism o : k —
k' of algebraically closed fields, the maps (126) and (124) of §3 give a base change
homomorphism

We let H f(X )(m) denote the product of H}, (X)(m) with the restricted product of

Hy, (X)(m) 2 Hy,,  (@X)(m). (140)

When k = C, the maps (127) and (125) of §3 give a comparison isomorphism

(Cx Af) @ Hy(X)(m) — HY,, (X)(m). (141)

SFor me ... it is not crucial whether [the Hodge conjecture] is true or false. If it is true, that’s very good,
and it solves a large part of the problem of constructing motives in a reasonable way. If one can find another
purely algebraic notion of cycles for which the analogue of the Hodge conjecture holds, and there are a
number of candidates, this will serve the same purpose, and I would be as happy as if the Hodge conjecture
were proved. For me it is motives, not Hodge, that is crucial. Deligne interview (reprinted NAMS 2014).



10. Motives for absolute Hodge classes 265

Let X be an algebraic variety over C. The cohomology group Hé’ (X)(r) has a Hodge
structure of weight 0, and an element of type (0, 0) in it is called a Hodge class of codi-
mension r on X.° We wish to extend this notion to all base fields of characteristic zero.
Of course, given a variety X over a (not too big) field k, we can choose a homomorphism
o : k — C and define a Hodge class on X to be a Hodge class on oX, but this notion may
depend on the choice of the embedding. Deligne’s idea for avoiding this problem is to
use all embeddings (Deligne 1979a, 0.7).

Let X be an algebraic variety over an algebraically closed field k of characteristic

zero, and let o be a homomorphism k — C. An element y of H i; A (X)(r) is said to

be a o0-Hodge class of codimension r if oy lies in the subspace Hé’(aX )(r) n HO of

Hf:rx A (oX)(r). When k is algebraically closed of finite transcendence degree over Q, an

element y of H i:( A X)(r) is said to be an absolute Hodge class if it is c-Hodge for all
homomorphisms o : k — C. The absolute Hodge classes of codimension r on X form a

Q-subspace AH"(X) of H ; X)(@).

kxA
2r 0,0 41) 2r
H?2 (aX)/(\r) NH —— HY | f(aX )r)
} (140) | @

AH'(X) ———— H{L, (X)(r)

We list the basic properties of absolute Hodge classes.

10.1 For any homomorphism o : k — k’ of algebraically closed fields of finite tran-
scendence degree over Q, the map (140) induces an isomorphism AH"(X) - AH"(cX)
(Deligne 1982, 2.9a).

This allows us to define AH" (X) for an algebraic variety over an arbitrary algebraically
closed field k of characteristic zero: choose a model X, of X over an algebraically closed
subfield k of k of finite transcendence degree over Q, and define AH"(X) to be the
image of AH"(X,)) under the map H ig A, (Xo)(r) = H, A (X)(r). With this definition,
10.1 holds for all homomorphisms of algebraically closed fields k of characteristic zero.
Moreover, if k admits an embedding in C, then a cohomology class is absolutely Hodge
if and only if it is o-Hodge for every such embedding.

10.2 The inclusion AH"(X) C Hi; iy (X)(r) induces an injective map

(kxAf) ® AH"(X) - H}, Af(X)(r).

In particular AH"(X) is a finite-dimensional Q-vector space.

This follows from (141) because AH"(X) is isomorphic to a Q-subspace of Hé’(aX )(r)
(each o).

10.3 The cohomology class of an algebraic cycle on X is absolutely Hodge; thus, the
algebraic cohomology classes of codimension r on X form a Q-subspace A"(X) of AH"(X)
(Deligne 1982, 2.1a).

SAs Hy (X)(r) ~ HY (X) ® Q(r), this is essentially the same as an element of H (X) of type (r, r).
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10.4 The Kiinneth components of the diagonal are absolute Hodge classes (ibid., 2.1b).

10.5 Let X be an algebraic variety over an algebraically closed field k, and let X, be a
model of X over a subfield k, of k such that k is algebraic over ky; then Gal(k/k,) acts
on AH"(X) through a finite discrete quotient (ibid. 2.9b). We define

AHr(XO) = AH" (X)Gal(k/ko)'

10.6 Let
3k —_— r .
AH*(X) = QBFZO AH"(X);

then AH*(X) is a Q-subalgebra of @ H i; A (X)(r). Forany map ¢ : Y — X of algebraic

varieties, the maps a,, and a* send absolute Hodge classes to absolute Hodge classes.
(This follows easily from the definitions.)

CONJECTURE 10.7 (DELIGNE 19792, 0.10) Every o-Hodge class on a smooth complete va-
riety over an algebraically closed field of characteristic zero is absolutely Hodge.

In other words, when k is embeddable in C,
o-Hodge (for one o) = absolutely Hodge.

The conjecture is known for abelian varieties (Deligne 1982, 2.11) - see Theorem 10.35
below.

Complements on absolute Hodge cycles

For X a variety over k, CiH(X ) denotes the Q-vector space of absolute Hodge cycles on
X. When X has pure dimension n, we write

Morh (X, Y) = C{P(X X Y).
Then

Mor? (X, Y) C H*™2P(X x Y)(p + 1) = @ H'(X) @ H(Y)(p + n)
r+s=2n+2p

P = @)Y ®H (YD)

s=r+2p

@ Hom(H"(X), H™?P(Y)(p)).

The next proposition is obvious from this and the definition of an absolute Hodge cycle.

PROPOSITION 10.8 An element f of MoriH(X ,Y) gives rise to

(a) foreach prime ¢, a homomorphism f, : H,(X) — H(Y)(p) of graded vector spaces
(meaning that f is a family of homomorphisms f7, : H,(X) — H;+2p(Y)(p));

(b) a homomorphism f4r : Hqr(X) — Har(Y)(p) of graded vector spaces;

(c) foreach o : k < C, a homomorphism f,: H,(X) — H,(Y)(p) of graded vector
spaces.

These maps satisfy the following conditions
(d) forally e T and primes €, yf, = fe¢;
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(e) far is compatible with the Hodge filtrations on each homogeneous factor;
(f) foreach o : k — C, the maps f,, f¢, and f4g correspond under the comparison
isomorphisms (§1).
Conversely, assume that k is embeddable in C; then a family of maps f, fqr asin (a), (b)
arises from an f € MoriH(X ,Y) provided (f,) and f4r satisfy (d) and (e) respectively
and for every o : k < C there exists an f, such that (f;), fqr, and [ satisfy condition
(f); moreover, f is unique.

Similarly, a ¢ € Ci’}{" (X X X) gives rise to pairings
PS: H3(X) x H5(X) - Q(—r).

PROPOSITION 10.9 On every variety X there existsa i € Cigmx (X X X) such that, for
everyo . k— C,
Yg + Ho(X, R) X Hy (X, R) — R(-r)

is a polarization of real Hodge structures (in the sense of V, 12.10).

PROOF Let n = dim X. Choose a projective embedding of X, and let L be a hyperplane
section of X. Let ¢ be the class of L in H*(X)(1), and write ¢ also for the map H(X) —
H(X)(1) sending a class to its cup-product with ¢. Assume that X is connected, and
define the primitive cohomology of X by

H"(X)prim = Ker(¢""*1: H'(X) - H*"7(X)(n — r + 1)).
The hard Lefschetz theorem states that
"L H'(X) » H*"(X)(n —r)
is an isomorphism for r < n; it implies that

HX)= @ CH 23X (=)pim-

s>r—n, s>0

Thus, every x € H"(X) can be written uniquely x = Y} £5(x,) with x; € H"™(X)(—=8)prim -
Define
*x = Y (=1)r=200=2s+D/2pn—rtsy e 27 (X)(n — 7).

Then x »* x: H'(X) - H**7"(X)(n — r) is a well-defined map for each of the three
cohomology theories, £-adic, de Rham, and Betti. Proposition 10.8 shows that it is
defined by an absolute Hodge cycle (rather, the map H(X) — H(X)(n—r) thatis x — *x
on H" and zero elsewhere is so defined). We take 1" to be

id ®* Tr
HX)QH' (X)) — H'(X) @ H" "(X)(n —r) » H"(X)(n —r) —» Q(-7).

Clearly it is defined by an absolute Hodge cycle, and the Hodge-Riemann bilinear
relations (see Wells 1980, 5.3) show that it defines a polarization on the real Hodge
structure H.(X,R) foreacho: k < C. 0

ToDo 17 Replace the reference to Wells with a reference to Voisin’s book. Add additional
references to her book.
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PROPOSITION 10.10 For any u € Mot (Y, X), there exists a unique u' € Mor(X, Y)
such that

le(uy’ x) = sz(ya u/x)a X € HV(X), Yy € HV(Y)’
where Py and Yy are the forms defined in (10.9); moreover,

Tr(uou’) = Tr(u'ou) € Q
Tr(uou’) >0 ifu #0.

PROOF The first part is obvious, and the last assertion follows from the fact that the
¥x and ¥y are positive forms for a polarization in Hodg (the tannakian category of real
Hodge structures). O

COROLLARY 10.11 The Q-algebra Mot (X, X) is semisimple.

PROOF Apply 8.36. O

Construction of the category of motives

Let V(k) be the category of smooth projective varieties over k. We now define the category
CV(k) to have as objects symbols h(X), one for each X € ob V(k), and as morphisms

Hom(h(X), h(Y)) = Mor) (X, Y). (142)

There is a map
Hom(Y,X) — Hom(h(X), h(Y))

sending a homomorphism to the cohomology class of its graph which makes 4 into a
contravariant functor V(k) — CV(k).

Clearly CV(k) is a Q-linear category, and h(XLY) = h(X)@ h(Y). There is a Q-linear
tensor structure on CV(k) for which
h(X) ® h(Y) = h(X X Y),

o the associativity constraint is induced by (X X Y) X Z — X X (Y X Z),

<

o the commutativity constraint is induced by Y X X - X X Y, and

<

the unit object is h(point).

The category of effective (or positive) motives M* (k) is defined to be the pseudo-
abelian (Karoubian) envelope of CV(k). Thus, an object of M* (k) is a pair (M, p) with
M € CV(k) and p an idempotent in End(M), and

Hom((M, p),(N.q)) ={f : M = N | fop =qof/ ~}, (143)
where f ~ 0if fop =0 = gof. The rule
M,p)®(N,9)=(MQON,p®4q)

defines a Q-linear tensor structure on M*(k), and M ~ (M,id): CV) — M; is a fully
faithful functor which we use to identify CV, with a subcategory of M;. With this
identification, (M, p) becomes the image of p: M — M. The category M; is pseudo-
abelian: any decomposition of id;; into a sum of pairwise orthogonal idempotents

idy = e+ - + ey
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corresponds to a decomposition
M=M&--®M,,

with ¢;|M; = idy,. The functor CV(k) — M*(k) is universal among functors from CV(k)
to pseudo-abelian categories.

For any X € ob(V(k)) and i > 0, the projection map n;'( from H(X) onto H'(X)
defines an element of MorgH(X ,X) = End(h(X)) (see 10.4). Corresponding to the
decomposition

idh(X) = 7[% + 7'[)1( + .-
there is a decompostion (in M*(k))
h(X) = h°(X) + W' (X) + h*(X) + ---.

This gradation of objects of CV(k) extends in an obvious way to objects of M;, and the
Kiinneth formulas show that these gradations are compatible with tensor products (and
therefore satisfy II, 9.2a).

Let

J:MON->NQM, y=@y, 75:M QN >N QM"

be the commutativity constraint on M; coming from CV(k). We define a new commuta-
tivity constraint by setting

YIMON->NQM, y=&r™, y~° ="y (144)

From now on, M*(k) is equipped with the modified commutativity constraint.’
Let L be the Lefschetz motive h?(P'). Then H(L) = Q(—1), from which it follows
that

Hom(M,N) 5 Hom(M ® L,N @ L)
for any effective motives M and N. This means that V' ~ V ® L is a fully faithful functor

and allows us to invert L.

DEFINITION 10.12 The category of motives M(k) is defined as follows:
(a) an object of M(k) is a pair (M, m) with M € ob(M*(k)) and m € Z;

(b) Hom((M, m),(N,n)) = Hom(M Q L' ,N ® L'™"), r > m,n (for different r,
these groups are canonically isomorphic);

(c) composition of morphisms is induced by that in M* (k).
PROPOSITION 10.13 The category M(k) is a semisimple tannakian category over Q.

PROOF Corollary 10.11 shows that the endomorphism rings of the objects of M(k) are
semisimple, and it follows from Proposition 6.4 that the category M(k) is semisimple.;

"Without the modification, an object h(X), X € ob V(k), has dimension the Euler-Poincaré character-
istic, Y;(—1)" dim H"(X), of X, which is not necessarily positive. After the modification, it has dimension
Y. dim H"(X).
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SUMMARY 10.14 (a) Let w be the gradation on M(k) defined above; then (M(k), w, T) is
a Tate triple over Q.

(b) There is a contravariant functor h : V(k) — M(k); every effective motive is the
image (h(X), p) of an idempotent p € End(h(X)) for some X € ob(V(k)); every motive
is of the form M (n) for some effective M and some n € Z.

(c) For smooth projective varieties X, Y with X of pure dimension m,

Clip ™ (X x Y) = Hom(h(X)(r), h(Y )(s));

in particular,
Ciy(X xY) = Hom(h(X), h(Y));

morphisms of motives can be expressed in terms of absolute Hodge cycles on varieties
by means of (142) and (10.12b).

