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Blurb

The idea of tannakian categories, and of their importance for motives, was Grothen-
dieck’s. He explained it to Saavedra Rivano, who developed the theory of tannakian
categories and described their application to motives in his thesis (1972). It was Saavedra
who introduced the terminology “tannakian”.

Deligne removed a major lacuna in the theory of nonneutral tannakian categories,
gave an internal characterization of a tannakian category in characteristic zero, and
removed some unnecessary hypotheses in the theory or polarizations.

This is a updated account of the theory of tannakian categories, written in the spirit
of the 1982 article by Deligne and Milne.
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Introduction

Origins

André Weil’s work on the arithmetic of curves and other varieties over finite fields led
him in 1949 to state his famous “Weil conjectures”. These had a profound influence on
algebraic geometry and number theory in the following decades. In an effort to explain
the conjectures, Grothendieck was led to define several different “Weil cohomology
theories” and to posit an ur-theory underlying all of them whose objects he called
motives. In order to provide a framework for studying these different theories, especially
motives, Grothendieck introduced the notion of a tannakian category.

Weil’s first insight was that the numbers of points on smooth projective algebraic
varieties over finite fields behave as if they were the alternating sums of the traces of an
operator acting on a well-behaved homology theory.1 In particular, the (co)homology
groups should be vector spaces over a field of characteristic zero, be functorial, and give
the “correct” Betti numbers. However, already in the 1930s, Deuring and Hasse had
shown that the endomorphism algebra of an elliptic curve over a field of characteristic 𝑝
may be a quaternion algebra overℚ that remains a division algebra even when tensored
withℚ𝑝 orℝ, and hence cannot act on a 2-dimensional vector space overℚ (or evenℚ𝑝
or ℝ). In particular, no such cohomology theory with ℚ-coefficients exists.

Grothendieck defined étale cohomology groups with ℚ𝓁-coefficients for each prime
𝓁 distinct from the characteristic of the ground field, and in characteristic 𝑝 ≠ 0, he
defined the crystalline cohomology groups with coefficients in an extension ofℚ𝑝. Each
cohomology theory is well-behaved. In particular it has a Lefschetz trace formula, and
Weil’s first insight is explained by realizing the points of the variety in a finite field as
the fixed points of the Frobenius operator, and hence, by trace formula, their cardinality
as the alternating sum of the traces of the operator acting on the cohomology groups. A
striking feature of this is that, while the traces of the Frobenius operator are, by definition,
elements of different fieldsℚ𝑙, they in fact lie inℚ and are independent of 𝑙 (for smooth
projective varieties). This last fact suggested to Grothendieck that there was some sort
ofℚ-theory underlying the differentℚ𝑙-theories. To explain what this is, we need the
notion of a tannakian category.

Briefly, a tannakian category over a field 𝑘 is a 𝑘-linear abelian category with a tensor
product structure having most of the properties of the category of finite-dimensional
representations of an affine group scheme over 𝑘 except one: there need not exist an exact
tensor functor to the category of 𝑘-vector spaces, and when one does exist there need be
a canonical one. Each of the cohomology theories takes values, not just in a category of

1Il me fallut du temps avant de pouvoir même imaginer que les nombres de Betti fussent susceptibles
d’une interprétation en géométrie algébrique abstraite. Je crois que je fis un raisonnement heuristique basé
sur la formule de Lefschetz. (It took me a while before I could even imagine that the Betti numbers were
susceptible to an interpretation in abstract algebraic geometry. I think I made a heuristic argument based
on the Lefschetz formula). Weil, Œuvre, Commentaire [1949b].
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2 Introduction

vector spaces, but in a tannakian category. For example, crystalline cohomology takes
values in a category of isocrystals. These are finite-dimensional vector spaces over an
extension of ℚ𝑝, but only the elements of ℚ𝑝 act as endomorphisms in the category.
More specifically, if 𝟙 is the unit object of the category (the tensor product of the empty
set), we have End(𝟙) = ℚ𝑝. Grothendieck’s insight is that there should be a tannakian
category𝖬𝗈𝗍 overℚ such that the functors to the local tannakian categories defined by
the different cohomology theories factor through it. Algebraic correspondences between
smooth projective algebraic varieties should define maps between motives, whose traces
lie in End(𝟙) = ℚ and map to the traces on the various cohomology groups, which
explains why the latter lie in ℚ.

Weil’s second insight was that an analogue of the Riemann hypothesis should hold
for the eigenvalues of Frobenius operators. This suggested that some of the well-known
positivities in characteristic zero should persist to characteristic 𝑝. To see why, we briefly
recall Weil’s proof of the Riemann hypothesis for abelian varieties over finite fields.

Consider an abelian variety 𝐴 over an algebraically closed field of characteristic 𝑝.
For a prime 𝓁 ≠ 𝑝, we have a finite-dimensional ℚ𝓁-vector space 𝑉𝓁𝐴, and, for each
polarization of 𝐴, we have a pairing 𝜑∶ 𝑉𝓁𝐴 × 𝑉𝓁𝐴 → ℚ𝓁. As ℚ𝓁 is not a subfield of
ℝ, it makes no sense to say that 𝜑 is positive-definite. However, Weil showed that 𝜑
induces an involution on the finite-dimensional ℚ-algebra End(𝐴)⊗ℚ and that this
involution is positive.2 The Riemann hypothesis for the abelian variety follows directly
from this. Grothendieck extended Weil’s ideas to tannakian categories by introducing
the notion of a “Weil form” on an object of a tannakian category and of a “polarization”
on a tannakian category.

A tannakian category over 𝑘 is said to be neutral if it admits an exact tensor functor to
the category of 𝑘-vector spaces. Neutral tannakian categories are the analogues for affine
group schemes of the categories studied by Tannaka and Krein. A classical theorem
of Tannaka describes how to recover a compact topological group from its category
of finite-dimensional unitary representations, and Krein characterized the categories
arising in this way.

Not all tannakian categories are neutral, and the obstruction to a tannakian category
over 𝑘 having a 𝑘-valued fibre functor lies in a nonabelian cohomology group of degree
2, more general than was available in the early 1960s. Grothendieck’s student Giraud
developed the necessary nonabelian cohomology theory in his thesis (Giraud 1971).

As we have explained, the idea of tannakian categories, and of their importance
for motives, was Grothendieck’s. He explained it to Saavedra Rivano, who developed
the theory of tannakian categories in his thesis (Saavedra 1972). It was Saavedra who
introduced the terminology “tannakian”. Although Grothendieck used the term “tan-
nakian category” in unpublished writings, he considered the categories to be part of a
vast theory engobalizing Galois theory and the theory of fundamental groups, and later
wrote that “Galois–Poincaré category” would have been a more appropriate name.3

Summary

We now present a summary of the main results of the theory. Throughout, 𝑘 is a field.

2Over ℂ, this was known to the Italian geometers as the positivity of the Rosati involution.
3Deligne writes: I expect that at first Grothendieck did not know of Tannaka’s work – and never cared

about it. His aim was to unify the cohomology theories he had created. That each 𝐻 is with values in a
category with⊗, and that Künneth holds, was a brilliant insight which, like a number of his brilliant ideas,
is now part of our subconscious, making it hard to see how deep it was.
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A tensor category (symmetric monoidal category) is a category 𝖢 together with a
functor⊗∶ 𝖢 × 𝖢 → 𝖢 and sufficient constraints to ensure that the tensor product of
any (unordered) finite set of objects in 𝖢 is well-defined up to a canonical isomorphism.
In particular, there exists a unit object 𝟙 (tensor product of the empty set of objects).
A tensor category is rigid if every object admits a dual (in a strong sense). A tensor
functor of tensor categories is one preserving the tensor products and constraints.

A tensorial category over 𝑘 is a rigid abelian tensor category equipped with a
𝑘-linear structure such that ⊗ is 𝑘-bilinear and the structure map 𝑘 → End(𝟙) is an
isomorphism. A tensorial category over 𝑘 is a tannakian category over 𝑘 if, for some
nonzero 𝑘-algebra 𝑅, there exists an 𝑅-valued fibre functor, i.e., an exact 𝑘-linear tensor
functor 𝜔∶ 𝖢 → 𝖬𝗈𝖽(𝑅). We write Aut⊗(𝜔) for the group of automorphisms of 𝜔 (as a
tensor functor).

In the remainder of the introduction, all tensor categories are assumed to be essen-
tially small (i.e., equivalent to a small category).

A criterion to be a tannakian category

For an object 𝑋 of a tensorial category 𝖢 over 𝑘, there is a canonical trace map

Tr𝑋 ∶ End(𝑋)→ End(𝟙) ≃ 𝑘,

and we let dim𝑋 denote the trace of id𝑋 . In tensorial categories, traces are additive on
short exact sequences (I, 6.6).

Theorem 1 (I, 10.1) A tensorial category over 𝑘 of characteristic zero is tannakian (i.e., a
fibre functor exists) if and only if, for all objects 𝑋, dim𝑋 is an integer ≥ 0.

Neutral tannakian categories.

A tannakian category (𝖢, ⊗) over 𝑘 is neutral if there exists a 𝑘-valued fibre functor. For
example, the category 𝖱𝖾𝗉𝖿(𝐺) of finite-dimensional representations of an affine group
scheme 𝐺 over 𝑘 is a tannakian category over 𝑘 with the forgetful functor as a 𝑘-valued
fibre functor.

Theorem 2 (II, 3.1) Let 𝖢 be a tannakian category over 𝑘 and 𝜔 a 𝑘-valued fibre functor.
(a) The functor of 𝑘-algebras 𝑅 ⇝ Aut⊗𝑘 (𝜔⊗𝑅) is represented by an affine group scheme

𝐺 = 𝒜𝑢𝑡⊗𝑘 (𝜔) over 𝑘.

(b) The functor 𝖢 → 𝖱𝖾𝗉𝖿(𝐺) defined by 𝜔 is an equivalence of tensor categories.

For example, if 𝖢 = 𝖱𝖾𝗉(𝐺) and 𝜔 is the forgetful functor, then 𝒜𝑢𝑡⊗𝑘 (𝜔) = 𝐺.
The theorem gives a dictionary between neutralized tannakian categories over 𝑘 and

affine group schemes over 𝑘. To complete the theory in the neutral case, it remains to
describe the 𝑅-valued fibre functors on 𝖢 for 𝑅 a 𝑘-algebra.

Theorem 3 (II, 8.1) Let 𝖢 and 𝜔 be as in Theorem 2, and let 𝐺 = 𝒜𝑢𝑡⊗𝑘 (𝜔). For any
𝑅-valued fibre functor 𝜈 on 𝖢, ℐ𝑠𝑜𝑚⊗(𝜔 ⊗ 𝑅, 𝜈) is a torsor under 𝐺𝑅 for the fpqc topology.
The functor 𝜈 ⇝ ℐ𝑠𝑜𝑚⊗(𝜔 ⊗ 𝑅, 𝜈) is an equivalence from the category of 𝑅-valued fibre
functors on 𝖢 to the category of 𝐺𝑅-torsors,

Fib(𝖢)𝑅 ∼ Tors(𝐺)𝑅.



4 Introduction

Aside The situation described in the theorem is analogous to the following. Let 𝑋 be
a connected topological space, and let 𝖢 be the category of locally constant sheaves of
ℚ-vector spaces on 𝑋. For each 𝑥 ∈ 𝑋, there is a functor 𝜔𝑥 ∶ 𝖢 → 𝖵𝖾𝖼𝖿ℚ taking a sheaf
to its fibre at 𝑥, and 𝜔𝑥 defines an equivalence of categories 𝖢 → 𝖱𝖾𝗉ℚ(𝜋1(𝑋, 𝑥)). Let
Π𝑥,𝑦 be the set of homotopy classes of paths from 𝑥 to 𝑦; then Π𝑥,𝑦 ≃ Isom(𝜔𝑥, 𝜔𝑦), and
Π𝑥,𝑦 is a 𝜋1(𝑋, 𝑥)-torsor.

General tannakian categories.

Many of the tannakian categories arising in algebraic geometry are not neutral. They
correspond to affine groupoid schemes rather than affine group schemes.

Let 𝑆 be an affine scheme over 𝑘. A 𝑘-groupoid scheme acting on 𝑆 is a 𝑘-scheme
𝐺 together with two 𝑘-morphisms 𝑡, 𝑠∶ 𝐺 ⇉ 𝑆 and a partial law of composition

◦∶ 𝐺 ×
𝑠,𝑆,𝑡

𝐺 → 𝐺 (morphism of S ×𝑘 S-schemes)

such that, for all 𝑘-schemes 𝑇, (𝑆(𝑇), 𝐺(𝑇), (𝑡, 𝑠), ◦) is a groupoid (i.e., a small category
in which the morphisms are isomorphisms). A groupoid 𝐺 is transitive if the morphism

(𝑡, 𝑠)∶ 𝐺 → 𝑆 ×𝑘 𝑆

is faithfully flat. The representations of 𝐺 on locally free sheaves of finite rank on 𝑆 form
a tannakian category 𝖱𝖾𝗉𝖿(𝑆∶𝐺) over 𝑘.

Let 𝑆 = Spec𝑅 be an affine scheme over 𝑘. By a fibre functor over 𝑆, we mean an
𝑅-valued fibre functor. For example, 𝖱𝖾𝗉𝖿(𝑆∶𝐺) has a canonical (forgetful) fibre functor
over 𝑆. When 𝜔 is a fibre functor over 𝑆 on a tannakian category over 𝑘, we let𝒜𝑢𝑡⊗𝑘 (𝜔)
denote the functor of 𝑆 ×𝑘 𝑆-schemes sending (𝑏, 𝑎)∶ 𝑇 → 𝑆 ×𝑘 𝑆 to Isom

⊗
𝑇 (𝑎

∗𝜔, 𝑏∗𝜔).

Theorem 4 (III, 1.1) Let 𝖢 be a tannakian category over 𝑘 and 𝜔 a fibre functor over 𝑆.
(a) The functor𝒜𝑢𝑡⊗𝑘 (𝜔) is represented by an affine 𝑘-groupoid scheme 𝐺 acting transi-

tively on 𝑆.
(b) The functor 𝖢 → 𝖱𝖾𝗉(𝑆∶𝐺) defined by 𝜔 is an equivalence of tensor categories.

For example, if 𝖢 = 𝖱𝖾𝗉(𝑆∶𝐺) and 𝜔 is the forgetful functor, then 𝒜𝑢𝑡⊗𝑘 (𝜔) ≃ 𝐺.

The gerbe of fibre functors

Let 𝖠𝖿𝖿𝑘 denote the category of affine 𝑘-schemes. For each affine 𝑘-scheme 𝑆, we let
Fib(𝖢)𝑆 denote the category of fibre functors of 𝖢 over 𝑆. As 𝑆 varies, the categories
Fib(𝖢)𝑆 form a stack over 𝖠𝖿𝖿𝑘 for the fpqc topology, and (c) of Theorem 4 implies that
Fib(𝖢) is a gerb (any two fibre functors are locally isomorphic).

The tannakian categories over 𝑘 form a 2-category with the 1-morphisms being the
exact 𝑘-linear tensor functors and the 2-morphisms the morphisms of tensor functors.
Similarly, the affine gerbes over 𝑘 form a 2-category with the 1-morphisms being the
cartesian functors of fibred categories and the 2-morphisms being the equivalences
between 1-morphisms.

Theorem 5 (IV, 3.3) The 2-functor sending a tannakian category to its gerbe of fibre
functors is an equivalence of 2-categories.4 Explicitly, for any tannakian category 𝖢 over 𝑘,
the canonical functor

𝖢 → 𝖱𝖾𝗉(Fib(𝖢))
4Not a 2-equivalence
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is an equivalence of tensor categories, and for any affine gerbe 𝖦 over 𝑘, the canonical
functor

𝖦 → Fib(𝖱𝖾𝗉(𝖦))

is an equivalence of stacks.

The theorem gives a dictionary between tannakian categories over 𝑘 and affine gerbes
over 𝑘.

The fundamental group of a tannakian category

Let 𝖳 be a tannakian category over 𝑘. The notion of a Hopf algebra makes sense in the
ind-category Ind𝖳. In order to make available a geometric language, Deligne defined
the category of affine group schemes in Ind𝖳 to be the opposite of that of commutative
Hopf algebras. If 𝐺 is the group scheme corresponding to the Hopf algebra 𝐴, then, for
any 𝑅-valued fibre functor 𝜔, 𝜔(𝐺) def= Spec(𝜔(𝐴)) is an affine group scheme over 𝑅. The
fundamental group 𝜋(𝖳) of 𝖳 is the affine group scheme in Ind𝖳 such that

𝜔(𝜋(𝖳)) = 𝒜𝑢𝑡⊗(𝜔)

for all fibre functors 𝜔. The group 𝜋(𝖳) acts on the objects 𝑋 of 𝖳, and 𝜔 transforms this
action into the natural action of 𝒜𝑢𝑡⊗(𝜔) on 𝜔(𝑋).

Let 𝑋 be a topological space, connected, locally connected, and locally simply con-
nected. There is the following analogy:

𝖳 𝑋
object 𝑌 of 𝖳 covering of 𝑋(=locally constant sheaf)
fibre functor 𝜔0 point 𝑥0 ∈ 𝑋
𝒜𝑢𝑡⊗(𝜔0) 𝜋1(𝑋, 𝑥0)
𝜋(𝖳) local system of the 𝜋1(𝑋, 𝑥)
action of 𝜋(𝖳) on 𝑌 in 𝖳 action of the local system of the 𝜋1(𝑋, 𝑥)

on a locally constant sheaf.

For 𝖳 the category of motives over 𝑘, 𝜋(𝖳) is called themotivic Galois group of 𝑘.5

Polarized tannakian categories.

For tannakian categories overℝ (or a subfield ofℝ), there are positivity structures called
polarizations. For simplicity, let (𝖢, ⊗) be an algebraic tannakian category over ℝ. A
nondegenerate bilinear form

𝜙∶ 𝑉 ⊗ 𝑉 → ℝ

on an object 𝑉 of ℂ is called aWeil form if its parity 𝜖𝜙 (the unique automorphism
of 𝑉 satisfying 𝜙(𝑦, 𝑥) = 𝜙(𝑥, 𝜖𝜙𝑦)) is in the centre of End(𝑉) and if for all nonzero
endomorphisms 𝑢 of 𝑉, Tr(𝑢◦𝑢𝜙) > 0, where 𝑢𝜙 is the adjoint of 𝑢. Two Weil forms

5From Deligne: The first three lines [in the table] were surely clear and important for Grothendieck. I
don’t remember him considering Ind𝖳, 𝜋(𝖳), or Hopf algebras in 𝖳. For me, it was a way to make sense of
my surprise, seeing that for each of the standard fibre functors 𝜔 with values in 𝒞,

𝒜𝑢𝑡⊗(𝜔∶ motives→ 𝒞→ vector spaces)

had the same ‘texture’ as objects of 𝒞.
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𝜙∶ 𝑉 ⊗ 𝑉 → ℝ and 𝜓∶ 𝑊 ⊗𝑊 → ℝ are compatible if the form 𝜙 ⊕ 𝜓 on 𝑉 ⊕𝑊 is
again a Weil form.

Now fix an 𝜖 ∈ 𝑍(ℝ), where 𝑍 is the centre of the band of the gerb of Fib(𝖢) – it is a
commutative algebraic ℝ-group – and suppose that for each object 𝑉 of 𝖢 we are given
a nonempty compatibility class 𝜋(𝑉) of (𝜋-positive) Weil forms on 𝑉 with parity 𝜖𝑉 .
We say that 𝜋 is an 𝜖-polarization of 𝖢 if direct sums and tensor products of 𝜋-positive
forms are 𝜋-positive. When 𝜖 = 1, so that 𝜙(𝑥, 𝑦) = 𝜙(𝑦, 𝑥), the polarization is said to be
symmetric.

Let 𝐺 be an affine group scheme over ℝ, and let 𝐶 be an element of 𝐺(ℝ) such that
inn(𝐶) is a Cartan involution, i.e., the involution corresponding to a compact form6 of 𝐺.
Because inn(𝐶) is an involution, 𝐶2 is central. For each 𝑉 in 𝖱𝖾𝗉𝖿(𝐺), let 𝜋𝐶(𝑉) be the
set of 𝐺-invariant bilinear forms 𝜙∶ 𝑉 ⊗ 𝑉 → ℝ such that the bilinear form 𝜙𝐶 ,

𝜙𝐶(𝑥, 𝑦)
def= 𝜙(𝑥, 𝐶𝑦),

is symmetric and positive-definite. Then 𝜋𝐶 is a 𝐶2-polarization on 𝖱𝖾𝗉𝖿(𝐺). For a
neutralized tannakian category, the 𝜋𝐶 exhaust the polarizations.

Theorem 6 Let 𝐺 be an affine algebraicℝ-group. Then 𝖱𝖾𝗉𝖿(𝐺) admits a polarization if
and only if 𝐺 is an inner form of a real compact group, in which case every polarization is
of the form 𝜋𝐶 for some 𝐶 as above, and 𝐶 is uniquely determined by the polarization up to
conjugacy.

It follows from the theorem that if 𝖢 is an algebraic tannakian category endowed
with a symmetric polarization, then 𝖢 is neutral and there is an ℝ-valued fibre functor
𝜔∶ 𝖢 → 𝖵𝖾𝖼𝖿(ℝ) such that 𝒜𝑢𝑡⊗(𝜔) is a compact ℝ-group; moreover, 𝜔 is uniqely
determined up to a unique isomorphism by the condition that the positive forms on an
object 𝑉 of 𝖢 are exactly the forms 𝜙 such that 𝜔(𝜙) is symmetric and positive-definite.

Motives

Fix an admissible equivalence relation for algebraic cycles on smooth projective algebraic
varieties over 𝑘, and let𝖬(𝑘) denote the corresponding category of motives. It is a tensor
category equipped with aℚ-linear structure (in particular, it is additive) such that⊗ is
ℚ-bilinear.

Theorem 7 The category of motives𝖬(𝑘) is aℚ-linear rigid tensor category.

Let𝑋 be a smooth projective variety over𝑘. We say that𝑋 satisfies the sign conjecture
if there exists an algebraic cycle 𝑒 on 𝑋 × 𝑋 such that 𝑒𝐻∗(𝑋) =

⨁
𝑖≥0𝐻

2𝑖(𝑋) for the
standard Weil cohomology theories. Smooth projective varieties over a finite field satisfy
the sign conjecture, as do abelian varieties over any field. Let 𝖭𝖬𝗈𝗍(𝑘) denote the
category of motives for numerical equivalence over 𝑘 generated by the smooth projective
varieties over 𝑘 satisfying the sign conjecture.

Theorem 8 The category of numerical motives 𝖭𝖬𝗈𝗍(𝑘) is a semisimple tannakian cate-
gory overℚ.

6A real form 𝐺′ of 𝐺 is compact if 𝐺(ℝ) is compact and contains a point of each connected component
of 𝐺ℂ.
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To prove that 𝖭𝖬𝗈𝗍(𝑘) is polarized and that the standard Weil cohomologies factor
through it requires Grothendieck’s standard conjectures. Given the lack of progress on
these conjectures, Deligne has suggested looking for alternatives, of which there are
several.
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Notation and Conventions

Generally, we follow the conventions of Giraud 1971. We use roman letters for sets,
underline for internal homs, san-serif for categories, and small caps for stacks. Thus,
⋄ Hom(𝑥, 𝑦) is a set,
⋄ ℋ𝑜𝑚(𝑥, 𝑦) is an object of the same category as 𝑥 and 𝑦,
⋄ 𝖧𝗈𝗆(𝑥, 𝑦) is itself a category,
⋄ Hom(𝑥, 𝑦) is a stack,
⋄ ℋℴ𝓂 is a 2-category.
By an order, we mean a partial order (reflexive, antisymmetric, transitive). Functors

between additive categories are assumed to be additive. Natural transformations are
sometimes called morphisms of functors. All rings are associative with 1, and are
commutative unless indicated otherwise. A strictly full subcategory is a full subcategory
containing with any 𝑋, all objects isomorphic to 𝑋. Isomorphisms are denoted by ≈,
canonical (or given) isomorphisms by ≃,7 and equivalences of categories by ∼. For a
field 𝑘, 𝑘al denotes an algebraic closure of 𝑘 and 𝑘sep the separable closure of 𝑘 in 𝑘al.

For affine schemes 𝑋 = Spec𝐴 and 𝑌 = Spec𝐵, we sometimes identify the sets
Hom(𝑋,𝑌) and Hom(𝐵,𝐴) and use the same letter for a map of affine schemes and the
corresponding map of rings.

In a category, the collection of morphisms from one object to a second is required to
be small. The category itself is small if, in addition, the collection of objects is small. A
category is essentially small if it is equivalent to a small category. Here “small” means,
according to taste, a set in the sense of von Neumann–Bernays–Gödel set theory or an
element of some fixed universe (i.e., 𝑈-small for a fixed universe 𝑈).

Let 𝑘 be a commutative ring. A category 𝖢 is 𝑘-linear if it is additive, the Hom-sets
are 𝑘-modules, and composition is 𝑘-linear. Functors between 𝑘-linear categories are
required to be 𝑘-linear on the Hom-sets and preserve finite inductive limits.

Our notation agrees with that of Saavedra 1972 except for some simplifications: what
is called a⊗-widget AC unifère by Saavedra here becomes a tensor widget.

Among the different terminologies,

inductive direct colimit lim,,→
projective inverse limit lim←,,

we use the first and last pair.
Some alternative terminologies (we use that on the left).

tensor category ⊗-category symmetric monoidal category
tensor functor ⊗-functor
tensorial category over 𝑘 tensor category over 𝑘 rigid abelian tensor category

+ an isomorphism 𝑘 ≃ End(𝟙)

7We emphasize that, when we write 𝑋 ≃ 𝑌, we mean that 𝑋 and 𝑌 are isomorphic by a specific
isomorphism, usually canonical, even when we do not explicitly describe the isomorphism.
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Some categories (𝑘 is a field):
𝖠𝖿𝖿𝑆, 𝖠𝖿𝖿𝑘 schemes affine over an affine scheme 𝑆, over 𝑘
𝖼𝗈𝖬𝗈𝖽(𝐶) right 𝐶-comodules (𝐶 a coalgebra)
𝖼𝗈𝖬𝗈𝖽𝖿(𝐶) right 𝐶-comodules finite-dimensional over 𝑘 (𝐶 a coalgebra over 𝑘)
𝖼𝗈𝖬𝗈𝖽𝖿(𝐿) 𝐿-comodules finitely generated and projective as right 𝐵-modules

(𝐿 a coalgebroid acting on 𝐵)
𝐴𝖬𝗈𝖽, 𝖬𝗈𝖽𝐴 left, right 𝐴-modules (𝐴 a noncommutative ring)
𝖬𝗈𝖽𝖿𝐴 finitely presented right 𝐴-modules (𝐴 a noncommutative ring)
𝖬𝗈𝖽(𝑅) 𝑅-modules (𝑅 a commutative ring)
𝖬𝗈𝖽𝖿(𝑅) finitely presented 𝑅-modules
𝖯𝗋𝗈𝗃(𝑅) finitely generated projective 𝑅-modules
𝖱𝖾𝗉𝖿(𝐺) linear representations of 𝐺 on finite-dimensional 𝑘-vector spaces

(𝐺 an affine group scheme over 𝑘)
𝖱𝖾𝗉𝖿(𝑆∶𝐺) representations of 𝐺 on locally free 𝒪𝑆-modules of finite rank

(𝐺 a 𝑘-groupoid acting on 𝑆)
𝖲𝖾𝗍 sets
𝖲𝖼𝗁𝑘 schemes over 𝑘
𝖵𝖾𝖼𝖿(𝑘) finite-dimensional 𝑘-vector spaces

See also the Index.
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Chapter I

Tensor Categories

A tensor category is one in which every finite set of objects has a well-defined
tensor product. The choice of a unit object (tensor product of the empty set)
makes it into a symmetric monoidal category.

This chapter consists mostly of definitions, except for §10 where we prove Deligne’s
theorem on the existence of a fibre functor.

1 Monoidal categories

Let 𝖢 be a category and let

⊗∶ 𝖢 × 𝖢 → 𝖢, (𝑋,𝑌)⇝ 𝑋 ⊗ 𝑌

be a functor.
An associativity constraint for (𝖢, ⊗) is a natural isomorphism

𝛼𝑋,𝑌,𝑍 ∶ 𝑋 ⊗ (𝑌 ⊗ 𝑍)→ (𝑋 ⊗ 𝑌)⊗𝑍

such that, for all objects 𝑋,𝑌, 𝑍, 𝑇, the following diagram commutes,

𝑋 ⊗ (𝑌 ⊗ (𝑍 ⊗ 𝑇))

𝑋 ⊗ ((𝑌 ⊗ 𝑍)⊗ 𝑇)

(𝑋 ⊗ (𝑌 ⊗ 𝑍))⊗ 𝑇 ((𝑋 ⊗ 𝑌)⊗𝑍)⊗ 𝑇

(𝑋 ⊗ 𝑌)⊗ (𝑍 ⊗ 𝑇)

𝑋 ⊗ 𝛼𝑌,𝑍,𝑇

𝛼𝑋,𝑌⊗𝑍,𝑇

𝛼𝑋,𝑌,𝑍 ⊗ 𝑇

𝛼𝑋⊗𝑌,𝑍,𝑇

𝛼𝑋,𝑌,𝑍⊗𝑇

(1)

This is the pentagon axiom (Saavedra 1972, I, 1.1.1.1; Mac Lane 1998, p. 162).1

1In some sources, the arrow 𝛼 has the opposite direction. A similar remark applies to other arrows in
this chapter.

11
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Definition 1.1 Apair (𝑈, 𝑢) consisting of an object𝑈 of𝖢 and an isomorphism𝑢∶ 𝑈⊗
𝑈 → 𝑈 is a unit of (𝖢, ⊗) if the functors

𝑋 ⇝ 𝑈 ⊗𝑋∶ 𝖢 → 𝖢
𝑋 ⇝ 𝑋 ⊗𝑈∶ 𝖢 → 𝖢

are fully faithful.

Definition 1.2 A triple (𝖢, ⊗, 𝛼) consisting of a category 𝖢, a functor⊗∶ 𝖢 × 𝖢 → 𝖢,
and an associativity constraint 𝛼 satisfying the pentagon axiom is amonoidal category
if there exists a unit (𝑈, 𝑢).

Proposition 1.3 Let (𝑈, 𝑢) be a unit of the monoidal category (𝖢, ⊗, 𝛼). There exist
unique natural isomorphisms

𝜆𝑋 ∶ 𝑈 ⊗𝑋 → 𝑋, 𝜌𝑋 ∶ 𝑋 ⊗𝑈 → 𝑋

such that 𝜆𝑈 = 𝑢 = 𝜌𝑈 and the following triangles commute,

𝑈 ⊗ (𝑋 ⊗ 𝑌) (𝑈 ⊗𝑋)⊗𝑌

𝑋 ⊗𝑌

← →
𝛼𝑈,𝑋,𝑌

←

→𝜆𝑋⊗𝑌
←→

𝜆𝑋⊗𝑌

𝑋 ⊗ (𝑌 ⊗𝑈) (𝑋 ⊗ 𝑌)⊗𝑈

𝑋 ⊗𝑌

← →
𝛼𝑋,𝑌,𝑈

←

→𝑋⊗𝜌𝑌
←→ 𝜌𝑋⊗𝑌

(2)

Proof We first define 𝜆𝑋 . As 𝑋 ⇝ 𝑈 ⊗ 𝑋 is fully faithful, it suffices to define 𝑈 ⊗
𝜆𝑋 ∶ 𝑈 ⊗ (𝑈 ⊗𝑋)→ 𝑈 ⊗𝑋. This we take to be

𝑈 ⊗ (𝑈 ⊗𝑋)
𝛼𝑈,𝑈,𝑋
,,,,,→ (𝑈 ⊗𝑈)⊗𝑋

𝑢⊗𝑋
,,,,→ 𝑈 ⊗𝑋.