(d) The constraints on M(k) have an obvious definition, except that the obvious
commutativity constraint has to be modified by (142).

(e) For varieties X and Y,

h(XUY)=hX)®h()
h(XXY)=hX)Q® h(Y)
h(X)V = h(X)(m) if X is of pure dimension m.

(f) The fibre functors H,, Hag, and H, define fibre functors on M(k); these fibre
functors define morphisms of Tate triples M(k) — T, T4g, Ty (see V, 11.3); in particular,
H(T) = Q).

(g) When k is embeddable in C, Hom(M, N) is the vector space of families of maps

fet H,(M) = H(N)
far * Hr(M) = Hgr(N)
such that f4g preserves the Hodge filtration, yf, = f, for all y € T, and for every
0: k & C there exists amap f, : H,(M) — H,(N) agreeing with f, and f g under
the comparison isomorphisms.
(h) The category M(k) is semisimple.

(i) There exists a polarization on M(k) for which 7(h"(X)) consists of the forms
defined in (10.9).

Variation of absolute Hodge classes

LEMMA 10.15 Let W < V be an inclusion of vector spaces. Let Z be a third vector space
and let z be a nonzero element of Z. Then

WRZHN(Vz)=Wz (insideV Q Z).

PROOF Choose a basis (e;);c; for W and extend it to a basis (e;);y for V. Anx € V ® Z
can be written uniquely

X =iy € ®zi> (z € Z, finite sum).

IfxeW®Z,thenz; =0fori &I, and if x € V, then z; = z for all i. o
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THEOREM 10.16 (Theorem of the fixed part, Deligne) Letz : X — S be a smooth proper
morphism of smooth varieties over C.

(a) The Leray spectral sequence
H'(S,R°7.Q) = H™(X,Q)
degenerates at E,; in particular, the edge morphism
H"(X,Q) - I'(S,R"7, Q)

is surjective.

(b) IfX is a smooth compactification of X with boundary X ~X a union of smooth divisors
with normal crossings, then the canonical morphism

H"(X,Q) - I'(S,R"7,Q)

is surjective.

(c) Let (R"7,Q)° be the largest constant local subsystem of R"7,Q (so (R"7,Q)° =
I'(S,R"7,Q) forall s € S(C)). For each s € S, (R"x,Q)? is a Hodge substructure
of (R"r,Q), = H"(X,,Q), and the induced Hodge structure on I'(S,R" 7, Q) is
independent of s.

In particular, the map
HH(X’ @) - Hn(XS’ Q)

has image (R"7,,Q)°, and its kernel is independent of s.
PROOF See Deligne 1971, 4.1.1, 4.1.2. o
Delete one of the following theorems.

THEOREM 10.17 (DELIGNE 1982, 2.12) Let S be a smooth connected algebraic variety over
C (not necessarily projective), and let 7 : X — S be a smooth proper morphism. Lety be a
global section of the sheaf R* 7, Q(r)), and let y; be the image of y in Hé’(Xs)(r) (s € S(O)).

(a) Ify,isa Hodge class for one s € S(C), then it is a Hodge class for every s € S(C).
(b) Ify,is an absolute Hodge class for one s € S(C), then it is an absolute Hodge class
forevery s € S(C).

PROOF After replacing S with an open affine, we may suppose that X is a smooth quasi-
projective variety, and so it admits a smooth compactification X with boundary X ~ X
a union of smooth divisors with normal crossings. Let s € S(C), and let j, denote the
inclusion X < X. According to the theorem of the fixed part (10.16), the map

J§ o Hy X)) — Hy (X)(r)

factors into

surjective injective

HY (X)) — IS, R’ 7m,Q(r)) —— Hy (X))

with u independent of s; moreover I'(S, R* ,Q(r)) has a Hodge structure (independent
of s) for which the injective maps are morphisms of Hodge structures .
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Lety € I'(S, R¥ 7, Q(r)). If y, is of type (0, 0) for one s, then so also is y; hence y; is
of type (0, 0) for all 5. This proves (a).

Identify H(X) ® A with Ha(X). Let o be an automorphism of C. To say that y, isa
Hodge cycle on X relative to o, means that there exists a y? € H* (¢X,)(r) such that
¥$ ®1=0(y,®1) in Hy (0X;). Since o(y, ® 1) is in the image of

H(0X)(r) ® A — H (aX)(r) ® A,

y? is in the image of
HY(aX)(r) — H (0X,)(r)

(apply 2.13). Let 7° € H?(0X)(r) map to yJ. Because y, and y, have a common
pre-image in I'(S, R¥ 7, Q(r)), o(ys ® 1) and o(y, ® 1) have a common pre-image in
I'(cS,R¥ 7, Q(r)) ® A, i.e., there exists a (unique) ¥’ € I'(cS,R¥ 7, Q(r)) ® A, namely,
yY' = 7° ® 1, that maps to both o(y, ® 1) and o(y; ® 1). Therefore, 7° ® 1 maps to
o(y, ® 1) in H¥(cX,) ® A, and so y, ® 1 is a Hodge cycle relative to . o

THEOREM 10.18 (DELIGNE 1982, 2.12, 2.14) Let S be a smooth connected algebraic vari-
ety over C (not necessarily projective), and let w : X — S be a smooth proper morphism.
Let y be a global section of the sheaf R* 7, Q(r)), and let y be the image of y in H f{(X ()
(s € S(C)).

(a) Ify,isa Hodge class for one s € S(C), then it is a Hodge class for every s € S(C).

(b) Ify,isan absolute Hodge class for one s € S(C), then it is an absolute Hodge class
forevery s € S(C).

PROOF After replacing S with an open affine, we may suppose that X is a smooth quasi-
projective variety, and so it admits a smooth compactification X with boundary X \ X
a union of smooth divisors with normal crossings. Let s € S(C), and let j; denote the
inclusion X — X. According to the theorem of the fixed part (10.16), the map

Ji + Hy X)) = Hy (X))

factors into

surjective injective

HE () ——— (S, R 7,Q(r) ——— HE (X,)(1)

with u independent of s; moreover I'(S, R* 7, Q(r)) has a Hodge structure (independent
of s) for which the injective maps are morphisms of Hodge structures .

Lety € I'(S, R* 7, Q(r)). If y, is of type (0, 0) for one s, then so also is y; hence y; is
of type (0, 0) for all 5. This proves (a).

We now prove (b). Because wp is exact and faithful, the theorem of the fixed part
shows that the kernel of the morphism h? (j,) : h? (X)(r) — h?(X,)(r) on motives is
independent of s, and so h? (j,) factors into

surjective N injective

¥ (X)(r) h* (X,)(r),

with the motive N being independent of 5. The section y lifts to an element of H*" (X, Q(r)),
which then maps to a well-defined element y’ of wz(N) whose image in H*" (X, Q(r)) is
¥s- Now y, is absolutely Hodge if and only if only if ¥’ lies in the image of

Hom(1, N) -2 Hom(Q, wz(N)) = wp(N).

This condition is independent of s. o
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NOTES Deligne’s original proof of Theorem 10.18 (1982, 2.12, Principle B) requires that Vy4g = 0,
but does not use the theorem of the fixed part. Blasius (1994, 3.1) used the argument in 10.17 to
show that absolute Hodge classes on abelian varieties are de Rham, and André (1996) used the
argument in 10.18 to prove a similar statement for motivated classes - see later.

de Rham-Hodge classes

For a complete smooth variety X over Q and an embedding o : Q — Qp, there is a
natural isomorphism

I: HZ(0X,Q,)(r) ®q, Bar = HiR(0X)(r) ®q, Bar

(Faltings, Tsuji) compatible with cycle maps. Call an absolute Hodge class y on X de
Rham if, forall o, I(cy, ® 1) = oyr ® 1.

THEOREM 10.19 (BLASIUS 1994, 3.1) Let 7 : X — S be a smooth proper morphism of
smooth varieties over Q C C with S connected, and let y € T'(S¢, R**7¢,Q(n)). If y, €
H;”(X .)(n) is absolutely Hodge and de Rham for one s € S(Q), then it is absolutely Hodge
and de Rham for every s.

PROOF Let s, t € S(Q) and assume ¥ is absolutely Hodge and de Rham. We know (see
above) that y, is absolutely Hodge, and we have to prove it is de Rham.

Leto: Q@ - Q » be an embedding. For a smooth compactification X of X (as in
10.16) over ), we have a commutative diagram

H?(0X,Q,)(n) ® Bix —— H¥(cX)(n) ® Bar

l l

H2'(0X,, Q,)(n) ® Bgr —— HX(0X,)(n) ® Byg.

There exists 7 € Hé”()_( )(n) mapping to y (see an above sequence). Let 7, and 74g be
the images of 7 in H2'(cX, Q,)(n) and H%(cX)(n). Because y; is de Rham, I(7, ® 1)
differs from 74g ® 1 by an element of

(Rer(H3(0X)(n) — H3(0X,)(n)) ® Ba.

But this kernel is independent of s, and so y, is also de Rham.
In summary: To say that y, is de Rham means that I(7, ® 1) differs from 74z ® 1 by
an element of the kernel of i;. But this kernel is independent of s. o

Some calculations

According to (10.14g), to define a map M — N of motives it suffices to give a procedure
for defining a map of cohomology groups H(M) — H(N) that works (compatibly) for
all three theories: Betti, de Rham, and ¢-adic. The map will be an isomorphism if its
realization in one theory is an isomorphism.

Let G be a finite group acting on a variety. The group algebra Q[G] acts on h(X), and
we define h(X)C to be the motive (h(X), p) with p equal to the idempotent

Digec 8
(G: 1)
Note that H(h(X)®) = H(X)® in each of the standard cohomology theories.
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PROPOSITION 10.20 Assume that the finite group G acts freely on X, so that X /G is also
smooth; then h(X /G) = h(X)°.

PROOF Since cohomology is functorial, there exists a map H(X/G) — H(X) whose
image lies in H(X)® = H(h(X)®). The Hochschild-Serre spectral sequence

H'(G,H(X)) = H'*(X/G)

shows that the map H(X /G) — H(X)C is an isomorphism for, say, the £-adic cohomology,
because H'(G,V) = 0,r > 0, if V is a vector space over a field of characteristic zero. 4

REMARK 10.21 More generally, if f: Y — X is a map of finite (generic) degree n
between connected varieties of the same dimension, then the composite

X)L o) L v
is multiplication by n; there therefore exist maps
h(X) - h(Y) - h(X)
with composite n, and h(X) is a direct summand of h(Y).

PROPOSITION 10.22 Let E be a vector bundle of rank m + 1 over a variety X, and let
p: P(E) — X be the associated projective bundle; then

h(P(E)) = h(X) @ h(X)(-1) @ --- @ h(X)(—m).

PROOF Let y be the class in H?(P(E))(1) of the canonical line bundle on P(E), and let
p*: H(X) - H(P(E)) be the map induced by p. The map

(s s C) P> D, P ()Yt HX) @ -+ @ HX)(—m) > H(P(E))
has the requisite properties. o

PROPOSITION 10.23 Let Y be a smooth closed subvariety of codimension c in the variety X,
and let X' be the variety obtained from X by blowing up Y; then there is an exact sequence

0 = h(Y)(—c) — h(X) ® h(Y")(-1) » h(X") - 0,
where Y’ is the inverse image of Y.

PROOF From the Gysin sequences

- —— H™*(Y)(—¢) — H'(X) —— H'X\Y) —— -

l l

 —_ Hr—ZC(Yl)(_l) N Hr(XI) N Hr(XI\Y/) _— s ...

we obtain a long exact sequence

e = H2(Y)(=¢) > HI(X) @ H (Y1) » H'(X) = -+
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But Y’ is a projective bundle over Y, and so H'~%(Y)(—c) — H"2(Y')(—1) is injective.
Therefore, there are exact sequences

0— H(Y)(—c) - H(X)@® H2(Y')(-1) - H'(X') = 0,
which can be rewritten as
0> HY) =) HX)®HY')(-1)-> HX') -0

We have constructed a sequence of motives, which is exact because the cohomology
functors are faithful and exact. 0

COROLLARY 10.24 With the notations of the proposition,
c—-1

h(X") = h(X) ® @hX)(-1).
r=1

c—1
PROOF Proposition 10.22 shows that h(Y") = @ h(Y)(r). O

r=1
PROPOSITION 10.25 If X is an abelian variety, then h(X) = A\(h'(X)).

PROOF Cup-product defines a map A(H'(X)) — H(X) which, for the Betti cohomology,
say, is known to be an isomorphism. (See Mumford 1970, 1.1.) O

PROPOSITION 10.26 IfX is a curve with Jacobian J, then
hX)=1®h'()DL.

PROOF The map X — J (well-defined up to translation) defines an isomorphism
H'(J) - H'(X). o
PROPOSITION 10.27 Let X be a unirational variety of dimension d < 3 over an alge-
braically closed field; then

d=1) hX)=16&1L;

d=2) hX)=1@®rL&L? somer €N;

d=3) hX)=1®rL®h'(A)(-1)PrL>@ L3 somer € N,
where A is an abelian variety.

PROOF We prove the proposition only for d = 3. According to the resolution theorem
of Abhyankar 1966, there exist maps

v

P3 & X S X
with v surjective of finite degree and u a composite of blowing-ups. We know
W(PH=10LpL*DL?

(special case of (10.22)). When a point is blown up, a motive L @ L? is added, and when
a curve Y is blown up, a motive L @ h!(Y)(—1) @ L? is added. Therefore,

XN~ 1®sLOM(-1)DsL> L3,

where M is a sum of motives of the form h!(Y), Y a curve. A direct summand of such
an M is of the form h'(A) for A an abelian variety (see 10.30 below). As h(X) is a direct
summand of A(X") (see 10.21) and Poincaré duality shows that the multiples of L? and L3
occurring in h(X) are the same as those of L and 1 respectively, the proof is complete.
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PROPOSITION 10.28 Let X'} denote the Fermat hypersurface of dimension n and degree d:

d d d _
T4+T¢+ . +T% =0

Then,
R @ dh"(P?) = i (X" x X1 @ (d — D" 2(X"2)(-1),

where 1, the group of dth roots of 1, acts on Xg_l X X(li according to
C(ty: o T tySo: 81 8y) =ty ot CtysSot 81t €Sy)

PROOF See Shioda and Katsura 1979, 2.5. O

Effective motives of degree 1

A Q-rational Hodge structure is a finite-dimensional vector space V over Q together
with a real Hodge structure on V' ® R whose weight decomposition is defined over Q.
Let Hodg be the category of Q-rational Hodge structures. A polarization on an object
V of Hodg is a bilinear pairing 3 : V ® V — Q(—n) such that ) ® R is a polarization
on the real Hodge structure V @ R.

Let Isab, be the category of abelian varieties up to isogeny over k. The following
theorem summarizes part of the theory of abelian varieties.

THEOREM 10.29 (RIEMANN) The functor H}9 : Isabe — Hodg is fully faithful; the essen-
tial image consists of polarizable Hodge structures of weight 1.

Let M(k)*! be the pseudo-abelian subcategory of M(k) generated by motives of the
form h!(X) for X a geometrically connected curve. According to (10.26), M(k)*! can
also be described as the category generated by motives of the form h!(J) for J a Jacobian.

PROPOSITION 10.30 (a) The functor h' : Isab, — M(k) factors through M(k)*™! and de-
fines an equivalence of categories,

Isab, = M(k)*L.

(b) The functor H' : M(C)*™! — Hodgq is fully faithful; its essential image consists of
polarizable Hodge structures of weight 1.

PROOF Every object of Isaby, is a direct summand of a Jacobian, which shows that h!
factors through M(k)™!. Assume, for simplicity, that k is algebraically closed. Then, for
any A, B € ob(Isaby),

Hom(B, A) ¢ Hom(h'(A), h'(B)) c Hom(H,(A), H,(B)),
and 10.29 shows that Hom(B, A) = Hom(H,(A), H,(B)). Thus h! is fully faithful and

(as Isaby is abelian) essentially surjective. This proves (a), and (b) follows from (a) and
10.29. -
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The motivic Galois group

Let k be afield that is embeddable in C. Forany o : k < C, we define G(o) = Aut®(H,).
Thus, G(o) is an affine group scheme over Q, and H,, defines an equivalence of categories
M(k) > Repf,(G(0)). Because G(o) plays the same role for M(k) as T’ = Gal(k/k) plays
for M°(k), it is called the motivic Galois group.

PROPOSITION 10.31 (a) The group G(o) is a pro-reductive (not necessarily connected)
affine group scheme over Q, and it is connected if k is algebraically closed and all Hodge
cycles are absolutely Hodge.

(b) Let k C k' be algebraically closed fields, let ¢’ : k' < C, and letc = ¢’|k. The
homomorphism G(¢’) — G(o) induced by M(k) — M(k") is faithfully flat.

PROOF (a) Let X € ob(M(k)), and let Cyx be the abelian tensor subcategory of M(k)
generated by X, XV, T, and TV. Let Gy = Aut®(H,|Cyx). As Cy is semisimple (see
(10.13)), Gy is a reductive group (6.13), and so G = {iEGX is pro-reductive. If k is
algebraically closed and all Hodge cycles are absolutely Hodge, then (cf. 3.4) Gy is
the smallest subgroup of Aut(H, (X)) X G,, such that (Gx)c contains the image of the
homomorphism u : G,,c — Aut(H, (X, C)) X G,,c defined by the Hodge structure on
H_(X). As Im(u) is connected, so also is Gx.

(b) According to (2.3), M(k) — M(k") is fully faithful, and so (5.2) shows that G(¢”) —
G(o) is faithfully flat. o

REMARK 10.32 The quotient map G(¢’) — G(o) in the proposition need not be an
isomorphism. For example, the motivic Galois group over C, has uncountably many
quotients PGL,, one for each isomorphism class of nonCM elliptic curves over C, whereas
the motivic Galois group over @ has only countably many.

Now let k be arbitrary, and fix an embedding o : k < C. The inclusion M°(k) —
M(k) defines a homomorphism 7 : G(c) — T because I' = Aut®(H,|M°(k)) (see 5.1),
and the functor M(k) — M(k) defines a homomorphism i: G°(c) — G(o), where
G°(0) € Aut®(H, IM(K).

PROPOSITION 10.33 (a) The sequence

15G°(0) > Ge) 5T > 1

is exact.

(b) If all Hodge cycles are absolutely Hodge, then the identity component of G(o) is
G°(o).

(c)Foranyt € T, 77l(7) = H0m®(HU,HUT), regarding H, and H, as functors on
M(k).

(d) For any prime €, there is a canonical continuous homomorphism sp, : I' —
G(0)(Qy) such that wosp, = id.

PROOF (a) As M°(k) — M(k) is fully faithful, 7 is faithfully flat (5.2). To show that i is
injective, it suffices to show that every motive h(X), X € Vi, is a subquotient of a motive
h(X") for some X’ € V(k); but X has a model X, over a finite extension k’ of k, and we
can take X’ = Resy/ /x X,. The exactness at G(0) is a special case of (c).

(b) This is an immediate consequence of (10.31a) and (a).
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(c) Let M, N € ob(M(k)). Then Hom(M, N) € ob(Repf ("), and so we can regard
it as an Artin motive over k. There is a canonical map of motives Hom(M,N) <
Hom(M, N) giving rise to

o _ __H, _ _
H,(Hom(M,N)) = Hom(M, N) - Hom(H,(M), H,(N)) = H,(HHom(M, N))
Let 7 € T; then
HU(M) = HU(M) = H‘L’U(M) = HTU(M)
and, for f € Hom(M, N), H,(t) = H.,(tf).
Let g € G(R); for any f : M — N in M(k), there is a commutative diagram
Ho(M,R) —2 H,(M,R)
[ [
H,(N,R) -2 H_(N,R).

Let 7 = 7(g), so that g acts on Hom(M, N) C Hom(M, N) as 7. Then, forany f : M - N
in M(k)

HU(M’R)gM E— HU(M’R) _— H‘L’U(M’R)
lHo(f) lHU(T‘lf) lem
H,(N,R) —2 H_(N,R) =—— H,,(N,R).

commutes. The diagram shows that g, : H,(M,R) - H.,(M, R) depends only on M as
an object of M(k). We observed in the proof of (a) above that M(k) is generated by motives
of the form M, M € M(k). Thus g defines an element of Jom®(H,, H,,)(R), where
H, and H,, are to be viewed as functors on M(k). We have defined a map 7~(r) —
Fom®(H,, H,,), and it is easy to see that it is surjective.

(d) After (c), we have to find a canonical element of Hom®(H€(0M ), He(toM))
depending functorially on M € M(k). Extend 7 to an automorphism 7 of C. For any
variety X over k, there is a #~!-linear isomorphism cX <« 70X which induces an
isomorphism 7 : Hy(cX) 5 H,(t0X). O

Deligne’s conjecture 10.7, that every Hodge cycle is absolutely Hodge has a particu-
larly elegant formulation in terms of motives.

CONJECTURE 10.34 Let k be an algebraically closed field. For any embedding o . k < C,
the functor H, : M(k) — Hodg is fully faithful.

The functor is obviously faithful. There is no description, not even conjectural, for
the essential image of H,,.
Abelian varieties

THEOREM 10.35 (DELIGNE 1982, 2.11) Conjecture 10.7 is true for abelian varieties.

PROOF To prove the statement, it suffices to show that every Hodge class on an abelian
variety over C is absolutely Hodge. This is a consequence of the Theorem 9.18 and 10.3,
10.6, 10.18. O

COROLLARY 10.36 Every absolute Hodge class on an abelian variety over Q is de Rham.
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PROOF The functor from abelian varieties over Q to abelian varieties over C is fully
faithful and the essential image contains the abelian varieties of CM-type. Using this,
one sees by the same arguments as above, that the theorem follows from the Theorem
10.19. o

Let AM(k) denote the tannakian subcategory of M(k) generated by motives of abelian
varieties and Artin motives. Theorem 10.35 has the following restatement.

THEOREM 10.37 Let k be an algebraically closed field. For any embedding o : k — C,
the functor H, : AM(k) — Hodg is fully faithful.

Therefore, for an algebraically closed k, the group G*'(o) attached to AM(k) and
o : k & Cisa connected pro-reductive group (see 10.31), and, for an arbitrary k, the
sequence
1-G¥0)>G¥o)-T->1

is exact (see 10.33) (here G*(0)° is the identity component of G*(0)).

PROPOSITION 10.38 The motive h(X) € ob(AM(k)) if
(a) X is a curve;
(b) X is a unirational variety of dimension < 3;
(c) X is a Fermat hypersurface;
(d) X isa K3-surface.

Before proving this, we note the following consequence.

COROLLARY 10.39 Every Hodge cycle on a variety that is a product of abelian varieties,
zero-dimensional varieties, and varieties of type (a), (b), (¢), and (d) is absolutely Hodge.

PROOF (OF 10.38.) Cases (a) and (b) follow immediately from (10.26) and (10.27), and
(c) follows by induction (on n) from (10.28). In fact, one does not need the full strength
of (10.28). There is a rational map

X; X XS o _______ 5 XS

(g ¢ e 2 Xpp1)s (Vo 7 v D Voq1) > (XoVsq1 & e @ XpVsa1 - EXpp1Vo & e b EXpp1Ys)

where ¢ is a primitive 2mth root of 1. The map is not defined on the subvariety

Y X1 =Ys01=0.
On blowing up X7, X X}, along the nonsingular centre Y, one obtains maps

z?
N

XX X8 - XIF,

By induction, we can assume that the motives of X'}, X3, and Y(= X ;‘1 X Xfi_l) are

in AM(k). Corollary (10.24) now shows that h(Z*) € ob(AM(k)) and (10.21) that
h(X'*) € ob(AM(K)).
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For (d), we first note that the proposition is obvious if X is a Kummer surface, for
then X = A/(c), where A is an abelian variety A with its 16 points of order < 2 blown
up and o induces a —» —a on A.

Next consider an arbitrary K3-surface X, and fix a projective embedding of X. Then

h(X) = h(lp2) @ hz(X)prim

and so it suffices to show that h?(X Jprim 18 in AM(k). We can assume k = C. It is known
(Kuga and Satake 1967; Deligne 1972, 6.5) that there is a smooth connected variety S
over C and families

f:Y->S
a: A—-S

of polarized K3-surfaces and abelian varieties respectively parametrized by S having the

following properties:

(a) forsome0 € S, Y, o f71(0) is X together with its given polarization;

(b) for some 1 € S, Y; is a polarized Kummer surface;

(c) thereisaninclusionu : R%f «QWprim & € nd(R'a,Q) compatible with the Hodge
filtrations.

The map uy : H]23(X Y Dprim < End(H 1(Ay, Q)) is therefore defined by a Hodge cycle,

and it remains to show that it is defined by an absolute Hodge cycle. But the initial

remark shows that u;, being a Hodge cycle on a product of Kummer and abelian surfaces,

is absolutely Hodge, and Theorem 10.17 completes the proof. 8 o

Motives of abelian varieties of potential CM-type

An abelian variety A over k is said to be of potential CM-type if it becomes of CM-type
over an extension of k. Let A be such an abelian variety defined over Q, and let MT(A)
be the Mumford-Tate group of Ac (Deligne 1982, §5). Since Ac is of CM-type, MT(A)
is a torus, and we let L C C be a finite Galois extension of Q splitting MT(A) and such
that all the torsion points on A have coordinates in L%. Let AM(Q)“ be the tannakian
subcategory of AM(Q) generated by A, the Tate motive, and the Artin motives split by
L, and let G* be the affine group scheme attached to this tannakian category and the
fibre functor Hy.

PROPOSITION 10.40 There is an exact sequence of affine group schemes

1 — MT(A) —» GA 5 Gal(L®/Q) — 1.

PROOF Let AM(C)” be the image of AM(Q)*F in M(C); then MT(A) is the affine group
scheme associated with AM(C)#, and so the above sequence is a subsequence of the
sequence in (10.33a). O

REMARK 10.41 If we identify MT(A) with a subgroup of Aut(H(A)), then (as in 10.33a)
7~1(t) becomes identified with the MT(A)-torsor whose R-points, for any Q-algebra
R, are the R-linear homomorphisms a : H'(A¢,R) - H'(tA¢,R) such that a(s) = s

8For a more detailed proof for the case of K3 surfaces, see §7 of André, Yves. Pour une théorie
inconditionnelle des motifs. Inst. Hautes Etudes Sci. Publ. Math. No. 83 (1996), 5-49.
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for all (absolute) Hodge cycles on Ag. We can also identify MT(A) with a subgroup
of Aut(H f (A)) and then it becomes more natural to identify 77—() with the torsor of
R-linear isomorphisms a" : H;(Ac,R) - H,(tAc,R) preserving Hodge cycles.