We have to show that
𝑈 ⊗ (𝑋 ⊗ 𝑌) 𝑋 ⊗ 𝑌

(𝑈 ⊗𝑋)⊗𝑌 𝑋 ⊗𝑌

←→
𝜆𝑋⊗𝑌

←→ 𝛼𝑈,𝑋,𝑌 ⇐⇐

←→
𝜆𝑋⊗𝑌

commutes, and for this it suffices to show that

𝑈 ⊗ (𝑈 ⊗ (𝑋 ⊗ 𝑌)) (𝑈 ⊗𝑈)⊗ (𝑋 ⊗ 𝑌) 𝑈 ⊗ (𝑋 ⊗ 𝑌)

𝑈 ⊗ ((𝑈 ⊗𝑋)⊗𝑌) ((𝑈 ⊗𝑈)⊗𝑋)⊗𝑌 (𝑈 ⊗𝑋)⊗𝑌

← →
𝛼𝑈,𝑈,𝑋⊗𝑌

←→ 𝑈⊗𝛼𝑈,𝑋,𝑌

← →𝑢⊗(𝑋⊗𝑌)

←→ 𝛼𝑈⊗𝑈,𝑋,𝑌 ←→ 𝛼𝑈,𝑋,𝑌

← → ← →(𝑢⊗𝑋)⊗𝑌

commutes. The left-hand square commutes because of the pentagon axiom (the un-
marked arrow involves two applications of 𝛼) and the right-hand square commutes
because of the naturality of 𝛼. This proves the statement for 𝜆𝑋 , and the proof for 𝜌𝑋 is
similar. 2

Proposition 1.4 The following diagram commutes for all 𝑋, 𝑌,

𝑋 ⊗ (𝑈 ⊗𝑌) (𝑋 ⊗𝑈)⊗𝑌

𝑋 ⊗𝑌

← →
𝛼𝑋,𝑈,𝑌

←

→𝑋⊗𝜆𝑌
←→ 𝜌𝑋⊗𝑌

(3)
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Proof Consider the diagram,

((𝑋 ⊗𝑈)⊗𝑈)⊗𝑌 (𝑋 ⊗ (𝑈 ⊗𝑈))⊗𝑌

(𝑋 ⊗𝑈)⊗𝑌

𝑋 ⊗ (𝑈 ⊗𝑌)

(𝑋 ⊗𝑈)⊗ (𝑈 ⊗𝑌) 𝑋 ⊗ ((𝑈 ⊗𝑈)⊗𝑌)

𝑋 ⊗ (𝑈 ⊗ (𝑈 ⊗𝑌)).

←

→(𝜌𝑋⊗𝑈)⊗𝑌

←→ 𝛼𝑋,𝑈,𝑈⊗𝑌

←

→
(𝑋⊗𝑢)⊗𝑌

←

→
𝑋⊗(𝑢⊗𝑌)

← →𝛼𝑋,𝑈,𝑌

←

→

𝛼𝑋⊗𝑈,𝑈,𝑌

←

→𝜌𝑋⊗(𝑈⊗𝑌) ←

→

𝛼𝑋,𝑈⊗𝑈,𝑌

←

→

𝛼𝑋,𝑈,𝑈⊗𝑌

←
→

𝑋⊗𝜆𝑈⊗𝑌

←

→
𝑋⊗𝛼𝑈,𝑈,𝑌

The triangle at lower left is (3), except with 𝑌 replaced by 𝑈 ⊗𝑌. Because 𝑌 ⇝ 𝑈 ⊗𝑌
is fully faithful, it suffices to show that this triangle commutes. The outside pentagon
is that in the pentagon axiom, and so it suffices to show that each of the remaining
subdiagrams commutes. The two rectangles commute because of the functoriality of 𝛼,
and the two triangles are the diagrams (2) tensored with 𝑋 and 𝑌. 2

Proposition 1.5 If (𝑈, 𝑢) is a unit then

𝑈 ⊗ 𝑢 = 𝛼𝑈,𝑈,𝑈 ⊗ (𝑢 ⊗𝑈) (4)

and the functors 𝑋 ⇝ 𝑈 ⊗𝑋 and 𝑋 ⇝ 𝑋 ⊗𝑈 are equivalences of categories.

Proof The equality (4) is the special case of (3) with 𝑋 = 𝑌 = 𝑈. For the second part
of the statement, note that 𝜆 and 𝜌 are natural isomorphisms of the functors with the
identity functor. 2

Proposition 1.6 For any two units (𝑈, 𝑢) and (𝑈′, 𝑢′) of a monoidal category (𝖢, ⊗),
there is a unique isomorphism 𝑎∶ 𝑈 → 𝑈′ making the diagram

𝑈 ⊗𝑈 𝑈

𝑈′ ⊗𝑈′ 𝑈′

←→ 𝑎⊗𝑎

←→𝑢

←→ 𝑎

←→𝑢
′

commute.

Proof The isomorphism

𝑈
𝜌𝑈←,, 𝑈 ⊗𝑈′ 𝜆𝑈′,,,→ 𝑈′

has the required properties. 2

Example 1.7 The category 𝖢𝖺𝗍 of small categories and functors becomes a monoidal
category with the cartesian product of categories as tensor product. Any category with
only one object and one arrow is a unit object.
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Notes

1.8 The above theory simplifies when we use 𝛼 to omit parentheses. Let (𝑈, 𝑢) be a
unit. There are unique morphisms 𝜆𝑋 ∶ 𝑈 ⊗𝑋 → 𝑋 and 𝜌𝑋 ∶ 𝑋 ⊗𝑈 → 𝑋 such that

{ 𝑈 ⊗ 𝜆𝑋 = 𝑢 ⊗ 𝑋
𝜌𝑋 ⊗𝑈 = 𝑋 ⊗ 𝑢. (5)

For example, 𝜆𝑋 is the morphism corresponding to 𝑢 ⊗ 𝑋 under the isomorphism

Hom(𝑈 ⊗𝑋,𝑋)
𝑈⊗−
,→ Hom(𝑈 ⊗𝑈 ⊗𝑋,𝑈 ⊗ 𝑋).

Both 𝜆𝑋 and 𝜌𝑋 are isomorphisms, natural in 𝑋. Moreover,

{ 𝜆𝑋⊗𝑌 = 𝜆𝑋 ⊗𝑌
𝜌𝑋⊗𝑌 = 𝑋 ⊗ 𝜌𝑌 .

For example, to prove the first equality, note that

𝑈 ⊗ 𝜆𝑋⊗𝑌
def= 𝑢 ⊗ 𝑋 ⊗ 𝑌 def= 𝑈 ⊗ 𝜆𝑋 ⊗𝑌.

In the commutative diagram

𝑋 ⊗𝑈 ⊗𝑈 ⊗𝑌 𝑋 ⊗𝑈 ⊗𝑌

𝑋 ⊗𝑈 ⊗𝑌 𝑋 ⊗ 𝑌,

← →
𝜌𝑋⊗𝑈⊗𝑌

←

→ 𝑋⊗𝑈⊗𝜆𝑌

←

→ 𝑋⊗𝜆𝑌

← →
𝜌𝑋⊗𝑌

the left-hand and top arrows both equal the morphism 𝑋 ⊗ 𝑢 ⊗ 𝑌 (by (5)). As this is an
isomorphism, it follows that 𝑋 ⊗ 𝜆𝑌 = 𝜌𝑋 ⊗𝑌.

1.9 Saavedra 1972, I, 1.3.2, defines a “unité reduit” to be a pair (𝑈, 𝑢) consisting of an
object 𝑈 and an isomorphism 𝑢∶ 𝑈 ⊗𝑈 → 𝑈 such that the functors 𝑋 ⇝ 𝑈 ⊗𝑋 and
𝑋 ⇝ 𝑋 ⊗𝑈 are equivalences. According to 1.5, this agrees with our notion of a unit.

1.10 Define an LR-unit to be a triple (𝑈, 𝜆, 𝜌) such that (3) commutes (the triangle
axiom). Proposition 1.3 shows that, to give the structure of a unit on an object is the
same as giving the structure of an LR-unit.

1.11 A monoidal category is classically defined to be a triple (𝐶,⊗, 𝛼) together with an
LR-unit (Mac Lane 1998, p. 162). According to 1.10, this is the same as giving a triple
together with a unit object.

1.12 In our definition of a monoidal category, instead of specifying a unit object we
only required it to exist. According to 1.6, this makes little difference.

For more on units in monoidal categories, see Kock 2008.
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2 Tensor (symmetric monoidal) categories

Let 𝖢 be a category and let

⊗∶ 𝖢 × 𝖢 → 𝖢, (𝑋,𝑌)⇝ 𝑋 ⊗ 𝑌

be a functor.
A commutativity constraint for (𝖢, ⊗) is a natural isomorphism

𝛾𝑋,𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋

such that, for all objects 𝑋,𝑌,

𝛾𝑌,𝑋◦𝛾𝑋,𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑋 ⊗ 𝑌

is the identity morphism on 𝑋 ⊗ 𝑌 (Saavedra 1972, I, 1.2.1).
An associativity constraint 𝛼 and a commutativity constraint 𝛾 are compatible if,

for all objects 𝑋,𝑌, 𝑍, the following diagram commutes,2

𝑍 ⊗ (𝑋 ⊗ 𝑌)

(𝑋 ⊗ 𝑌)⊗𝑍𝑋 ⊗ (𝑌 ⊗ 𝑍)

𝑋 ⊗ (𝑍 ⊗ 𝑌)

(𝑋 ⊗ 𝑍)⊗𝑌 (𝑍 ⊗ 𝑋)⊗𝑌

𝛼

𝛾

𝛼

𝑋 ⊗ 𝛾

𝛼

𝛾⊗𝑌

(6)

This is the hexagon axiom (Saavedra 1972, I, 2.1.1.1; Mac Lane 1998, p. 184).

Definition 2.1 A tensor category is a system (𝖢, ⊗, 𝛼, 𝛾), where (𝖢, ⊗, 𝛼) is amonoidal
category and 𝛾 is a compatible commutativity constraint.

Proposition 2.2 In a tensor category, the following diagram commutes,

𝑋 ⊗ (𝑈 ⊗𝑌) (𝑋 ⊗𝑈)⊗𝑌

𝑋 ⊗𝑌 (𝑈 ⊗𝑋)⊗𝑌

←→
𝛼𝑋,𝑈,𝑌

←→ 𝑋⊗𝜆𝑌 ←→ 𝛾⊗𝑌

←→𝜆𝑋⊗𝑌

Proof Exercise. 2

2When we use the associativity constraint to omit parentheses, this becomes the triangle

𝑋 ⊗ 𝑌 ⊗ 𝑍 𝑍 ⊗ 𝑋 ⊗ 𝑌.

𝑋 ⊗ 𝑍 ⊗ 𝑌

← →
𝛾𝑋⊗𝑌,𝑍

←

→𝑋⊗𝛾𝑌,𝑍

← →
𝛾𝑋,𝑍⊗𝑌



16 Chapter I. Tensor Categories

We sometimes denote a unit of a tensor category by (𝟙, 𝑒) and call 𝟙 an identity
object.

Example 2.3 Let 𝑅 be a commutative ring. The category 𝖬𝗈𝖽(𝑅) becomes a tensor
category with the usual tensor product and the obvious constraints. (If one perversely
takes 𝛼 to the negative of the obvious isomorphism, then the pentagon (1) fails to
commute by a sign.) A pair (𝑈, 𝑒) consisting of a free 𝑅-module 𝑈 of rank 1 and a
basis element 𝑒 determines a unit (𝑈, 𝑢) of𝖬𝗈𝖽𝑅 – take 𝑢 to be the unique isomorphism
𝑈⊗𝑈 → 𝑈 sending 𝑒⊗𝑒 to 𝑒. Every unit is of this form. In this case, there is a canonical

unit, namely, (𝑅, 𝑅 ⊗ 𝑅
mult.
,→ 𝑅).

Example 2.4 The category of complexHilbert spaces and bounded linearmaps becomes
a tensor category with the completed tensor product ⊗̂ as tensor product (Weidmann

1980). The pair (ℂ,ℂ⊗ ℂ
mult.
,→ ℂ) is a unit.

For other examples, see §8 below.

Extending⊗

Let (ℂ, ⊗, 𝛼) be a monoidal category. Any functor 𝖢𝑛 → 𝖢 defined by repeated ap-
plication of ⊗ is called an iterate of ⊗. If 𝐹, 𝐹′∶ 𝖢𝑛 → 𝖢 are iterates of ⊗, then it is
possible to construct an isomorphism of functors 𝐹 → 𝐹′ using only 𝛼 and 𝛼−1. The
significance of the pentagon axiom is that it implies that the isomorphism is unique:
any two iterates of⊗ to 𝖢𝑛 are isomorphic by a unique isomorphism constructed out
of 𝛼 and 𝛼−1 (Mac Lane 1963; 1998, VII, 2). This means that there is an essentially
unique way of extending ⊗ to a functor

⨂𝑛 ∶ 𝖢𝑛 → 𝖢 for all 𝑛 ≥ 0. Similarly, when
(𝖢, ⊗, 𝛼, 𝛾) is a tensor category, there is an essentially unique way of extending⊗ to a
functor

⨂
𝑖∈𝐼 ∶ 𝖢

𝐼 → 𝖢, where 𝐼 is any (unordered) finite indexing set. In other words,
the tensor product of any finite family of objects of 𝖢 is well-defined up to a unique
isomorphism (Mac Lane 1963). We can make this statement more precise.

Proposition 2.5 The tensor structure on a tensor category (𝖢, ⊗) admits an extension as
follows: for each finite set 𝐼, there is a functor

⨂
𝑖∈𝐼 ∶ 𝖢

𝐼 → 𝖢,

and, for each map 𝑎∶ 𝐼 → 𝐽 of finite sets, there is a natural isomorphism

𝜒(𝑎)∶
⨂

𝑖∈𝐼 𝑋𝑖 →
⨂

𝑗∈𝐽

(⨂
𝑖↦𝑗 𝑋𝑖

)

satisfying the following conditions,
(a) if 𝐼 is a singleton, then

⨂
𝑖∈𝐼 is the identity functor 𝑋 ⇝ 𝑋; if 𝑎 is a map between

singletons, then 𝜒(𝑎) is the identity automorphism of the identity functor;

(b) the isomorphisms defined by maps 𝐼
𝑎
→ 𝐽

𝑏
→ 𝐾 give rise to a commutative diagram

⨂
𝑖∈𝐼 𝑋𝑖

⨂
𝑗∈𝐽

(⨂
𝑖↦𝑗 𝑋𝑖

)

⨂
𝑘∈𝐾

(⨂
𝑖↦𝑘 𝑋𝑖

) ⨂
𝑘∈𝐾

(⨂
𝑗↦𝑘

(⨂
𝑖↦𝑗 𝑋𝑖

))
,

← →
𝜒(𝑎)

←

→ 𝜒(𝑏𝑎)

←

→ 𝜒(𝑏)

← →
⨂
(𝜒(𝑎|𝐼𝑘))

where 𝐼𝑘 = (𝑏𝑎)−1(𝑘).
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Proof Apply the coherence theorems of Mac Lane 1963, 1998. 2

By (
⨂

𝑖∈𝐼 , 𝜒) being an extension of the tensor structure on𝖢, wemean that
⨂

𝑖∈𝐼 𝑋𝑖 =
𝑋1 ⊗𝑋2 when 𝐼 = {1, 2} and that the isomorphisms

𝑋 ⊗ (𝑌 ⊗ 𝑍)→ (𝑋 ⊗ 𝑌)⊗𝑍
𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋

induced by 𝜒 are equal to 𝛼 and 𝛾 respectively. It is automatic that (
⨂

∅ 𝑋𝑖, 𝜒(∅→ {1, 2})
is a unit and that 𝜒({2} → {1, 2}) is 𝜆𝑋 ∶ 𝑋 → 𝟙 ⊗ 𝑋. If (

⨂′
𝑖∈𝐼 , 𝜒

′) is a second such
extension, then there is a unique system of natural isomorphisms

⨂
𝑖∈𝐼 𝑋𝑖 →

⨂′
𝑖∈𝐼 𝑋𝑖

compatible with 𝜒 and 𝜒′ and such that, when 𝐼 = {𝑖}, the isomorphism is id𝑋𝑖 .
Whenever a tensor category (𝖢, ⊗) is given, we shall always assume that an extension

as in Proposition 2.5 has been made.
The proposition justifies our definition of “tensor category”: the constraints imposed

are the minimum necessary to force the proposition to hold.

Invertible objects

Let (𝖢, ⊗) be a tensor category. An object 𝐿 of 𝖢 is invertible if

𝑋 ⇝ 𝐿 ⊗ 𝑋∶ 𝖢 → 𝖢

is an equivalence of categories. For example, an object 𝐿 of𝖬𝗈𝖽𝖿(𝑅) is invertible if and
only if it is projective of rank 1.

If 𝐿 is invertible, then there exists an 𝐿′ such that 𝐿⊗𝐿′ is a unit object. The converse
assertion is also true: if 𝐿 ⊗ 𝐿′ = 𝟙, then 𝐿 ⊗ − and −⊗ 𝐿′ are quasi-inverse functors.

An inverse of 𝐿 is any pair (𝐿−1, 𝛿) with 𝐿−1 and object and 𝛿 a morphism,

𝛿∶
⨂

𝑖∈{±}
𝑋𝑖

≃,→ 𝟙, 𝑋+ = 𝐿, 𝑋− = 𝐿−1.

Note that this definition is symmetric: (𝐿, 𝛿) is an inverse of 𝐿−1. If (𝐿1, 𝛿1) and (𝐿2, 𝛿2)
are both inverses of 𝐿, then there is a unique isomorphism 𝑎∶ 𝐿1 → 𝐿2 such that the
composite

𝛿2◦(1⊗ 𝑎)∶ 𝐿 ⊗ 𝐿1 → 𝐿 ⊗ 𝐿2 → 𝟙

is 𝛿1 (because the functors −⊗ 𝐿1 and −⊗ 𝐿2 are both quasi-inverse to 𝐿 ⊗ −).

Notes

2.6 There is no standard definition of “tensor category”in the literature. Rather, authors
adopt the definition most convenient for their purposes.

2.7 A a symmetric monoidal category is a monoidal category together with a compat-
ible commutativity constraint (Mac Lane 1998, p. 184). This is essentially the same as
our notion of a tensor category (see 1.11, 1.12).

2.8 Our notion of a tensor category is the same as that of a “⊗-catégorie AC unifère” in
Saavedra 1972 and, because of 1.6, it is essentially the same as the notion of a “⊗-catégorie
ACU” defined ibid. I, 2.4.1 (cf. ibid. I, 2.4.3).
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2.9 Proposition 2.5 suggests the notion of an “unbiased tensor category” in which no
preference is given to the functor⊗∶ 𝖢2 → 𝖢, and the constraints are canonical. See
chapter 4 of Leinster 2004, which treats the case of monoidal categories.

2.10 There is a large literature on coherence in monoidal and symmetric monoidal
categories, beginning with Mac Lane 1963. For a recent review, see Mimram 2024.

2.11 There is a large literature on monoidal categories satisfying a commutativity con-
straint weaker than that we have imposed, which we shall ignore.

3 Tensor functors

Let (𝖢, ⊗) and (𝖣, ⊗) be tensor categories.

Definition 3.1 A tensor functor (𝖢, ⊗)→ (𝖣, ⊗) is a pair (𝐹, 𝑐) consisting of a functor
𝐹∶ 𝖢 → 𝖣 and a natural isomorphism 𝑐𝑋,𝑌 ∶ 𝐹(𝑋) ⊗ 𝐹(𝑌) → 𝐹(𝑋 ⊗ 𝑌) with the
following properties:
(a) for all 𝑋,𝑌, 𝑍 ∈ ob(𝖢), the diagram

𝐹𝑋 ⊗ (𝐹𝑌 ⊗ 𝐹𝑍) 𝐹𝑋 ⊗ 𝐹(𝑌 ⊗ 𝑍) 𝐹(𝑋 ⊗ (𝑌 ⊗ 𝑍))

(𝐹𝑋 ⊗ 𝐹𝑌)⊗𝐹𝑍 𝐹(𝑋 ⊗ 𝑌)⊗𝐹𝑍 𝐹((𝑋 ⊗ 𝑌)⊗𝑍)

←→𝐹𝑋⊗𝑐

←→ 𝛼𝐹𝑋,𝐹𝑌,𝐹𝑍

←→𝑐

←→ 𝐹(𝛼𝑋,𝑌,𝑍)

←→𝑐⊗𝐹𝑍 ←→𝑐

commutes;

(b) for all 𝑋,𝑌 ∈ ob(𝖢), the diagram

𝐹𝑋 ⊗ 𝐹𝑌 𝐹(𝑋 ⊗ 𝑌)

𝐹𝑌 ⊗ 𝐹𝑋 𝐹(𝑌 ⊗ 𝑋)

←→𝑐

←→ 𝛾𝐹𝑋,𝐹𝑌 ←→ 𝐹(𝛾𝑋,𝑌)

←→𝑐

commutes;

(c) if (𝑈, 𝑢) is a unit in 𝖢, then (𝐹(𝑈), 𝐹(𝑢)) is a unit in 𝖢′.

Let (𝐹, 𝑐) be a tensor functor (𝖢, ⊗)→ (𝖣, ⊗). For any finite family (𝑋𝑖)𝑖∈𝐼 of objects
in 𝖢, 𝑐 gives rise to a well-defined isomorphism

𝑐∶
⨂

𝑖∈𝐼
𝐹(𝑋𝑖)→ 𝐹(

⨂

𝑖∈𝐼
𝑋𝑖).

Moreover, for any map 𝑎∶ 𝐼 → 𝐽, the following diagram commutes,

⨂
𝑖∈𝐼 𝐹(𝑋𝑖) 𝐹

(⨂
𝑖∈𝐼 𝑋𝑖

)

⨂
𝑗∈𝐽(

⨂
𝑖↦𝑗 𝐹(𝑋𝑖))

⨂
𝑗∈𝐽(𝐹(

⨂
𝑖↦𝑗 𝑋𝑖)) 𝐹(

⨂
𝑗∈𝐽(

⨂
𝑖↦𝑗 𝑋𝑖)).

← →𝑐

←→ 𝜒(𝑎) ←→ 𝐹(𝜒(𝑎))

←→𝑐 ←→𝑐

In particular, (𝐹, 𝑐)maps inverse objects to inverse objects.
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Definition 3.2 Let (𝐹, 𝑐) and (𝐺, 𝑑) be tensor functors 𝖢 → 𝖣. Amorphism of tensor
functors (𝐹, 𝑐)→ (𝐺, 𝑑) is a natural transformation 𝜆∶ 𝐹 → 𝐺 such that, for all finite
families (𝑋𝑖)𝑖∈𝐼 of objects in 𝖢, the diagram

⨂
𝑖∈𝐼

𝐹(𝑋𝑖) 𝐹(
⨂
𝑖∈𝐼

𝑋𝑖)

⨂
𝑖∈𝐼

𝐺(𝑋𝑖) 𝐺(
⨂
𝑖∈𝐼

𝑋𝑖)

← →𝑐

←

→

⨂
𝑖∈𝐼

𝜆𝑋𝑖

←

→ 𝜆
⨂

𝑖∈𝐼
𝑋𝑖

← →𝑑

(7)

commutes. If 𝜆𝑋 is an isomorphism for all 𝑋, then we call 𝜆 an isomorphism of tensor
functors.

It suffices to check that the diagram (7) commutes when 𝐼 is {1, 2} or the empty set.
For the empty set, (7) becomes

𝟙′ 𝐹(𝟙)

𝟙′ 𝐺(𝟙)

←→≃

⇐⇐ ←→ 𝜆𝟙

←→≃
(8)

in which the horizontal morphisms are the unique isomorphisms compatible with
the structures of 𝟙′, 𝐹(𝟙), and 𝐺(𝟙) as identity objects of 𝖢′. In particular, 𝜆𝟙 is an
isomorphism.

Definition 3.3 A tensor functor (𝐹, 𝑐)∶ (𝖢, ⊗)→ (𝖣, ⊗) is a tensor equivalence (or
an equivalence of tensor categories) if 𝐹∶ 𝖢 → 𝖣 is an equivalence of categories.

This definition is justified by the following remark.

3.4 Let (𝐹, 𝑐)∶ (𝖢, ⊗) → (𝖣, ⊗) be a tensor equivalence. To say that 𝐹∶ 𝖢 → 𝖣 is
an equivalence of categories means that there exists a functor 𝐺∶ 𝖣 → 𝖢 and natural
isomorphisms

𝜂∶ id𝖢
≃,→ 𝐺𝐹, 𝜖∶ id𝖣

≃,→ 𝐹𝐺.

After possibly replacing 𝜖 with a different natural isomorphism id𝖣
≃,→ 𝐹𝐺, we obtain a

system (𝐹, 𝐺, 𝜂, 𝜖) satisfying the triangle identities (see A.4). There then exists a 𝑑 such
that (𝐺, 𝑑) is tensor functor and 𝜂 and 𝜖 are isomorphisms of tensor functors (Saavedra
1972, I, 4.4).

We let Hom⊗(𝐹, 𝐺) denote the collection of morphisms of tensor functors (𝐹, 𝑐)→
(𝐺, 𝑑).

For any field 𝑘 and 𝑘-algebra 𝑅, there is a canonical tensor functor 𝜙𝑅 ∶ 𝖵𝖾𝖼𝖿(𝑘)→
𝖬𝗈𝖽(𝑅), namely, 𝑉 ⇝ 𝑉 ⊗𝑘 𝑅. When (𝐹, 𝑐) and (𝐺, 𝑑) are tensor functors 𝖢 → 𝖵𝖾𝖼𝖿(𝑘),
we defineℋ𝑜𝑚⊗(𝐹, 𝐺) to be the functor of 𝑘-algebras such that

ℋ𝑜𝑚⊗(𝐹, 𝐺)(𝑅) = Hom⊗(𝜙𝑅◦𝐹, 𝜙𝑅◦𝐺). (9)

Notes In Saavedra 1972, I, 4.2.3, a tensor functor is called a “⊗-foncteur AC unifère”.
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4 Internal Homs and duals in tensor categories

Internal Homs

Let (𝖢, ⊗) be a tensor (symmetric monoidal) category.

Definition 4.1 Let 𝑋,𝑌 ∈ ob𝖢. When the functor

𝑇 ⇝ Hom(𝑇 ⊗ 𝑋,𝑌)∶ 𝖢op → 𝖲𝖾𝗍

is representable, we letℋ𝑜𝑚(𝑋,𝑌) denote the representing object and

ev𝑋,𝑌 ∶ ℋ𝑜𝑚(𝑋,𝑌)⊗𝑋 → 𝑌

the morphism corresponding to idℋ𝑜𝑚(𝑋,𝑌). Thus, to every morphism 𝑔∶ 𝑇 ⊗ 𝑋 → 𝑌
there corresponds a unique morphism 𝑓∶ 𝑇 →ℋ𝑜𝑚(𝑋,𝑌) such that ev𝑋,𝑌 ◦(𝑓 ⊗𝑋) =
𝑔,

𝑇 𝑇 ⊗ 𝑋

ℋ𝑜𝑚(𝑋,𝑌) ℋ𝑜𝑚(𝑋,𝑌)⊗𝑋 𝑌.

𝑔

ev𝑋,𝑌

𝑓 𝑓 ⊗ 𝑋

(10)

More succinctly,
Hom(𝑇 ⊗ 𝑋,𝑌) ≃ Hom(𝑇,ℋ𝑜𝑚(𝑋,𝑌)). (11)

Fix 𝑋. Ifℋ𝑜𝑚(𝑋,𝑌) exists for all 𝑌, then the functorℋ𝑜𝑚(𝑋,−) is the right adjoint
of −⊗𝑋.3

Example 4.2 Let 𝑅 be a commutative ring. For 𝑅-modules𝑀,𝑁, Hom𝑅(𝑀,𝑁) is again
an 𝑅-module, and

Hom𝑅(𝑇 ⊗𝑅 𝑀,𝑁) ≃ Hom𝑅(𝑇,Hom𝑅(𝑀,𝑁)), 𝜃 ↔ (𝑡 ↦ (𝑚 ↦ 𝜃(𝑡 ⊗ 𝑚))

(BourbakiA, II, 4.1). Thus,ℋ𝑜𝑚(𝑀,𝑁) exists for allmodules𝑀,𝑁, and equalsHom𝑅(𝑀,𝑁)
(viewed as an 𝑅-module). In this case, ev𝑀,𝑁 is

𝑓 ⊗ 𝑥 ↦ 𝑓(𝑥)∶ Hom𝑅(𝑀,𝑁)⊗𝑀 → 𝑁,

which explains its name.

Assume now that the functorℋ𝑜𝑚(𝑋,−) exists for all 𝑋, i.e., that the functor−⊗𝑋
has a right adjoint. Then there is a composition map

ℋ𝑜𝑚(𝑌, 𝑍)⊗ℋ𝑜𝑚(𝑋,𝑌)→ℋ𝑜𝑚(𝑋, 𝑍), (12)

corresponding to

ℋ𝑜𝑚(𝑌, 𝑍)⊗ℋ𝑜𝑚(𝑋,𝑌)⊗𝑋
id⊗ ev
,,,,,,→ℋ𝑜𝑚(𝑌, 𝑍)⊗𝑌

ev
,→ 𝑍.

3Strictly speaking, this is the left internal Hom. The right internal Hom is right adjoint to 𝑋 ⊗ −, so
Hom(𝑋 ⊗ 𝑇,𝑌) ≃ Hom(𝑇,ℋ𝑜𝑚(𝑋,𝑌)). Because of the commutativity constraint, left and right internal
Homs essentially coincide.
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From the canonical isomorphisms

Hom(𝑇,ℋ𝑜𝑚(𝑍,ℋ𝑜𝑚(𝑋,𝑌)))
(11)
≃ Hom(𝑇 ⊗ 𝑍,ℋ𝑜𝑚(𝑋,𝑌))
(11)
≃ Hom(𝑇 ⊗ 𝑍 ⊗ 𝑋,𝑌)
(11)
≃ Hom(𝑇,ℋ𝑜𝑚(𝑍 ⊗ 𝑋,𝑌)),

and the Yoneda lemma, we get a canonical isomorphism

ℋ𝑜𝑚(𝑍,ℋ𝑜𝑚(𝑋,𝑌)) ≃ℋ𝑜𝑚(𝑍 ⊗ 𝑋,𝑌). (13)

Note that

Hom(𝟙,ℋ𝑜𝑚(𝑋,𝑌))
(11)
≃ Hom(𝟙⊗𝑋,𝑌) ≃ Hom(𝑋,𝑌). (14)

Theweak dual 𝑋∨ of an object 𝑋 is defined to beℋ𝑜𝑚(𝑋, 𝟙). The morphism

ev𝑋 ∶ 𝑋∨ ⊗𝑋 → 𝟙

induces a bijection

𝑓 ↦ ev𝑋 ◦(𝑓 ⊗ 𝑋)∶ Hom(𝑇,𝑋∨)→ Hom(𝑇 ⊗ 𝑋, 𝟙), (15)

natural in 𝑇, and this property characterizes (𝑋∨, ev𝑋). The map 𝑋 ↦ 𝑋∨ can be
made into a contravariant functor by sending 𝑓∶ 𝑋 → 𝑌 to the unique morphism
𝑡𝑓∶ 𝑌∨ → 𝑋∨ rendering commutative the diagram4

𝑌∨ ⊗𝑋 𝑋∨ ⊗𝑋

𝑌∨ ⊗𝑌 𝟙.