On passing to the projective limit over all A and L, we obtain an exact sequence

1-5°—>S— Gal(Q/Q) > 1

with S° and S respectively the connected Serre group and the Serre group. This sequence
plays an important role in Articles ITI, IV, and V of Deligne et al. 1982.

In the next two sections, I describe two alternative theories to absolute Hodge classes.
I have chosen to define them as subtheories of absolute Hodge classes because having
them as subtheories of an existing robust theory simplifies the exposition. The reader
may prefer a different choice.

11 Motives for almost-algebraic classes

Let X be an algebraic variety over a field k of characteristic zero.

DEFINITION 11.1 An almost-algebraic class of codimension r on X is an absolute
Hodge class y of codimension r such that there exists pullback diagram

X —X

b

S «——— Speck

and a global section 7 of R* f,A(r) satisfying the following conditions:
(a) S is the spectrum of a regular integral domain of finite type over Z;

(b) f is smooth and projective;

(c) the fibre of 7 over Speck is y, and the reduction of ¥ at s is algebraic for all closed
points s in a dense open subset of S.

The Kiinneth components of the diagonal are almost-algebraic (8.6). Therefore,
when we define the category of motives using almost-algebraic classes it has a weight
gradation, and traces are still rational.

THEOREM 11.2 Let X be a smooth projective geometrically irreducible variety over k, and
let H be a standard Weil cohomology theory. For any integrally almost-algebraic cycle Z on
X X X of codimension n, the characteristic polynomial of the induced endomorphism of
H'(X) lies in Z[T] and is independent of H.

PROOF This follows by specialization from 8.7. O

To be continued.

NOTES Tate 1994, p.76: “This notion of almost algebraic class seems to be part of folklore.”

Serre SB 446-12 (1973-74): “In the general case, we can say that the A;; are “almost algebraic”:
they become algebraic when the coefficients of the equations of X are specialized to a finite
field. From that one deduces easilty (Katz-Messing; Kleiman Dix Exposes) that, if f: X — X
is an endomorphism of X, the characteristic polynomial of f acting on H (X, Q,) has integer
coefficients and it independent of £.”
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12 Motives for motivated classes

Let k be afield of characteristic zero, and let X be a smooth projective variety of dimension

n over k. There exist unique elements 7'[;( € AH"(X x X) such 713'( acts as the ith

Kiinneth projector in each standard Weil cohomology, and there exists a unique ‘A €
AH"2(X x X) such that

2n
[‘A,L] = Z(n — )t
i=0

(see 10.4, 8.17).
Suppose that for each smooth projective variety X over k and r € N, we have a
Q-subspace C"(X) of AH"(X), and that these satisfy

(a) C"(X) contains all algebraic classes and ‘A,

(b) the spaces C"(X) are stable under intersection product and under pullback and
pushforward by morphisms of algebraic varieties.

For example, the spaces C"(X) = AH"(X) satisfy these conditions. We let

MA"(X) = ﬂ Crx),

where the (C; (X))x,, run over all families satisfying the above conditions. Thus, (M A" (X))
is the smallest such family. We call the elements of MA"(X) the algebraic* classes of
codimensionr on X.

PROPOSITION 12.1 Let X, Y be a smooth projective varieties over k of dimension n.
(a) MA(X x X) is a Q-subalgebra of AH(X X X).

(b) Forany morphism f : X — Y, f* and f,. map algebraic* classes to algebraic* classes.
PROOF These statements follow directly from the definition. O

PROPOSITION 12.2 Let X be a smooth projective variety over k of dimension n. The classes
L ASA % p° ..., p*, and 7°, ..., m*" are all algebraic*.

PROOF As L and A are algebraic*, this follows from Proposition 8.15 applied to alge-
braic* classes. O

PROPOSITION 12.3 The standard conjectures hold for every standard Weil cohomology
theory (using algebraic* classes). Therefore, for all varieties X over k and all integers p such
that 2p < n = dim(X), the quadratic form

a,b — (=1)P(L"2Pab)
is positive definite on the set of a € MAP(X) such that L"~?P*q = 0.

PROOF Indeed, by definition the subfamily M A"(X) is the smallest containing the alge-
braic classes and such that the standard conjecture of Lefschetz type holds. The standard
conjecture of Hodge type holds for algebraic* classes because it holds for absolute Hodge
classes. O

PROPOSITION 12.4 For any standard Weil cohomology theory, the following hold.

(a) The operators A, °A, *, p°, ..., p*", 7%, ..., w®" are the classes of algebraic* cycles that
do not depend on the theory.
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(b) The Betti numbers b; = dim H'(X) do not depend on the theory.

(c) The characteristic polynomial of an endomorphism induced by a rationally (resp.
integrally) algebraic cycle has rational (resp. integer) coefficients that do not depend
on the theory.

(d) Ifthe map H\(X) — H/(Y) induced by an algebraic cycle is bijective (resp. injective,
resp. surjective) in one theory, then it bijective (resp. injective, resp. surjective) in every
theory. In fact, the inverse (resp. one left inverse, resp. one right inverse) may be
induced by an algebraic cycle that does not depend on the theory.

PROOF See the proof of 8.39. O

PROPOSITION 12.5 The category of motives, defined using algebraic* classes, is a semisim-
ple tannakian category over Q with a canonical polarization.

PROOF Obvious from the above. o

PROPOSITION 12.6 Let S be a smooth connected algebraic variety over C (not necessarily
projective), and let w: X — S be a smooth proper morphism. Let y be a global section
of the sheaf R* ,Q(r)), and let y, be the image of y in Hf;’(Xs)(r) (s € S(C). Ify,isa
algebraic* for one s € S(C), then it is algebraic* for every s € S(C).

PROOF Replace “absolute Hodge" with “algebraic* ” in the proof of 10.18. O

PROPOSITION 12.7 On an abelian variety over a field k of characteristic zero, every absolute
Hodge class is algebraic*.

PROOF Apply Theorem 9.18. o
PROPOSITION 12.8 On an abelian variety over C every Hodge class is algebraic*.
PROOF Apply Theorem 9.18. O

PROPOSITION 12.9 Let X be a smooth projective variety over k. An absolute Hodge class
on X is algebraic* if and only if it is of the form pr)’g(au x f3) where
o aand f8 are algebraic classes on X X Y (Y arbitrary),

o *isrelativetoL X1+ 1XL.

PROOF The classes of this form are obviously algebraic*. Conversely, André 1996 shows
that classes of this form satisfy the conditions defining the family (MX"(X))x . o

NOTES Proposition 12.9 shows that algebraic* classes are essentially the same as André’s moti-
vated classes (André 1996). Here I have used the theory of absolute Hodge classes to simplify the
exposition of the theory of motivated classes.






Appendix A

Categories and 2-Categories

Let C and D be categories. An equivalence of C and D is a system

F
C—D, p7:idc.—->GF, ¢: FG - idp, (145)
G

where F and G are functors and 7 and € are natural isomorphisms (invertible natural
transformations). We call a functor F: C — D an equivalence if it can be extended
to such a system. A functor F is an equivalence if and only if it is fully faithful and
essentially surjective (every object of D is isomorphic to an object in the image of F).

These conditions may be too strong. For example, we shall need to consider functors
F : C — D such that the objects of D are only “equivalent” to objects in the image. To be
able talk about such functors, we need morphisms of morphisms. In other words, we
need 2-categories. But first, we review adjoint functors.

Review of adjoint functors

Let C and D be categories.

A.1 An adjunction is a triple (F, G, ¢) consisting of a pair of functors

C——D (146)
G

and a family of bijections
¢xy: Homp(FX,Y) — Homc(X,GY),

natural in X € obC and Y € obD. We call (F,G) an adjoint pair, with F the left
adjoint of G and G the right adjoint of F . There are natural transformations

€: FG —»idp, ey = ¢ '(idgy): FGY - Y,

called the unit and counit of the adjunction, satisfying the triangle identities,
F F G G
(F -3 FGF <5 F) = idp (G 5 GFG -5 G) =idg. (147)
See A.6 for the notation F7 and ¢F.

285
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F
A.2 Let Fand G be functors C = D ,andletn: idc - GF ande: FG — idp be
G

natural transformations satisfying the triangle identities. Then the map
¢xy: Homp(FX,Y) - Homc(X,GY), [ Gfony,
is natural in X and Y, and has inverse
Yxy . Homc(X,GY) - Homp(FX,Y), [+ exoFf.

In particular, ¢x y is a bijection, and so the triple (F, G, ¢) is an adjunction with unit 7
and counit €.

F
A.3 Let F and G be functors C _—— D ,and lete: FG — idp be a natural trans-
G

formation. There exists a natural transformation 7 : idc — GF such that the triangle
identities hold if and only if the map

¢X,Y . Homc(X, GY) - HomD(FX, Y), f e €X0Ff,

is bijective for all X in C and Y in D, in which case (F, G, yp~lisan adjunction with
and ¢ as its unit and counit. The natural transformation # is unique if it exists.

A4 Let (F,G,n,¢e)be an equivalence, as in (145). After replacing either one of € or
with a different natural isomorphism, we obtain a system satisfying the triangle identities
(A.1). In particular, F and G will then be adjoints.

A.5 (ADJOINT FUNCTOR THEOREM) Let C and D be abelian categories with exact in-
ductive limits, and assume that C has a set of generators. Then a functor F : C — D has
a right adjoint if and only if it is right exact and compatible with direct sums.

NOTES This is standard category theory. See, for example, Borceux 1994a, Chapter 3, or Riehl
2016, Chapter 4.

Definition of 2-categories

A 2-category is a category enriched over the category of small categories equipped
with its cartesian monoidal structure (I, 1.7). When we forget the arrows in the Hom-
categories, we get a category in the usual sense. Thus, a 2-category can be viewed as a
category in the usual sense enriched with morphisms between morphisms.

In more detail, a 2-category has objects, 1-morphisms, and 2-morphisms. The objects
and 1-morphisms form a category in the usual sense. For each pair A, B of objects, there
is a small category Hom(A, B) having the 1-morphisms f : A — B as objects and the
2-morphisms!

as morphisms. Composition of morphisms in the category Hom(A, B) is called vertical
composition,

f f
e /ﬂ\
A—g— B » A oa B.

T N

1We sometimes use the symbol = to denote 2-morphisms.
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For each triple A, B, C of objects, there is a horizontal composition

(o, %) : Hom(B,C) X Hom(A, B) — Hom(A, C), (148)
f h hof
TR TR TR
AT «TBT pTcwoa Uﬁ*a C.
i iog

Here “Xx” denotes the Cartesian product of categories. The system is required to satisfy
the middle four interchange law: given a diagram,

f i
AN TS
A—g— B —j— C,
NN
h k

the 2-morphism iof = koh obtained by first composing vertically and then horizontally
equals that obtained by first composing horizontally and then vertically,

(Soy) * (Boa) = (8 * B)o(y * a).

When € is a 2-category, we write €, for the collection of objects, €, for the collection
of 1-morphisms, and ‘6, for the collection of 2-morphisms.
To distinguish them, we sometimes call categories in the usual sense 1-categories.

EXAMPLE A.6 The 2-category €« has as objects the small categories, as 1-morphisms
the functors between categories, and as 2-morphisms the natural transformations be-
tween functors. The vertical composite of natural transformations a : F = G and
B : G = H is the natural transformation foa : F = H such that

(‘BOOC)C = :Bcofxc : F(c) - H(c)

for all objects c. The horizontal composite of natural transformations a : F = G and
B:H=>I,

A/WBWC,
\E/' \I/'

is the natural transformation 8 * a: HoF — IoG such that (8 * «), is the diagonal
map in the commutative square

(HoF)(c) 2 (IoF)(c)
H(a,) I(a.)
l Ba(e) l

(HoG)(c) —— (IoG)(c)

for all objects c of A. For example, from
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we get a natural transformation SF : HF — IF, namely, 8 * idg, and from

F
TR
A Ua B—2 .
\G/

we get a natural transformation Ha : HoF — HoG. With this notation,

B # a = (BG)o(Ha) = (al)o(FP).
We can now make the following definition.

DEFINITION A.7 Let A and B be objects in a 2-category. An equivalence between A
and B is a system

f
A B, n:idy=>gof, €e: fog= ids,
g
where f and g are 1-morphisms and 7 and € are 2-isomorphisms (invertible 2-morphisms).
We call a I-morphism f : A — B an equivalence if it can be extended to such a system,

and we say that A and B are equivalent, denoted A ~ B, if there exists such an f.

A.8 Let(f,g,n,¢e)beanequivalence. Asin A.4, after possibly replacing either one of € or
7n with a different 2-isomorphism, the system (f, g,, €) will satisfy the triangle identities
(A.1). Such a system (f, g, 7, €) is then called an internal or adjoint equivalence. See
Johnson and Yau 2021, 6.2.4.

A9 If A ~ A’ and B ~ B’, then Hom(A, B) ~ Hom(A’, B’). More precisely, from
equivalences between A and A’ and between B and B’, we get an equivalence between
Hom(A4, B) and Hom(A4’, B').

il

NOTEs What we call a “2-category” is sometimes called a “strict 2-category”. Our “2-category’
is called a “locally small 2-category” in Johnson and Yau 2021, 2.3.9 (because we require the
hom categories to be small).

2-functors and 2-equivalence

DEFINITION A.10 Let € and & be 2-categories. A 2-functor F : ‘€ — 9 consists of a
function F, : €, — 9, and a family of functors

FA,B . Homfg(A,B) g Hom@(FoA,FoB),

indexed by the pairs of objects A, B in 6, satisfying the following conditions,
(a) F is afunctor between the underlying 1-categories of € and 9,

(b) F preserves horizontal compositions of 2-morphisms, i.e., the following diagram
commutes,

horizontal

Homg (B, C) X Homg (A, B) composition Homg (A, C)
lFB,CXFA,B lFA,C

Homg, (FB, FyC) X Homg,(FyA, FoB) 202008, Hiomg, (FoA, FoC).

composition
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DEFINITION A.11 Let F,G: € =2 D be two 2-functors of 2-categories. A 2-(natural
transformation) a . F — G is a family of 1-morphisms

a,: FA— GA

indexed by the objects A of € such that
(a) for each 1-morphism f : A — B, the diagram

FA 245 GA

lFf le

FB -2, GB

commutes, and

(b) for each 2-morphism 6 : f = g in Homg(A, B), the diagram

(Gf)oay == ago(Ff)
l(GG)*idaA lidaA*(Ge)
(Gg)oay = apo(Fg)

commutes in Homg(FA, GB).

DEFINITION A.12 A 2-(natural transformation) a : F — G is a 2-(natural isomor-
phism) if there exists a 2-(natural transformation) 8 : G — F such that fa = idr and
(xﬁ = ldG .

DEFINITION A.13 Let6 and & be 2-categories. A 2-equivalence of € and @ is a system

F
C@(___@, nldcg—)GF, E:FG—)idgb,
G

where F and G are 2-functors and 7 and € are 2-(natural isomorphisms). We call a
2-functor F : 6 — D a 2-equivalence if it can be extended to such a system.

THEOREM A.14 (WHITEHEAD THEOREM FOR 2-EQUIVALENCE) Let € and 9 be 2-cat-
egories. A 2-functor F : ‘€ — 9 is a 2-equivalence if and only if

(a) the underlying functor on the 1-categories is an equivalence, and
(b) F is fully faithful on 2-morphisms.

Condition (b) in the theorem means that, for all objects A, B in €, the functor
F,p: Homg(A, B) — Homg(FyA, FyB)
is fully faithful.

A.15 The conditions in the theorem are equivalent to
(a) F, is surjective on isomorphism classes of objects, and

(b) for all objects A, B in 6, the functor
FA,B . Hong(A,B) Ed Homg(FoA, FoB)

is an isomorphism of 1-categories.



290 Appendix A. Categories and 2-Categories

As the condition (b) suggests, a 2-equivalence is the analogue of an isomorphism
of 1-categories. As we explain in the next subsection, the analogue of the more useful
notion of an equivalence of 1-categories is an equivalence of 2-categories (also called a
biequivalence).

NOTES For the above statements, see Johnson and Yau 2021, 4.1.8 (A.10), 4.2.11 (A.11), 1.3.11
(A.12, A.13), and 7.5.8 (A.14).

Pseudofunctors and the equivalence of 2-categories

We need to relax some conditions in the last subsection. The notion of a pseudo widget
is obtained from that of a widget by allowing certain equalities to be isomorphisms.

DEFINITION A.16 Let € and 9@ be 2-categories. A pseudofunctor F : € — & consists
of a function F,, : €, - 9, and a family of functors

FA,B : Homfg(A,B) = Hom@(FoA, FoB), A,B (S Ob((g),

satisfying the same conditions as for a 2-functor except that the diagram in A.10(b) com-
mutes only up to a given natural isomorphism, i.e., we are given natural isomorphisms

F} : FgoFf — F(gof), [ € Hom(A,B), g € Hom(B,C),

satisfying certain conditions instead of equalities FgoF f = F(gof). There is also a unity
constraint. See Johnson and Yau 2021, 4.1.2.

A.17 Pseudo-functors preserve internal equivalences (ibid., 6.2.3).

DEFINITION A.18 Let F,G : € =3 9 be two pseudofunctors of 2-categories. A pseudo
natural transformation a . F — G is a family of 1-morphisms

a, € Homg(FA,GA)
indexed by the objects A of € and a family of invertible 2-morphisms
ar: G(foay = agoF(f)
indexed by the 1-morphisms f of ‘€ satisfying certain coherence conditions (ibid., 4.2.1).
Pseudo natural transformations are also called strong transformations.

DEFINITION A.19 Leta,3: F =3 G be pseudo natural transformations of pseudofunc-
tors F,G : € 3 9. A modificationT : a — (3 is a family of 2-morphisms

Fatag= Ba,
indexed by the objects of ‘€, such that the diagram

idg T4

Gy < 68,

b

Tpxidps
ag(Ff) —— Bp(Ff)

commutes in Homg,(FA, GB) (ibid., 4.4.1, 4.4.3).
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DEFINITION A.20 Let® and 9 be 2-categories such that 6, is a set. There is a 2-category
P3sFun(€,D) with

o objects the pseudofunctors € — 9,
o 1-morphisms the pseudo natural transformations between such pseudofunctors,

o 2-morphisms the modifications between such pseudo natural transformations.
See Johnson and Yau 2021, 4.4.13, where the category is denoted Bicat’®(6, D).

DEFINITION A.21 Let6 and & be 2-categories. A biequivalence of € and & is a system

F
€ —— 9. idg - GF, FG - idy,
G

where F and G are pseudofunctors and id¢ — GF and FG — idg, are pseudo natural
transformations that are internal equivalences in P 3Fwn(6,6) and P3Fun(D,D)
respectively. We call a pseudofunctor F : € — & a biequivalence if it can be extended
to a biequivalence in the above sense (ibid. 6.2.8).

Note that the condition for a 2-functor of 2-categories to be a 2-equivalence is much
stronger than the condition to be a biequivalence. A biequivalence is also called an
equivalence between 2-categories (it is the correct analogue of an equivalence of 1-
categories).

DEFINITION A.22 Let F,G: € = 9D be pseudofunctors of 2-categories. A pseudo
natural transformation o : F — G is an equivalence if each component o, : F(A) —
G(A) is an equivalence in the category 9.

This is equivalent to « itself being an equivalence in the 2-category P 3F wn(6,D).
Thus, we can restate definition A.21 as follows.

DEFINITION A.23 An equivalence between 2-categories € and & consists of
(a) pseudofunctors F: € - @ and G: @ — 6,

(b) pseudo natural transformations idg — GoF and FoG — idg, that are themselves
equivalences.

PROPOSITION A.24 Let F : 6 — 9D be a pseudofunctor of 2-categories. If F is an equiva-
lence (of 2-categories), then, for all A, B € ob‘6, the functor

F,p: Homg(A, B) = Homg(FyA, FyB)
is an equivalence of 1-categories.
PROOF See Johnson and Yau 2021, 6.2.13. O

THEOREM A.25 (WHITEHEAD THEOREM FOR BIEQUIVALENCE) Let 6 and < be 2-cat-
egories. A pseudofunctor F : ‘€ — D is a biequivalence if and only if

(a) F, is surjective on equivalence classes of objects, and
(b) for all objects A, B of 6, the component functor

FA,B . Hom%(A,B) i Hom@(FoA, FoB)

is an equivalence of 1-categories.
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PROOF Johnson and Yau 2021, 7.4.1. O

A.26 The conditions in the theorem are equivalent to,

(a) F issurjective on equivalence classes of objects,
(b) F is surjective on isomorphism classes of 1-morphisms (between any two objects),

(c) F is bijective on 2-morphisms (between any two 1-morphisms).

REMARK A.27 (a) When the F in the theorem is a 2-functor, there need not exist a
2-functor G satisfying the conditions in A.21, only a pseudofunctor.

(b) When F is a biequivalence, the underlying functor on 1-categories need not be
full, faithful, or essentially surjective.

(c) Let F: € — 9 be a 2-functor of 2-categories. If F is a 2-equivalence, then F,
is surjective on isomorphism classes of objects; if it is a biequivalence, it need only be
surjective on equivalence classes of objects.

THEOREM A.28 (?) LetF : 6 — 9 be a 2-functor of 2-categories. If there exists a 2-functor
G: 9@ — 6 and equivalences

A ~ GF(A), naturalin A € 0b€
B ~ FG(B), natural in B € ob 9,

then F is an equivalence of 2-categories.

PROOF We check the conditions of Theorem A.25. From B ~ FG(B), we see that F is
surjective on equivalence classes of objects. Consider the functors

b
Home(A, B) — Home,(FA, FB) —s Homg(GFA, GFB) —s Home,(FGFA, FGFB).

The composites boa and cob are equivalences of 1-categories, from which it follows that
a = F, p is an equivalence of 1-categories, as required. Cf. the proof of Johnson and Yau
2021, 6.2.13. o

NOTES The Whitehead theorems are classical folklore. They were named by Johnson and Yau
2021 in analogy with the Whitehead theorm in homotopy. They are also made explicit in Gabber
and Ramero 2018, 2.4.30.

ToDo 18 Check Theorem A.28. Deligne argues that nonstrict 2-categories are the correct objects.

The Yoneda lemma

DEFINITION A.29 Let 6 be a 2-category such that 6, is a set. There is a (Yoneda)
pseudofunctor h: € - P sFun(6°?,6at)such that

o for any object A, h, is the pseudofunctor Homg(—, A),

¢ for any 1-morphism f : A — B, hy is the strong transformation f, : hy — hg,
and

o for any 2-morphism o : f — g, h, is the modification «,.
See Johnson and Yau 2021, 8.2.1.
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A.30 (YONEDA LEMMA) Given a 2-category o, an object A of of, and a 2-functor F : of —
‘6 -at, there exists an isomorphism of 1-categories

F(A) — 2—Nat(h4,F),

where h4 = Homy (A, —) is defined similarly to h,, and the right-hand side is the
1-category with objects the 2-(natural transformations) h4 = F as objects and the
modifications as arrows. See Borceux 1994a, 7.10.3.

A.31 (YONEDA EMBEDDING) Let 6 be a 2-category such that 6, is a set. For all objects
A, B of 6, and corresponding objects h 4, hg of P sFun(€°P, 6 wl), the functor

h: Hom(A, B) - Hom(hy, hg)

is an isomorphism of 1-categories. See Johnson and Yau 2021, 8.3.13.

2-limits

TBA There are several inductive limits of categories in the text, which should probably
be 2-limits, once I understand the difference.

ASIDE A.32 Asarough rule of thumb, in a 1-category, objects can be considered to be the “same”
if they are isomorphic, and parallel morphisms if they are equal. In a 2-category, objects can be
considered to be the “same” if they are equivalent, parallel 1-morphisms if they are isomorphic,
and parallel 2-morphisms if they are equal.






Appendix B

Ind categories

We review what we need in the rest of the work.

Basic definitions

B.1 A setwith an order < is filtered if, for every pair of elements a, b, there exists an
element c such that a,b < c. A category is filtered if, for every pair i, j of objects, there
exists an object k and morphisms i — k, j — k, and for every parallel pair of morphisms
u,v: i =3 j there exists a morphism w : j — k such that wou = wov. A filtered set can
be viewed as a filtered category in an obvious way.

B.2 Let C be a category. An ind-object in C is a functor & v X, : A - C, where A a
small filtered category. On setting

Hom((X,,), (Y)) = lim lim Hom(X,,, Yp), (149)
a B

we obtain a category Ind C. The same category is obtained when A is required to be a
filtered set (SGA 4, 1, 8.1.6). The functor sending an object of C to a constant inductive
system embeds C as a full subcategory of Ind C.

B.3 We write “li_n}”Xa for the object of Ind C defined by the inductive system (X, ).
The functor

“hgl”Xa W) li_r)n th
is an equivalence of Ind C with the category of functors C°? — Set that are small filtered
inductive limits of representable functors. In this way, we get an equivalence

s ) op
h_n)tha( ): Ind C — Lex(C°P, Set),

a

where Lex is the category of left exact functors and natural transformations (SGA 4, I,
8.3.3).

B.4 If C is an abelian category, then so also is Ind C (SGA 4, I, Exercice 8.9.9¢), and the
canonical functor C — Ind C is exact (ibid. 8.8.2), so C is an abelian subcategory of Ind C.
Small filtered inductive limits exist in Ind C (ibid. 8.5.1) and are exact, i.e., commute
with finite projective limits (ibid. 8.9.1d). If F : C — D is a right exact functor of abelian
categories, then Ind F commutes with inductive limits (SGA 4, 1, 8.7.1.7, 8.7.2.2, 8.9.8).

The same statement holds with “abelian” replaced by “homological” (see B.22).

295
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Ind categories of categories whose objects are noetherian

B.5 Recall that a subobject of an object X is an equivalence class of monomorphisms
with target X. A category is well-powered if the subobjects of any object form a set, in
which case they form a partially ordered set. An object is artinian (resp. noetherian) if
the set of its subobjects satisfies the descending chain condition (resp. ascending chain
condition).

PROPOSITION B.6 Let C be a homological category (for example, an abelian category) all
of whose objects are noetherian.
(a) Everyobject X of Ind C is of the form “li_n)l”X «» Where (X ), is filtered inductive system
in C whose transition morphisms are monomorphisms.

(b) The category C is stable under subquotients in IndC, i.e, if X isin Cand Z is a
subquotient of X in Ind C, then Z is in C.