←→
𝑡𝑓⊗id𝑋

←→ id𝑌∨ ⊗𝑓 ←→ ev𝑋

← →
ev𝑌

(16)

In other words, 𝑡𝑓 is the morphism corresponding to ev𝑌 ◦(id𝑌∨ ⊗𝑓) under the isomor-
phism (15)

𝑔 ↦ ev𝑋 ◦(𝑔 ⊗ id𝑋)∶ Hom(𝑌∨, 𝑋∨)→ Hom(𝑌∨ ⊗𝑋, 𝟙).

When 𝑓 is an isomorphism, we let 𝑓∨ = (𝑡𝑓)−1∶ 𝑋∨ → 𝑌∨, so that

ev𝑌 ◦(𝑓∨ ⊗ 𝑓) = ev𝑋 ∶ 𝑋∨ ⊗𝑋 → 𝟙. (17)

Example 4.3 In𝖬𝗈𝖽(𝑅),𝑀∨ = Hom𝑅(𝑀,𝑅) and 𝑡𝑓 is determined by the equation

⟨𝑡𝑓(𝑦), 𝑥⟩𝑀 = ⟨𝑦, 𝑓(𝑥)⟩𝑁 , 𝑦 ∈ 𝑁∨ 𝑥 ∈ 𝑀,

where we have written ⟨ , ⟩𝑀 and ⟨ , ⟩𝑁 for ev𝑀 and ev𝑁 . We have

⟨𝑓∨(𝑥′), 𝑓(𝑥)⟩𝑁 = ⟨𝑥′, 𝑥⟩𝑀 , 𝑥′ ∈ 𝑀∨, 𝑥 ∈ 𝑀.
4The morphism 𝑡𝑓 is that corresponding to ev𝑌 ◦(id𝑌∨ ⊗𝑓) under the isomorphism (15)

𝑔 ↦ ev𝑋 ◦(𝑔 ⊗ id𝑋)∶ Hom(𝑌∨, 𝑋∨)→ Hom(𝑌∨ ⊗𝑋, 𝟙).
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Let 𝑖𝑋 ∶ 𝑋 → 𝑋∨∨ be the morphism corresponding in (15) to ev𝑋 ◦𝛾∶ 𝑋 ⊗ 𝑋∨ → 𝟙.
When 𝑖𝑋 is an isomorphism, 𝑋 is said to be reflexive. If 𝑋 has an inverse

(𝑋−1, 𝛿∶ 𝑋−1 ⊗𝑋 ≃→ 𝟙),

then 𝑋 is reflexive and the morphism 𝑋−1 → 𝑋∨ corresponding to 𝛿 in (11) is an
isomorphism.

For finite families of objects (𝑋𝑖)𝑖∈𝐼 and (𝑌𝑖)𝑖∈𝐼 , there is a morphism
⨂

𝑖∈𝐼ℋ𝑜𝑚(𝑋𝑖, 𝑌𝑖)→ℋ𝑜𝑚(
⨂

𝑖∈𝐼 𝑋𝑖,
⨂

𝑖∈𝐼 𝑌𝑖) (18)

corresponding in (11) to

(⨂
𝑖∈𝐼ℋ𝑜𝑚(𝑋𝑖, 𝑌𝑖)

)
⊗
(⨂

𝑖∈𝐼 𝑋𝑖
) ≃
,→

⨂
𝑖∈𝐼 (ℋ𝑜𝑚(𝑋𝑖, 𝑌𝑖)⊗𝑋𝑖)

⊗ ev
,,,,→

⨂
𝑖∈𝐼 𝑌𝑖.

In particular, there are morphisms

⨂
𝑖∈𝐼 𝑋

∨
𝑖 →

(⨂
𝑖∈𝐼 𝑋𝑖

)∨
(19)

and
𝑋∨ ⊗𝑌 →ℋ𝑜𝑚(𝑋,𝑌) (20)

obtained respectively by taking 𝑌𝑖 = 𝟙 all 𝑖, and 𝑋1 = 𝑋, 𝑋2 = 𝟙 = 𝑌1, 𝑌2 = 𝑌.

Notes A symmetric monoidal category in which internal Homs exist is said to be closed.

Duals

Let (𝖢, ⊗) be a tensor category.

Definition 4.4 Let 𝑋 be an object in 𝖢. A pair (𝑋′, 𝑋′ ⊗ 𝑋
𝜀
,→ 𝟙) is a dual5 of 𝑋 if

there exists a morphism 𝛿∶ 𝟙→ 𝑋 ⊗ 𝑋′ such the following equalities hold,

(𝑋 ≃ 𝟙⊗𝑋
𝛿⊗𝑋
,,,,→ 𝑋 ⊗ 𝑋′ ⊗𝑋

𝑋⊗𝜀
,,,,→ 𝑋 ⊗ 𝟙 ≃ 𝑋) = id𝑋

(𝑋′ ≃ 𝑋′ ⊗ 𝟙
𝑋′⊗𝛿
,,,,,→ 𝑋′ ⊗𝑋 ⊗𝑋′ 𝜀⊗𝑋′

,,,,,→ 𝟙⊗𝑋′ ≃ 𝑋′) = id𝑋′ .
(21)

Here 𝜀 and 𝛿 are called the evaluation and coevaluation morphisms, and are often
denoted ev𝑋 and 𝛿𝑋 (or coev𝑋).

Example 4.5 Let𝑀 be a free 𝑅-module of finite rank, let𝑁 =ℋ𝑜𝑚(𝑀,𝑅), and let 𝜀 be
the evaluation map 𝑓 ⊗𝑚 ↦ 𝑓(𝑚)∶ 𝑁 ⊗𝑀 → 𝑅. Let (𝑒𝑖) and (𝑒′𝑖 ) be dual bases for𝑀
and𝑁, and let 𝛿∶ 𝑅 → 𝑀⊗𝑁 be the map sending 1 to

∑
𝑒𝑖⊗𝑒′𝑖 . Then 𝛿 is independent

of the choice the basis (𝑒𝑖), and the following equalities hold,

(𝑀 ≃ 𝑅 ⊗𝑀
𝛿⊗𝑀
,→ 𝑀 ⊗𝑁 ⊗𝑀

𝑀⊗𝜀
,→ 𝑀 ⊗𝑅 ≃ 𝑀) = id𝑀

(𝑁 ≃ 𝑁 ⊗ 𝑅
𝑁⊗𝛿
,→ 𝑁 ⊗𝑀 ⊗𝑁

𝜀⊗𝑀
,→ 𝑅 ⊗𝑁 ≃ 𝑁) = id𝑁 .

(22)

Thus, (𝑁, 𝜀) is the dual of𝑀.
5Strictly speaking, this is a left dual – the right dual is a morphism 𝑋 ⊗ 𝑋′ → 𝟙 such that there exists a

morphism 𝟙→ 𝑋′ ⊗𝑋 making the similar diagrams commute. Because of the commutativity constraint,
left and right essentially coincide.
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Proposition 4.6 Let 𝜀∶ 𝑋′ ⊗𝑋 → 𝟙 be a morphism in 𝖢. The pair (𝑋′, 𝜀) is a dual of 𝑋
if and only if the map

Ψ𝑆,𝑇 ∶ Hom(𝑆, 𝑇 ⊗ 𝑋′)→ Hom(𝑆 ⊗ 𝑋, 𝑇)

sending 𝑓∶ 𝑆 → 𝑇 ⊗ 𝑋′ to the composite 𝑆 ⊗ 𝑋
𝑓⊗𝑋
,→ 𝑇 ⊗ 𝑋′ ⊗ 𝑋

𝑇⊗𝜀
,→ 𝑇 ⊗ 𝟙 ≃ 𝑇 is a

bijection for all 𝑆, 𝑇 ∈ ob𝖢.

Proof We have functors

𝖢 𝖢

←→𝐹←→

𝐺

𝐹𝑆 = 𝑆 ⊗ 𝑋
𝐺𝑇 = 𝑇 ⊗ 𝑋′,

and a natural transformation

𝜖∶ 𝐹𝐺 → id𝖢, 𝑇 ⊗ 𝑋′ ⊗𝑋
𝑇⊗𝜀
,→ 𝑇 ⊗ 𝟙 ≃ 𝑇.

According to A.3, 𝜓𝑆,𝑇 is bijective for all 𝑆, 𝑇, i.e., (𝐹, 𝐺, 𝜓−1) is an adjunction, if and only
if there exists a natural transformation 𝜂∶ id𝖢 → 𝐺𝐹 such that the triangle identities

(𝑆 ⊗ 𝑋 ,→ 𝑆 ⊗ 𝑋 ⊗ 𝑋′ ⊗𝑋 ,→ 𝑆 ⊗ 𝑋) = id𝑆⊗𝑋
(𝑇 ⊗ 𝑋′ → 𝑇 ⊗ 𝑋′ ⊗𝑋 ⊗𝑋′ → 𝑇 ⊗ 𝑋′) = id𝑇⊗𝑋

hold for all 𝑆, 𝑇 ∈ ob𝖢, i.e., (𝑋′, 𝜀) is a dual of 𝑋. 2

Note that, if (𝑋′, 𝜀) is a dual of 𝑋, then the map 𝜙𝟙,𝑋 sends 𝛿 to id𝑋 ; in particular, 𝛿 is
unique if it exists.

Assume thatℋ𝑜𝑚(𝑋, 𝑇) exists for all 𝑇, and let

𝜀 = ev𝑋,𝟙∶ ℋ𝑜𝑚(𝑋, 𝟙)⊗𝑋 → 𝟙.

As in 4.6, this defines a morphism 𝜓𝑆,𝑇, and from

Hom(𝑆, 𝑇 ⊗ℋ𝑜𝑚(𝑋, 𝟙))
𝜓𝑆,𝑇
,→ Hom(𝑆 ⊗ 𝑋, 𝑇) ≃ Hom(𝑆,ℋ𝑜𝑚(𝑋, 𝑇)), (23)

we get (by the Yoneda lemma) a canonical morphism, natural in 𝑇,

𝑇 ⊗ℋ𝑜𝑚(𝑋, 𝟙)→ℋ𝑜𝑚(𝑋, 𝑇). (24)

Proposition 4.7 Anobject𝑋 of𝖢admits a dual if and only if, for all𝑇 ∈ ob𝖢,ℋ𝑜𝑚(𝑋, 𝑇)
exists and (24) is an isomorphism.

Proof Assume thatℋ𝑜𝑚(𝑋, 𝑇) exists for all 𝑇. If (24) is an isomorphism for all 𝑇, then
the composite of the morphisms in (23) is an isomorphism for all 𝑆 and 𝑇, and hence
𝜓𝑆,𝑇 is an isomorphism. According to 4.6, this implies that (𝑋′, 𝜀) is a dual of 𝑋.6

6More directly, let 𝑋∨ be the weak dualℋ𝑜𝑚(𝑋, 𝟙) of 𝑋. By definition (4.1), we have an evaluation
morphism

ev ∶ 𝑋∨ ⊗𝑋 → 𝟙.
With 𝑇 = 𝑋, (24) becomes an isomorphism

𝑋 ⊗ℋ𝑜𝑚(𝑋, 𝟙)→ℋ𝑜𝑚(𝑋,𝑋).

On composing the obvious morphism 𝟙 → ℋ𝑜𝑚(𝑋,𝑋) with the inverse of this isomorphism we get a
morphism

𝛿∶ 𝟙→ 𝑋 ⊗ 𝑋∨.
The morphisms ev and 𝛿 satisfy the equalities (21).
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Conversely, if 𝑋 has a dual (𝑋∨, 𝜀), then

𝜓𝑆,𝑇 ∶ Hom(𝑆, 𝑇 ⊗ 𝑋∨)→ Hom(𝑆 ⊗ 𝑋, 𝑇),

is an isomorphism for all 𝑆 (see 4.6). Therefore,ℋ𝑜𝑚(𝑋, 𝑇) exists and equals 𝑇 ⊗ 𝑋∨.2

Corollary 4.8 If an object 𝑋 of 𝖢 admits a dual (𝑋∨, 𝜀), then

(𝑋∨, 𝜀) ≃ (ℋ𝑜𝑚(𝑋, 𝟙), ev𝑋,𝟙)
𝑇 ⊗ 𝑋∨ ≃ℋ𝑜𝑚(𝑋, 𝑇).

In particular, if (𝑋∨, 𝜀) exists, then it is unique up to a unique isomorphism, and the
morphism (10)

𝑋∨ ⊗ 𝑇 →ℋ𝑜𝑚(𝑋, 𝑇)

is an isomorphism.

Proof This was shown in the above proof. 2

For an𝑀 ∈ ob𝖬𝗈𝖽(𝑅), the morphism (24) becomes

𝑇 ⊗Hom(𝑀,𝑅)→ Hom(𝑀,𝑇), 𝑡 ⊗ 𝑓 ↦ (𝑚 ↦ 𝑓(𝑚)𝑡) . (25)

Proposition 4.9 The following conditions on an 𝑅-module𝑀 are equivalent:

(a) 𝑀 admits a dual;

(b) the map (25) is an isomorphism for all 𝑇;

(c) 𝑀 is finitely generated and projective.

Proof (a) ⇐⇒ (b): Special case of 4.7 (it can also be proved directly).
(b) ⇐⇒ (c): In particular,𝑀 ⊗Hom(𝑀,𝑅) ≃ End𝑅(𝑀). If

∑
𝑖∈𝐼𝑚𝑖 ⊗ 𝑓𝑖 corresponds

to id𝑀 under this isomorphism, so that
∑

𝑖∈𝐼 𝑓𝑖(𝑚)𝑚𝑖 = 𝑚 for all𝑚 ∈ 𝑀, then

𝑀
𝑚↦(𝑓𝑖(𝑚)),,,,,,,,,,→ 𝑅𝐼

(𝑎𝑖)↦
∑
𝑎𝑖𝑚𝑖,,,,,,,,,,,→ 𝑀

is a factorization of id𝑀 . Therefore𝑀 is a direct summand of a free module of finite
rank, snd so is finitely generated and projective.

(c) ⇐⇒ (a): When𝑀 is free of finite rank, we saw in 4.5 that there exists a dual. In the
general case, there exists a finite family (𝑓𝑖)𝑖∈𝐼 of elements of 𝑅 generating 𝑅 as an ideal
and such that, for each 𝑖, the 𝑅𝑓𝑖 -module𝑀𝑓𝑖 is free. Thus, there exists a 𝛿𝑖 for each 𝑖,
and the uniqueness assertion in Proposition 4.5 implies that they patch together to give
a 𝛿 for𝑀. 2

For example, a module over a Dedekind domain admits a dual if and only if it is
finitely generated and torsion free, and a vector space over a field admits a dual if and
only if has finite dimension (for an infinite-dimensional vector space 𝑉, there is no
coevaluation map 𝑘 → 𝑉 ⊗ 𝑉∨).

Notes This section follows Dold and Puppe 1980.
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5 Rigid tensor categories

Definition 5.1 A tensor category (𝖢, ⊗) is rigid if, for all objects 𝑋 and 𝑌,

(a) ℋ𝑜𝑚(𝑋,𝑌) exists, and

(b) the canonical morphism (24)

𝑌 ⊗ℋ𝑜𝑚(𝑋, 𝟙)→ℋ𝑜𝑚(𝑋,𝑌)

is an isomorphism.

Equvalent condition (4.7): every object of 𝖢 admits a dual.
Let (𝖢, ⊗) be a rigid tensor category. The opposite category 𝖢op has a tensor structure

for which⊗𝑋op
𝑖 = (⊗𝑋𝑖)op. The tensor functor

{𝑋, 𝑓}⇝ {𝑋∨, 𝑡𝑓}∶ 𝖢op → 𝖢

is a contravariant equivalence of categories because its compositewith itself is isomorphic
to the identity functor. It is therefore a contravariant equivalence of tensor categories
(3.4). In particular,

𝑓 ↦ 𝑡𝑓∶ Hom(𝑋,𝑌)→ Hom(𝑌∨, 𝑋∨) (26)

is an isomorphism. There is also a canonical isomorphism

ℋ𝑜𝑚(𝑋,𝑌)→ℋ𝑜𝑚(𝑌∨, 𝑋∨), (27)

namely, the composite of the isomorphisms

ℋ𝑜𝑚(𝑋,𝑌)
(4.8)
←, 𝑋∨ ⊗𝑌

𝑋∨⊗𝑖𝑌,→ 𝑋∨ ⊗𝑌∨∨ 𝛾
,→ 𝑌∨∨ ⊗𝑋∨ (4.8)

,→ ℋ𝑜𝑚(𝑌∨, 𝑋∨).

Proposition 5.2 Let (𝖢, ⊗) be a tensor category. If 𝖢 is rigid, then 𝑋 ⇝ 𝐷(𝑋) def= 𝑋∨ is a
functor equipped with a natural isomorphism

𝜓𝑋,𝑌,𝑍 ∶ Hom(𝑋 ⊗ 𝑌, 𝑍) ≃ Hom(𝑋, 𝑍 ⊗ 𝐷(𝑌)).

Conversely, if there exists a functor 𝐷∶ 𝖢 → 𝖢 and a natural isomorphism 𝜓, then 𝖢 is
rigid; moreover, (𝐷(𝑌), 𝜀), where 𝜀 corresponds to the identity map under 𝜓𝐷(𝑌),𝑌,𝟙, is the
dual of 𝑌.

Proof Restatement of 4.6. 2

Notes Saavedra 1972, I, 5.1.1 defines a tensor category to be rigid ifℋ𝑜𝑚(𝑋,𝑌) exists for all 𝑋,
𝑌 and the canonical morphism (18)

ℋ𝑜𝑚(𝑋1, 𝑌1)⊗ℋ𝑜𝑚(𝑋2, 𝑌2)→ℋ𝑜𝑚(𝑋1 ⊗𝑋2, 𝑌1 ⊗𝑌2)

is an isomorphism for all 𝑋1, 𝑋2, 𝑌1, 𝑌2. This is equivalent to our definition.
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Traces

Let (𝖢, ⊗) be a rigid tensor category. For any object 𝑋 of 𝖢, there are morphisms

ℋ𝑜𝑚(𝑋,𝑋)
≃
,,,→
(20)

𝑋∨ ⊗𝑋
ev
→ 𝟙. (28)

On applying the functor Hom(𝟙,−) to this, we obtain by (14) a morphism

Tr𝑋 ∶ End(𝑋)→ End(𝟙) (29)

called the trace morphism. More directly, the trace of 𝑓∶ 𝑋 → 𝑋 is the composite of
the morphisms

𝟙 𝑋 ⊗ 𝑋∨ 𝑋 ⊗ 𝑋∨ 𝑋∨ ⊗𝑋 𝟙.←→
𝛿𝑋 ←→

𝑓⊗𝑋∨ ←→
𝛾𝑋,𝑋∨ ←→ev

We sometimes write Tr(𝑓|𝑋) for Tr𝑋(𝑓). The (categorical) dimension (or rank) of 𝑋
is defined to be Tr𝑋(id𝑋), so dim𝑋 is the composite of the morphisms

𝟙
𝛿𝑋,,→ 𝑋 ⊗ 𝑋∨ 𝛾𝑋,𝑋∨

,,,,,→ 𝑋∨ ⊗𝑋
ev𝑋,,,→ 𝟙.

Note that dim(𝑋) is an element of the ring End(𝟙). In particular, it need not be an
integer, much less a positive integer (see 8.7 and 8.9 for example). In the tensor category
of finite-dimensional vector spaces over a field 𝑘 of characteristic 𝑝, every vector space
of dimension 𝑝 has categorical dimension 0.

Proposition 5.3 There are the following equalities.
(a) Tr𝑋⊕𝑌(𝑓 ⊕ 𝑔) = Tr𝑋(𝑓) + Tr𝑌(𝑔), where 𝑓∶ 𝑋 → 𝑋, 𝑔∶ 𝑌 → 𝑌.
(b) Tr𝑋⊗𝑌(𝑓 ⊗ 𝑔) = Tr𝑋(𝑓) ⋅ Tr𝑌(𝑔), where 𝑓∶ 𝑋 → 𝑋, 𝑔∶ 𝑌 → 𝑌.
(c) Tr𝑋∨(𝑓∨) = Tr𝑋(𝑓), where 𝑓∶ 𝑋 → 𝑋.
(d) Tr𝟙(𝑓) = 𝑓
(e) Tr𝑋(𝑔◦𝑓) = Tr𝑌⊗𝑋(𝛾𝑋,𝑌◦(𝑔 ⊗ 𝑓)) = Tr𝑌(𝑓◦𝑔), where 𝑓∶ 𝑋 ,→ 𝑌, 𝑔∶ 𝑌 → 𝑋.

Proof Only the proof of (e) presents problems. For a morphism 𝑓∶ 𝑋 → 𝑌, let
𝛿(𝑓)∶ 𝟙→ 𝑌 ⊗ 𝑋∨ denote the composite

𝟙 𝑋 ⊗ 𝑋∨ 𝑌 ⊗ 𝑋∨.←→
𝛿𝑋 ←→

𝑓⊗𝑋∨

Thus, when 𝑌 = 𝑋, Tr𝑋(𝑓) = ev𝑋 ◦𝛾𝑋,𝑋∨◦𝛿(𝑓).

For morphisms 𝑋
𝑓
,→ 𝑌

𝑔
,→ 𝑍, the morphism 𝛿(𝑔◦𝑓) is the composite

𝟙 ≃ 𝟙⊗ 𝟙
𝛿(𝑔)⊗𝛿(𝑓)
,,,,,,,,,→ 𝑍 ⊗ 𝑌∨ ⊗𝑌 ⊗𝑋∨ 𝑍⊗ev𝑌 ⊗𝑋∨

,,,,,,,,,,,→ 𝑍 ⊗ 𝟙⊗𝑋∨ ≃ 𝑍 ⊗ 𝑋∨. (30)

Thus, when 𝑍 = 𝑋,

Tr𝑋(𝑔◦𝑓)
def= ev𝑋 ◦𝛾𝑋,𝑋∨◦𝛿(𝑔◦𝑓) = Tr(𝛾𝑋,𝑌◦(𝑔 ⊗ 𝑓)).

Similarly,
Tr𝑌(𝑓◦𝑔) = Tr(𝛾𝑌,𝑋◦(𝑓 ⊗ 𝑔)) = Tr(𝛾𝑋,𝑌◦(𝑔 ⊗ 𝑓)).

2
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Corollary 5.4 For any objects 𝑋,𝑌 of 𝖢,

dim(𝑋 ⊕ 𝑌) = dim𝑋 + dim𝑌
dim(𝑋 ⊗ 𝑌) = dim𝑋 ⋅ dim𝑌

dim(𝑋∨) = dim(𝑋)
dim(𝟙) = id𝟙 .

Proof Apply the proposition to the identity morphisms. 2

Remark 5.5 (Deligne 1990, 7.1) Consider, as in (e) of the Proposition 5.3, morphisms
𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑋. The tensor product of the unordered set {𝑋,𝑌} is well-defined
up to a canonical isomorphism, as is the morphism⊗{𝑓, 𝑔}∶ ⊗ {𝑋,𝑌}→ ⊗{𝑋,𝑌}. The
proposition says that the trace of this morphism is Tr(𝑔◦𝑓), hence, by symmetry, also
Tr(𝑓◦𝑔).

More generally, consider morphisms

𝑋1
𝑢1,→ 𝑋2

𝑢2,→⋯
𝑢𝑛−1,→ 𝑋𝑛

𝑢𝑛,→ 𝑋1.

These give rise to a morphism,

⨂
𝑖∈ℤ∕(𝑛)

𝑢𝑖 ∶
⨂

𝑖∈ℤ∕(𝑛)
𝑋𝑖 ,→

⨂

𝑖∈ℤ∕(𝑛)
𝑋𝑖,

which we denote by⊗𝑢𝑖. On iterating (30), we find that 𝛿(𝑢𝑛◦⋯◦𝑢1) is the composite

𝟙
𝛿(𝑢𝑛)⊗⋯⊗𝛿(𝑢1),,,,,,,,,,,,,,→ 𝑋1 ⊗𝑋∨

𝑛 ⊗𝑋𝑛 ⊗⋯⊗𝑋2 ⊗𝑋∨
1

𝑋1⊗ev𝑋𝑛 ⊗⋯⊗ev𝑋2 ⊗𝑋
∨
1,,,,,,,,,,,,,,,,,,,,,,→ 𝑋1 ⊗𝑋∨

1 ,

and it follows that

Tr(𝑢𝑛◦⋯◦𝑢1) = ⊗𝑖(ev𝑋𝑖 ◦𝛾𝑋𝑖 ,𝑋∨
𝑖
)◦⊗𝑖 𝛿(𝑢𝑖) = Tr(⊗𝑖𝑢𝑖). (31)

Tensor functors of rigid categories

A tensor functor𝐹∶ 𝖢 → 𝖣 of rigid tensor categories induces amorphism𝐹∶ End(𝟙𝖢)→
End(𝟙𝖣). It is obvious from the definitions that it preserves duals and that

Tr𝐹(𝑋) 𝐹(𝑓) = 𝐹(Tr𝑋(𝑓))
dim(𝐹(𝑋)) = 𝐹(dim(𝑋)).

Proposition 5.6 Let (𝐹, 𝑐)∶ (𝖢, ⊗)→ (𝖣, ⊗) be a tensor functor of rigid tensor categories.
For 𝑋,𝑌 ∈ ob(𝖢),

𝐹(ℋ𝑜𝑚(𝑋,𝑌)) ≃ℋ𝑜𝑚(𝐹𝑋, 𝐹𝑌).

In particular,
𝐹(𝑋∨) ≃ 𝐹(𝑋)∨.

The morphism is that corresponding by adjunction (21) to

𝐹(ev𝑋,𝑌)∶ 𝐹(ℋ𝑜𝑚(𝑋,𝑌))⊗𝐹𝑋 → 𝐹𝑌.
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Proof There is a commutative diagram

𝐹(ℋ𝑜𝑚(𝑋,𝑌)) ℋ𝑜𝑚(𝐹𝑋, 𝐹𝑌)

𝐹(𝑋∨ ⊗𝑌) (𝐹𝑋)∨ ⊗𝐹𝑌.

←→

← →≃

← →≃ 4.8 ← →≃ 4.8

2

Proposition 5.7 Let (𝐹, 𝑐) and (𝐺, 𝑑) be tensor functors 𝖢 → 𝖣 of tensor categories. If 𝖢
and 𝖣 are rigid, then every morphism of tensor functors 𝑢∶ 𝐹 → 𝐺 is an isomorphism.

Proof The morphism 𝑣∶ 𝐺 → 𝐹 making the diagrams

𝐹(𝑋∨) 𝐺(𝑋∨)

𝐹(𝑋)∨ 𝐺(𝑋)∨

←→
𝑣𝑋∨

←→ ≃ ←→ ≃

←→
𝑡(𝑢𝑋)

commute for all 𝑋 ∈ ob(𝖢), is an inverse for 𝑢. Note that 𝑣𝑋 is the composite

𝐺(𝑋) ≃ 𝐺(𝑋∨)∨
𝑡𝑢𝑋∨,→ 𝐹(𝑋∨)∨ ≃ 𝐹(𝑋).

To see that 𝑢𝑋◦𝑣𝑋 = id𝐺𝑋 , chase around the outside of the following diagram in two
ways, starting from the 𝐺𝑋 at lower left. The outer diagram commutes because each
subdiagram does.

𝐹𝑋 ⊗ 𝐹(𝑋∨)⊗𝐺𝑋 𝐹𝑋 ⊗ 𝐺(𝑋∨)⊗𝐺𝑋 𝐹𝑋

𝐺𝑋 𝐺𝑋 ⊗ 𝐺(𝑋∨)⊗𝐺𝑋 𝐺𝑋

← →
id⊗𝑢𝑋∨⊗id← →
id⊗𝑢𝑋∨⊗id

←

→

𝑢𝑋⊗𝑢𝑋∨⊗id
← →

id⊗𝜀𝐺𝑋

←

→ 𝑢𝑋⊗id⊗ id

←

→ 𝑢𝑋

← →
𝛿𝐺𝑋⊗id

←

→

𝛿𝐹𝑋⊗id

← →
id⊗𝜀𝐺𝑋

The proof that 𝑣𝑋◦𝑢𝑋 = id𝐺𝑋 is similar. 2

For a 𝑘-algebra 𝑅, let 𝜙𝑅 be the functor −⊗𝑘 𝑅∶ 𝖵𝖾𝖼𝖿(𝑘) → 𝖬𝗈𝖽(𝑅). Let 𝜔∶ 𝖢 →
𝖵𝖾𝖼𝖿(𝑘) be a tensor functor of tensor categories. If 𝖢 is rigid. Then (cf. (9))

ℰ𝑛𝑑⊗(𝜔)(𝑅) def= End(𝜙𝑅◦𝜔)
5.7
= Aut(𝜙𝑅◦𝜔)

def= 𝒜𝑢𝑡⊗(𝜔)(𝑅). (32)

Proposition 5.8 Let 𝐹∶ 𝖢 → 𝖣 be a tensor functor between rigid tensor categories. The
following conditions on 𝐹 are equivalent:
(a) every object of 𝖣 is a subobject of 𝐹(𝑋) for some object 𝑋 of 𝖢;
(b) every object of 𝖣 is a quotient of 𝐹(𝑋) for some object 𝑋 of 𝖢.

Proof Assume (a) , and let 𝑌 be an object of 𝖣. There exists an object 𝑋 of 𝖢 and a
monomorphism 𝑖∶ 𝑌∨ → 𝐹(𝑋). In a rigid tensor category, the functor ∨ is a contravariant
equivalence with itself as a quasi-inverse, and tensor functors preserve duals (5.6). Hence

𝐹(𝑋∨) ≃ 𝐹(𝑋)∨
𝑖∨
,→ 𝑌∨∨ ≃ 𝑌

is an epimorphism. We have shown that (a) implies (b), and the converse is proved
similarly. 2
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Definition 5.9 A tensor functor of rigid tensor categories is dominant if it satisfies
the equivalent conditions of 5.8.

Definition 5.10 Let 𝖢′ be a strictly full subcategory of a tensor category 𝖢. We say that
𝖢′ is a tensor subcategory of 𝖢 if it is stable under the formation of finite tensor products
(it suffices to check that it contains a unit and that it contains𝑋⊗𝑌 whenever it contains
𝑋 and 𝑌). We say that it is a rigid tensor subcategory if, in addition, it contains 𝑋∨

whenever it contains 𝑋.

A (rigid) tensor subcategory becomes a (rigid) tensor category under the induced
tensor structure.

Notes For a proof that the diagram in Proposition 5.6 commutes, see sx4932465. The proof of
Proposition 5.7 was extracted from ncatlab.org.

6 Rigid abelian tensor categories

Our convention, that functors between additive categories are additive, forces the fol-
lowing definition.

Definition 6.1 An additive (resp. abelian) tensor category is a tensor category (𝖢, ⊗)
such that 𝖢 is an additive (resp. abelian) category and⊗ is a bi-additive functor.

If (𝖢, ⊗) is an additive tensor category and (𝟙, 𝑒) is a unit, then 𝑅 def= End(𝟙) is a ring
that acts, via 𝜆𝑋 ∶ 𝟙 ⊗ 𝑋 ≃→ 𝑋, on each object of 𝖢. The action of 𝑅 on 𝑋 commutes
with endomorphisms of 𝑋 and so, in particular, 𝑅 is commutative. If (𝟙′, 𝑒′) is a second
unit, then the unique isomorphism 𝑎∶ (𝟙, 𝑒)→ (𝟙′, 𝑒′) (see 1.6) defines an isomorphism
𝑅 ≃ End(𝟙′). Therefore 𝖢 is 𝑅-linear in the sense that each Hom-set is equipped with
an 𝑅-module structure and ◦ and⊗ are 𝑅-bilinear. When 𝖢 is rigid and 𝑅 ≃ End(𝟙), the
trace morphism is an 𝑅-linear map Tr∶ End(𝑋)→ 𝑅.

Proposition 6.2 Let (𝖢, ⊗) be a rigid tensor category. Then⊗ commutes with inductive
and projective limits in each variable. In particular, if 𝖢 is abelian, then⊗ is exact in each
variable.

Proof The functor − ⊗ 𝑋 has a right adjoint, namely, ℋ𝑜𝑚(𝑋,−), and therefore
commutes with inductive limits. By considering the opposite category 𝖢op, one deduces
that it also commutes with projective limits. (In fact,ℋ𝑜𝑚(𝑋,−) is also a left adjoint
−⊗𝑋). 2

Note that⊗ is not usually exact in𝖬𝗈𝖽(𝑅).

Proposition 6.3 Let (𝖢, ⊗) be a rigid abelian tensor category. If 𝑈 is a subobject of 𝟙,
then 𝟙 ≃ 𝑈⊕𝑈⟂, where𝑈⟂ = Ker(𝟙→ 𝑈∨). Consequently, 𝟙 is a simple object if End(𝟙)
is a field.

Proof Let 𝑉 = Coker(𝑈 → 𝟙). On tensoring

0 𝑈 𝟙 𝑉 0←→ ←→ ←→ ←→←→

https://math.stackexchange.com/questions/4932465
https://ncatlab.org/toddtrimble/published/Morphisms+between+tensor+functors
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with 𝑈 → 𝟙, we obtain an exact commutative diagram7

0 𝑈 𝟙 𝑉 0

0 𝑈 ⊗𝑈 𝑈 𝑉 ⊗𝑈 0,

← → ← → ← → ← →← →

←→ ←→

←
→

←→

←
→ ←

→0

←→

←
→

from which it follows that 𝑉 ⊗𝑈 = 0, and that 𝑈 ⊗𝑈 = 𝑈 as a subobject of 𝟙⊗ 𝟙 = 𝟙.
For any object 𝑇, the morphism 𝑇⊗𝑈 → 𝑇 obtained from𝑈 → 𝟙 by tensoring with

𝑇, is a monomorphism. This proves the first equivalence in

𝑇⊗𝑈 = 0 ⇐⇒ the morphism 𝑇⊗𝑈 → 𝑇 is zero ⇐⇒ the morphism 𝑇 → 𝑈∨⊗𝑇 is zero,

and the second follows from the canonical isomorphisms

Hom(𝑇 ⊗𝑈, 𝑇)
(1.6.5
≃ Hom(𝑇 ⊗𝑈 ⊗ 𝑇∨, 𝟏)

1.6.5
≃ Hom(𝑇,𝑈∨ ⊗ 𝑇).

Therefore, for any object 𝑋,

𝑇 def= Ker(𝑋 → 𝑈∨ ⊗𝑋)

is the largest subobject of 𝑋 such that 𝑇 ⊗𝑈 = 0. On tensoring the exact sequence

0→ 𝑈⟂ → 𝟙→ 𝑈∨ → 0

with 𝑋, we see that 𝑇 ≃ 𝑈⟂ ⊗𝑋.
On applying this remark with 𝑋 = 𝑉 and using that 𝑉 ⊗ 𝑈 = 0, we find that

𝑈⟂ ⊗ 𝑉 ≃ 𝑉; on applying it with 𝑋 = 𝑈 and using that 𝑈 ⊗ 𝑈 = 𝑈, we find that
𝑈⟂ ⊗𝑈 = 0.8 From the exact sequence

0→ 𝑈⟂ ⊗𝑈 → 𝑈⟂ ⊗ 𝟙→ 𝑈⟂ ⊗𝑉 → 0

we deduce that 𝑈⟂ ≃ 𝑉, and that 𝟙 ≃ 𝑈⟂ ⊕𝑈. 2

Remark 6.4 It follows from the proposition shows that, in a rigid abelian tensor category,
there is a one-to-one correspondence between subobjects of 𝟙 and idempotents inEnd(𝟙).
Such an idempotent 𝑒 determines a decomposition of tensor categories 𝖢 = 𝖢′ × 𝖢′′ in
which the objects of 𝖢′ (resp. 𝖢′′) are those on which 𝑒 (resp. 1 − 𝑒) acts as the identity
morphism.

Proposition 6.5 Let 𝖢 and 𝖢′ be abelian tensor categories, and let 𝟙 and 𝟙′ be identity
objects. If 𝖢 is rigid, 𝟙 is simple, and 𝟙′ ≠ 0, then every exact tensor functor 𝐹∶ 𝖢 → 𝖢′ is
faithful.

Proof As 𝐹 is additive and exact, it suffices to show that 𝐹(𝑋) ≠ 0 when 𝑋 ≠ 0. If
𝑋 ≠ 0, then 𝛿𝑋 ∶ 𝟙→ 𝑋 ⊗ 𝑋∨ is a monomorphism, and so

𝟙′ ≃ 𝐹(𝟙)→ 𝐹(𝑋 ⊗ 𝑋∨) ≃ 𝐹(𝑋)⊗𝐹(𝑋∨)

is a monomorphism. As 𝟙′ ≠ 0, this implies that 𝐹(𝑋) ≠ 0. 2

7We prove that the second square commutes. From morphisms 𝐴 → 𝐵 and 𝐶 → 𝐷 in 𝖢, we get
commutative squares

𝐴 × 𝐷 𝐵 × 𝐷 𝐴⊗𝐷 𝐵 ⊗ 𝐷

𝐴 × 𝐶 𝐵 × 𝐶 𝐴⊗ 𝐶 𝐵 ⊗ 𝐶

←→ ←→

←→

← → ← → ← →

←→

← →

in 𝖢 × 𝖢 and 𝖢. Now take 𝐴 = 𝐷 = 𝟙, 𝐵 = 𝑉, and 𝐶 = 𝑈.
8Let 𝑇 ⊂ 𝑈. Then, as for 𝑈, 𝑇 ⊗ 𝑇 = 𝑇, so 𝑇 ⊗𝑈 = 0 ⇐⇒ 𝑇 = 0.
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Traces

The next proposition says that traces are additive on short exact sequences.

Proposition 6.6 For any exact commutative diagram

0 𝑋′ 𝑋 𝑋′′ 0

0 𝑋′ 𝑋 𝑋′′ 0

←→

←→ 𝑓′

←→ ←→

←→ 𝑓 ←→ 𝑓′′

←→

←→ ←→ ←→ ←→

in a rigid abelian tensor category,

Tr𝑋(𝑓) = Tr𝑋′(𝑓′) + Tr𝑋′′(𝑓′′).

In particular,
dim(𝑋) = dim(𝑋′) + dim(𝑋′′).

Proof For an object 𝑋 of such a category, let 𝑡𝑋 denote the morphism (28)

ℋ𝑜𝑚(𝑋,𝑋) ≃ 𝑋∨ ⊗𝑋
ev
,→ 𝟙.

Then Hom(𝟙, 𝑡𝑋) is the trace map End(𝑋)→ End(𝟙).
For a short exact sequence

Σ∶ 0→ 𝑋′ → 𝑋 → 𝑋′′ → 0,

let
ℋ𝑜𝑚(Σ,Σ) = Ker

(
ℋ𝑜𝑚(𝑋,𝑋)→ℋ𝑜𝑚(𝑋′, 𝑋′′)

)
.

Thus,
Hom(𝟙,ℋ𝑜𝑚(Σ,Σ)) ≃ End(Σ) def= {𝑓 ∈ End(𝑋) ∣ 𝑓 respects Σ}.

It suffices to show that the diagram

ℋ𝑜𝑚(Σ,Σ) ℋ𝑜𝑚(𝑋′, 𝑋′)⊕ℋ𝑜𝑚(𝑋′′, 𝑋′′)

ℋ𝑜𝑚(𝑋,𝑋) 𝟙

←→

←→ ←→ 𝑡𝑋′+𝑡𝑋′′

← →
𝑡𝑋

(33)

commutes. On tensoring Σ with its dual, we get a diagram with exact rows and columns
(6.2),

0 0 0

0 𝑋′′∨ ⊗𝑋′ 𝑋′′∨ ⊗𝑋 𝑋′′∨ ⊗𝑋′′ 0

0 𝑋∨ ⊗𝑋′ 𝑋∨ ⊗𝑋 𝑋∨ ⊗𝑋′′ 0

0 𝑋′∨ ⊗𝑋′ 𝑋′∨ ⊗𝑋 𝑋′∨ ⊗𝑋′′ 0

0 0 0

←→ ←→ ←→
←→ ←→

←→ ←→

←→

←→
←→

←→ ←→

←→ ←→

←→

←→

←→

←→ ←→

←→ ←→

←→

←→

←→
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From a diagram chase, we see that
(
𝑋′′∨ ⊗𝑋

)
⊕
(
𝑋∨ ⊗𝑋′) maps onto the kernel of

𝑋∨⊗𝑋 → 𝑋′∨⊗𝑋′′. Henceℋ𝑜𝑚(𝑋′′, 𝑋)⊕ℋ𝑜𝑚(𝑋,𝑋′)maps ontoℋ𝑜𝑚(Σ,Σ), and so
it suffices to show that (33) commutes withℋ𝑜𝑚(Σ,Σ) replaced by each ofℋ𝑜𝑚(𝑋′′, 𝑋)
andℋ𝑜𝑚(𝑋,𝑋′). Onℋ𝑜𝑚(𝑋′′, 𝑋), the map toℋ𝑜𝑚(𝑋′, 𝑋′) vanishes, and so we have
to show that

ℋ𝑜𝑚(𝑋′′, 𝑋) ℋ𝑜𝑚(𝑋′′, 𝑋′′)

ℋ𝑜𝑚(𝑋,𝑋) 𝟙

←→

←→ ←→ 𝑡𝑋′′

← →
𝑡𝑋

commutes, and dually forℋ𝑜𝑚(𝑋,𝑋′).
From the identity Tr(𝑓𝑔) = Tr(𝑔𝑓), we see that the diagram

ℋ𝑜𝑚(𝑋,𝑋′′)⊗ℋ𝑜𝑚(𝑋′′, 𝑋) ℋ𝑜𝑚(𝑋′′, 𝑋′′)

ℋ𝑜𝑚(𝑋,𝑋) 𝟙

←→

←→ ←→ 𝑡𝑋′′

← →
𝑡𝑋

commutes. On composing with the morphism 𝟙 → ℋ𝑜𝑚(𝑋,𝑋′′) that corresponds to
the given morphism 𝑋 → 𝑋′′ under the isomorphism

Hom(𝟙,ℋ𝑜𝑚(𝑋,𝑋′′)) ≃ Hom(𝑋,𝑋′′),

we obtain the required diagram forℋ𝑜𝑚(𝑋′′, 𝑋). 2

Corollary 6.7 In a rigid abelian tensor category, the trace of any nilpotent endomor-
phism is zero.

Proof If the endomorphism 𝑓 of 𝑋 is nilpotent, then there exists a finite decreasing
filtration 𝐹 of 𝑋 such that 𝑓(𝐹𝑖) ⊂ 𝐹𝑖+1, for example, the filtration with 𝐹𝑖 = 𝑓𝑖(𝑋).
Then 𝑓 = 0 on 𝐹𝑖∕𝐹𝑖+1, and so

Tr(𝑓)
6.6
=
∑

Tr(𝑓|𝐹𝑖∕𝐹𝑖+1) = 0.
2

When the category is not assumed to be abelian, the corollary can fail

Notes Proposition 6.6 is from a letter of Deligne, July 11, 2003.

Tensorial categories

Now let 𝑘 be a field.

Definition 6.8 A tensorial category over 𝑘 is a rigid abelian tensor category equipped
with an isomorphism 𝑘 ≃ End(𝟙).

In other words, a tensorial category over 𝑘 is a rigid abelian tensor category equipped
with a 𝑘-linear structure such that ⊗ is 𝑘-bilinear and the structure homomorphism
𝑘 → End(𝟙) is an isomorphism.

Definition 6.9 A tensorial subcategory of a tensorial category over 𝑘 is a strictly full
abelian subcategory9 stable under tensor products and duals. It is again a tensorial
category over 𝑘.

9That is, an abelian category such that the inclusion functor is exact.
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Proposition 6.10 Every right exact tensor functor between tensorial categories over 𝑘 is
exact and faithful.

Proof This follows from 6.5 and the next more precise statement. 2

Lemma 6.11 Let 𝐹∶ 𝖢 → 𝖣 be a right exact functor between abelian tensor categories. If
𝖢 is tensorial over 𝑘 and the tensor product on 𝖣 is right exact, then 𝐹 is exact.

Proof Let 0 → 𝑋 → 𝑌 → 𝑍 be an exact sequence in 𝖢. On applying 𝐹 to the dual
sequence, we get an exact sequence

𝐹(𝑍)∨ → 𝐹(𝑌)∨ → 𝐹(𝑋)∨ → 0. (34)

Let 𝑈 → 𝑉 →𝑊 → 0 be an exact sequence in 𝖣. Ifℋ𝑜𝑚(𝑈, 𝟙) andℋ𝑜𝑚(𝑉, 𝟙) exist in
𝖣, thenℋ𝑜𝑚(𝑊, 𝟙) exists in 𝖣 and the sequence

0→ℋ𝑜𝑚(𝑊, 𝟙)→ℋ𝑜𝑚(𝑉, 𝟙)→ℋ𝑜𝑚(𝑈, 𝟙) (35)

is exact. As 𝐹(𝑋) is dual to 𝐹(𝑋)∨, it equalsℋ𝑜𝑚(𝐹(𝑋)∨, 𝟙) (see 4.8) and similarly for 𝑌
and 𝑍. For (34), the sequence (35) becomes

1→ 𝐹(𝑋)→ 𝐹(𝑌)→ 𝐹(𝑍),

which is therefore exact. 2

Let 𝑃 ∈ ℕ[𝑥, 𝑦]. When 𝑋,𝑌 are objects of a tensor category, we can define 𝑃(𝑋,𝑌)
by interpreting addition as⊕ and multiplication as⊗, so

𝑃(𝑥, 𝑦) =
∑

𝑖,𝑗
𝑚𝑖,𝑗𝑥𝑖𝑦𝑗 ⇐⇒ 𝑃(𝑋,𝑌) =

⨁
𝑖,𝑗
𝑚𝑖,𝑗𝑋⊗𝑖 ⊗𝑌⊗𝑗.

Definition 6.12 For an object𝑋 of a rigid abelian tensor category𝖢, we let ⟨𝑋⟩⊗ denote
the strictly full subcategory of 𝖢 whose objects are subquotients of 𝑃(𝑋,𝑋∨) for some
𝑃 ∈ ℕ[𝑡, 𝑠]. It is again a rigid abelian tensor category. We call 𝑋 a tensor generator of 𝖢
if 𝖢 = ⟨𝑋⟩⊗.

Extension of scalars

Let 𝖢 be a 𝑘-linear abelian category.

6.13 For a finite-dimensional vector space 𝑉 and an object 𝑋 over 𝖢, we define 𝑉 ⊗𝑋
to represent the functor 𝑇 ⇝ 𝑉 ⊗Hom(𝑇,𝑋), so

Hom(𝑉 ⊗ 𝑋, 𝑇) ≃ 𝑉 ⊗Hom(𝑇,𝑋).

The choice of a basis (𝑒𝑖)𝑖∈𝐼 of 𝑉 realizes 𝑉 ⊗ 𝑋 as a direct sum of copies of 𝑋 indexed
by 𝐼.

6.14 Let 𝑘′ be a finite extension of 𝑘. We define 𝖢(𝑘′) to be the category whose objects
are the pairs (𝑋, 𝜇) with 𝑋 an object of 𝖢 and 𝜇∶ 𝑘′ ⊗𝑋 → 𝑋 a 𝑘′-module structure on
𝑋.10 With the obvious notion of morphism, 𝖢(𝑘′) becomes a 𝑘′-linear abelian category,

10Specifically, 𝑘′ “=” 𝑘′ ⊗ 𝟙 can be regarded as a 𝑘-algebra in 𝖢, and then 𝜇 is required to satisfy the
usual conditions (9.4). Alternatively, 𝜇 defines a map 𝑘′ → End(𝑋), which is required to be a 𝑘-algebra
homomorphism.
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said to have been obtained from 𝖢 by extension of scalars to 𝑘′. For 𝑋 in 𝖢, there is a
natural 𝑘′-module structure on 𝑘′ ⊗𝑋, and in this way we get a functor

𝑒∶ 𝖢 → 𝖢(𝑘′), 𝑋 ⇝ 𝑘′ ⊗𝑋, (extension of scalars).

There is also a functor

𝑟∶ 𝖢(𝑘′) → 𝖢, (𝑋, 𝜇)⇝ 𝑋, (restriction of scalars),

and
Hom𝖢(𝑋, 𝑟𝑌) ≃ Hom𝖢′(𝑒𝑋, 𝑌), 𝑋 ∈ 𝖢, 𝑌 ∈ 𝖢(𝑘′).

Therefore 𝑟 is left exact, and 𝑒 is right exact. In fact, 𝑟 is exact: let (𝑋, 𝜇𝑋)→ (𝑌, 𝜇𝑌) be
an epimorphism in 𝖢(𝑘′), and let 𝐶 be the cokernel of 𝑋 → 𝑌 in 𝖢; then 𝐶 acquires a
𝑘′-module structure from those on 𝑋 and 𝑌, and so it is 0.

Definition 6.15 A 𝑘-linear abelian category is locally finite if every object has finite
length and every 𝑘-vector space Hom(𝑋,𝑌) has finite dimension.

An object of an abelian category is said to have finite length if it admits a (finite)
composition series, in which case all composition series have the same length. Both
the Jordan–Hölder and Krull–Schmidt theorems hold in locally finite 𝑘-linear abelian
categories.

Example 6.16 Let 𝐴 be a finite-dimensional 𝑘-algebra and 𝑘′ a finite extension of 𝑘.
The 𝑘-linear abelian category𝖬𝗈𝖽𝖿(𝐴) is locally finite, and𝖬𝗈𝖽𝖿(𝐴)(𝑘′) can be identified
with 𝖬𝗈𝖽𝖿(𝐴′), where 𝐴′ = 𝑘′ ⊗𝑘 𝐴; moreover, 𝑒 and 𝑟 are the usual extension and
restriction functors.

Proposition 6.17 Let 𝖢 be a locally finite 𝑘-linear abelian category.
(a) Let 𝑋 be a simple object of 𝖢, and let 𝐹 be the centre of End(𝑋) (so 𝐹 is a finite

extension of 𝑘). Then 𝑘′⊗𝑋 is semisimple in 𝖢(𝑘′) if and only if 𝐹 ⊗𝑘 𝑘′ is a product
of fields.

(b) Let 𝑌 = (𝑋, 𝜇) be a semisimple object of 𝖢(𝑘′). Then 𝑋 is a semisimple object of 𝖢.

(c) Let 𝑋 be an object of 𝖢. If 𝑘′ ⊗𝑋 is simple (resp. semisimple), then so also is 𝑋.

Proof (a) As 𝑋 is simple 𝐷 def= End(𝑋) is a division algebra, finite-dimensional over 𝑘,
and its centre 𝐹 is a finite extension of 𝑘. Let ⟨𝑋⟩ denote the strictly full subcategory of
𝖢 whose objects are finite direct sums of copies of 𝑋. Then

Hom(𝑋,−)∶ ⟨𝑋⟩→ 𝖵𝖾𝖼𝖿𝐷

is an equivalence of categories. When we extend scalars to 𝑘′, 𝑒𝑋 corresponds to the
right 𝐷⊗𝑘 𝑘′-module 𝐷⊗𝑘 𝑘′, which is semisimple if and only if 𝐹 ⊗𝑘 𝑘′ is a product of
fields (Bourbaki A, VIII, §7).

(b) We may suppose that 𝑌 is simple. The sum of the simple subobjects of 𝑋 is a
nonzero 𝑘′-submodule of 𝑋, hence equals 𝑋 (by the simplicity of 𝑌).

(c) If 𝑘′ ⊗ 𝑋 is semisimple, then 𝑋 is semisimple because it is a subobject of 𝑟𝑒𝑋,
which is semisimple by (b). If 𝑘′ ⊗𝑋 is simple, then 𝑋 is obviously simple. 2
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Proposition 6.18 Let𝖢 be a locally finite 𝑘-linear abelian category, and let𝑋 be an object
of 𝖢. If 𝑋 is a sum of simple subobjects, say, 𝑋 =

∑
𝑖∈𝐼 𝑆𝑖 (the sum need not be direct), then

for every subobject 𝑌 of 𝑋, there is a subset 𝐽 of 𝐼 such that

𝑋 = 𝑌 ⊕
⨁

𝑖∈𝐽
𝑆𝑖.

In particular, 𝑋 is a finite direct sum of simple subobjects, and 𝑌 is a direct summand of 𝑋.

Proof Let 𝐽 be maximal among the subsets of 𝐼 such that the sum 𝑆𝐽 =
∑

𝑗∈𝐽 𝑆𝑗 is
direct and 𝑌 ∩ 𝑆𝐽 = 0. We claim that 𝑌 + 𝑆𝐽 = 𝑋 (hence 𝑋 is the direct sum of 𝑌 and the
𝑆𝑗 with 𝑗 ∈ 𝐽). For this, it suffices to show that each 𝑆𝑖 is contained in 𝑌 + 𝑆𝐽 . Because
𝑆𝑖 is simple, 𝑆𝑖 ∩ (𝑌 + 𝑆𝐽) equals 𝑆𝑖 or 0. In the first case, 𝑆𝑖 ⊂ 𝑌 + 𝑆𝐽 , and in the second
𝑆𝐽 ∩ 𝑆𝑖 = 0 and 𝑌 ∩ (𝑆𝐽 + 𝑆𝑖) = 0, contradicting the definition of 𝐼. 2

Definition 6.19 A locally finite 𝑘-linear abelian category 𝖢 is semisimple if every
object is a sum of simple objects (hence a finite direct sum).

Proposition 6.20 Let 𝖢 be a locally finite 𝑘-linear abelian category, and let 𝑘′ be a finite
extension of 𝑘. If 𝖢(𝑘′) is semisimple, then so also is 𝖢, and the converse is true if 𝑘′ is
separable over 𝑘.

Proof The necessity follows directly from 6.17c, so suppose that 𝑘′ is separable over 𝑘.
If 𝑋 in 𝖢 is semisimple, then 𝑒(𝑋) is semisimple (6.17a), and every object 𝑌 of 𝖢(𝑘′) is
a direct factor of such an object. More precisely, the adjunction morphism 𝑒𝑟(𝑌)→ 𝑌
splits. The object 𝑒𝑟(𝑌) = 𝑘′ ⊗𝑘 𝑌 has two 𝑘′-module structures, that provided by 𝑘′
and that provided by 𝑌, and hence an action of 𝑘′ ⊗𝑘 𝑘′. The adjunction morphism is
the natural morphism 𝑘′⊗𝑌 → (𝑘′⊗𝑌)⊗𝑘′⊗𝑘𝑘′ 𝑘

′. This is split because 𝑘′⊗𝑘 𝑘′ → 𝑘′
is projection on a direct factor. 2

6.21 Let 𝖢 be a tensorial category over 𝑘, and let 𝑘′ be a finite extension of 𝑘. For objects
𝑋 and 𝑌 of 𝖢(𝑘′), let

𝑋 ⊗𝑘′ 𝑌 = Coker(𝑋 ⊗ 𝑘′ ⊗𝑌 ⇉ 𝑋 ⊗ 𝑌).

Then 𝖢(𝑘′) is a 𝑘′-linear abelian tensor category. Moreover, 𝑒∶ 𝖢 → 𝖢(𝑘′) is a tensor
functor sending a unit of 𝖢 to a unit of 𝖢(𝑘′) and the dual of an object 𝑋 of 𝖢 to the dual
of 𝑒𝑋 in 𝖢(𝑘′). Objects in 𝖢(𝑘′) have internal Homs: if 𝑋′ = (𝑋, 𝜇𝑋) and 𝑌′ = (𝑌, 𝜇𝑌) are
objects of 𝖢(𝑘′), thenℋ𝑜𝑚(𝑋′, 𝑌′) is the intersection of the kernels of the morphisms

𝑓 ↦ 𝜆𝑓 − 𝑓𝜆∶ ℋ𝑜𝑚(𝑋,𝑌)→ℋ𝑜𝑚(𝑋,𝑌)

as 𝜆 runs over a basis for 𝑘′ over 𝑘. More intrinsically, it is the kernel of a morphism

ℋ𝑜𝑚(𝑋,𝑌)→ (𝑘′)∨ ⊗ℋ𝑜𝑚(𝑋,𝑌),

where (𝑘′)∨ is dual of 𝑘′ as a 𝑘-vector space.

Proposition 6.22 Let 𝑘′ be a finite separable extension of 𝑘. If 𝖢 is tensorial over 𝑘, then
𝖢(𝑘′) is tensorial over 𝑘′.

Proof As we noted above, if 𝟙 is a unit in 𝖢, then 𝑒𝟙 is a unit in 𝖢(𝑘′), and clearly
End(𝑒𝟙) ≃ 𝑘′. It remains to show that objects in 𝖢(𝑘′) have duals. As noted above, if 𝑋
in 𝖢 has dual 𝑋∨, then 𝑒𝑋 has dual 𝑒(𝑋∨), and every object 𝑌 of 𝖢(𝑘′) is a direct factor
of such an object. More precisely, the adjunction morphism 𝑒𝑟(𝑌)→ 𝑌 splits (see the
proof of 6.20). 2

Notes This subsection largely follows Deligne 2014, 5.3.
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7 Tannakian categories

In this section, 𝑘 is a field.

Definition 7.1 Let (𝖢, ⊗) be a tensorial category over 𝑘 and 𝑅 a 𝑘-algebra. A fibre
functor on 𝖢with values in 𝑅 (or an 𝑅-valued fibre functor on 𝖢) is a 𝑘-linear exact
tensor functor 𝜔∶ 𝖢 → 𝖬𝗈𝖽(𝑅). A morphism of fibre functors is defined to be a
morphism of tensor functors (3.2).

More generally, a fibre functor on 𝖢 over a 𝑘-scheme 𝑆 is an exact 𝑘-linear tensor
functor from 𝖢 to the category of quasi-coherent sheaves on 𝑆.

Definition 7.2 A tannakian category over 𝑘 is a tensorial category over 𝑘 that admits
an 𝑅-valued fibre functor, some nonzero 𝑘-algebra 𝑅. If there exists a fibre functor with
values in 𝑘 itself, then the category is said to be neutral.

In other words, a tannakian category over 𝑘 is a 𝑘-linear rigid abelian tensor category
𝖢 such that the structure map 𝑘 → End(𝟙) is an isomorphism and such that there exists
a fibre functor with values in some nonzero 𝑘-algebra 𝑅.

Definition 7.3 A tannakian subcategory of a tannakian category over 𝑘 is a tensorial
subcategory. In other words, it is a strictly full subcategory closed under the formation
of direct sums, subquotients, tensor products, and duals. It is again a tannakian category
over 𝑘 – any fibre functor restricts to a fibre functor.

Proposition 7.4 Every 𝑅-valued fibre functor 𝜔 on a tensorial category takes values in
𝖯𝗋𝗈𝗃(𝑅).

Proof Let 𝑋 be an object of the category and 𝜔 an 𝑅-valued fibre functor. As 𝑋 admits
a dual, so also does 𝜔(𝑋), and hence it is finitely generated and projective (4.9). 2

Thus fibre functors take values in 𝖯𝗋𝗈𝗃(𝑅), but are exact only as functors to𝖬𝗈𝖽(𝑅).

Proposition 7.5 Let 𝜔 be an 𝑅-valued fibre functor on a tensorial category 𝖢 over 𝑘. For
any 𝑅-algebra 𝑅′, the functor

𝑋 ⇝ 𝜔𝑅′(𝑋)
def= 𝜔(𝑋)⊗𝑅 𝑅′

is an 𝑅′-valued fibre functor on 𝖢.

Proof Certainly, 𝜔𝑅′ is a 𝑘-linear tensor functor 𝖢 → 𝖬𝗈𝖽(𝑅′). If

0→ 𝑋′ → 𝑋 → 𝑋′′ → 0

is a short exact sequence in 𝖢, then

0→ 𝜔(𝑋′)→ 𝜔(𝑋)→ 𝜔(𝑋′′)→ 0

is exact in𝖬𝗈𝖽(𝑅). As 𝜔(𝑋′′) is projective, the sequence splits, and so it remains exact
when tensored with any 𝑅-algebra. Thus 𝜔𝑅′ is exact.

Alternatively, apply 6.11. 2

Proposition 7.6 Every tannakian category 𝖢 admits a fibre functor with values in a field.
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Proof Let 𝜔 be an 𝑅-valued fibre functor on 𝖢 with 𝑅 ≠ 0. For any maximal ideal𝔪 of
𝑅, 𝑅∕𝔪 is field containing 𝑘 and 𝑋 ⇝ 𝜔(𝑋)⊗𝑅 𝑅∕𝔪 is a fibre functor with values in
𝑅∕𝔪. 2

Proposition 7.7 Every exact tensor functor from a tannakian category to an abelian
tensor category with 𝟙 ≠ 0 is faithful. In particular, every 𝑅-valued fibre functor, 𝑅 ≠ 0, is
faithful.

Proof This is a special case of 6.5. 2

Definition 7.8 A morphism of tannakian categories over 𝑘 is an exact 𝑘-linear
tensor functor. It is automatically faithful (6.5).

7.9 Let 𝖢 be a tannakian category over 𝑘. For a finite-dimensional 𝑘-vector space
𝑉 and object 𝑋 of 𝖢, we let 𝑉 ⊗ 𝑋 denote the object representing the functor 𝑇 ⇝
𝑉 ⊗𝑘 Hom(𝑇,𝑋), so

Hom(𝑇,𝑉 ⊗ 𝑋) ≃ 𝑉 ⊗𝑘 Hom(𝑇,𝑋), 𝑇 ∈ ob𝖢.

The choice of a basis 𝑒1,… , 𝑒𝑛 for 𝑉 identifies 𝑉 ⊗ 𝑋 with 𝑋𝑛.

7.10 An object of a tannakian category 𝖢 is said to be trivial if it is isomorphic to a
finite sum of copies of 𝟙. As 𝟙 is simple (6.3), every such object is a finite direct sum of
copies of 𝟙, and the full subcategory of trivial objects is stable under the formation of
subquotients in 𝖢. The functors

𝖵𝖾𝖼𝖿(𝑘) 𝖢

← →𝑉⇝𝑉⊗𝟙
←→

Hom(𝟙,𝑋)⇜𝑋

are adjoint,
Hom(𝑉 ⊗ 𝟙, 𝑋) ≃ Hom(𝑉,Hom(𝟙, 𝑋)).