(c) LetX =“lim”X,, where (X, ), is an inductive system as in (a). Each X, is a subobject
of X, and the set of X, is cofinal in the collection of all subobjects of X.

PROOF (a). Let X =“li_r)n”Xa. For each a, the kernels of the morphisms X, — X,
B > «a, form an increasing system of subobjects of X, which is stationary because
X, is noetherian. Let K, = Ker(X, — Xp) for all § sufficiently large. The canonical
morphism

“H_II)I”XC{ — “li_r)n”(Xa/KC{)

is an isomorphism, and the inductive system (X, /K,), satisfies (a).

(b) Because C is an homological subcategory of Ind C, it is stable under subquotients
if it is stable under subobjects. Let Y € ob C, and let X be a subobject of Y in Ind C. Write
X =“lim”X,, where (X,), is an inductive system as in (a). For each a, the inductive
limit of the monomorphisms X, — Xg, 8 > @, is a monomorphism X, — X (exactness
of inductive limits in Ind C; see B.4). Thus the X, are subobjects of Y. As Y is noetherian,
they form a stationary system, and so X = X, € ob C for «a sufficiently large.

(c) As in the proof of (b), the morphisms X, — X are monic, and so the X, are
subobjects of X. For any other subobject Z of X in C, we have

Hom(Z,X) = h_r)n Hom(Z,X,),

a

and so Z — X factors through X, for some a. o

PROPOSITION B.7 Let D be an homological category and C a full subcategory stable under
finite sums and subquotients. If

(a) all objects of C are noetherian,
(b) small filtered inductive limits exist in D and are exact, and

(c) every object of D is a small filtered inductive limit of objects of C,

then the functor
“lim”X, ~» limX,: IndC - D
— —

is an equivalence of categories, with inverse the functor sending an object X of D to the
inductive system of its subobjects in C.

Loosely, we can say that D is the category of ind-objects of C.
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PROOF As in the proof of B.6(a),(c), we can deduce from (c) that each X in D is a
small filtered inductive limit of subobjects X, in C. Moreover, the X, are cofinal in the
collection of all subobjects of X in C. To see this, let Z € ob C be a subobject of X; on
passing to the limit in

0-2ZnX, > X, —X/Z,

we find that the Z n X, have inductive limit Z; as Z is noetherian, they form a stationary
system, and so this means that Z is contained in X, for all sufficiently large a. We have
shown that X is the inductive limit of its subobjects in C, and so the composite

D—-IndC—-D

is the identity functor. Conversely, every X in Ind C is a “lim”X,, as in B.6(a) and the X,
are cofinal in the set of subobjects in C of li_n)lX «; therefore the composite

IndC - D —» IndC
is the identity functor. o

We list some examples where Proposition B.7 implies that D ~ Ind C. Throughout k
be a field.

EXAMPLE B.8 Let R be a noetherian ring. Take C to be the category Modf(R) of finitely
generated R-modules and D to be the category Mod(R) of all R-modules. The conditions
of B.7 are obviously satisfied.

EXAMPLE B.9 More generally, let X be a noetherian scheme, and take C to be the cat-
egory of coherent sheaves on X and D to be the category of quasi-coherent sheaves.
Condition (c) of B.7 follows from the fact that every quasi-coherent Ox-module is the
inductive limit of its quasi-coherent Ox-submodules of finite type (EGA 1, 9.4.9).

EXAMPLE B.10 Let L be a coalgebra over a noetherian ring R. If L is flat over R, then the
category coMod(L) of right L-comodules is abelian. Moreover, every L-comodule is the
union of the L-subcomodules finitely generated over R (Serre 1968, Cor. 2). Therefore,
coMod(L) is locally noetherian, and its noetherian objects are those finitely generatd
over R.

EXAMPLE B.11 Let G be an affine group scheme over k. Take C to be the category
Repf(G) of representations of G on finite-dimensional k-vector spaces, and D to be
the category Rep of representations of G on arbitrary k-vector spaces. Condition (c)
of B.7 says that every representation is the inductive limit of its finite-dimensional
subrepresentations (11, 1.16).

EXAMPLE B.12 Let G be an affine k-groupoid acting transitively on an affine k-scheme
S. Take C to be the category Repf(S : G) of representations of G on locally free sheaves
of finite rank on S, and D to be the category of representations of G on quasi-coherent
sheaves on S. When S is the spectrum of a field, condition (c) of B.7 follows from III,
6.6. The general case then follows from III, 3.4 (whose proof uses gerbes). If there is an
s € S(k), then the functor “fibre at s” is an equivalence of Repf(S:G) with Repf(G; )
(ibid.), and we are back in the last example.
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EXAMPLE B.13 An abelian category is noetherian if it is essentially small and its objects
are noetherian. It is locally noetherian if it has inductive limits, filtered inductive limits
are exact, and there exists a family of noetherian generators with small index set. Let
C be a noetherian abelian category. There exists a locally noetherian abelian category
D such that C is equivalent to the category of noetherian objects in D. Moreover, this
condition determines D up to equivalence. See Gabriel 1962, 11, §4.

EXAMPLE B.14 Take C to be an abelian category whose objects are noetherian, and D to
be the category of additive left exact functors from C°P to the category of abelian groups.

Extension of scalars

B.15 Let k be a field and k’ an extension of k. Suppose that we are given a pair of
k-linear abelian categories C C D satisfying the conditions of Proposition B.7, a pair of
k’-linear abelian categories C' C D’ satisfying the same conditions, and an adjoint pair
of functors

extension
DI
"
restriction

(extension of scalars, restriction of scalars). The functor restriction of scalars induces a
functor

D’ — {object X of D together with a k-linear k’-module structure}. (150)

For X in D and V a k-vector space, the functor Y v Hom(V, Hom(X,Y)) is repre-
sentable, and we let V' ®; X denote the object in D representing it, so

Hom(V ®, X,Y) ~ Hom(V,Hom(X, Y)).

If (e;);¢s is a basis for V' (possibly infinite), then V ®, X is a direct sum of copies of X
indexed by I. A k’-module structure can be interpreted as a morphism k' ®, X — X
with certain properties.

Let X be an object of D equipped with a k-linear k’-module structure. We say that
Y C X generates X as a k’-module if the composite

k,®kY—>kl®kX—>X

is an epimorphism, i.e., any k’-submodule of X containing Y equals X. We let C;, denote
the category of objects of D ~ Ind C equipped with a k-linear k’-module structure and
generated as a k’-module by a subobject in C.

PROPOSITION B.16 In the above situation, suppose
(a) that the functor (150) is an equivalence;

(b) the extension of scalars D — D' sends C into C'.
Then the functor restriction of scalars induces an equivalence C' — Cy..

PROOF Identify D with Ind C, and, by (150), D’ with the category of Ind-objects of C
equipped with a k’-module structure. With these identification, the restriction of scalars
functor becomes the forgetful functor. Its left adjoint (extension of scalars) becomes
X w~ k' ® X. It remains to determine C’.

If X € ob D’ is generated as a k’-module by a D-subobject Y C X with Y € obC, then
it is a quotient of kK’ ®; Y and is therefore in C’. Conversely, if X € ob C’, we write it in
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D as a filtered union of its subobjects X, in C. Since X is noetherian in C’, the system
of submodule images of the k' ®; X, in X is stationary. Therefore X is a quotient of
k' ®; X, for a sufficiently large, and so lies in C,. o

EXAMPLE B.17 We list some examples where Proposition B.16 implies that C' ~ C.

(a) Let X be a scheme of finite type over k and X’ the scheme over k’ deduced from
X by extension of scalars. Take C and C’ to be the categories of coherent sheaves
on X and X’ and D and D’ the categories of quasi-coherent sheaves. In this case,
“restriction of scalars” is direct image by the morphism X’ — X.

(b) Let G be an affine algebraic group over k and G’ the group scheme over k’ deduced
from G by extension of scalars. Take C = Repf(G) and C' = Repf(G’), and let D
and D’ be as in B.11.

(c) More generally, let G be an affine groupoid acting transitively on an affine scheme
S over k and G’, S’ the schemes over k’ deduced from G, S by extension of scalars.
Let D and D’ be as in a B.12.

Pro categories

B.18 On reversing the arrows, we get the notion of a pro-object. A pro-object in a
category C is a small filtered projective system o ~ X, and

Hom((X,), (Y)) = lim lim Hom(X,, Y).
B«

If C is homological, so also is Pro C, and the canonical functor C — Pro C is exact. The
opposites (duals) of Propositions B.6 and B.7 hold for homological categories C whose
objects are artinian.

EXAMPLE B.19 Let C = Vecf(k), the category of finite-dimensional vector spaces over k.
Then Ind C is the category of all vector spaces over k and Pro C is the category of linearly
compact vector spaces over k. Duality is an antiequivalence betuween Ind C and Pro C.

EXAMPLE B.20 Let k be a field. Take C to be the category of affine algebraic group
schemes over k, and D to be the category of all affine group schemes over k. The objects
of C are artinian and the category D is homological. The functor

“lim”’G, w limG, : ProC - D
— —

is an equivalence of categories, with inverse the functor sending an affine group scheme
G to the projective system of its algebraic quotients (the system (G/N)y, where runs
over the normal subgroup schemes of G such that G/N is algebraic). Every affine group
scheme over k is the limit of a filtered projective system of algebraic group schemes over
k whose transition morphisms are faithfully flat.

IfG = 1(2 G, we view its Lie algebra

Lie(G) = l(iELie(Ga)

as a pro Lie algebra. If G = Spec(A) and I isideal of f € A zero at the origin, the linearly
compact vector space underlying Lie G is the dual of I /T2,
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EXAMPLE B.21 More generally, fix a field k and an affine k-scheme S. Take C (resp. D) to
be the category of k-groupoids acting transitively on S and whose kernel is an algebraic
group (resp. affine group scheme) over k. The objects of C are artinian (1.27). The
functor
“lim”G, w» limG, : ProC - D
«— —

is an equivalence of categories, with inverse the functor sending a k-groupoid G to the
projective system (G/N)y, where N runs over the normal subgroup schemes of G*
such that GA/N is algebraic. Every affine faithful S/k-groupoid is the limit of a filtered
projective system, with faithfully flat transition morphisms, of algebraic k-groupoids
acting faithfully on S.

Homological categories

We review the definition of homological categories.

B.22 A category is said to be finitely complete if all equalizers and finite products exist.
This means that finite projective limits, indexed by any finite category, exist.

Let C be such a category. A morphism in C is a regular epimorphism if it is the
coequalizer of some parallel pair of morphisms. As the name suggests, regular epimor-
phisms are epimorphisms.

Let f : A — Bbe amorphism in C. A parallel pair of morphisms iy,i, : P =3 A is
the kernel pair of f if (i;,i,) : P — A X A is an isomorphism.

The category C is regular if (a) every kernel pair admits a coequalizer, and (b) regular
epimorphisms are stable under pullbacks. For example, the categories of sets, groups,
and topological groups (but not topological spaces) are all regular. In a regular category,
every morphism factors into a regular epimorphism q followed by a monomorphism i
(the image factorization),

q i
A— I — B,

and this factorization is unique up to a unique isomorphism.

Assume that the terminal object of C is also initial, so that kernels are defined (as
the equalizer of the morphism with the zero morphism). The category C is homological
if it is regular and the split short five lemma holds, i.e., given a commutative diagram

Ker(f) — A ——B voi = i'ou
R
1 vos = §'ow

Ker(f") LAY —— B
sl

with (f,s) and (f’, s") split epimorphisms, the morphism v is an isomorphism if u and
w are. The group objects in any category with finite products satisfy the split short five
lemma.

A morphism in a homological category is normal if its image is a kernel. For example
a homomorphism f : G — H of topological groups is a normal morphism if and only if
its image (in the sense of sets) is a normal subgroup of H on which the quotient topology
coincides with the subspace topology.

A sequence

1-al Bt oot
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in a homological category is said to be exact if f = Ker(g) and g is a regular epimorphism;
in particular, f isanormal morphism. Long exact sequences can be defined, as for abelian
categories, using the image factorization.

All the classical lemmas for abelian categories hold mutatis mutandis for homological
categories. For example, the snake lemma holds for a diagram in which the vertical
arrows are normal morphisms. See Borceux and Bourn 2004, Chapter 4.

NOTES The exposition in this section largely follows Deligne 1989 §4. See also Artin and Mazur
1969, Appendix, pp. 147-166, Gabriel 1962, and SGA 4, I, §8.






Appendix C

Nonabelian cohomology

We review some definitions from Giraud 1971. Throughout, we work with affine schemes.
This allows us to sheafify (basically bounded) presheaves for the fpqc topology without
having to pass to a larger universe.

1 Fibred categories

Let A be a small category and ¢ : F — A a functor. For an object S of A, the fibre of F at
S is the category Fg whose objects are the X in F such that ¢(X) = S and whose arrows
are the f in F such that ¢(f) = idg. For an arrow a : ¢(Y) — ¢(X), we let Hom,(Y, X)
denote the set of f : Y — X such that ¢(f) = a.

Leta: T — S be an arrow in A and let f € Hom,(Y,X). We say that (Y, f) is
an inverse image X relative to a, and write Y = a*X, if, for every Z € obF; and
g € Hom,(Z, X), there exists a unique h € Hom;q (Z,Y) such that foh = g:

In other words, there is an isomorphism HomidT(Z ,a*X) ~ Hom,(Z,X), natural in
7z e ob FT'

The functor ¢ : F — A is a fibred category if

(a) (existence of inverse images) for every arrowa : T — Sin A and X € ob(Fg), an
inverse image a*X exists, and

b
(b) (transitivity of inverse images) given arrows U — T % SinAand X € ob Fs,
b*(a*X) is an inverse image of X relative to aob.