The unit of the adjunction
𝑉 → Hom(𝟙, 𝑉 ⊗ 𝟙)

(see A.1) is an isomorphism, whereas the counit

Hom(𝟙, 𝑋)⊗ 𝟙→ 𝑋

is a monomorphism that is an isomorphism if and only if 𝑋 is trivial. Therefore, the
functors define an equivalence of 𝖵𝖾𝖼𝖿(𝑘) with the full subcategory of trivial objects in
𝖢.

Proposition 7.11 Let 𝖢 be a tannakian category over 𝑘, and let 𝜔 be a fibre functor with
values in a nonzero 𝑘-algebra 𝑅. For all 𝑋,𝑌 in 𝖢, the canonical map

Hom(𝑋,𝑌)⊗𝑘 𝑅 → Hom𝑅(𝜔(𝑋), 𝜔(𝑌))

is injective.
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Proof Recall (14) that Hom(𝟙,ℋ𝑜𝑚(𝑋,𝑌)) ≃ Hom(𝑋,𝑌). For any finite-dimensional
subspace 𝑉 of Hom(𝑋,𝑌) we have a canonical monomorphiam

𝑉 ⊗ 𝟙 →ℋ𝑜𝑚(𝑋,𝑌).

On applying 𝜔 to this morphism, we obtain an injective map

𝑉 ⊗𝑘 𝑅 → 𝜔(ℋ𝑜𝑚(𝑋,𝑌)) ≃ Hom𝑅(𝜔(𝑋), 𝜔(𝑌)),

On passing to the inductive limit over the spaces 𝑉, we obtain the required injective
map. 2

Proposition 7.12 Every tannakian category is locally finite.

Proof Let 𝑘 = End(𝟙). According to proposition 7.6, the category has a fibre functor 𝜔
with values in a field 𝐾. Then 𝜔∶ 𝖢 → 𝖵𝖾𝖼𝖿(𝐾) is exact and faithful, and according to
Proposition 7.11, the canonical map

Hom(𝑋,𝑌)⊗𝑘 𝐾 → Hom(𝜔(𝑋), 𝜔(𝑌))

is injective. This implies the statement. 2

Definition 7.13 A pre-tannakian category over 𝑘 is a locally finite tensorial category
over 𝑘.

Both 7.11 and 7.12 (both conditions) may fail for nontannakian categories. See
Example 8.9 below.

Definition 7.14 A tannakian category is algebraic if it admits a tensor generator (in
the sense of 6.12).

This agrees with the definition Saavedra 1972, III, 3.3.1 (ibid., 3.3.1.1).

Extension of scalars

Theorem 7.15 Let (𝖢, ⊗) be a tannakian category over 𝑘 and 𝑘′ a finite extension of 𝑘.
Then (𝖢(𝑘′), ⊗𝑘′) is a tannakian category over 𝑘′.

Note that, if 𝑘′′ ⊃ 𝑘′ ⊃ 𝑘 are extensions of 𝑘, then 𝖢(𝑘′′) can be identified with
(𝖢(𝑘′))(𝑘′′), and so it suffices to prove the theorem for 𝑘′∕𝑘 separable and for 𝑘′∕𝑘 purely
inseparable of degree 𝑝. This we do in a series of lemmas.

Lemma 7.16 If 𝖢(𝑘′) is tensorial over 𝑘′, then it is tannakian over 𝑘′.

Proof Let 𝜔 be a fibre functor on 𝖢 with values in a 𝑘-algebra 𝑅. If (𝑋, 𝜇) ∈ ob𝖢(𝑘′),
then 𝜔(𝑋) has the structure of an 𝑅 ⊗𝑘 𝑘′-module, and (𝑋, 𝜇)⇝ 𝜔(𝑋) is a fibre functor
on 𝖢(𝑘′) with values in the 𝑘′-algebra 𝑅 ⊗𝑘 𝑘′. 2

Together with 6.22, this proves the theorem when 𝑘′∕𝑘 is separable. In the next two
lemmas, 𝖢 is a tannakian category over 𝑘 and 𝑘′ = 𝑘(𝑎1∕𝑝), 𝑎 ∈ 𝑘.

Lemma 7.17 Let 𝜔 be a fibre functor on 𝖢 with values in an extension 𝐾 of 𝑘, and let 𝑋 be
an object of 𝖢. The 𝑘′ ⊗𝑘 𝐾-module structure on 𝜔(𝑋) defined by any 𝑘′-module structure
on 𝑋 makes it into a free 𝑘′ ⊗𝑘 𝐾-module.
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Proof Let𝐾′ = 𝑘′⊗𝑘𝐾. If𝐾′ is a field, then the statement is obvious. Otherwise, 𝑎 is a
𝑝th power in𝐾, say, 𝑎 = 𝛼𝑝, and the𝐾-algebra𝐾′ = 𝐾[𝜀]∕(𝜀𝑝), where 𝜀 = 𝑎1∕𝑝⊗1−1⊗𝛼.
Let 𝑑 be the dimension of the 𝐾-vector space 𝜔(𝑋)∕𝜀𝜔(𝑋). The 𝐾′-module 𝜔(𝑋) is
isomorphic to a direct sum of 𝑑 modules of the form 𝐾[𝜀]∕(𝜀𝑗), 1 ≤ 𝑗 ≤ 𝑝. From this,
we see that it is free if and only if

⋀𝑑
𝐾′ 𝜔(𝑋) is free (of rank one). Let

⋀𝑑
𝑘′ 𝑋 be the image

of the antisymmetrization map
⨂𝑑

𝑋 →
⨂𝑑

𝑋.

Because 𝜔 is exact, it maps
⋀𝑑

𝑘′ 𝑋 to
⋀𝑑

𝐾′ 𝜔(𝑋). After replacing 𝑋 with
⋀𝑑

𝑘′ 𝑋, we may
suppose that 𝜔(𝑋) is a nonzero monogenic 𝐾′-module.

The 𝑘′-module structure on 𝑋 defines a morphism

𝑘′ ⊗ 𝟙→ℋ𝑜𝑚(𝑋,𝑋). (36)

As 𝟙 is simple (6.3), the kernel of (36) is of the form 𝐴⊗ 𝟙 with 𝐴 is a vector subspace of
𝑘′. As 𝐴 is also an ideal in 𝑘′, it is 0, and so (36) is a monomorphism. On applying 𝜔, we
deduce that 𝜔(𝑋) is a faithful 𝐾′-module, and we conclude by noting that every faithful
monogenic 𝐾′-module is free. 2

Lemma 7.18 The category 𝖢(𝑘′) is tensorial.

Proof We have to show that duals exist. Let 𝟙′ be the unit object 𝑘′ ⊗ 𝟙 of 𝖢(𝑘′). For
𝑋 in 𝖢(𝑘′), we shall show that the weak dual 𝑋∨ def= ℋ𝑜𝑚(𝑋, 𝟙′) of 𝑋 is dual to 𝑋 in the
sense of 4.4. We have an evaluation morphism (4.1)

ev ∶ 𝑋∨ ⊗𝑘′ 𝑋 → 𝟙′, (37)

and, for all 𝑇 in 𝖢(𝑘′), a morphism

𝑇 ⊗𝑘′ 𝑋∨ →ℋ𝑜𝑚𝑘′(𝑋, 𝑇). (38)

Let 𝜔 be a fibre functor on 𝖢, and let 𝜔′ be the functor (𝑋, 𝜇)⇝ 𝜔(𝑋) taking values in
𝐾′ def= 𝐾 ⊗𝑘 𝑘′. Then 𝜔′ transforms this last map into

𝜔(𝑇)⊗𝜔(𝑋)∨ →ℋ𝑜𝑚𝐾′(𝜔(𝑋), 𝜔(𝑇)). (39)

Lemma 7.17 shows that (39) is an isomorphism. The functor 𝜔′ is exact and such that
𝜔′(𝑍) = 0 ⇐⇒ 𝑍 = 0 because 𝜔 has these properties. Therefore 𝜔′ is conservative
and (38) is an isomorphism. Take 𝑌 = 𝑋. Composing the obvious morphism 𝟙′ →
ℋ𝑜𝑚𝑘′(𝑋,𝑋) with the inverse to (38), we get a morphism

𝛿∶ 𝟙′ → 𝑋 ⊗𝑘′ 𝑋∨.

The morphisms ev and 𝛿 satisfy the equalities (21) because this becomes true after 𝜔′
has been applied. (See also 4.7.) 2

7.19 Let 𝖢 be tannakian category over 𝑘, and let 𝑘𝑎 be an algebraic extension of 𝑘, for
example, an algebraic closure of 𝑘. As 𝑘′ runs over the finite extensions of 𝑘 in 𝑘𝑎, the
categories 𝖢(𝑘′) form 2-inductive system of abelian categories, and we define 𝖢(𝑘𝑎) to be
the inductive 2-limit of this system. The category 𝖢(𝑘𝑎) is tensorial over 𝑘𝑎, and a fibre
functor 𝜔 on 𝖢with values in 𝑅 defines a fibre functor on 𝖢(𝑘𝑎) with values in 𝑘𝑎⊗𝑘 𝑅 (cf.
the proof of 7.16). Therefore, 𝖢(𝑘𝑎) is a tannakian category over 𝑘𝑎. There is a canonical
tensor functor 𝑒∶ 𝖢 → 𝖢(𝑘𝑎), called extension of scalars.
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We list some consquences of Theorem 7.15 (Deligne 2014, 5.7, 5.9, 5.11).

7.20 If an object𝑋 of a tannakian category𝖢 over 𝑘 admits a 𝑘′-module structure, where
𝑘′ is an extension of 𝑘, then [𝑘′∶ 𝑘] divides dim𝑋.

7.21 Let 𝑋 be a simple object of a tannakian category 𝖢 over a field 𝑘 of characteristic
𝑝 ≠ 0. If dim𝑋 < 𝑝, then the centre of End(𝑋) is separable extension of 𝑘 (indeed, it is
an extension of degree < 𝑝 according to 7.20).

7.22 Let 𝖢 be a tannakian category over a field 𝑘 of characteristic 𝑝 and 𝑘𝑎 an algebraic
extension of 𝑘. Let 𝑋 be an object of 𝖢.
(a) If 𝑒(𝑋) is semisimple in 𝖢(𝑘𝑎), then 𝑋 is semisimple in 𝖢.
(b) If 𝑋 is semisimple in 𝖢 and dim𝑋 < 𝑝, then 𝑒(𝑋) is semisimple in 𝖢(𝑘𝑎).

Notes The proof given above of Theorem 7.15 is due to Grothendieck – see Deligne 2014, 5.4.

8 Examples

Example 8.1 The category 𝖵𝖾𝖼𝖿(𝑘) of finite-dimensional vector spaces over a field 𝑘
is a tannakian category over 𝑘 with the identity functor as a 𝑘-valued fibre functor. All
the above definitions take on a familiar meaning when applied to 𝖵𝖾𝖼𝖿(𝑘). For example,
Tr∶ End(𝑋)→ 𝑘 is the usual trace map.

Example 8.2 The category𝖬𝗈𝖽(𝑅) of modules over a commutative ring 𝑅 is an abelian
tensor category and End(𝟙) = 𝑅. In general it is not rigid because not all 𝑅-modules will
admit duals. The category𝖬𝗈𝖽𝖿(𝑅) of finitely presented 𝑅-modules is an abelian tensor
category if 𝑅 is coherent, for example, noetherian.

Example 8.3 The category 𝖯𝗋𝗈𝗃(𝑅) of finitely generated projective modules over a com-
mutative ring 𝑅 is a rigid additive tensor category and End(𝟙) = 𝑅, but, in general, it is
not abelian. The rigidity follows from 4.9.

Example 8.4 Let 𝐺 be an affine group scheme over a field 𝑘. The category 𝖱𝖾𝗉𝖿(𝐺) of
linear representations of 𝐺 on finite-dimensional 𝑘-vector spaces is a tannakian category
over 𝑘 with the forgetful functor as a 𝑘-valued fibre functor.

Example 8.5 Let 𝑉′ and 𝑉′′ be vector spaces over 𝑘 of the same dimension, each
equipped with a nondegenerate quadratic form. Then the categories 𝖱𝖾𝗉𝖿(O(𝑉′)) and
𝖱𝖾𝗉𝖿(O(𝑉′′)) are canonically equivalent (as 𝑘-linear tensor categories). To see this, note
that Isom(𝑉′, 𝑉′′) is an O(𝑉′) torsor with an action of O(𝑉′′). Twisting a representation
of O(𝑉′) by the torsor gives the equivalence.

Example 8.6 The finite groups 𝐷4 and 𝑄8 have the isomorphic representation rings
(over ℂ, say) because they have the same character tables, but the categories 𝖱𝖾𝗉𝖿(𝐷4)
and 𝖱𝖾𝗉𝖿(𝑄8) are not equivalent as ℂ-linear tensor categories because a direct calcula-
tion shows that they have different associativity constraints. Alternatively, suppose that
there is a tensor equivalence, which we may assume commutes with the forgetful fibre
functors. Such an equivalence sends the trivial representation 𝟙𝐷 of 𝐷4 to the trivial rep-
resentation 𝟙𝑄 of 𝑄8 (they are identity objects) and it sends the simple two-dimensional
representation 𝑉𝐷 of 𝐷4 to the simple two-dimensional representation 𝑉𝑄 of 𝑄8 (they
are unique). In particular, we would get a ℂ-linear isomorphism 𝑔∶ 𝑉𝐷 → 𝑉𝑄. Now

𝑔 ⊗ 𝑔∶ 𝑉𝐷 ⊗𝑉𝐷 → 𝑉𝑄 ⊗𝑉𝑄



8. Examples 41

sends the unique identity object 𝟙𝐷 in 𝑉𝐷 ⊗ 𝑉𝐷 to the unique identity object 𝟙𝑄 in
𝑉𝑄 ⊗𝑉𝑄. But no such 𝑔 can exist because the flip map 𝑣 ⊗ 𝑤 ↦ 𝑤 ⊗ 𝑣 acts as 1 on 𝟙𝐷
and −1 on 𝟙𝑄.

It may be an open problem to classify the tannakian categories with the same repre-
sentation ring as 𝑄8. See mo282292.

Example 8.7 (Super vector spaces) Let 𝖢 be the category whose objects are pairs
(𝑉0, 𝑉1) of finite-dimensional vector spaces over 𝑘, i.e., ℤ∕(2)-graded vector spaces. We
give 𝖢 the tensor structure whose commutativity constraint is determined by the Koszul
sign rule, i.e., that defined by the isomorphisms

𝑣 ⊗ 𝑤 ↦ (−1)𝑖𝑗𝑤 ⊗ 𝑣∶ 𝑉𝑖 ⊗𝑊𝑗 →𝑊𝑗 ⊗𝑉𝑖.

Then 𝖢 is a tensorial category over 𝑘, but it is does not admit a nonzero fibre functor
because

dim(𝑉0, 𝑉1) = dim(𝑉0) − dim(𝑉1),

which need not be positive. Notation: 𝗌𝖵𝖾𝖼(𝑘).

Example 8.8 The rigid additive tensor category freely generated by an object𝑇 is defined
to be any pair (𝖢, 𝑇) with 𝖢 a rigid additive tensor category 𝖢 such that End(𝟙) = ℤ[𝑡]
(polynomial ring) and 𝑇 an object such that

𝐹 ⇝ 𝐹(𝑇)∶ 𝖧𝗈𝗆⊗(𝖢,𝖢′)→ 𝖢′

is an equivalence of categories for all rigid additive tensor categories 𝖢′ (𝑡 will turn out
to be the categorical dimension of 𝑇). We show how to construct such a pair (𝖢, 𝑇) –
clearly it is unique up to a unique equivalence of tensor categories preserving 𝑇.

Let 𝑉 be a free module of finite rank over a commutative ring 𝑘 and let 𝑇𝑎,𝑏(𝑉) be
the space 𝑉⊗𝑎 ⊗𝑉∨⊗𝑏 of tensors with covariant degree 𝑎 and contravariant degree 𝑏 .
A morphism 𝑓∶ 𝑇𝑎,𝑏(𝑉)→ 𝑇𝑐,𝑑(𝑉) can be identified with a tensor “𝑓 ” in 𝑇𝑏+𝑐,𝑎+𝑑(𝑉).
When 𝑎+𝑑 = 𝑏+𝑐, 𝑇𝑏+𝑐,𝑎+𝑑(𝑉) contains a special element, namely, the (𝑎+𝑑)th tensor
power of “id”∈ 𝑇1,1(𝑉), and other elements can be obtained by allowing an element
of the symmetric group 𝑆𝑎+𝑑 to permute the contravariant components of this special
element. We have therefore a map

𝜖∶ 𝑆𝑎+𝑑 → Hom(𝑇𝑎,𝑏, 𝑇𝑐,𝑑) (when 𝑎 + 𝑑 = 𝑏 + 𝑐).

The induced map 𝑘[𝑆𝑎+𝑑]→ Hom(𝑇𝑎,𝑏, 𝑇𝑐,𝑑) on the group algebra is injective provided
rank(𝑉) ≥ 𝑎 + 𝑑. One checks that the composite of two such maps 𝜖(𝜎)∶ 𝑇𝑎,𝑏(𝑉) →
𝑇𝑐,𝑑(𝑉) and 𝜖(𝜏)∶ 𝑇𝑐,𝑑(𝑉)→ 𝑇𝑒,𝑓(𝑉) is given by a universal formula

𝜖(𝜏) ⋅ 𝜖(𝜎) = (rank𝑉)𝑁 ⋅ 𝜖(𝜌) (40)

with 𝜌 and 𝑁 depending only on 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝜎, and 𝜏.
We define 𝖢′ to be the category having as objects symbols 𝑇𝑎,𝑏 (𝑎, 𝑏 ∈ ℕ), and for

whichHom(𝑇𝑎,𝑏, 𝑇𝑐,𝑑) is the freeℤ[𝑡]-module with basis 𝑆𝑎+𝑑 if 𝑎+𝑑 = 𝑏+𝑐 and is zero
otherwise. Composition of morphisms is defined to beℤ[𝑡]-bilinear and to agree on basis
elements with the universal formula (40) but with rank(𝑉) replaced by the indeterminate
𝑡. The associativity law holds for this composition because it does whenever 𝑡 is replaced
by a large enough positive integer (it becomes the associativity law in a category of
modules). Tensor products are defined by

𝑇𝑎,𝑏 ⊗ 𝑇𝑐,𝑑 = 𝑇𝑎+𝑐,𝑏+𝑑

https://mathoverflow.net/questions/282292
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and by an obvious rule for morphisms. We define 𝑇 to be 𝑇1,0.
The category 𝖢 is deduced from 𝖢′ by formally adjoining direct sums of objects.

Its universality follows from the fact that the formula (40) holds in any rigid additive
category.

Example 8.9 (𝖦𝖫𝑡) Let 𝑛 be an integer, and use 𝑡 ↦ 𝑛∶ ℤ[𝑡]→ ℂ to extend the scalars
in Example 8.8 from ℤ[𝑡] to ℂ. If 𝑉 is an 𝑛-dimensional complex vector space and if
𝑎 + 𝑑 ≤ 𝑛, then

Hom(𝑇𝑎,𝑏, 𝑇𝑐,𝑑)⊗ℤ[𝑡] ℂ→ HomGL𝑉 (𝑇
𝑎,𝑏(𝑉), 𝑇𝑐,𝑑(𝑉))

is an isomorphism. For any sum𝑇′ of objects𝑇𝑎,𝑏 and large enough integer𝑛,End(𝑇′)⊗ℤ[𝑡]
ℂ is therefore a product of matrix algebras. This implies that End(𝑇′)⊗ℤ[𝑡] ℚ[𝑡] is a
semisimple algebra.

After extending the scalars in 𝖢 to ℚ(𝑡), i.e., replacing Hom(𝑇′, 𝑇′′) with

Hom(𝑇′, 𝑇′′)⊗ℤ[𝑡] ℚ(𝑡),

and passing to the pseudo-abelian (Karoubian) envelope (formally adjoining images of
idempotents), we obtain a semisimple rigid abelian tensor category 𝖦𝖫𝑡 (apply VII, 6.4).
The dimension of 𝑇 in 𝖦𝖫𝑡 is 𝑡 ∉ ℕ and so, although End(𝟙) = ℚ(𝑡) is a field, 𝖦𝖫𝑡 is not
tannakian.

If 𝑋 is an object of a tensorial category 𝖳 over a field 𝑘 containing 𝑡 and 𝑋 has
dimension 𝑡, then there exists an exact tensor functor from (𝖦𝖫𝑡) to 𝖳 sending the
universal object 𝑋𝑡 to 𝑋. Two such tensor functors are isomorphic, and the tensor
automorphisms of such a tensor functor are those of 𝑋. In particular, we have a tensor
functor

𝑋𝑡 ⇝ 𝟙⊗𝑋𝑡−1∶ (𝖦𝖫𝑡)→ (𝖦𝖫𝑡−1)

Iterate this construction, and let 𝖳 be the inductive limit of the categories (𝖦𝖫𝑡−𝑛), 𝑛 ≥ 0.
This tensor category over 𝑘 can be seen to be freely generated by an object𝑋𝑡 of dimension
𝑡 equipped with a decomposition

𝑋𝑡 = 𝟙⊕𝑋𝑡−1, 𝑋𝑡−1 = 𝟙⊕𝑋𝑡−2, …

In (𝖦𝖫𝑡−𝑛) , 𝑋𝑡 = 𝟙𝑛 ⊕𝑋𝑖−𝑛 has endomorphism ring𝑀𝑛(𝑘) × 𝑘. Passing to the limit, we
find that the ring of endomorphisms of 𝑋𝑡 in 𝖳 is the ring of marices of the form

(
∗ 0
0 𝜆𝐼 )

The object 𝑋𝑡 of 𝖳 is not of finite length, andHom(𝑋𝑡, 𝑋𝑡) is not of finite dimension over
𝑘.

For more on these categories, see Deligne 2007 and the many articles citing it.

9 Algebraic geometry in a tensorial category

Throughout this section, 𝖳 is a tensorial category over a field 𝑘. We explain, following
Deligne 1989, how to do algebraic geometry in 𝖳.
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9.1 For objects 𝑆, 𝑇, 𝑋, 𝑌 in 𝖳, the canonical morphism (18), p. 22,

ℋ𝑜𝑚(𝑆, 𝑋)⊗ℋ𝑜𝑚(𝑇, 𝑌)→ℋ𝑜𝑚(𝑆 ⊗ 𝑇,𝑋 ⊗ 𝑌)

is an isomorphism – it is essentially the isomorphism

(𝑆∨ ⊗𝑋)⊗ (𝑇∨ ⊗𝑌)
𝛾
≃ 𝑇∨ ⊗ 𝑆∨ ⊗𝑋 ⊗𝑌 ≃ (𝑆 ⊗ 𝑇)∨ ⊗𝑋 ⊗𝑌.

On applying Hom(𝟙,−), we obtain an isomorphism of 𝑘-vector spaces,

Hom(𝑆, 𝑋)⊗Hom(𝑇, 𝑌) ≃ Hom(𝑆 ⊗ 𝑇,𝑋 ⊗ 𝑌).

(The first⊗ is in the category of 𝑘-vector spaces.) To give a morphism 𝑋 ⊗ 𝑌 → 𝑍 from
𝑋 ⊗ 𝑌 to another object 𝑍 is the same as giving a homomorphism of 𝑘-vector spaces,

Hom(𝑆 ⊗ 𝑇,𝑋 ⊗ 𝑌)→ Hom(𝑆 ⊗ 𝑇, 𝑍),

natural in 𝑆 and 𝑇 (Yoneda lemma). On combining the last two statements, we see that
to give a morphism𝑋⊗𝑌 → 𝑍 is the same as giving a homomorphism of 𝑘-vector spaces

Hom(𝑆, 𝑋)⊗Hom(𝑇, 𝑌)→ Hom(𝑆 ⊗ 𝑇, 𝑍)

9.2 The category Ind𝖳 of ind-objects of 𝖳 (see Appendix B) is again a 𝑘-linear abelian
category. The tensor product on 𝖳 extends to a tensor product on Ind𝖳, which is exact
in each variable (6.2, B.4). The objects of Ind𝖳 can be identified with the small filtered
inductive limits of representable functors 𝖳op → 𝖵𝖾𝖼(𝑘),

𝑋 = “lim,,→”𝑋𝛼 ⇝ lim,,→ℎ𝑋𝛼 = ℎ𝑋 , ℎ𝑋𝛼
def= Hom(−, 𝑋𝛼).

To give a morphism 𝑋 ⊗ 𝑌 → 𝑍 in Ind𝖳 is the same as giving a 𝑘-bilinear map

ℎ𝑋(𝑆) × ℎ𝑌(𝑇)→ ℎ𝑍(𝑆 ⊗ 𝑇)

natural in 𝑆 and 𝑇.

9.3 A ring 𝐴 (associative with 1) in Ind𝖳 is an object 𝐴 equipped with morphisms
𝑚∶ 𝐴⊗𝐴 → 𝐴 and 1∶ 𝟙→ 𝐴 such that the two composed morphisms

𝐴⊗𝐴⊗𝐴 𝐴⊗𝐴 𝐴

←→𝑚⊗𝐴

←→
𝐴⊗𝑚

←→𝑚

are equal and the two morphisms

𝐴 ≃ 𝟙⊗𝐴
1⊗id𝐴,,,,,→ 𝐴⊗𝐴

𝑚
,→ 𝐴

𝐴 ≃ 𝐴⊗ 𝟙
𝐴⊗1
,,,,→ 𝐴⊗𝐴

𝑚
,→ 𝐴

equal id𝐴. For example, when 𝖳 = 𝖵𝖾𝖼(𝑘), a ring in Ind𝖳 is a 𝑘-algebra (associative
with 1) in the usual sense. A homomorphism of rings in Ind𝖳 is a morphism of objects
compatible with the multiplication and the morphisms 1.

The multiplication morphism𝑚∶ 𝐴⊗𝐴 → 𝐴 corresponds to a 𝑘-bilinear map

𝑥, 𝑦 ↦ 𝑥𝑦∶ ℎ𝐴(𝑆) × ℎ𝐴(𝑇)→ ℎ𝐴(𝑆 ⊗ 𝑇),
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natural in 𝑆 and 𝑇, and the associativity of𝑚 becomes the equality

(𝑥𝑦)𝑧 = 𝑥(𝑦𝑧) for 𝑥 ∈ ℎ𝐴(𝑆), 𝑦 ∈ ℎ𝐴(𝑇), 𝑧 ∈ ℎ𝐴(𝑈).

Here 𝑥𝑦 ∈ ℎ𝐴(𝑆 ⊗ 𝑇) , 𝑦𝑧 ∈ ℎ𝐴(𝑇 ⊗ 𝑈), and (𝑥𝑦)𝑧, 𝑥(𝑦𝑧) ∈ ℎ𝐴(𝑆 ⊗ 𝑇 ⊗ 𝑈). That
1∶ 𝟙→ 𝐴 is an identity becomes the equalities

1𝑥 = 𝑥 = 𝑥1 for 𝑥 ∈ ℎ𝐴(𝑆).

Here 1 ∈ ℎ𝐴(𝟙), so 1𝑥 ∈ ℎ𝐴(𝟙⊗ 𝑆) ≃ ℎ𝐴(𝑆) and 𝑥1 ∈ ℎ𝐴(𝑆 ⊗ 𝟙) ≃ ℎ𝐴(𝑆).

9.4 A left 𝐴-module is an object𝑀 of Ind𝖳 together with a morphism 𝜇∶ 𝐴⊗𝑀 → 𝑀
such that the two morphisms

𝐴⊗𝐴⊗𝑀 𝐴⊗𝑀 𝑀

←→𝑚⊗𝑀

←→
𝐴⊗𝜇

←→
𝜇

are equal, and such that

𝑀 ≃ 𝟙⊗𝑀
1⊗𝑀
,→ 𝐴⊗𝑀

𝜇
,→ 𝑀

equals id𝑀 . Right 𝐴-modules are defined similarly. The left 𝐴-modules in Ind𝖳 form an
abelian category 𝐴𝖬𝗈𝖽 – to form the kernel or cokernel of a morphism in 𝐴𝖬𝗈𝖽, first
form it in Ind𝖳, and then equip it with the induced 𝐴-module structure.

When𝑀 is a right 𝐴-module and 𝑁 a left 𝐴-module, we define𝑀 ⊗𝐴 𝑁 to be the
coequalizer of the pair of morphisms

𝑀 ⊗𝐴⊗𝑁 𝑀 ⊗𝑀

←→
𝜇𝑀⊗𝑁←→𝑀⊗𝜇𝑁

9.5 When 𝐴 is commutative, ⊗𝐴 makes 𝖬𝗈𝖽(𝐴) def= 𝖬𝗈𝖽𝐴 into an 𝐴-linear tensor
category. The unit is (𝐴,𝑚). There is a canonical functor

𝑋 ⇝ 𝑋 ⊗𝐴∶ 𝖳 → 𝖬𝗈𝖽(𝐴).

This sends 𝑋∨ to the dual of 𝑋 ⊗𝐴 in𝖬𝗈𝖽(𝐴),

𝑋∨ ⊗𝐴 = (𝑋 ⊗𝐴)∨.

The categorical dimension of 𝑋 in 𝖳 becomes the categorical dimension of 𝑋 ⊗ 𝐴 in
𝖬𝗈𝖽(𝐴),

dim (𝑋) = dim𝐴 (𝑋 ⊗𝐴) , (41)

once we identify 𝑘 = End(𝟙) with a subring of End𝐴(𝐴) ≃ Hom(𝟙, 𝐴) using the mor-
phism 𝑒∶ 𝟙→ 𝐴.

Definition 9.6 A homomorphism 𝑓∶ 𝐴 → 𝐵 of commutative rings in Ind𝖳 is flat
(resp. faithfully flat) if the functor

𝑀 ⇝ 𝑀 ⊗𝐴 𝐵∶ 𝖬𝗈𝖽(𝐴)→ 𝖬𝗈𝖽(𝐵)

is exact (resp. exact and faithful).
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To check that a flat homomorphism 𝐴 → 𝐵 is faithfully flat, it suffices to show that

𝑀 ≠ 0 ⇐⇒ 𝑀 ⊗𝐴 𝐵 ≠ 0.

Lemma 9.7 Let 𝑓∶ 𝐴 → 𝐵 be faithfully flat. A sequence

(𝑁) ∶ 𝑁′ 𝛼
,→ 𝑁

𝛽
,→ 𝑁′′

of 𝐴-modules is exact if (and only if)

(𝑁)⊗ 𝐵 ∶ 𝑁′ ⊗𝐴 𝐵
𝛼⊗1
,,,,→ 𝑁 ⊗𝐴 𝐵

𝛽⊗1
,,,,→ 𝑁′′ ⊗𝐴 𝐵

is exact.

Proof Let 𝐶 be the cokernel of 𝑁′ 𝛼
,→ Ker(𝛽), so that

𝑁′ 𝛼
,→ Ker(𝛽) ,→ 𝐶 ,→ 0

is exact. As 𝑓 is flat, the sequence

𝑁′ ⊗𝐴 𝐵
𝛼⊗1
,,,,→ Ker(𝛽)⊗𝐴 𝐵 ,→ 𝐶 ⊗𝐴 𝐵 ,→ 0

is exact, and as (𝑁)⊗𝐴 𝐵 is exact, 𝐶 ⊗𝐴 𝐵 = 0. This implies that 𝐶 = 0 because 𝑓 is
faithful, and so (𝑁) is exact. 2

Lemma 9.8 For any commutative ring (𝐴,𝑚, 1) in 𝖳, themorphism 1∶ 𝟙→ 𝐴 is faithfully
flat.

Proof The morphism 1 is a monomorphism because it is nonzero and 𝟙 is simple (6.3).
As⊗ is exact in each variable (6.2), for any object𝑀, the morphism𝑀 ⊗ 1∶ 𝑀 ⊗ 𝟙→
𝑀⊗𝐴 is a monomorphism. It follows that the functor−⊗𝐴 is exact and that𝑀⊗𝐴 ≠ 0
whenever𝑀 ≠ 0. The functor is therefore also faithful. 2

Faithfully flat descent

For a homomorphism 𝑓∶ 𝐴 → 𝐵, we let 𝑒0, 𝑒1∶ 𝐵 → 𝐵 ⊗𝐴 𝐵 denote the morphisms

𝐵 ≃ 𝐴⊗𝐴 𝐵
𝑓⊗id𝐵,,,,,,→ 𝐵 ⊗𝐴 𝐵, 𝐵 ≃ 𝐵 ⊗𝐴 𝐴

id𝐵⊗𝑓,,,,,,→ 𝐵 ⊗𝐴 𝐵.

On points, 𝑒0(𝑏) = 1𝐴 ⊗ 𝑏 and 𝑒1(𝑏) = 𝑏 ⊗ 1𝐴.

Proposition 9.9 Let 𝑓∶ 𝐴 → 𝐵 be a faithfully flat homomorphism of commutative rings
in Ind𝖳. For any 𝐴-module𝑀, the sequence

𝑀 𝐵 ⊗𝐴 𝑀 𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝑀

← →
𝑑0 ← →

𝑒0⊗id𝑀← →
𝑒1⊗id𝑀

(42)

is exact, i.e., 𝑑0 is the equalizer of the parallel pair. Here 𝑑0 is𝑀 ≃ 𝐴⊗𝐴𝑀
𝑓⊗id𝑀,,,,,,→ 𝐵⊗𝐴𝑀.
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Proof Let 𝑑1 = 𝑒0 ⊗ id𝑀 −𝑒1 ⊗ id𝑀 . Clearly 𝑑1◦𝑑0 = 0. Assume first that there exists
an 𝐴-linear section to 𝑓, i.e., an 𝐴-linear map 𝑔∶ 𝐵 → 𝐴 such that 𝑔◦𝑓 = id𝐴. Define
𝑘0 and 𝑘1 to be the 𝐴-linear morphisms

{ 𝐵 ⊗𝐴 𝑀
𝑔⊗𝑀
,,,,,→ 𝐴⊗𝐴 𝑀 ≃ 𝑀

𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝑀
𝑔⊗𝐵⊗𝑀
,,,,,,,→ 𝐴⊗𝐴 𝐵 ⊗𝐴 𝑀 ≃ 𝐵 ⊗𝐴 𝑀.

Then 𝑘0◦𝑑0 = id𝑀 , which shows that 𝑑0 is a monomorphism. Moreover,

𝑘1◦𝑑1 + 𝑑0◦𝑘0 = id𝐵⊗𝐴𝑀 ,

which shows that 𝑑0 maps onto the kernel of 𝑑1.
We now consider the general case. Because 𝐴 → 𝐵 is faithfully flat, it suffices to

prove that the sequence (42) becomes exact after tensoring with 𝐵. But the sequence
obtained by tensoring (42) with 𝐵 is isomorphic to the sequence (42) for the faithfully

flat homomorphism 𝐵 ≃ 𝐴⊗𝐴 𝐵
𝑓⊗𝐵
,,,,→ 𝐵 ⊗𝐴 𝐵 and the 𝐵-module 𝐵 ⊗𝐴 𝑀 because, for

example,
𝐵 ⊗𝐴 (𝐵 ⊗𝐴 𝑀) ≃ (𝐵 ⊗𝐴 𝐵)⊗𝐵 (𝐵 ⊗𝐴 𝑀).

Now 𝐵 → 𝐵⊗𝐴𝐵 has a 𝐵-linear section, namely, that defined by multiplication 𝐵⊗𝐵 →
𝐵, and so we can apply the first case. 2

9.10 Let 𝑓∶ 𝐴 → 𝐵 be a faithfully flat homomorphism of commutative rings in Ind𝖳,
and let𝑀 be an 𝐴-module. Set𝑀′ = 𝑓∗𝑀

def= 𝐵 ⊗𝐴 𝑀. The modules 𝑒0∗𝑀′ and 𝑒1∗𝑀′

can be identified with 𝐵 ⊗𝐴 𝑀 and 𝑀 ⊗𝐴 𝐵 respectively, with the natural action of
𝐵 ⊗𝐴 𝐵. There is a canonical isomorphism 𝜙∶ 𝑒1∗𝑀′ → 𝑒0∗𝑀′, namely,

𝑒1∗𝑀′ ≃ (𝑒1𝑓)∗𝑀 = (𝑒0𝑓)∗𝑀 ≃ 𝑒0∗𝑀′.

Moreover,𝑀 can be recovered from the pair (𝑀′, 𝜙) as the equalizer of

𝑀′ 𝐵 ⊗𝐴 𝑀′,

←→𝛼←→
𝛽

{ 𝛼∶ 𝑀
′ ≃ 𝐴⊗𝐴 𝑀′ 𝑓⊗𝑀′

,,,,,→ 𝐵 ⊗𝐴 𝑀′

𝛽∶ 𝑀′ ≃ 𝑀′ ⊗𝐴 𝐴
𝑀′⊗𝑓
,,,,,→ 𝑀′ ⊗𝐴 𝐵

𝜙
,→ 𝐵 ⊗𝐴 𝑀′.

Conversely, every pair (𝑀′, 𝜙), with𝑀′ a 𝐵-module and 𝜙 a 𝐵⊗𝐴 𝐵-linear morphism
𝜙∶ 𝑀′ ⊗𝐴 𝐵 → 𝐵 ⊗𝐴 𝑀′ satisfying a certain natural condition arises in this way from
an 𝐴-module. Given 𝜙, we construct morphisms

𝜙1∶ 𝐵 ⊗𝐴 𝑀′ ⊗𝐴 𝐵 → 𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝑀′, 𝜙1 = 𝐵 ⊗ 𝜙
𝜙2∶ 𝑀′ ⊗𝐴 𝐵 ⊗𝐴 𝐵 → 𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝑀′, 𝜙2 =

(
𝛾𝐵,𝐵 ⊗𝑀′) ◦𝜙◦

(
𝛾𝑀′,𝐵 ⊗ 𝐵

)

𝜙3∶ 𝑀′ ⊗𝐴 𝐵 ⊗𝐴 𝐵 → 𝐵 ⊗𝐴 𝑀′ ⊗𝐴 𝐵, 𝜙3 = 𝜙 ⊗ 𝐵.

On points, 𝜙1, 𝜙2, and 𝜙3 are obtained by tensoring 𝜙 with id𝐵 in the first, second, and
third positions respectively. A pair (𝑀′, 𝜙) arises from an 𝐴-module𝑀 as above if and
only if 𝜙2 = 𝜙1◦𝜙3. The necessity is easy to check. For the sufficiency, define𝑀 to be the
equalizer of 𝛼, 𝛽∶ 𝑀′ ⇉ 𝐵⊗𝐴𝑀′ with 𝛼 and 𝛽 as above. There is a canonical morphism
𝐵 ⊗𝐴 𝑀 → 𝑀′, and it suffices to show that this is an isomorphism and that the map
arising from𝑀 is 𝜙. The diagram

𝑀′ ⊗𝐴 𝐵 𝐵 ⊗𝐴 𝑀′ ⊗𝐴 𝐵

𝐵 ⊗𝐴 𝑀′ 𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝑀′

←→ 𝜙≃

← →𝛼⊗𝐵

← →
𝛽⊗𝐵

←→ 𝜙1≃

← →
𝑒0⊗𝑀′

← →
𝑒1⊗𝑀′
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commutes with either the upper or the lower horizontal maps (for the lower maps, this
uses the relation 𝜙2 = 𝜙1◦𝜙3), and so 𝜙 induces an isomorphism on the equalizers. But,
by definition of𝑀, the equalizer of the pair (𝛼 ⊗ id, 𝛽 ⊗ id) is𝑀 ⊗𝐴 𝐵, and, according
to Proposition 9.9, the equalizer of the pair (𝑒0 ⊗ id, 𝑒1 ⊗ id) is𝑀′. This completes the
proof.

9.11 More precisely,𝑀 ⇝ (𝐵 ⊗𝐴 𝑀,𝜙) is an equivalence from𝖬𝗈𝖽(𝐴) to the category
of pairs (𝑀′, 𝜙) satisfying 𝜙2 = 𝜙1◦𝜙3. This statement holds also when𝑀 and𝑀′ are
equipped with 𝐴-algebra structures preserved by 𝜙.

Remark 9.12 When𝖳 is the category of finite-dimensional vector spaces over 𝑘, so Ind𝖳
is the category of all vector spaces over 𝑘, then a ring in Ind𝖳 is a 𝑘-algebra (associative
with 1) in the usual sense, and the results become familiar, for example, 9.10 is faithfully
flat descent in the usual sense (e.g., Waterhouse 1979, 17.1, 17.2).

Affine schemes

9.13 Following Deligne 1989, in order to have a geometric language at our disposal, we
define the category of affine schemes in Ind𝖳 to be the opposite of that of commutative
rings (associative with 1) in Ind𝖳. We call an object of the category an affine scheme
in Ind𝑇 or an affine 𝖳-scheme, and we write Sp(𝐴) for the affine 𝖳-scheme defined by
𝐴. Fibre products exist, and correspond to tensor products. An 𝐴-module𝑀 is called a
module over Sp(𝐴), and, when Sp(𝐵) is an affine scheme over Sp(𝐴), 𝐵 ⊗𝐴 𝑀 is called
the inverse image of𝑀 over Sp(𝐵).

For example, Sp(0) is the empty scheme and Sp(𝟙) is the point (pt) – they are the
initial and final objects in the category. We say that 𝑆 = Sp(𝐴) is nonempty if 𝐴 ≠ 0.
Every 𝑆 is either empty or faithfully flat over (pt). For 𝑋 and 𝑆 affine schemes in 𝖳, the
set 𝑋(𝑆) of 𝑆-points of 𝑋 is Hom(𝑆, 𝑋).

Anaffinegroup𝖳-scheme is a group object in the category of affine𝖳-schemes. Let𝐻
be an affine group scheme in 𝖳. An𝐻-torsor is a nonempty affine 𝖳-scheme 𝑃 equipped
with a right action 𝜌∶ 𝑃×𝐻 → 𝑃 such that, for all 𝑆, 𝑃(𝑆) is either empty or a torsor under
𝐻(𝑆). The condition “empty or a torsor” means that, for all 𝑆, (pr1, 𝜌)∶ 𝑃(𝑆) ×𝐻(𝑆)→
𝑃(𝑆) × 𝑃(𝑆) is bijective, i.e., that (pr1, 𝜌)∶ 𝑃 ×𝐻 → 𝑃 × 𝑃 is an isomorphism.

Example 9.14 (Vectorial schemes in 𝖳) For 𝑀 in Ind𝖳, put Γ(𝑀) = Hom(𝟙,𝑀),
the global sections of𝑀 over 𝑆. When𝑀 is a module over 𝑆 = Sp(𝐴), we have

Γ(𝑀) = Hom(𝟙,𝑀) ≃ Hom𝐴(𝐴,𝑀).

Note that the functor Γ need not be exact. For example, when 𝖳 = 𝖱𝖾𝗉𝖿(𝐺), it is the
functor of 𝐺-invariants.

An object𝑋 of 𝖳 defines for each 𝑆 = Sp(𝐴) a module𝑋𝑆 = 𝐴⊗𝑋, the inverse image
of 𝑋 by 𝑆 → (pt). The functor 𝑆 ⇝ Γ(𝑋𝑆) is representable,

Hom(𝟙, 𝐴 ⊗ 𝑋) = Hom(𝑋∨, 𝐴) = Homrings(Sym(𝑋∨), 𝐴).

We sometimes denote by 𝑋 the 𝖳-scheme Sp(Sym(𝑋∨)) representing this functor. This is
similar, when 𝑉 is a finite-dimensional 𝑘-vector space, to using 𝑉 to denote the scheme
Spec(Sym∗(𝑉∨)), which has 𝑉 for its 𝑘-points.

The functor 𝑆 ⇝ Γ(𝑋𝑆) is a functor to groups. The 𝖳-scheme 𝑋 is therefore a group
scheme in 𝖳. The group structure corresponds to the usual Hopf algebra structure on
Sym∗(𝑋∨).
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Example 9.15 (An affine 𝑘-scheme is an affine 𝖳-scheme) SinceEnd(𝟙) = 𝑘, the
subcategory of 𝖳 of sums of copies of 𝟙 is naturally equivalent to that of vector spaces of
finite dimension over 𝑘, by a functor 𝑉 ⇝ 𝑉 ⊗ 𝟙. The choice of a basis 𝑒1,… , 𝑒𝑛 of 𝑉
identifies 𝑉 ⊗ 𝟙 with 𝟙𝑛. See 7.10.

Passing to the ind-objects, we obtain a functor from the category of (all) vector spaces
over 𝑘 to Ind𝖳. Under this functor, an affine scheme over 𝑘 defines a scheme in 𝖳.
Similarly, for affine group schemes, torsors, and so on. The point Spec(𝑘) defines the
𝖳-scheme (pt).

9.16 Let 𝐺 be an affine group 𝖳-scheme and 𝑋 an object of 𝖳. To give an action of
𝐺 on 𝑋 is to give, for every 𝑆, an action of 𝐺(𝑆) on the 𝑆-module 𝑋𝑆, compatible with
base changes 𝑆′∕𝑆. Such an action is determined by the action of the universal element
id𝐺 ∈ 𝐺(𝐺) on 𝑋𝐺 . For 𝐺 = Sp(𝐴), this is an 𝐴-linear morphism 𝐴 ⊗ 𝑋 → 𝐴 ⊗ 𝑋,
which is determined by its restriction to 𝑋 → 𝐴⊗𝑋. The morphism 𝑋 → 𝐴⊗𝑋 makes
𝑋 a comodule over the Hopf algebra 𝐴 (commutative with 1) in Ind𝖳.

9.17 (The case of 𝖱𝖾𝗉𝖿(𝐺)) Let 𝐺 be an affine group scheme over 𝑘 and let 𝖳 =
𝖱𝖾𝗉𝖿(𝐺). The ind-objects of 𝖳 are the linear representations – not necessarily of finite
dimension – of 𝐺 (B.11). The affine 𝖳-schemes are the affine schemes over 𝑘 equipped
with an action of 𝐺, an affine group 𝖳-scheme 𝐻 is an affine group scheme over 𝑘
equipped with an action of 𝐺, an 𝐻-torsor is an 𝐺-equivariant 𝐻-torsor (in the usual
sense), a vectorial 𝖳-scheme is the equivariant affine scheme of a finite-dimensional
representation of𝐺, and the inclusion of affine 𝑘-schemes into affine 𝖳-schemes is “equip
with the trivial action of 𝐺”.

When 𝖳 is a neutral tannakian category, this interpretation allows us to routinely
reduce questions on 𝖳-schemes to questions in usual algebraic geometry.

On reversing the arrows in 9.11, we obtain faithfully flat descent for affine schemes.

Theorem 9.18 Let 𝑎∶ 𝑉 → 𝑈 be a faithfully flat map of affine schemes in Ind𝖳. To give
an affine scheme𝑊 over𝑈 is the same as giving an affine scheme𝑊′ over 𝑉 together with
an isomorphism 𝜙∶ pr∗1𝑊

′ → pr∗2𝑊
′ satisfying

𝑝∗31(𝜙) = 𝑝∗32(𝜙)◦𝑝
∗
21(𝜙).

Here 𝑝𝑗𝑖 denotes the projection 𝑉 × 𝑉 × 𝑉 → 𝑉 × 𝑉 such that 𝑝𝑗𝑖(𝑤1, 𝑤2, 𝑤3) = (𝑤𝑗, 𝑤𝑖).

Aside 9.19 Let 𝖳 be a pre-tannakian category over a perfect field. In this case, Deligne (1990,
8.13) constructs a 𝖳-group 𝜋(𝖳) called the fundamental group of 𝖳. In particular, 𝜋(𝖳) acts on
the objects of 𝖳. For example, if 𝖳 = 𝖱𝖾𝗉𝖿(𝐺), 𝜋(𝖳) is (the Hopf algebra of) 𝐺 with 𝐺 acting by
conjugation.

When 𝖳 is tannakian, the construction of the fundamental group is easier – see IV, 4.13. For
any fibre functor 𝜔 of 𝖳 over a scheme 𝑆, 𝜔(𝜋(𝖳)) is an affine group scheme over 𝑆, and the
action of 𝜋(𝖳) on an object 𝑋 defines an action of 𝜔(𝜋(𝖳)) on 𝜔(𝑋), natural in 𝑋 and compatible
with tensor products, which for varying 𝑋 gives an isomorphism

𝜔(𝜋(𝖳)) ≃,→ 𝒜𝑢𝑡⊗𝑆 (𝜔).

Notes This section largely follows Deligne 1989, §5,6.
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10 An intrinsic characterization of tannakian categories

We show that a tensorial category over a field of characteristic zero is tannakian, i.e.,
admits a fibre functor, if its objects have categorical dimension an integer ≥ 0.

Theorem 10.1 (Deligne 1990, 7.1) Let 𝖳 be an essentially small tensorial category over
a field 𝑘 of characteristic zero. The following conditions are equivalent:
(a) 𝖳 is tannakian, i.e., there exists a fibre functor with values in a nonzero ring;
(b) for all 𝑋 in 𝖳, dim𝑋 is an integer ≥ 0;
(c) for all 𝑋 in 𝖳, there exists an integer 𝑛 ≥ 0 such that

⋀𝑛 𝑋 = 0.

The proof will occupy the rest of this section. Throughout, 𝖳 is a tensorial category
over a field 𝑘 of characteristic 0.

The decomposition of 𝑋⊗𝑛 under the action of the symmetric group

Let 𝑋 ∈ ob𝖳. There is a natural action of the symmetric group 𝑆𝑛 on 𝑋⊗𝑛. The 𝑛th
exterior power

⋀𝑛 𝑋 of 𝑋 is defined to be the image of the antisymmetrization map

𝑎 def=
∑

𝜎∈𝑆𝑛

sgn(𝜎)𝜎∶ 𝑋⊗𝑛 → 𝑋⊗𝑛.

As char 𝑘 = 0, it is also the image of the projector 𝑎∕𝑛!, and so

dim(
⋀𝑛 𝑋) = Tr(𝑎∕𝑛!) = Tr(𝑎)∕𝑛!. (43)

Proposition 10.2 We have

dim(
⋀𝑛

𝑋) =
(dim𝑋

𝑛
)
def=

(dim𝑋)(dim𝑋 − 1)⋯ dim(𝑋 − 𝑛 + 1)
𝑛 ⋅ 𝑛 − 1 ⋅ ⋯ ⋅ 1 .

Proof Let 𝜎 be a cyclic permutation of order 𝑛. It follows from (31), p. 27, applied to
𝑋𝑖 = 𝑋 and 𝑢𝑖 = id𝑋 , that

Tr(𝜎 ∣ 𝑋⊗𝑛) = dim(𝑋).

If 𝜎 has 𝑟(𝜎) cycles (including cycles of length 1), then

Tr(𝜎 ∣ 𝑋⊗𝑛) = dim(𝑋)𝑟(𝜎).

It follows from (43) that there exists a universal polynomial 𝑃 ∈ ℚ[𝑇] such that
dim

⋀𝑛 𝑋 = 𝑃(dim𝑋). Taking 𝖳 to be 𝖵𝖾𝖼𝖿(𝑘), we find that, for all 𝑑 ∈ ℕ,

𝑃(𝑑) =
(𝑑
𝑛
)
def= 𝑑!

(𝑑 − 𝑛)!𝑛!
.

We deduce that 𝑃(𝑇) =
(𝑇
𝑛

)
, and the statement follows. 2

10.3 For each partition 𝜆 of 𝑛, let 𝑡𝜆 be the canonical Young tableau of shape 𝜆 (so the
boxes are numbered 1, 2,… , 𝑛, starting at the left of first row, filling the first row, and
then continuing to the next row . . . ), and let 𝑐𝜆 ∈ ℚ[𝑆𝑛] be the corresponding Young
symmetrizer (Fulton and Harris 1991, §4.1). Then 𝑆𝜆

def= ℚ[𝑆𝑛]𝑐𝜆 is an absolutely simple
representation of 𝑆𝑛 overℚ, and the 𝑆𝜆 as 𝜆 runs over the partitions of 𝑛 form a complete
system of simple representations of 𝑆𝑛.
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The dimension of 𝑆𝜆 is the number of standard Young tableau of shape 𝜆. The hook
length formula (ibid., Exercise 6.4) says that

dim 𝑆𝜆 =
∏

𝜅

𝑛 + 𝑐(𝜅)
ℎ(𝜅)

, (44)

where the product is taken over all boxes 𝜅 of the Young diagram corresponding to 𝑡𝜆
and 𝑐(𝜅) denotes the content of 𝜅 (the number of boxes to the left of 𝜅minus the number
above 𝜅) and ℎ(𝜅) denotes the hook length of 𝜅 (the number of boxes directly below
or directly to the right of the box, with the box itself counted once). For example, if
𝜆 = (𝑛, 0,… , 0), then 𝑆𝜆 = Sym𝑛(𝑉), and

dim 𝑆𝜆 =
(2𝑛
𝑛
)
.

Let 𝑒𝜆 =
dim 𝑆𝜆
𝑛!

𝑐𝜆. Then the 𝑒𝜆 form a complete set of orthogonal primitive idempo-
tents for ℚ[𝑆𝑛].

10.4 Let 𝑋 ∈ ob𝖳. The action of 𝑆𝑛 on 𝑋⊗𝑛 extends to an action of the group algebra
𝑘[𝑆𝑛], to which we can apply the results of the last paragraph. Each idempotent of 𝑘[𝑆𝑛]
defines a direct summand of 𝑋⊗𝑛, and we have

𝑋⊗𝑛 =
⨁

𝜆
𝑋𝜆, 𝑋𝜆

def= 𝑒𝜆𝑋⊗𝑛, 𝜆 a partition of 𝑛.

For example, the idempotent attached to the partition (𝑛) is
∑

𝜎∈𝑆𝑛
𝜎∕𝑛!, and the cor-

responding direct summand is Sym𝑛(𝑋). The idempotent attached to the partition
(1, 1,… , 1) is

∑
𝜎∈𝑆𝑛

sgn(𝜎)𝜎∕𝑛!, and the corresponding direct summand is
⋀𝑛 𝑋.

10.5 The argument in the proof of Proposition 10.2 shows that there exists a universal
polynomial 𝑃𝜆 in ℤ[𝑇] such that dim𝑋𝜆 = 𝑃𝜆(dim𝑋). Now (44) shows that, for 𝑇 an
integer > 0, hence always, we have

𝑃𝜆(𝑇) =
∏

𝜅

𝑇 + 𝑐(𝜅)
ℎ(𝜅)

.

Thus,

dim𝑋𝜆 =
∏

𝜅

dim𝑋 + 𝑐(𝜅)
ℎ(𝜅)

, (45)

For example,

dimSym𝑛 𝑋 = (dim𝑋 + 𝑛 − 1
𝑛 ) .

It follows that, if dim𝑋 is an integer, and is≥ 0 (resp.≤ 0), then dim𝑋𝜆 = 0whenever the
number of rows (resp. the number of columns) in the Young diagram exceeds | dim𝑋|.

Variant 10.6 Equivalently, we could define

𝑋𝜆 = (𝑆𝜆 ⊗𝑋⊗𝑛)𝑆𝑛

(it makes sense to tensor an object of a 𝑘-linear categorywith a 𝑘 (orℚ) vector space). The
image of the idempotent 1

𝑛!

∑
𝜎 is invariant, and the argument in the proof of Proposition

10.2 gives

dim𝑋𝜆 =
1
𝑛!
∑

𝑆𝑛

𝜒𝜆(𝜎)(dim𝜒𝜆)𝑟(𝜎),

where 𝜒𝜆 is the character of 𝑆𝜆 and 𝑟(𝜎) is the number of cycles in 𝜎.
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Linear algebra in a tensorial category

The next proposition says that exact sequences in 𝖳 split locally for the fpqc topology.

Proposition 10.7 (Deligne 1990, 7.14) Let

0→ 𝑁
𝑖
,→ 𝐸 ,→ 𝑀 → 0

be an exact sequence in 𝖳. There exists a ring 𝑃 in Ind𝖳 such that

0→ 𝑁 ⊗ 𝑃 → 𝐸 ⊗ 𝑃 → 𝑀 ⊗ 𝑃 → 0

splits as a sequence of 𝑃-modules.

Proof Suppose first that𝑁 = 𝟙. Then 𝑖 is a monomorphism 𝟙→ 𝐸. Let 𝑆𝑛 = Sym𝑛(𝐸),
and let

𝑆𝑛
𝑖𝑛,→ 𝐸⊗𝑛

𝜌𝑛,→ 𝑆𝑛

be the canonical factorization of id𝑆𝑛 . Let 𝑣𝑛 ∶ 𝑆𝑛 → 𝑆𝑛+1 be the composite of the
morphisms

𝑆𝑛
𝑖𝑛,→ 𝐸⊗𝑛 ≃ 𝐸⊗𝑛 ⊗ 𝐼

id⊗𝑖
,→ 𝐸⊗𝑛+1

𝜌𝑛+1,→ 𝑆𝑛+1,

and let 𝑃 = lim,,→𝑛
(𝑆𝑛, 𝑣𝑛). Then 𝑣𝑛 is a monomorphism with cokernel Sym𝑛+1(𝑀). In

particular, 𝑃 ≠ 0.
The next diagram defines a ring structure on 𝑃,

𝐸⊗𝑚 ⊗𝐸⊗𝑛

𝑆𝑚 ⊗ 𝑆𝑛 𝑆𝑚+𝑛

𝐸⊗𝑚+1 ⊗𝐸⊗𝑛+1

𝑆𝑚+1 ⊗ 𝑆𝑛+1 𝑆𝑚+𝑛+2.

←

→
𝜌𝑚+𝑛←

→ (id⊗𝑖)⊗(id⊗𝑖)

← →

←

→𝑖𝑚⊗𝑖𝑛

←

→

𝑣𝑚⊗𝑣𝑛

←

→

𝑣𝑚+𝑛+1◦𝑣𝑚+𝑛

←

→
𝜌𝑚+1⊗𝜌𝑛+1

← →

← →𝑖𝑚+1⊗𝑖𝑛+1

Consider the diagram

𝐸⊗𝑛 ⊗ 𝐼 𝐸⊗𝑚 ⊗𝐸 𝐸⊗𝑛+1

𝑆𝑛 𝑆𝑛 ⊗𝐸 𝑆𝑛+1,

← →
id𝐸⊗𝑛 ⊗𝑖 ⇐ ⇐

←→ 𝜌𝑛+1← →𝑖𝑛

← →
id𝑆𝑛 ⊗𝑖

← →𝑖𝑛⊗id

← →
𝑢𝑛

where 𝑢𝑛 is defined to make the right-hand square commute. From the diagram, we see
that

𝑢𝑛◦(id𝑆𝑛 ⊗𝑖) = 𝑣𝑛.

On passing to the limit, we obtain a morphism 𝑢∶ 𝑃 ⊗ 𝐸 → 𝐸 such that

𝑢◦(id𝑃⊗𝑣) = id𝑃 .
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Moreover, 𝑢 is a 𝑃-module homomorphism because the diagram

𝑆𝑚 ⊗ 𝑆𝑛 ⊗𝐸 𝑆𝑚 ⊗ 𝑆𝑛+1

𝑆𝑚+𝑛 ⊗𝐸 𝑆𝑚+𝑛+1

←→
𝑢𝑛

←→ ←→

← →
𝑢𝑚+𝑛

is obviously commutative as it does not involve 𝑖. This completes the proof of the lemma
in the case 𝑁 = 𝟙.

Now consider an arbitrary 𝑁. In the next diagram, the bottom row is the pushout of
the top row by ev ◦𝛾𝑁,𝑁∨ ,

0 𝑁 ⊗𝑁∨ 𝐸 ⊗𝑁∨ 𝑀 ⊗𝑁∨ 0

0 𝟙 𝐸′ 𝑀′ 0.

←→ ←→
𝑖⊗id𝑁∨

←→ ev ◦𝛾𝑁,𝑁∨

←→

←→ ℎ

←→

←→

← → ← →𝑖′ ← → ← →

The top row is exact because internal Homs are exact in 𝖳. The first part of the proof
gives us a morphism 𝑢′∶ 𝐸′ → 𝟙 such that 𝑢′◦ℎ◦(𝑖 ⊗ id𝑁∨) = ev𝑁 ◦𝛾𝑁,𝑁∨ . Consider the
morphism

𝑢∶ 𝐸 → 𝑁, 𝑢=(id𝑁⊗𝑢′◦ℎ)(𝛾𝐸,𝑁 ⊗ id𝑁∨)(id𝐸⊗𝛿𝑁).

Then

𝑢◦𝑖 = (id𝑁⊗𝑢′◦ℎ)(𝛾𝐸,𝑁 ⊗ id𝑁∨)(id𝐸⊗𝛿𝑁)◦𝑖
= (id𝑁⊗𝑢′◦ℎ)(𝛾𝐸,𝑁 ⊗ id𝑁∨)(𝑖 ⊗ id𝑁⊗𝑁∨)(id𝑁⊗𝛿𝑁)
= (id𝑁⊗𝑢′◦ℎ)(id𝑁⊗𝑖 ⊗ id𝑁∨)(𝛾𝑁,𝑁 ⊗ id𝑁∨)(id𝑁⊗𝛾𝑁)
= (id𝑁⊗ ev𝑁 𝛾𝑁,𝑁∨)(𝛾𝑁,𝑁 ⊗ id𝑁∨)(id𝑁⊗𝛿𝑁)
= (id𝑁⊗ ev𝑁)(id𝑁⊗𝛿𝑁)
= id𝑁 ,

where in the third and fifth equations, we used the naturality of 𝛾. This completes the
proof. 2

Corollary 10.8 Let 𝐹∶ 𝖢 → 𝖣 be a 𝑘-linear tensor functor of tensorial categories over a
field 𝑘 of characteristic 0. If 𝐹 is faithful, then it is exact.

Proof Extend 𝐹 to a functor Ind𝖢 → Ind𝖣, again denoted 𝐹 – it is again a faithful
𝑘-linear tensor functor. Let (𝑁)∶ 0→ 𝑁 → 𝐸 → 𝑀 → 0 be an exact sequence in 𝖢, and
let 𝑃 be as in 10.7. Then (𝑁)⊗ 𝑃 is split-exact, and so 𝐹((𝑁))⊗ 𝑃) ≃ 𝐹((𝑁))⊗𝐹(𝑃) is
exact (because Ind𝐹 is additive). Therefore 𝐹((𝑁)) is exact (9.7, 9.8). 2

Corollary 10.9 Let 𝖳 be a tensorial category over a field 𝑘 of characteristic 0, let 𝑅 be a
𝑘-algebra, and let 𝐹∶ 𝖳 → 𝖬𝗈𝖽𝖿(𝑅) be a 𝑘-linear tensor functor. If 𝐹 is faithful, then it is
exact.