In a fibred category, a* can be made into a functor Fy; — Fy,, and for every pair a, b of
composable morphisms in A, (aob)* ~ b*oa™.

Let¢p: F > Aand ¢’ : F/ — A be fibred categories over A. A functoru: F — F/
such that ¢’ ou = ¢ is cartesian if it preserves inverse images. When u, u’ are cartesian
functors F — F/, a cartesian natural transformation is a natural transformation

303
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m : u — u’ such that idy * m =idg,

/u\\ /‘/\; /(E\
F “m F’ ﬂldw A = F U1d¢ A.
\LT/ \(ﬁ//' \¢/’

We write Cart(F, F’) for the category whose objects are the cartesian functors F — F’ and
whose morphisms are the cartesian natural transformations.

There is a 2-category F<6(A) whose objects are the fibred categories ¢ : F — A,
whose 1-morphisms are the cartesian functors, and whose 2-morphisms are the cartesian
natural transformations (Giraud 1971, 1, 1.8.1).

Let ¢ : F — A be a fibred category, and view A as a 2-category with only a single
2-morphism between any two 1-morphisms. For each object S of A, we have a category
Fg, and for each morphism T' — S we have an inverse image functor F¢ — Fr. These
form a pseudofunctor A°? — Cat, and every pseudofunctor arises from a fibred category.
More precisely, there is a canonical 2-equivalence of 2-categories

PsFun(A®, Catl) ~ Ftb(A)

under which 2-functors correspond to split fibred categories. In particular, every fi-
bred category over A is isomorphic to one defined by a pseudofunctor (Grothendieck’s
construction; Johnson and Yau 2021, 10.1.11, 10.6.16).

2 Sheaves for the fpqc topology

Let S be an affine scheme Spec(R), and let Affg denote the category of affine schemes
over S. The fpqc topology' on Affg is that for which the coverings are finite surjective
families of flat morphisms U; — U of affine S-schemes. A sheaf of sets on S is a
contravariant functor & : Affg — Set satisfying the sheaf condition: for all coverings
(U; = U);er, the sequence

ARSI BACHES | B C/ D)

is exact, i.e., the first arrow is the equalizer of the parallel pair. More concretely, a sheaf
of sets for the fpgc topology on Affg is a functor # : Alg, — Set such that

(a) \T(Rl XRz) = ?(Rl) X ‘r]'r(Rz), and

(b) for any faithfully flat map R — R’, the arrow F(R) — F(R’) is the equalizer of the
parallel pair of arrows F(R') = F(R' ®z R’) definedbya —» a® 1,1 ® a.

For any S-scheme X, the functor T ~ hx(T) & Homg(T, X) is a sheaf. Indeed, (a) is

obvious, and (b) follows from the exactness of R > R’ = R’ ® R’ (Waterhouse 1979,
13.1).

3 Stacks (Champs)

Let S be an affine scheme, and let ¢ : F — Affg be a fibred category over Affy.

Tn order to be sure that associated sheaves exist, we should consider only basically bounded presheaves;
see Waterhouse 1975.
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Descent data

Leta: V — U be a faithfully flat morphism of affine S-schemes, and let F € ob(Fy). A
descent datum on F relative to a is an isomorphism

u: pri(F) — pry(F)

over V Xy V satistying the “cocycle” condition

pry, (u) = pry,(u)o pry, (u)
overV Xy VXyV,

pry; (W)

* * *
pI'lF W pr2F W pr3F.

Here pr; is the projection onto the ith factor and pr i is the projection
VXUVXUV—) VXUV

onto the (i, j)th factor. With the obvious notion of morphism, the pairs (F,u) form a
category Desc(V /U).

There is a functor F;; — Desc(V /U) sending an object F of Fy; to (a*F, u) with u the
canonical isomorphism

prj(a*F) =~ (aopr,)*F = (ao pr,)*F ~ pr;(a*F).

Definition

A stack is a fibred category ¢ : F — Affg such that, for all faithfully flat morphisms
a: V — U in Affg, the functor F; — Desc(V /U) is an equivalence of categories.
Explicitly, this means the following:
(a) for an affine S-scheme U and objects F, G in Fy;, the functor sendinga : V - U
to Hom(a*F, a*G) is a sheaf of sets on U (for the fpqc topology);

(b) for every faithfully flat morphism V' — U of affine S-schemes, descent is effective
(that is, every descent datum for V' /U is isomorphic to the descent datum defined
by an object of Fy;).

In other words, a fibred category is a stack if both morphisms and objects, given locally
for the fpqc topology, patch to global objects.

A morphism of stacks is a cartesian functor, and a morphism of morphisms of
stacks is cartesian natural transformation. Thus the stacks over Affg form a 2-category
with

Hom(F, F") = Cart(F,F").

Examples

Let S be an affine scheme.

o There is a fibred category ¢ : MOD— Affg such that MODy, is the category of
['(U, Oy)-modules. Descent theory shows that this is a stack: if R — R’ is faithfully
flat, then R’ ® — is an equivalence from R-modules to R’-modules equipped with
a descent datum (Waterhouse 1979, 17.2).
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o There is a fibred category ¢ : PROJ— Affg such that PROJy; is the category of
finitely generated projective I'(U, Oy )-modules. Descent theory shows that this is
a stack: if R - R’ is faithfully flat, then an R-module M is finitely generated and
projective if and only if R’ @ M is.

o There is a fibred category ¢ : AFF— Affg such that AFF; = Affy, i.e., the fibre
over U is the category of affine U-schemes. Descent theory shows that this is a
stack (Waterhouse 1979, 17.3).

Prestacks and the associated stack

A fibred category is a prestack if it satisfies the condition (a) to be a stack, i.e., for all
F,G € obFy, the functor

(v 5 U) ~ Hom(a*F, a*G)

is a sheaf on U for the fpqc topology.

Let ¢ : F — Affg be a prestack. The associated stack ¢ : F' — Affg of F (Giraud
1971, 11, 2.1.3, 2.1.4)? contains it as a full subcategory and is characterized by having the
property that every object of F/ is locally in F. For any stack H over Affg, the inclusion
functor i : F — F’ induces an equivalence of categories

Hom(F’, H) = Hom(F, H), (151)

compatible with base change.

4 Gerbes

Let S be an affine scheme. A gerbe over S is a stack G — Affg such that,
(a) for all U, the category Gy is a groupoid (all morphisms are isomorphisms);
(b) there exists a faithfully flat morphism U — S such that G; is nonempty;

(c) any two objects of a fibre Gy; are locally isomorphic (i.e., their inverse images
under some faithfully flat morphism V' — U of affine S-schemes are isomorphic).

A morphism of gerbes over S is a morphism of stacks whose domain and codomain are
gerbes, and similarly for a morphism of morphisms of gerbes. Thus the gerbes over Aff
form a 2-category such that

Hom(F, F") = Cart(F, F").

A gerbe G— Affg is neutral if Gg is nonempty.

Example: torsors

Let G be a sheaf of groups on S (for the fpqc topology). There is a fibred category
TORS(G) — Affg such that TORS(G)y is the category of right torsors under G over U. It
is neutral, because of the trivial torsor under G over S (G acting on itself on the right).

2To construct F/, we have to add an object over U for each faithfully flat morphism V' — U and object
over V with a descent datum. We can do this by defining ob F}, = h_r)n Desc(V /U), where V — U runs over
a suitably large collection faithfully flat morphisms.
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Conversely, let G be a neutral gerbe, and choose a Q € ob(Gg). Then G «f Aut(Q)
is a sheaf of groups on S, and, foranya : U — S and P € ob(Gy), Isom(a*Q,a*P)isa
torsor under G over U. The functor

P« Jsomy(a*Q,a*P): G — TORS(F)

is an isomorphism of gerbes.

5 Bands (Liens)

Throughout, S is an affine scheme.

C.1 Leta: V — U be a faithfully flat morphism of affine schemes over S. To give an
group scheme of finite presentation over U is the same as giving a group scheme G of
finite presentation over V' together with an isomorphism u : prj G — pr; G satisfying
the cocycle condition. By definition, to give a band over U is the same as giving a
group scheme G of finite presentation over a suitable V' together with an isomorphism
u: pry G — pr; G satistying the cocycle condition modulo inner automorphisms.

C.2 We make this more explicit. Let LI;; be the category whose objects are sheaves of
groups on U (for the fpqc topology) and whose morphisms F — G are the sections of
the quotient sheaf

G\Hom(F,G)/F,

where F and G act by inner automorphisms. On varying U, we get a fibred category
LI — Affg. Itis, in fact, a prestack, and we let LIEN— Affg denote the associated stack.
Thus LI is a full subcategory of LIEN, and every object of LIEN is locally in LI. An object
of LIENy; is called a band (lien) over U.

C.3 We make this (even) more explicit. Let F and G be sheaves of groups for the fpqc
topology on S, and let G2 be the quotient sheaf G/Z, where Z is the centre of G. The
action of G% on G induces an action of G on the sheaf 7som(F, G), and we set

Isex(F,G) = T' (S, G*\Tsom(F,G)) .

Every band B over S is defined by a triple (U, G, u), where U is faithfully flat and affine
over S, G is a sheaf of groups on U, and u € Isex(pr] G, pr; G) is such that

prs, (1) = priy(w)o pr, (1)

If V is also a faithfully flat affine S-scheme, and a: V — U is an S-morphism, then
(U,G,u) and (V, a*(G), (a X a)*(u)) define the same band. If B; and B, are the bands
defined by (U, Gy, u;) and (U, G,,u,), then an element i € Isex(G,,G,) such that
pr5(¥)ou; = u,o pr;(¥) defines an isomorphism B; — B,.

C.4 Let G be a gerbe on Affg. By definition, there exists an object Q € Gy, for some U
affine and faithfully flat over S. Let G = Aut(Q); it is a sheaf of groups on U. Again, by
definition, pry Q and pr; Q are locally isomorphic on U Xg U, and the locally-defined
isomorphisms determine an element u € Isex(pr] G, pr; G). The triple (U, G, u) defines
a band B which is uniquely determined up to a unique isomorphism. This is the band of
the gerbe G.
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C.5 When G is a sheaf of groups on S, we write BA(G) for the band defined by (S, G, id).
Then
Isom(Bd(G;), Bd(G,)) = Isex(Gq, G,).

Thus, Bd(G;) and Bd(G,) are isomorphic if and only if G, is an inner form of G, i.e., G,
becomes isomorphic to G; on some faithfully flat affine S-scheme T, and the class of G,
in H(S, Aut(G,)) comes from H(S, G;’d). When G, is commutative, then

Isom(Bd(G,), Bd(G,)) = Isex(G,, G,) = Isom(G;, G,),
and we usually do not distinguish Bd(G,) from G,.

C.6 The centre Z(B) of the band B defined by (U, G, u) is defined by (U, Z, u| pr] Z),
where Z is the centre of G. The above remark shows that u| pry Z lifts to an element
u, € Isom(pr; Z, pr; Z), and one checks immediately that pr3, (u;) = pr3,(u)o pr3, (uy).
Thus (U, Z, u| prj Z) arises from a sheaf of groups on S, which we identify with Z(B).

C.7 The category LI;; contains the category of sheaves of commutative groups and
morphisms. Thus, we see that there is an equivalence from the stack of sheaves of
commutative groups to the stack of commutative bands.

C.8 Aband B issaid to be affine (resp. algebraic) if it can be defined by a triple (U, G, u)
with G an affine (resp. algebraic) group scheme over U. A gerbe is said to be affine (resp.
algebraic) if it is banded by an affine (resp. algebraic) band.

Now take S = Speck, k a field, and let LI;; be the category whose objects are group
schemes of finite presentation over U. If G is an affine gerbe, then Aut(x) is a band in
this new sense. Every algebraic group G over k defines a band, which we denote Bd(G).

C.9 If k is algebraically closed, then every algebraic band over k is the band of an
algebraic group over k. To see this, let B be such a band. For some affine k-scheme U, B
defines an element of H'(U /k, B2). There is an exact sequence of pointed sets

H'(k,B) - H'(k,B*) — H?(k,Z(B))

(fpqc cohomology groups). Now H2(k, Z(B)) is equal to the fppf cohomology group (see
the next section), hence it is zero because k is algebraically closed. Thus, the class of B
in H'(U /k, B*) lifts to a class in H' (U /k, B), which defines an algebraic group scheme
over k.

C.10 Let k be an algebraic closure of k. From C.9, we see that every algebraic band over
k is defined by a pair (G, u), where G is an algebraic group over k and u is an isomorphism
pr; G — pr, G satisfying the cocycle condition modulo inner automorphisms.

Now assume that k has characteristic zero. Let k be an algebraic closure of k, and let
I' = Gal(k/k).

C.11 Let G be an algebraic group over k. A k/k-kernel® in G is a homomorphism

x: T - Ou(G(ky) & AutGE)
' Inn(G(k))

such that

3Following Springer 1966, 1.12.
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(a) every automorphism (o) of G(k) lifting x(o) is o-linear,

(b) for some finite extension K C k of k, the restriction of x to Gal(k/K) is defined by
a model of G over k.

C.12 The kernel of a k/k-groupoid has the structure of a k /k-kernel.