Proof Extend 𝐹 to a functor Ind𝖳 → 𝖬𝗈𝖽(𝑅), again denoted 𝐹 – it is again a faithful
𝑘-linear tensor functor. Let (𝑁)∶ 0→ 𝑁 → 𝐸 → 𝑀 → 0 be an exact sequence in 𝖳, and
let 𝑃 be as in 10.7. Then 𝐹(𝐸) is a finitely generated projective 𝑅-module, and 𝐹(𝑃) =
lim,,→ Sym𝑛(𝐹(𝐸)). In particular, 𝐹(𝑃) is a faithfully flat 𝑅-algebra. As (𝑁)⊗𝑃 is split-exact,
the sequence 𝐹((𝑁)⊗ 𝑃) is exact (𝐹 is additive). But 𝐹((𝑁)⊗ 𝑃) ≃ 𝐹((𝑁))⊗𝐹(𝑃), and
so 𝐹((𝑁)) is exact. 2
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Proof of Theorem 10.1

It is obvious that (a) of Theorem 10.1 implies (b). We next show that (c) implies (b).
If
⋀𝑛 𝑋 = 0, then dim

⋀𝑛 𝑋 = 0, and 10.2 shows that dim𝑋 = 0, 1, . . . or 𝑛 − 1; in
particular, it is an integer ≥ 0. It remains to show that (b) ⇐⇒ (a), (c).

For the remainder of this section we assume that 𝖳 satisfies (b) of Theorem 10.1, i.e., for
all 𝑋 in 𝖳, dim𝑋 is an integer ≥ 0.

Lemma 10.10 Let 𝑋 ∈ ob𝖳. If dim𝑋 = 0, then 𝑋 = 0.

Proof If 𝑋 ≠ 0, then id𝑋 ≠ 0 and the map 𝛿𝑋 ∶ 𝟙 → 𝑋 ⊗ 𝑋∨ is not the zero map.
Because 𝟙 is simple (see 6.3), it is a monomorphism. Now

0 ≤ dim(Coker(𝛿𝑋))
6.6
= dim(𝑋 ⊗ 𝑋∨) − 1

5.3
= (dim𝑋)(dim𝑋∨) − 1,

and so dim𝑋 ≠ 0 ≠ dim𝑋∨. 2

10.11 From Lemma 10.10, we see that 𝑋𝜆 = 0 for all 𝜆 of length > dim𝑋. Let 𝑋
be an object of 𝖳 of dimension 𝑛 > 0. Let GL𝑛(𝑘) act on 𝑉 = 𝑘𝑛 according to the

standard representation. Every simple GL𝑛(𝑘)-module has the form 𝑉𝜆 ⊗
(
𝑉∨
(1,…,1)

)⊗𝑚

for a partition 𝜆 of length at most 𝑛 and an𝑚 ∈ ℕ. Then

𝑉𝜆 ⊗
(
𝑉(1,…,1)

)∨⊗𝑚
⇝ 𝑋𝜆 ⊗

(
𝑋∨
(1,…,1)

)⊗𝑚
∶ 𝖱𝖾𝗉𝖿(GL𝑛)→ 𝖳

is an exact tensor functor sending the standard representation to 𝑋.

Lemma 10.12 Let 𝐴 be a commutative ring in Ind𝖳 and let𝑀 be an 𝐴-module that is a
direct summand (as an 𝐴-module) of 𝐴⊗𝑋 for some 𝑋 ∈ ob𝖳.
(a) If dim𝐴𝑀 = 0, then𝑀 = 0.
(b) If dim𝐴𝑀 > 0, then there exists an algebra 𝑃, faithfully flat over 𝐴, such that

𝑀 ⊗𝐴 𝑃 = 𝑃 ⊕𝑁 as 𝑃-modules.
(c) If dim𝐴𝑀 = 𝑑 > 0, then there exists a faithfully flat extension 𝐵 of 𝐴 such that

𝑀 ⊗𝐴 𝐵 ≈ 𝐵⊕𝑑.

Proof (a) Let 𝑛 = dim𝑋 and 𝐴⊗𝑋 = 𝑀 ⊕𝑁. Then
⋀𝑛+1

𝐴
(𝐴⊗𝑋) = 𝐴⊗

⋀𝑛+1
𝑋 = 0.

On the other hand, as
⋀𝑚

(𝑈 ⊕𝑉) ≃
⨁

𝑝+𝑞=𝑚

⋀𝑝
𝑈 ⊗

⋀𝑞
𝑈,

we see that𝑀 ⊗𝐴
⋀𝑛

𝐴𝑁 is a direct summand of
⋀𝑛+1

𝐴 (𝐴⊗𝑋); hence is zero. As

dim𝐴(𝑁) = dim𝐴(𝐴⊗𝑋) = dim𝑋 = 𝑑,

we have dim𝐴(
⋀𝑛

𝐴𝑁) = 1. Let 𝑄 =
⋀𝑛

𝐴𝑁. Then 𝐴 is a direct summand of 𝑄 ⊗𝐴 𝑄∨

because the dimension of 𝑄 over 𝐴 is 1. Consequently,

𝑀 ⊗𝐴 𝑄⊗𝐴 𝑄∨ = 0 ⇐⇒ 𝑀 = 0.
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(b) We can now argue as in 10.11 to obtain an exact faithful functor from 𝖱𝖾𝗉𝖿(GL𝑛)
to𝖬𝗈𝖽(𝐴) sending 𝑉 to 𝐴⊗𝑋. Let 𝑒1,… , 𝑒𝑛 be a basis for 𝑉 and 𝑓1,…𝑓𝑛 the dual basis
for 𝑉∨. The group GL𝑛 acts on the polynomial algebra 𝑘[𝑒𝑖, 𝑓𝑗], which can therefore be
viewed as an algebra in Ind(𝖱𝖾𝗉𝖿(GL𝑛)). The relation

∑
𝑒𝑖𝑓𝑖 = 1 is invariant under the

action of GL𝑛, and hence the quotient algebra

𝐶 =
𝑘[𝑒𝑖, 𝑓𝑖]

(
∑
𝑒𝑖𝑓𝑖 − 1)

is also an algebra in 𝖱𝖾𝗉𝖿(GL𝑛).
The image of 𝑃 of 𝐶 under the above functor is the required algebra in 𝖬𝗈𝖽(𝐴).

Indeed, as 𝑀 is a direct summand of 𝐴 ⊗ 𝑋, which is flat over 𝐴, 𝑀 is flat over 𝐴.
Therefore 𝑃 is also flat over 𝐴, and it is faithfully flat because it contains 𝐴 as a direct
summand (as 𝐶 contains 𝑘 as a direct summand). Finally, there exists a decomposition
𝑉 ⊗ 𝐶 = 𝐶 ⊕ 𝑄 in 𝖱𝖾𝗉𝖿(GL𝑑(𝑘)): the projection 𝑉 ⊗ 𝐶 → 𝐶 is 𝑣 ⊗ 𝑝 ↦ 𝑣 ⋅ 𝑝 and the
embedding 𝐶 → 𝑉 ⊗ 𝐶 is 𝑝 ↦

∑
𝑒𝑖 ⊗ 𝑓𝑖(𝑝), 𝑝 ∈ 𝐶.

(c) Applying (b) 𝑑 times, we get a faithfully flat 𝐴-algebra 𝐵 such that𝑀 ⊗𝐴 𝐵 ≈
𝐵⊕𝑑 ⊕𝑁 with dim𝐵𝑁 = 0. 2

Lemma 10.13 Let 𝐴 be a commutative ring in Ind𝖳 and 𝑀 an 𝐴-module such that
dim𝐴𝑀 = 𝑑 > 0. If𝑀 is a direct summand (as 𝐴-modules) of 𝐴⊗𝑋 for some 𝑋 ∈ ob𝖳,
then there exists a faithful extension 𝐵 of 𝐴 such that𝑀 ⊗𝐴 𝐵 ≃ 𝐵⊗𝑑.

Proof Applying (b) 𝑑 times, we get a faithfully flat 𝐴-algebra 𝐵 such that𝑀 ⊗𝐴 𝐵 ≈
𝐵⊕𝑑 ⊕𝑁 with dim𝐵𝑁 = 0. 2

We now prove the theorem. For each object 𝑋 of 𝖢, we have constructed a commuta-
tive ring𝐴𝑋 such that𝐴𝑋⊗𝑋 ≈ 𝐴⊕ dim𝑋

𝑋 as𝐴𝑋-modules (10.10, 10.13). Define an order
on the isomorphism classes of objects of 𝖢 by [𝑋] ≤ [𝑌] if and only if ⟨𝑋⟩ = ⟨𝑌⟩, and
apply transfinite induction to obtain an algebra 𝐴 in Ind𝖳 such that
(a) for all 𝑋 in 𝖳, 𝐴⊗𝑋 ≈ 𝐴⊕ dim𝑋 ;
(b) for all exact sequences 0 → 𝑀 → 𝑁 → 𝑃 → 0 in 𝖳, the sequence of 𝐴-modules

0→ 𝑀 ⊗𝐴 → 𝑁 ⊗𝐴 → 𝑃 ⊗ 𝐴 → 0 is split exact.
Now

𝑋 ⇝ Hom𝐴(𝐴,𝑋 ⊗ 𝐴)∶ 𝖳 → 𝖬𝗈𝖽(𝑅), 𝑅 def= End𝐴(𝐴),

is a fibre functor.

Question 10.14 Let 𝖳 be a tensorial over a field 𝑘 of characteristic zero. Assume that,
for all 𝑋 in 𝖳, dim𝑋 is an integer ≥ 0. We then showed that there exists a fibre functor
on 𝖳. If 𝖳 is algebraic, i.e., 𝖳 = ⟨𝑋⟩⊗ for some 𝑋 in 𝖳, is it possible to show that there
exists a fibre functor on 𝖳 with values in a finite extension of 𝑘?

Remark 10.15 Corollaries 10.8 and 10.9 also hold for tensorial categories over fields
𝑘 of nonzero characteristic. In the above, characteristic zero is only used to get the
factorization of the identity map on Sym𝑛(𝐸) in the proof of Proposition 10.7. This
proposition can be replaced by the following statement: a sequence

0→ 𝑋 → 𝑌 → 𝑍 → 0

is exact if and only the sequence

0→ 𝑋 ⊗ 𝐼 → 𝑌 ⊗ 𝐼 → 𝑍 ⊗ 𝐼 → 0
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is split exact for an arbitrary nonzero injective 𝐼 ∈ ob(Ind𝖳) (Coulembier et al. 2023,
2.4.2).

Remark 10.16 When 𝑘 has nonzero characteristic, condition (c) of Theorem 10.1 no
longer implies that the category is tannakian – one needs an additional hypothesis
(Coulembier 2020, Theorem B).

Aside 10.17 For an analogue of Theorem 10.1 in super mathematics (i.e., ℤ∕2ℤ-graded mathe-
matics), see Deligne 2002.

Notes The exposition in this section follows Deligne 1990, §7, and Hái 2002.





Chapter II

Neutral tannakian categories

Throughout this chapter, 𝑘 is a field except when stated otherwise. Unadorned tensor
products are over 𝑘.

1 Affine group schemes

We review the basic theory of affine group schemes and their representations. For more
details, see, for example, Milne 2017 or Waterhouse 1979. After 1.10, all bialgebras and
Hopf algebras are commutative.

Affine monoid schemes and bialgebras

1.1 Let𝐺 = Spec𝐴 be an affine scheme over 𝑘, and𝑚∶ 𝐺×𝐺 → 𝐺 and 𝑒∶ Spec 𝑘 → 𝐺
morphisms. The triple (𝐺,𝑚, 𝑒) is an affinemonoid scheme over 𝑘 if (𝐺(𝑅), 𝑚(𝑅), 𝑒(𝑅))
is a monoid for all 𝑘-algebras 𝑅. This condition can be expressed in terms of diagrams:
the associativity condition requires that the two composed morphisms

𝐺 × 𝐺 × 𝐺 𝐺 × 𝐺 𝐺

←→
𝑚×id𝐺←→
id𝐺 ×𝑚

←→𝑚 (46)

are equal and the condition that 𝑒(𝑅) is a neutral element requires that the twomorphisms

𝐺 ≃ 𝐺 × Spec 𝑘
id𝐺 ×𝑒,,,,,→ 𝐺 × 𝐺

𝑚
,→ 𝐺

𝐺 ≃ Spec 𝑘 × 𝐺
𝑒×id𝐺,,,,,→ 𝐺 × 𝐺

𝑚
,→ 𝐺

(47)

equal id𝐺 .

1.2 An algebra over 𝑘 (associative with 1) is a 𝑘-vector space 𝑉 together with 𝑘-linear
maps𝑚∶ 𝐴⊗𝐴 → 𝐴 and 𝑒∶ 𝑘 → 𝐴 such that the two composed maps

𝐴⊗𝐴⊗𝐴 𝐴⊗𝐴 𝐴

←→
𝑚⊗id𝐴←→
id𝐴⊗𝑚

←→𝑚 (48)

are equal and the two maps

𝐴 ≃ 𝑘 ⊗ 𝐴
𝑒⊗id
,,,,→ 𝐴⊗𝐴

𝑚
,→ 𝐴

𝐴 ≃ 𝐴⊗ 𝑘
id⊗𝑒
,,,,→ 𝐴⊗𝐴

𝑚
,→ 𝐴

(49)

equal id𝐴.

57
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1.3 A coalgebra over 𝑘 (co-associative with co-identity) is a 𝑘-vector space 𝐶 together
with 𝑘-linear maps ∆∶ 𝐶 → 𝐶 ⊗ 𝐶 and 𝜖∶ 𝐶 → 𝑘 such that the two composed maps

𝐶 𝐶 ⊗ 𝐶 𝐶 ⊗ 𝐶 ⊗ 𝐶←→∆

←→∆⊗id

←→
id⊗∆

are equal and the two maps

𝐶
∆
,→ 𝐶 ⊗ 𝐶

𝜖⊗id
,,,,→ 𝑘 ⊗ 𝐶 ≃ 𝐶

𝐶
∆
,→ 𝐶 ⊗ 𝐶

id⊗𝜖
,,,,→ 𝐶 ⊗ 𝑘 ≃ 𝐶

equal id𝐶 .

Thus “algebra” and “coalgebra” are opposite (dual) notions.

1.4 A bialgebra over 𝑘 is a quintuple (𝐴,𝑚, 𝑒,∆, 𝜖) such that
(a) (𝐴,𝑚, 𝑒) is an algebra over 𝑘,
(b) (𝐴,∆, 𝜖) is a coalgebra over 𝑘,
(c) ∆ and 𝜖 are algebra homomorphisms,
(d) 𝑚 and 𝑒 are coalgebra homomorphisms.

In the presence of (a) and (b), the conditions (c) and (d) are equivalent (see, for example,
Milne 2017, 9.40). A bialgebra (𝐴,𝑚, 𝑒,∆, 𝜖) is said to be commutative if the underlying
algebra (𝐴,𝑚, 𝑒) is commutative.

1.5 Let 𝐺 = Spec𝐴 be an affine scheme over 𝑘. Then 𝐴 is a commutative 𝑘-algebra,
and the monoid structures (𝑚, 𝑒) on 𝐺 correspond exactly to the coalgebra structures
(∆, 𝜖) on 𝐴 given by algebra homomorphisms, i.e., to the bialgebra structures on 𝐴.
The functor 𝐴 ⇝ Spec𝐴 defines a contravariant equivalence between the category of
commutative bialgebras over 𝑘 and the category of affine monoid schemes over 𝑘.

1.6 Let (𝐶,∆, 𝜖) and (𝐶′,∆′, 𝜖′) be coalgebras over 𝑘. Then 𝐶 ⊗𝐶′ becomes a coalgebra
over 𝑘 with the comultiplication

𝐶 ⊗ 𝐶′
∆⊗∆′
,,,,,→ (𝐶 ⊗ 𝐶)⊗ (𝐶′ ⊗𝐶′)

𝐶⊗𝛾𝐶,𝐶′⊗𝐶′
,,,,,,,,,,,→ (𝐶 ⊗ 𝐶′)⊗ (𝐶 ⊗ 𝐶′),

where 𝛾𝐶,𝐶′(𝑐 ⊗ 𝑐′) = 𝑐′ ⊗ 𝑐, and co-identity

𝜖 ⊗ 𝜖′∶ 𝐶 ⊗ 𝐶′ → 𝑘 ⊗ 𝑘 ≃ 𝑘.

If 𝐺 and 𝐺′ are affine monoid schemes over 𝑘 with associated coalgebras 𝐶 and 𝐶′, then
𝐺 × 𝐺′ is an affine monoid scheme over 𝑘 with associated coalgebra 𝐶 ⊗ 𝐶′.

Affine group schemes and Hopf algebras

1.7 Let 𝐺 be an affine scheme over 𝑘 and 𝑚∶ 𝐺 × 𝐺 → 𝐺 a 𝑘-morphism. The pair
(𝐺,𝑚) is an affine group scheme over 𝑘 if (𝐺(𝑅), 𝑚(𝑅)) is a group for all 𝑘-algebras 𝑅.
In terms of diagrams, this condition says that there exist morphisms 𝑒∶ Spec 𝑘 → 𝐺 and
inv ∶ 𝐺 → 𝐺 (necessarily unique) such that (𝐺,𝑚, 𝑒) is a monoid scheme over 𝑘 and

𝐺 𝐺 × 𝐺 𝐺

Spec 𝑘 𝐺 Spec 𝑘

← →(inv,id)

←→ ←→𝑚
←→(id,inv)

←→

← →𝑒 ←→𝑒

commutes.
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1.8 Let 𝐴 be a 𝑘-algebra (not necessarily commutative) and ∆∶ 𝐴 → 𝐴⊗𝐴 a homo-
morphism of 𝑘-algebras. The pair (𝐴,∆) is aHopf algebra over 𝑘 if there exist 𝑘-algebra
homomorphisms 𝜖∶ 𝐴 → 𝑘 and 𝑆∶ 𝐴 → 𝐴 (necessarily unique) such that (𝐴,∆, 𝜖) is a
bialgebra over 𝑘, and

(𝑆, id𝐴)◦∆ = 𝜖 = (id𝐴, 𝑆)◦∆.

Such an 𝑆 is called an antipode. Thus a bialgebra over 𝑘 is a Hopf algebra if and only if
there exists an antipode. A Hopf algebra is said to be commutative if the algebra 𝐴 is
commutative.

1.9 Let 𝐺 = Spec𝐴 be an affine scheme over 𝑘. To give the structure of a group scheme
on𝐺 is the same as giving the structure of a commutative Hopf algebra on𝐴. The functor
𝐴 ⇝ Spec𝐴 defines a contravariant equivalence between the category of commutative
Hopf algebras over 𝑘 and the category of affine group schemes over 𝑘.

1.10 We say that an affine group scheme 𝐺 = Spec𝐴 is algebraic, and that 𝐺 is an
algebraic group, if 𝐴 is finitely generated as a 𝑘-algebra. Thus “algebraic group over 𝑘”
means “affine group scheme of finite type over 𝑘”.

Henceforth, all bialgebras and Hopf algebras are commutative.

Representations

1.11 Let 𝐺 be an affine group (or monoid) scheme over 𝑘. A representation of 𝐺 on a
𝑘-vector space 𝑉 is a homomorphism

𝐺(𝑅)→ Aut𝑅-linear(𝑉(𝑅))

natural in𝑅. In otherwords, it is a family of homomorphisms𝐺(𝑅)→ GL(𝑉(𝑅)), indexed
by the 𝑘-algebras 𝑅, compatible with extension of scalars. When 𝑉 is finite-dimensional,
this is the same as a homomorphism 𝐺 → GL𝑉 of affine group (or monoid) schemes
over 𝑘. We let 𝖱𝖾𝗉𝖿(𝐺) denote the category of representations of 𝐺 on finite-dimensional
𝑘-vector spaces.

1.12 A (right) comodule over a 𝑘-coalgebra 𝐶 is a vector space 𝑉 over 𝑘 together with
a 𝑘-linear map 𝜌∶ 𝑉 → 𝑉 ⊗𝑘 𝐶 such that the two composed maps

𝑉 𝑉 ⊗ 𝐶 𝑉 ⊗ 𝐶 ⊗ 𝐶←→
𝜌 ←→

id𝑉 ⊗∆←→
𝜌⊗id𝐶

are equal and

𝑉 𝑉 ⊗ 𝐶 𝑉 ⊗ 𝑘 ≃ 𝑉←→
𝜌 ←→

id𝑉 ⊗𝜖

equals id𝑉 . For example, ∆ defines an 𝐶-comodule structure on 𝐶.

Proposition 1.13 Let 𝐺 = Spec𝐴 be an affine group (or monoid) scheme and 𝑉 a
𝑘-vector space. To give an 𝐴-comodule structure on 𝑉 is the same as giving a linear repre-
sentation of 𝐺 on 𝑉.

Proof A representation 𝑟 of 𝐺 on 𝑉 is determined by its action on the “universal”
element

id𝐺 ∈ Hom(𝐺,𝐺) = 𝐺(𝐴).
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Now 𝑟(id𝐺) is an𝐴-isomorphism𝑉⊗𝐴 → 𝑉⊗𝐴whose restriction to𝑉 = 𝑉⊗𝑘 ⊂ 𝑉⊗𝐴
determines it and is an 𝐴-comodule structure 𝜌 on 𝑉. Conversely, a comodule structure
𝜌 on 𝑉 determines a representation of 𝐺 on 𝑉 such that, for every 𝑘-algebra 𝑅 and
𝑔 ∈ 𝐺(𝑅) def= Hom𝑘(𝐴, 𝑅), the restriction of 𝑔𝑉 ∶ 𝑉 ⊗ 𝑅 → 𝑉 ⊗ 𝑅 to 𝑉 ⊗ 𝑘 ⊂ 𝑉 ⊗ 𝑅 is

(id𝑉⊗𝑔)◦𝜌∶ 𝑉 → 𝑉 ⊗𝐴 → 𝑉 ⊗ 𝑅.

For more details, see Milne 2017, 4.1. 2

Let 𝐺 = Spec𝐴. The representation of 𝐺 on 𝐴 defined by the 𝐴-comodule structure
∆∶ 𝐴 → 𝐴⊗𝐴 is called the regular representation of 𝐺.

Proposition 1.14 Let 𝐶 be a 𝑘-coalgebra and (𝑉, 𝜌) a comodule over 𝐶. Every finite
subset 𝑆 of 𝑉 is contained in a sub-comodule of 𝑉 having finite dimension over 𝑘.

Proof Let {𝑐𝑖} be a basis for 𝐶 over 𝑘 (possibly infinite). For each 𝑣 in 𝑆, write 𝜌(𝑣) =∑
𝑣𝑖 ⊗ 𝑐𝑖 (finite sum). The 𝑘-subspace spanned by the 𝑣 and the 𝑣𝑖 occurring in such a

sum is a sub-comodule over 𝐶 containing 𝑆 (see, for example, Milne 2017, 4.7). 2

Corollary 1.15 Every𝐶-comodule is a filteredunion of finite-dimensional sub-comodules.

Proof Let 𝐶 be a 𝑘-coalgebra, and 𝑉 a 𝐶-comodule. The set of all sub-comodules of 𝑉
finite-dimensional over 𝑘 is ordered by inclusion, filtered (any two are contained in a
third), and has union 𝑉 (by the proposition). 2

Corollary 1.16 Every representation of an affine group scheme (or monoid scheme) on
a vector space is a filtered union of finite-dimensional subrepresentations.

Proof According to Proposition 1.13, this is a restatment of Corollary 1.15. 2

Proposition 1.17 An affine group scheme 𝐺 is algebraic if and only if it has a faithful
finite-dimensional representation over 𝑘.

Proof Let 𝑟∶ 𝐺 → GL𝑉 be a faithful representation of 𝐺. Then Ker(𝑟) = 1, and so 𝑟 is
a closed immersion (e.g., Milne 2017, 3.35). In particular, 𝐺 is a closed subscheme of a
scheme of finite type over 𝑘, and so is of finite type over 𝑘.

For the converse, let 𝐺 = Spec𝐴 with 𝐴 a finitely generated 𝑘-algebra, and let (∆, 𝜖)
be the corresponding 𝑘-coalgebra structure on 𝐴. A sub-comodule 𝑉 of 𝐴 provides a
faithful representation of 𝐺 if it contains a set of generators for the 𝑘-algebra 𝐴 (e.g.,
Milne 2017, proof of 4.9). According to 1.14, we can choose 𝑉 to be finite-dimensional
over 𝑘. 2

Proposition 1.18 Let 𝐶 be a coalgebra over 𝑘. Every finite subset of 𝐶 is contained in a
finite-dimensional 𝑘-subcoalgebra.

Proof According to 1.14, the finite subset is contained in a finite-dimensional 𝑘-
subspace 𝑉 of 𝐴 such that ∆(𝑉) ⊂ 𝑉 ⊗𝑘 𝐶. Let {𝑣𝑗} be a basis for 𝑉, and let ∆(𝑣𝑗) =∑
𝑣𝑖 ⊗ 𝑎𝑖𝑗 (finite sum). Then ∆(𝑎𝑖𝑗) =

∑
𝑎𝑖𝑙𝑎𝑙𝑗, and so the 𝑘-subspace 𝑉′ spanned by

the 𝑣𝑖 and 𝑎𝑖𝑗 satisfies ∆(𝑉′) ⊂ 𝑉′ ⊗𝑘 𝑉′. Now 𝑉′ is the required 𝑘-coalgebra. 2

Proposition 1.19 Let 𝐴 be a Hopf algebra over 𝑘. Every finite subset of 𝐴 is contained in
a Hopf subalgebra that is finitely generated as a 𝑘-algebra.
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Proof According to 1.18, the finite subset is contained in a finite-dimensional 𝑘-
subspace 𝐶 of𝐴 such that ∆(𝐶) ⊂ 𝐶⊗𝑘 𝐶. If ∆𝑎 =

∑
𝑏𝑖⊗𝑐𝑖, then ∆(𝑆𝑎) =

∑
𝑆𝑏𝑖⊗𝑆𝑐𝑖,

and so the 𝑘-subspace 𝑉 spanned by 𝐶 and 𝑆𝐶 satisfies ∆(𝑉) ⊂ 𝑉 ⊗𝑘 𝑉 and 𝑆(𝑉) ⊂ 𝑉.
We can take 𝐴 to be the 𝑘-algebra generated by 𝑉. 2

Corollary 1.20 Let 𝐺 be an affine group scheme over 𝑘. Then 𝐺 is a filtered projective
limit 𝐺 = lim←,,𝐺𝑖 of affine algebraic groups over 𝑘 in which the transition maps 𝐺𝑗 → 𝐺𝑖,
𝑖 ≤ 𝑗, are faithfully flat.

Proof Let 𝐴 be a the Hopf algebra over 𝐺. According to the proposition, 𝐴 is a filtered
union 𝐴 =

⋃
𝐴𝑖 of Hopf subalgebras 𝐴𝑖 that are finitely generated as 𝑘-algebras. The

functor Spec transforms the inductive limit 𝐴 = lim,,→𝐴𝑖 into an projective limit 𝐺 =
lim←,,𝐺𝑖. As Hopf algebras are always faithfully flat over Hopf subalgebras (Waterhouse1979, 14.1), 𝐴𝑗 is faithfully flat over 𝐴𝑖, and the transition map 𝐺𝑗 → 𝐺𝑖 is faithfully
flat. 2

More precisely, if 𝐺 is an affine group scheme over 𝑘, then 𝐺 = lim←,,𝐺∕𝑁, where 𝑁
runs over the set of normal affine subgroup schemes of 𝐺 such that 𝐺∕𝑁 is algebraic.
Projective limits of affine group schemes are again affine group schemes. See Demazure
and Gabriel 1970, III, §3, no 7.

Proposition 1.21 Let𝐺 be analgebraic group over𝑘 and (𝑉, 𝑟)a faithful finite-dimensional
representation of 𝐺. Every finite-dimensional representation of 𝐺 can be constructed from
𝑉 by forming tensor products, direct sums, duals, and subquotients.

Proof See, for example, Milne 2017, 4.14. 2

In other words, (𝑉, 𝑟) is a tensor generator (6.12) for the rigid tensor category 𝖱𝖾𝗉𝖿(𝐺).

Theorem 1.22 (Chevalley) Let 𝐺 be an algebraic group over 𝑘. Every algebraic sub-
group of𝐻 of𝐺 arises as the stabilizer of a one-dimensional subspace in a finite-dimensional
representation of 𝐺.

Proof See, for example, Milne 2017, 4.27. 2

2 Recovering 𝐺 from 𝖱𝖾𝗉𝖿(𝐺)

Let 𝐺 be an affine group scheme over 𝑘. Let 𝑅 be a 𝑘-algebra, and let 𝑔 ∈ 𝐺(𝑅). For
every finite-dimensional representation (𝑉, 𝑟𝑉) of 𝐺 over 𝑘, we have an 𝑅-linear map

𝜆𝑉
def= 𝑟𝑉(𝑔)∶ 𝑉𝑅 → 𝑉𝑅.

These maps satisfy the following conditions:
(a) for all representations 𝑉 and𝑊, 𝜆𝑉⊗𝑊 = 𝜆𝑉 ⊗ 𝜆𝑊 ;

(b) 𝜆𝟙 is the identity map (here 𝟙 = 𝑘 with the trivial action);

(c) for all 𝐺-equivariant maps 𝑢∶ 𝑉 →𝑊, 𝜆𝑊◦𝑢𝑅 = 𝑢𝑅◦𝜆𝑉 .

Theorem 2.1 Let 𝐺 be an affine group scheme over 𝑘, and let 𝑅 be a 𝑘-algebra. Suppose
that, for every finite-dimensional representation (𝑉, 𝑟𝑉) of 𝐺 over 𝑘, we are given an 𝑅-
linear map 𝜆𝑉 ∶ 𝑉𝑅 → 𝑉𝑅. If the family (𝜆𝑉)𝑉 satisfies the conditions (a, b, c), then there
exists a unique 𝑔 ∈ 𝐺(𝑅) such that 𝜆𝑉 = 𝑟𝑉(𝑔) for all 𝑉.
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Proof Let 𝐴(𝐺, 𝑅) denote the set of families 𝜆 = (𝜆𝑉)𝑉 satisfying the conditions (a,b,c).
Suppose first that𝐺 is algebraic, and let (𝑊, 𝑟) be a faithful representation of𝐺. It follows
from Proposition 1.21 that an element (𝜆𝑉)𝑉 of 𝐴(𝐺, 𝑅) is determined by 𝜆𝑊 , and so we
have inclusions

𝐺(𝑅) → 𝐴(𝐺, 𝑅) → GL𝑊(𝑅), 𝑔 ↦ (𝑟𝑉(𝑔))𝑉 ↦ 𝑟𝑊(𝑔).

According to Chevalley’s theorem (1.22), there exists a representation (𝑊, 𝑟𝑊) of 𝐺, and
a line 𝐿 in𝑊 such that 𝐺 is the stabilizer of 𝐿 in GL𝑊 . We may choose (𝑊, 𝑟𝑊) to be
faithful. Let 𝑢∶ 𝐿 →𝑊 be the inclusion map, and let 𝜆 ∈ 𝐴(𝐺, 𝑅). As 𝜆𝑊◦𝑢𝑅 = 𝑢𝑅◦𝜆𝐿,
we see that 𝜆𝑊 stabilizes 𝐿, and so it lies in 𝐺(𝑅), as required.