C.13 Let G be an algebraic group over k. To give G the structure of a band over k is the
same as giving it the structure of a k /k-kernel.

6 Cohomology

The fpqc topology versus the fppf topology

Let S be an affine scheme. The fpqc topology on Aff is that for which the coverings are
finite surjective families of flat morphisms of affine S-schemes. For the fppf topology
the morphisms are required to be flat of finite presentation.

PROPOSITION C.14 Let F be a presheaf of abelian groups on Aff, transforming projective
limits (of affine k-schemes) to inductive limits. Then the canonical maps

Fli(kfppfa F) - Fli(kquc’F)
are isomorphisms for all i.

PROOF For a k-algebra R, define H'(R/k, F) to be the ith cohomology group of the
complex
F(R) —» F(R®?) > ... - F(R®) — ...

Then
H(kgpge, F) = li_r)nHi(R /k,F), (*)

where the limit is over all k-algebras, and
i — 1 i
Hi(kepys, F) = lim H(R/k, F), (**)
where the limit is over all finitely generated k-algebras. For any k-algebra R,

F(R®) = lim F(R'®),
R/

where the limit is over the finitely generated k-subalgebras R’ of R, and so

H'(R/k,F) = n_r)nHi(R’/k, F).
R/

Hence the two limits (*) and (**) are equal. o

PROPOSITION C.15 Let S be an affine scheme and G an affine group scheme flat of finite
presentation over S. Then the canonical map

Hl(Sfppf’ G)— Hl(Squc’ G)

is a bijection.
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PROOF The sets classify the isomorphisms classes of torsors under G for the two topolo-
gies over S, and the functor

Tors(Stpp> G) = Tors(Sgpge, G)

is an equivalence (even an isomorphism) of categories. Indeed, under the hypotheses,
the torsors are representable by affine schemes flat and of finite presentation over S. The
functor is obviously fully faithful, and every fpqc torsor T under G is also an fppf torsor
because it has a point in an affine scheme flat and of finite presentation over S, namely,
in T itself. 0

COROLLARY C.16 Let Z be a commutative algebraic group over k. The canonical map
Hz(kfppfa Z) > Hz(kquc, Z)
is an isomorphism.

PROOF Consider the diagram

0— Hz(kfppfaz) - Hz(kfppfsz) - ﬁl(kfppf’ }(l(kfppfaz)) - 1:13(kfppf’Z)

Js I I Js

0— I_VIZ(kquc’Z) - Hz(kqucaz) - gl(kqucaﬂl(kquc’z)) - I_VIS(kqucsZ)

in which the rows are part of the spectral sequence relating Cech and derived cohomology
(Milne 1980, I11, 2.9). The maps a and d are isomorphisms by C.14. The canonical map
H (keppt> Z) = H' (kgpge Z) is an isomorphism by C.15, and the two functors transform
projective limits of affine schemes to inductive limits, so c is an isomorphism by C.14.
Now the five-lemma shows that b is an isomorphism. O

REMARK C.17 Let G be a smooth affine group scheme over an affine scheme S. The
canonical map
H'(Se, G) — Hl(Sfppfa G)

is an isomorphism for i < 1, and for all i if G is commutative (Theorem of Grothendieck;
see Milne 1980, III, 3.9).

NOTES This subsection is mostly extracted from Saavedra 1972, 111, 3.1.

Applications

Let B be a band on Affg, and let G and H be gerbes banded by B. Every morphism
m: G — H banded by idy is an equivalence (IV, 1.23). We say either that m is a B-
morphism or a B-equivalence, since the two are the same. The cohomology set H%(S, B)
is defined to be the set of B-equivalence classes of B-gerbes. If Z is the centre of B, then
H?(S, Z) is equal to the cohomology group of Z in the usual sense of the fpqc topology
on S, and either H(S, B) is empty or H>(S, Z) acts simply transitively on it (Giraud 1971,
IV, 3.3.3).

PROPOSITION C.18 Let G be an affine algebraic gerbe over Aff,. There exists a finite
extension k' of k such that the fibre of G over Spec k' is nonempty (see also III, 10.3).
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PROOF By assumption, the band B of G is defined by a triple (U, G, u) with G a group
scheme of finite presentation over U. Let U = Spec R. The k-algebra R can be replaced
by a finitely generated subalgebra, and then by a quotient modulo a maximal ideal,
and so we may suppose that U = Speck’, where k' is a finite field extension of k. We
shall show that the gerbes G and TORS(G) become B-equivalent over some finite field
extension of k’. The statement preceding the proposition shows that we have to prove
that an element of H 2(Uquc, Z), where Z is the centre of B, is killed by a finite field
extension of k’. But this assertion is obvious for H 2(Ufppf, Z) (Milne 1980, III, 2.11), and
so we can apply C.16. o

REMARK C.19 The same argument (using C.17) shows that for a gerbe over Aff, with
smooth affine band, there exists a finite separable extension k’ of k such that the fibre
over Speck’ is nonempty. Deduce that a tannakian category over k with prosmooth
band has a fibre functor over k5P,

THEOREM C.20 (?) Let G be a gerbe over Aff . For any algebraically closed field K con-
taining k, the fibre of G over Spec K is nonempty.

PROOF We may suppose that k is algebraically closed, and have to show that G is neutral.
Let G be the affine group scheme over k such that Bd(G) is the band of G (exists by
C.9). When G is of finite type, the statement was proved in C.18. In the general case,
write G = 1(@ G, as a limit of algebraic groups G, with faithfully flat transition maps.
For each o, we have a morphism of gerbes G — G, corresponding to the epimorphism
Bd(G) — Bd(G,).* We know that each set G, (k) is nonempty, and have to show that
lim G, (k) is nonempty. For this, try using II, Lemma 7.8. If that doesn’t work, rewrite
the proof of I1I, Theorem 10.1, in the present context. [Exercise for the reader.] O

“Letu: L — M be an epimorphism of gerbes. For any L-gerbe P, there exists an M-gerbe Q and a
u-morphism P — Q (Giraud 1971, 1V, 2.3.18).
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(m)*, 241

1-category, 287

2-category, 286

2-equivalence, 289

2-functor, 288
2-isomorphism, 288
2-morphism of groupoids, 107
2-natural transformation, 289

absolute Hodge class, 265
action, 82
adequate equivalence relation, 229
adjoint pair, 285
adjunction, 285
affine band, 308
affine gerbe, 168, 308
affine group scheme, 58
algebraic, 59
pro-smooth, 90
affine group scheme in T, 47
affine monoid scheme, 57
affine scheme in a tensorial category, 47
affine T-scheme, 47
Affy, 165
Affg, 165
algebra, 57
nonassociative, 85
algebra in a tensor category, 85
algebraic, 233
algebraic band, 308
algebraic cycles
group of, 227
algebraic gerbe, 308
algebraic group, 59
compact, 91
linearly reductive, 81
reductive, 78
semisimple, 79
algebraic scheme over a field, 143
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algebraic variety, 143, 227
map of, 227

antipode, 59

artinian object, 296

associativity constraint, 11

Aut®, 28

band, 307
affine, 308
algebraic, 308
banded, 219
bialgebra
commutative, 58
biequivalence, 291
bilinear form
balanced, 256

cartesian, 303
cartesian functor, 165
cartesian natural transformation, 303
category
of correspondences, 230
closed symmetric monoidal, 22
fibred, 303
finitely complete, 300
locally finite, 34
locally noetherian, 298
monoidal, 12
noetherian, 298
pre-tannakian, 38
pseudo-abelian, 230
rigid tensor, 25
semisimple, 238
symmetric monoidal, 17
tensorial, 32
well-powered, 296
category of effective motives, 230
centre of a band, 308
coalgebra, 58
coefficient field, 233
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coevaluation morphism, 22
commutativity constraint, 15
coModf(L), 115
comodule, 59
compact real form, 6
compatible, 207, 208
compatible constraints, 15
compatible Weil forms, 6
composition series, 64
conjecture

A(X, L), 247

B(X), 247

C(X), 241

Ct(X), 241

D(X), 252

Deligne, 266, 278

Hodge, 241

I(X, L), 251

standard of Hodge type, 251

standard of Lefschetz type, 247

Tate, 241
correspondence of degree r, 230
counit, 285

degree map, 228
descent datum, 155, 305
dimension (categorical), 26
dominant tensor functor, 29
dual, 22

weak, 21

effective descent, 166
effective motives, 268
equivalence

adjoint, 288

internal, 288

of objects in a 2-category, 288
equivalence of categories, 285
equivalence of tensor categories, 19
essentially small category, 8
essentially surjective, 285
evaluation morphism, 22
extension of groups, 161
exterior power, 49

fibre functor, 3, 36, 218
filtered, 90
splittable, 90
graded, 90
filtered category, 295

filtered R-module, 90
filtered set, 295
filtration
split, 89
filtration of Rep(G), 89
freely generated, 41
fundamental group, 5
of a pre-tannakian category, 48
fundamental group scheme
true, 92
fundamental groupoid
of a topological space, 107

generator, 64
tensor, 33
gerbe, 166, 306
algebraic, 308
gradation
of a tannakian category, 88
on a functor, 88
on an object, 88
graded R-module, 90
graph, 228
group scheme
trigonalizable, 78
unipotent, 77
groupoid, 106
commutative, 107
transitive, 4, 106
groupoid acting on S, 106
groupoid internal to a category, 108
groupoid of automorphisms, 171
groupoid scheme, 4

hermitian form, 256, 257
hexagon axiom, 15
Hodge class, 265
Hodge element, 216, 222
Hodge structure

rational, 94

real, 94

Tate, 94
FHom®, 19
Hom®, 19
homogeneous polarization, 208, 210
homomorphism

faithfully flat, 44

flat, 44
homomorphism of rings, 43
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Hopf algebra, 59

commutative, 59
horizontal composition, 287
h?, 64

ideal, 231

nil, 238

tensor, 231
identity object, 16
inner, 215
integrally algebraic, 233
intersect properly, 228
intersection product, 228
inverse image, 303
inverse of an object, 17
invertible object, 17
isomorphism of tensor functors, 19
isotropy group, 107
iterate of a tensor product, 16

Jacobson radical, 238

kernel of a groupoid, 107
Kiinneth projector, 241

Lefschetz class, 258, 259
Lefschetz group, 260

left adjoint, 285

local for the fpqc topology, 167
locally finite k-linear category, 34

monoidoid scheme, 110
morphism
of fibre functors, 36
of filtered modules, 90
of gerbes, 166, 306
of groupoids, 107
of k-groupoids, 110
of tannakian categories, 37
of Tate triples, 218
of tensor functors, 19
motive
Artin, 237
finite-dimensional, 236
Lefschetz, 231
motivic Galois group, 5
multiplicative type, 88

neutral, 218
neutral gerbe, 306

noetherian object, 296
nondegenerate, 205
numeric characters, 159

orbit topology, 84

parity, 205, 209
pentagon axiom, 11
polarization, 5, 214, 216, 222, 224
of a Hodge structure, 94
symmetric, 6
polarization (graded), 221
polarization of a rational Hodge struc-
ture, 94
polarization on a representation, 201
positive, 209
positive involution, 257
positive-definite, 217
positive-definite bilinear form, 257
potential CM-type, 280
prestack, 166
primitive cohomology, 267
primitive elements, 244
projection formula, 228
projective object, 64
pseudo natural transformation, 290

R-module, 176
rank (categorical), 26
real envelope, 91
reductive, 63
reflexive object, 22
regular representation, 60
Repf(G), 59
Rep(G), 166
Repf(S:G), 112
representation
of a coalgebroid, 115
of a gerbe, 166
of a group scheme, 59
of a groupoid, 107, 111
of a monoid scheme, 59
represented, 176
right adjoint, 285
rigid, 3
rigid tensor subcategory, 29
ring
semisimple, 238
ring in a tensorial category, 43
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semilinear, 199
semisimple ring, 238
semsimple category, 238
sesquilinear form, 205
o-linear, 148
sign conjecture, 6, 239
simple object, 64
simply transitive, 82
skew-hermitian form, 256
81,-triple, 247
small category, 8
stable under subobjects, 75
stack, 166, 305
standard conjecture

of Hodge type, 251
strictly full subcategory, 8
strong transformation, 290
subcategory

abelian, 32

tannakian, 36

tensorial, 32
subobject, 296
sVec(k), 41
symmetric, 217
symmetric polarization, 216

tannakian category, 3, 36
algebraic, 38
neutral, 3, 36

Tate motive, 231

Tate object, 218

Tate triple, 218

tensor category, 3, 15
abelian, 29
additive, 29

tensor equivalence, 19

tensor functor, 3, 18

tensor generator, 33

tensor product of categories, 95

tensor subcategory, 29
tensorial category, 3
topology

fppf, 309

fpqc, 304, 309
torsor, 82

trivial, 82
totally positive, 200
trace morphism, 26
transporter, 86

transpose, 206
triangle identities, 285

trivial object of a tannakian category, 37

unit, 285
unit object, 12

V(k), 227
Vo, 217
vector bundle
finite, 92
semi-stable, 92
vector sheaf, 92
vertex group, 107
vertical composition, 286

weak dual of an object, 21
weak Lefschetz, 233

weight gradation, 94, 218
Weil classes, 261

Weil cohomology theory, 232
Weil form, 5, 206, 208

Weil operator, 94

(X), 67
(X)®, 33

Yoneda pseudofunctor, 292

Zg, 150
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