In the general case, let 𝑉 ∈ 𝖱𝖾𝗉𝖿(𝐺), and let ⟨𝑉⟩⊗ be the strictly full subcategory of
𝖱𝖾𝗉𝖿(𝐺) of objects isomorphic to a subquotient of 𝑃(𝑉,𝑉∨) for some 𝑃 ∈ ℕ[𝑡, 𝑠]. Let 𝐺𝑉
be the image of 𝐺 in GL𝑉 . It is an algebraic quotient of 𝐺 acting faithfully on 𝑉, and so

𝐺𝑉(𝑅) = 𝐴(𝐺𝑉 , 𝑅) → GL𝑉(𝑅).

Define an ordering on the set of isomorphism classes of objects of 𝖱𝖾𝗉𝖿(𝐺) by the rule

[𝑉] ≤ [𝑉′] ⇐⇒ ⟨𝑉⟩⊗ ⊂ ⟨𝑉′⟩⊗.

Note that [𝑉], [𝑉′] ≤ [𝑉 ⊕ 𝑉′], and so the set is filtered. If [𝑉] ≤ [𝑉′], then restriction
gives a commutative diagram

𝐺𝑉′(𝑅) 𝐴(𝐺𝑉′ , 𝑅)

𝐺𝑉(𝑅) 𝐴(𝐺𝑉 , 𝑅)
←→≃

←→ ←→

←→≃

On passing to the projective limit, we obtain bijections

𝐺(𝑅) ≃ lim←,,𝐺𝑉(𝑅) ≃ lim←,,𝐴(𝐺𝑉 , 𝑅) ≃ 𝐴(𝐺, 𝑅).
2

Corollary 2.2 Let 𝐺 be an affine group scheme over 𝑘 and let 𝜔 be the forgetful functor
on 𝖱𝖾𝗉𝖿(𝐺). Then the canonical morphism

𝐺 → 𝒜𝑢𝑡⊗(𝜔)

is an isomorphism of functors.

Proof For any 𝑘-algebra 𝑅,

𝒜𝑢𝑡⊗(𝜔)(𝑅) = ℰ𝑛𝑑⊗(𝜔)(𝑅) def= End(𝜙𝑅◦𝜔)

(see (32), p. 28), but End(𝜙𝑅◦𝜔) = 𝐴(𝐺, 𝑅). 2

Let 𝑓∶ 𝐺 → 𝐻 be a homomorphism of affine group schemes over 𝑘. Using 𝑓, we
can regard an𝐻-module as a 𝐺-module. In this way, we get a tensor functor

𝜔𝑓 ∶ 𝖱𝖾𝗉𝖿(𝐻)→ 𝖱𝖾𝗉𝖿(𝐺) (50)

such that 𝜔𝐺forget◦𝜔
𝑓 = 𝜔𝐻forget. Our next result shows that all such functors arise in this

fashion.
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Corollary 2.3 Let 𝐺 and𝐻 be affine 𝑘-group schemes, and let 𝐹∶ 𝖱𝖾𝗉𝖿(𝐻)→ 𝖱𝖾𝗉𝖿(𝐺)
be a tensor functor such that 𝜔𝐺forget◦𝜔

𝑓 = 𝜔𝐻forget. There exists a unique homomorphism
𝑓∶ 𝐺 → 𝐻 such that 𝐹 = 𝜔𝑓 .

Proof Such an 𝐹 defines a homomorphism (functorial in the 𝑘-algebra 𝑅)

𝐹∗∶ 𝒜𝑢𝑡⊗(𝜔𝐺forget)(𝑅)→ 𝒜𝑢𝑡⊗(𝜔𝐻forget)(𝑅), 𝐹∗(𝜆)𝑉 = 𝜆𝐹(𝑉).

Proposition 2.8 allows us to regard 𝐹∗ as a functorial homomorphism 𝐺(𝑅) → 𝐻(𝑅).
According to the Yoneda lemma this arises from a unique homomorphism 𝑓∶ 𝐺 → 𝐻.
Clearly, the maps 𝐹 ↦ 𝑓 and 𝑓 ↦ 𝜔𝑓 are inverse. 2

Remark 2.4 (a) Theorem 2.1 holds also for affine monoid schemes, but with a slightly
different proof (see Milne 2017, 9.2).

(b) Proposition 2.2 shows that 𝐺 is determined by the triple (𝖱𝖾𝗉𝖿(𝐺), ⊗, 𝜔𝐺). In fact,
the coalgebra of 𝐺 is already determined by (𝖱𝖾𝗉𝖿(𝐺), 𝜔𝐺) (see the proof of Theorem 3.1
below).

Aside 2.5 Corollary 2.2 extends to more general base schemes. Let 𝐺 be a group scheme affine
over a scheme 𝑆. We can form the category of representations of 𝐺 on locally free 𝒪𝑆-modules of
finite rank, and ask whether the canonical homomorphism

𝐺 → 𝒜𝑢𝑡⊗(𝜔forget) (51)

is an isomorphism of functors of 𝑆-schemes.
An obvious necessary condition is that 𝐺 be linear, i.e., that there exist a locally free 𝒪𝑆-

module ℰ of finite rank and an 𝑆-morphism 𝐺 → GLℰ that is both a closed immersion and a
homomorphism. For groups of multiplicative type, there is the following criterion.

When 𝑆 is connected and locally noetherian and 𝐺 is of finite type over 𝑆 and of
multiplicative type, 𝐺 is linear if and only if it is isotrivial, i.e., is split by a finite
étale covering 𝑆′ → 𝑆 of 𝑆 (Grothendieck, SGA 3, XI, 4.6).

This extends to reductive groups as follows.

Assume that 𝑆 is connected and that 𝐺 is reductive. Then 𝐺 is linear if and only if
its radical torus rad(𝐺) is isotrivial (Gille 2022, 1.1).

A group scheme 𝐺 over an arbitrary 𝑆 is said to be reductive if it is smooth and affine over 𝑆 with
reductive geometric fibres. For such a group scheme, rad(𝐺) is the largest central torus of 𝐺.

Let 𝑆 be affine, connected, and noetherian, and let 𝑠 be a geometric point of 𝑆. Let 𝑇 be
a torus over 𝑆, and let 𝑇𝑓 be the quotient of 𝑇 corresponding to the submodule of 𝑋∗(𝑇𝑠)

def=
Hom𝑠(𝑇𝑠,𝔾𝑚) consisting of the elements with finite 𝜋1(𝑆, 𝑠)-orbits. Then 𝑇𝑓 is the universal
isotrivial quotient of 𝑇. There is the following partial answer to the original question.

Let 𝐺 be a reductive group over 𝑆 (affine, connected, and noetherian). Then the
homomorphism (51) induces an isomorphism

𝐺𝑓 ≃ 𝒜𝑢𝑡⊗(𝜔),

where 𝐺𝑓 is the quotient of 𝐺 by the kernel of rad(𝐺)→ rad(𝐺)𝑓 (Zhao 2022, 3.2.3).

For example, (51) is an isomorphism when 𝐺 is a reductive group over a Dedekind domain, and
it need not be an isomorphism when 𝐺 is a torus of dimension 2 over a curve with a node.

Exercise 2.6 Let 𝐺 be an algebraic group over 𝑘, and let 𝜔 be the forgetful functor
𝖱𝖾𝗉𝖿(𝐺) → 𝖵𝖾𝖼𝖿(𝑘). We have seen that 𝐺(𝑘) can be identified with set of natural
automorphisms (𝜆𝑉)𝑉 of 𝜔 such that 𝜆𝑉⊗𝑊 = 𝜆𝑉 ⊗𝜆𝑊 and z 𝜆𝟙 = id. Show that the Lie
algebra of 𝐺 can be identified with the set of natural endomorphisms (𝜆𝑉)𝑉 of 𝜔 such
that 𝜆𝑉⊗𝑊 = 𝜆𝑉 ⊗ id+ id⊗𝜆𝑊 and 𝜆𝟙 = 0.
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3 The main theorem

Recall that a neutral tannakian category over 𝑘 is a 𝑘-linear rigid abelian tensor category
such that there exists an exact 𝑘-linear tensor (fibre) functor 𝜔 to 𝖵𝖾𝖼𝖿(𝑘). Then 𝑘 ≃
End(𝟙) and every fibre functor is faithful.

Statements

Theorem 3.1 Let (𝖢, ⊗) be an essentially small neutral tannakian category over 𝑘 and 𝜔
a 𝑘-valued fibre functor.
(a) The functor Aut⊗(𝜔) of 𝑘-algebras is represented by an affine group scheme 𝐺.
(b) The functor 𝖢 → 𝖱𝖾𝗉𝖿(𝐺) defined by 𝜔 is an equivalence of tensor categories.

Thus every neutral tannakian category is equivalent (in possibly many different
ways) to the category of finite-dimensional representations of an affine group scheme.

The proof will occupy the rest of this section. We first construct the coalgebra 𝐴 of
𝐺 without using the tensor structure on 𝖢 (Theorem 3.15). The tensor structure then
allows us to define an algebra structure on 𝐴, and the rigidity of 𝖢 implies that 𝐴 is a
Hopf algebra (so that 𝐺 is a group scheme rather than a monoid scheme).

Corollary 3.2 A neutral tannakian category (𝖢, ⊗) is algebraic (I, 7.14) if and only if for
one (hence every) 𝑘-valued fibre functor 𝜔, the affine group scheme Aut⊗(𝜔) is algebraic.

Proof If (𝖢, ⊗)has a tensor generator𝑋, then, for any𝑘-valuedfibre functor𝜔,Aut⊗(𝜔)
has a faithful finite-dimensional representation, namely, 𝜔(𝑋), and so it is an algebraic
group (1.17).

Let 𝜔 be a 𝑘-valued fibre functor on 𝖢 such that 𝐺 def= Aut⊗(𝜔) is algebraic. Then
𝐺 has a finite-dimensional faithful representation (1.17), which is a tensor generator
for 𝖱𝖾𝗉𝖿(𝐺) (see 1.21), and corresponds to a tensor generator of (𝖢, ⊗) under the tensor
equivalence 𝖢 ∼,→ 𝖱𝖾𝗉𝖿(𝐺) defined by 𝜔. 2

Abelian categories as module categories

Let 𝖠 be an abelian category. An object 𝑃 of 𝖠 is a generator if the functor ℎ𝑃 def=
Hom(𝑃,−) is faithful and it is projective if ℎ𝑃 is exact. An object of 𝖠 is simple if it is
nonzero and contains no proper nonzero subobject. A composition series for an object
𝑋 of 𝖠 is a finite decreasing filtration

𝑋 = 𝐹0 ⊃ 𝐹1 ⊃⋯ ⊃ 𝐹𝑟 = 0

with simple successive quotients. Objects of finite length admit composition series, and
any two composition series have the same length and multiset of quotients (taken up
to isomorphism). We let lg(𝑋) denote the common length of the composition series for
𝑋, and, for a simple object 𝑆, we let lg𝑆(𝑋) denote the number of 𝑖 such that 𝐹

𝑖∕𝐹𝑖+1 is
isomorphic to 𝑆. In the Grothendieck group of 𝖠,

[𝑋] =
∑

lg𝑆(𝑋) ⋅ [𝑆],

where [𝑆] runs over the isomorphism classes of simple objects in 𝖠.
If 𝑃 is a generator and 𝖠 has direct sums, then, for any object 𝑋 of 𝖠, the morphism

⨁

𝑓∶ 𝑃→𝑋
𝑃𝑓 ,→ 𝑋, 𝑃𝑓 = 𝑃, (𝑝𝑓)↦

∑
𝑓(𝑝𝑓)
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is an epimorphism. When 𝑋 is noetherian (or artinian), a finite number of 𝑓 suffice, so
that there is an epimorphism 𝑃𝑛 → 𝑋 for some 𝑛 ∈ ℕ.

Proposition 3.3 Let 𝖠 be an abelian category whose objects are noetherian, and let 𝑃 be
a projective generator for 𝖠 (assumed to exist). Then 𝐴 def= End(𝑃) is a right-noetherian
ring and ℎ𝑃 is an equivalence 𝖠 ∼,→ 𝖬𝗈𝖽𝖿𝐴.

Proof The left action of 𝐴 on 𝑃 defines a right action of 𝐴 on ℎ𝑃(𝑋), natural in 𝑋, and
so ℎ𝑃 is a functor 𝖠 → 𝖬𝗈𝖽𝐴. Because 𝑃 is a projective generator, ℎ𝑃 is exact and faithful.

Let 𝑋 ∈ ob𝖠. For some𝑚, 𝑛, we have an exact sequence

𝑃𝑚 → 𝑃𝑛 → 𝑋 → 0.

On applying ℎ𝑃 to this sequence, we get an exact sequence

𝐴𝑚 → 𝐴𝑛 → ℎ𝑃(𝑋)→ 0,

which shows that ℎ𝑝(𝑋) has finite presentation. Conversely, let𝑀 be a finitely presented
right 𝐴-module, say,

𝐴𝑚 𝑢
,→ 𝐴𝑛 → 𝑀 → 0,

where 𝑢 is an 𝑚 × 𝑛 matrix with coefficients in 𝐴. This matrix defines a morphism
𝑃𝑚 → 𝑃𝑛 whose cokernel 𝑋 has the property that ℎ𝑃(𝑋) ≃ 𝑀. This shows that ℎ𝑃 is
essentially surjective, and it remains to show that it is full.

Let 𝑋,𝑌 be objects of 𝖠, and choose an exact sequence 𝑃𝑚 → 𝑃𝑛 → 𝑋 → 0. Then

Hom(𝑃𝑚, 𝑌) ≃ ℎ𝑃(𝑌)𝑚 ≃ Hom(𝐴𝑚, ℎ𝑃(𝑌)) ≃ Hom(ℎ𝑃(𝑃𝑚), ℎ𝑃(𝑌)),

and the composite of these maps is that defined by ℎ𝑃. From the diagram

0 Hom(𝑋,𝑌) Hom(𝑃𝑛, 𝑌) Hom(𝑃𝑚, 𝑌)

0 Hom(ℎ𝑃(𝑋), ℎ𝑃(𝑌)) Hom(ℎ𝑃(𝑃𝑛), ℎ𝑃(𝑌)) Hom(ℎ𝑃(𝑃𝑚), ℎ𝑃(𝑌))

←→

←→

← → ← →

←→ ≃ ←→ ≃

←→ ←→ ←→

we see that Hom(𝑋,𝑌)→ Hom(ℎ𝑃(𝑋), ℎ𝑃(𝑌)) is an isomorphism, and so ℎ𝑃 is full. 2

Recall (I, 6.15) that a 𝑘-linear abelian category is locally finite if its objects have finite
length and its homs are finite-dimensional.

Corollary 3.4 Let 𝖠 be a locally finite 𝑘-linear abelian category with a projective gen-
erator 𝑃. Then 𝐴 def= End(𝑃) is a finite-dimensional 𝑘-algebra, and ℎ𝑃 is an equivalence
𝖠 ∼,→ 𝖬𝗈𝖽𝖿𝐴.

Proof Immediate consequence of the proposition. 2

Example 3.5 Let 𝖠 = 𝖬𝗈𝖽𝖿𝐴, where 𝐴 is a finite-dimensional 𝑘-algebra, and let 𝑃 be a
projective generator of 𝖠, for example, a direct sum of copies of 𝐴𝐴. Let 𝐵 = End(ℎ𝑃).
Then End(𝑃) = 𝐵op, and ℎ𝑃 is an equivalence

𝖬𝗈𝖽𝖿𝐴
ℎ𝑃
,,→ 𝖬𝗈𝖽𝖿𝐵op = 𝐵𝖬𝗈𝖽𝖿 .
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Proposition 3.6 Let 𝖠 be a 𝑘-linear abelian category with a projective generator, and
let 𝜔∶ 𝖠 → 𝖵𝖾𝖼𝖿(𝑘) be an exact faithful 𝑘-linear functor. Then 𝐵 def= End(𝜔) is a finite-
dimensional 𝑘-algebra, and 𝜔 is an equivalence of categories 𝖠 ∼,→ 𝐵𝖬𝗈𝖽𝖿 .

Proof Note first that the existence of 𝜔 implies that the 𝑘-linear category 𝖠 is locally
finite: certainly Hom(𝑋,𝑌) ⊂ Hom(𝜔(𝑋), 𝜔(𝑌)) is finite dimensional, and a subobject
𝑍 of 𝑋 is determined by the subspace 𝜔(𝑍) of 𝜔(𝑋), and so the set of subobjects of 𝑋 can
be identified with a subset of the lattice of subspaces of 𝜔(𝑋).

The left action of 𝐵 on 𝜔 defines a left action of 𝐵 on 𝜔(𝑋), natural in 𝑋, and so 𝜔 is
a functor 𝖠 → 𝐵𝖬𝗈𝖽𝖿 . By definition, it is exact and faithful, and it remains to show that
it is full and essentially surjective.

Let 𝑃 be a projective generator for 𝖠, and let 𝐴 = End(𝑃). Then 𝐴 acts on 𝜔(𝑃) on
the left, and the map

𝛼 ⊗ 𝑝 ↦ 𝜔(𝛼)(𝑝)∶ Hom(𝑃,𝑋)⊗𝐴 𝜔(𝑃)→ 𝜔(𝑋)

is natural in 𝑋 ∈ ob𝖠. This map is obviously an isomorphism when 𝑋 = 𝑃. As both
functors commute with finite direct sums and are right exact, it follows that it is an
isomorphism for all 𝑋 in 𝖠 (cf. the proof of Proposition 3.3),

ℎ𝑃 ⊗𝜔(𝑃) ≃ 𝜔.

We have a factorization (up to a natural isomorphism)

𝖠 𝖬𝗈𝖽𝖿𝐴 𝐵𝖬𝗈𝖽𝖿 .

← →
𝜔

← →∼
ℎ𝑃

← →
−⊗𝜔(𝑃)

As 𝜔 is exact, the 𝐴-module 𝜔(𝑃) is flat, and hence projective (because it is finitely
presented). Let 𝑄 = Hom𝐴(𝜔(𝑃), 𝐴𝐴). Then ℎ𝑄(−) ≃ −⊗𝜔(𝑃), and so ℎ𝑄 is exact and
faithful. Thus, 𝑄 is a projective generator, and so

ℎ𝑄 ∶ 𝖬𝗈𝖽𝐴
∼,→ 𝖬𝗈𝖽𝖿𝐵op = 𝐵𝖬𝗈𝖽𝖿 ,

where 𝐵op = End(𝑄) ≃ End(ℎ𝑄)op ≃ End(𝜔)op. 2

Existence of a projective generator

We next obtain a criterion for an abelian category to have a projective generator.

Lemma 3.7 Let 𝖠 be an abelian category whose objects have finite length. If
(a) there are only finitely many isomorphism classes of simple objects, and

(b) every simple object is a quotient of a projective object,
then there exists a projective generator for 𝖠.

Proof Let 𝑆1,… , 𝑆𝑚 be a set of representatives for the simple objects, and, for each 𝑖,
let 𝑃𝑖 → 𝑆𝑖 be an epimorphism with 𝑃𝑖 projective. Then 𝑃

def= 𝑃1 ⊕⋯⊕ 𝑃𝑚 is projective
generator. Certainly, it is projective, and to show that ℎ𝑃 is faithful, it suffices to show
that𝑀 ≠ 0 ⇐⇒ ℎ𝑃(𝑀) ≠ 0, but this is obvious. 2
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3.8 For an object 𝑋 of the abelian category 𝖠, we let ⟨𝑋⟩ denote the strictly full subcate-
gory of 𝖠 whose objects are subquotients of a finite direct sum of copies of 𝑋. It is an
abelian subcategory of 𝖠 containing 𝑋.1

3.9 An essential extension of an object 𝑌 is an epimorphism 𝛼∶ 𝐸 → 𝑌 such that no
subobject 𝐸′ ⊂ 𝐸, distinct from 𝐸, maps onto 𝑌. When 𝑌 is simple, this says that the
kernel of 𝛼 contains every 𝐸′ ⊂ 𝐸 distinct from 𝐸.

Lemma 3.10 Assume 𝖠 = ⟨𝑋⟩, and let 𝐸 ↠ 𝑆 be an essential extension of a simple object
𝑆 in 𝖠. For all 𝑌 ∈ ob𝖠,

dim𝑘 Hom(𝐸,𝑌) ≤ lg𝑆(𝑌) ⋅ dim𝑘 End(𝑆). (52)

If equality holds for 𝑋, then it holds for all objects of 𝖠, and 𝐸 is projective.

Proof When 𝑌 is simple, every nonzero morphism 𝐸 → 𝑌 factors through 𝐸 ↠ 𝑆
(because its kernel is contained in Ker(𝐸 ↠ 𝑆)) and induces an isomorpism 𝑆 → 𝑌.
Thus

{ Hom(𝐸,𝑌) ≃ Hom(𝑆, 𝑌) ≈ Hom(𝑆, 𝑆) if 𝑌 ≈ 𝑆
Hom(𝐸,𝑌) = 0 otherwise.

In both cases, (52) holds with equality.
An exact sequence

0→ 𝑌′ → 𝑌 → 𝑌′′ → 0 (53)

gives an exact sequence

0→ Hom(𝐸,𝑌′)→ Hom(𝐸,𝑌)→ Hom(𝐸,𝑌′′), (54)

from which it follows that

dim𝑘 Hom(𝐸,𝑌) ≤ dim𝑘 Hom(𝐸,𝑌′) + dim𝑘 Hom(𝐸,𝑌′′).

As the right-hand side of (52) is additive on short exact sequences, the inequality (52)
now follows by induction on the length of 𝑌. Moreover, we see that, given an exact
sequence (53), equality holds for 𝑌 if and only if it holds for 𝑌′ and 𝑌′′.

If equality holds in (52) for 𝑌 = 𝑋, then the last statement shows that equality holds
for 𝑋𝑚, and then also for all subquotients of 𝑋𝑚. Moreover, the sequence (54) is exact
with a 0 on the right, which says that 𝐸 is projective. 2

Proposition 3.11 (Gabber) Let 𝖠 be a locally finite 𝑘-linear abelian category. Then
𝖠 = ⟨𝑋⟩ for some 𝑋 if and only if 𝖠 admits a projective generator.

Proof If 𝖠 admits a projective generator 𝑃, then 𝖠 ∼ 𝖬𝗈𝖽𝖿𝐴 with 𝐴 = End(𝑃) (by 3.4),
and𝖬𝗈𝖽𝖿𝐴 = ⟨𝐴𝐴⟩.

For the converse, let𝖠 = ⟨𝑋⟩. The quotients of any composition series for𝑋 represent
the isomorphism classes of simple objects, and so 𝖠 satisfies (a) of 3.7. We shall complete
the proof by showing that every simple object 𝑆 of 𝖠 admits an essential extension
𝑃(𝑆)↠ 𝑆 with 𝑃(𝑆) projective.

1It would be more logical to call an object 𝑋 of 𝖠 a generator if 𝖠 = ⟨𝑋⟩ and a separator if ℎ𝑋 is faithful,
but we follow the traditional terminology. Some authors say that an abelian category is finitely generated if
it equals ⟨𝑋⟩ for some 𝑋.
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Let 𝑆 be simple. If 𝑆 itself is projective, then there is nothing to prove. Otherwise,
there exists a nonsplit extension

0→ 𝑆′ → 𝐸1 → 𝑆 → 0,

and we may choose 𝑆′ to be simple. If 𝐸1 is projective, then we can take it to be 𝑃(𝑆).
Otherwise, we repeat the construction with 𝐸1 for 𝑆. In this way we get a sequence

𝐸𝑖 ↠ 𝐸𝑖−1 ↠⋯↠ 𝐸1 → 𝐸0 = 𝑆

with each 𝐸𝑗 an essential extension of 𝐸𝑗−1, hence of 𝑆. The problem is to show that
this process stops. If 𝖠 has a generator, then this is easily proved, but we only know
something weaker, and so we shall have to construct the sequence more carefully.

Let
𝑋 = 𝐹0 ⊃ 𝐹1 ⊃⋯ ⊃ 𝐹𝑖 ⊃ 𝐹𝑖+1 ⊃⋯ ⊃ 𝐹𝑟 = 0

be a composition series for 𝑋. We construct, by induction on 𝑖, an essential extension
𝑃𝑖 ↠ 𝑆 of 𝑆 such that

dim𝑘 Hom(𝑃𝑖, 𝑋∕𝐹𝑖) = lg𝑆(𝑋∕𝐹
𝑖) ⋅ dim𝑘 End(𝑆). (55)

First take 𝑃1 = 𝑆. We now construct 𝑃𝑖+1 given 𝑃𝑖. Let 𝑓1,… , 𝑓𝑠 span Hom(𝑃𝑖, 𝑋∕𝐹𝑖).
Define 𝑄1,… , 𝑄𝑠 by the fibre product diagram

𝑄𝑗 𝑋∕𝐹𝑖+1

𝑃𝑖 𝑋∕𝐹𝑖

←→

←→ ←→ project

←→
𝑓𝑗

and define𝑄′ to be the fibre product of the𝑄𝑗 over 𝑃𝑖. Let𝑄 be a subobject of𝑄′minimal
among those mapping onto 𝑃𝑖. Then 𝑄 is an essential extension of 𝑃𝑖, hence also of 𝑆.
As 𝑄maps onto 𝑃𝑖, we have an inclusion

Hom(𝑃𝑖, 𝑋∕𝐹𝑖) → Hom(𝑄,𝑋∕𝐹𝑖),

but

dim𝑘 Hom(𝑄,𝑋∕𝐹𝑖)
(52)
≤ lg𝑆(𝑋∕𝐹

𝑖) ⋅ dim𝑘 End(𝑆)
(55)
= dim𝑘 Hom(𝑃𝑖, 𝑋∕𝐹𝑖),

and so
Hom(𝑃𝑖, 𝑋∕𝐹𝑖) ≃ Hom(𝑄,𝑋∕𝐹𝑖). (56)

Each 𝑓𝑗 ∶ 𝑃𝑖 → 𝑋∕𝐹𝑖 defines a morphism 𝑄𝑗 → 𝑋∕𝐹𝑖+1 by base change, and hence a
morphism 𝑄 → 𝑋∕𝐹𝑖+1. From this we see that every element of Hom(𝑃𝑖, 𝑋∕𝐹𝑖) lifts to
an element of Hom(𝑄,𝑋∕𝐹𝑖+1), and so the map

Hom(𝑄,𝑋∕𝐹𝑖+1)→ Hom(𝑄,𝑋∕𝐹𝑖) ≃ Hom(𝑃𝑖, 𝑋∕𝐹𝑖)

is surjective. Thus, we have an exact sequence

0→ Hom(𝑄, 𝐹𝑖+1∕𝐹𝑖)→ Hom(𝑄,𝑋∕𝐹𝑖+1)→ Hom(𝑄,𝑋∕𝐹𝑖)→ 0.

The dimensions of the end terms are lg𝑆(𝐹
𝑖∕𝐹𝑖+1) ⋅ dim𝑘 End(𝑆) (because 𝐹𝑖+1∕𝐹𝑖 is

simple) and lg𝑆(𝑋∕𝐹
𝑖) ⋅ dim𝑘 End(𝑆) ((56) and induction). Therefore,

dim𝑘 Hom(𝑄,𝑋∕𝐹𝑖+1) = lg𝑆(𝑋∕𝐹
𝑖+1) ⋅ dim𝑘 End(𝑆),

and we can take 𝑃𝑖+1 = 𝑄.
The induction ends with an essential extension 𝑃(𝑆) def= 𝑃𝑟 of 𝑆 such that (52) is an

equality for 𝐸 = 𝑃(𝑆) and 𝑌 = 𝑋. The lemma now shows that 𝑃(𝑆) is projective, which
completes the proof. 2
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Locally finite abelian categories as unions of module categories

Proposition 3.12 Every locally finite 𝑘-linear abelian category 𝖠 is a filtered union of
strictly full subcategories 𝖠𝛼 such that
⋄ each 𝖠𝛼 is stable under finite direct sums and subquotients,

⋄ each 𝖠𝛼 is equivalent to 𝖬𝗈𝖽𝖿𝐴𝛼 for some finite-dimensional 𝑘-algebra 𝐴𝛼 (not
necessarily commutative).

Proof The category 𝖠 is a union of the subcategories of the form ⟨𝑋⟩. The union is
filtered because ⟨𝑋⟩, ⟨𝑌⟩ ⊂ ⟨𝑋 ⊕ 𝑌⟩). Each category ⟨𝑋⟩ satisfies the first condition by
definition, and it satisfies the second by 3.4 and 3.11. 2

3.13 Let 𝖠 be as in 3.11, admitting a projective generator, and let 𝖡 be a strictly full
subcategory of 𝖠 stable under finite direct sums and subquotients. For 𝑋 in 𝖠, let
𝑖∗𝑋 = 𝑋∕

⋂
Ker(𝛼), where 𝛼 runs over the epimorphisms 𝑋 → 𝑌 with 𝑌 ∈ ob𝖡. As 𝑋

has finite length,
𝑖∗𝑋 = 𝑋∕

⋂

𝛼∈𝐹
Ker(𝛼) →

⨁

𝛼∈𝐹
𝑋∕Ker(𝛼)

for some finite set 𝐹 of 𝛼. Thus 𝑖∗𝑋 lies in 𝖡, and is the largest quotient of 𝑋 in 𝖡. More
precisely, 𝑖∗ is a functor left adjoint to the inclusion functor 𝑖∶ 𝖡 → 𝖠,

Hom𝖡(𝑖∗𝑋,𝑌) ≃ Hom𝖠(𝑋, 𝑖𝑌), 𝑋 ∈ ob𝖠, 𝑌 ∈ ob𝖡.

Let 𝑃 be a projective generator for 𝖠, and let 𝐴 = End(𝑃). Then 𝑄 def= 𝑖∗𝑃 is a
projective generator for 𝖡, and 𝐵 def= End(𝑄) is a quotient 𝐴∕𝔞 of 𝐴.

According to Proposition 3.3, the functor Hom(𝑃,−) identifies 𝖠 with the category
𝖬𝗈𝖽𝖿𝐴. In this model, 𝑃 is 𝐴𝐴, 𝑄 is 𝐵𝐵, and 𝖡 is the subcategory of right 𝐴-modules
killed by 𝔞. In summary:

𝖡 𝖠

𝖬𝗈𝖽𝐵 𝖬𝗈𝖽𝐴

← →𝑖

←→ ∼ℎ𝑄 ←→ ∼ℎ𝑃

←→
𝑗

⎧

⎨
⎩

𝐴 = End(𝑃), 𝑄 = 𝑖∗𝑃,
𝐵 = End(𝑄),
𝑗 defined by 𝐴 ↠ 𝐵.

Locally finite abelian categories as comodule categories

The next proposition allows us to express the results of the last subsection in terms of
coalgebras, which are more convenient for passage to the limit.

For a 𝑘-vector space 𝑉, we let 𝑉∨ denote the linear dualHom𝑘-linear(𝑉, 𝑘) of 𝑉. Note
that 𝑉∨ ⊗𝑉∨ ⊂ (𝑉 ⊗ 𝑉)∨, with equality if (and only if) 𝑉 is finite-dimensional.

Proposition 3.14 (a) If (𝐶,∆, 𝜖) is a coalgebra over 𝑘, then (𝐶∨,∆∨|𝐶∨⊗𝐶∨ , 𝜖∨) is an
algebra over 𝑘.

(b) If (𝐴,𝑚, 𝑒) is a finite-dimensional algebra over 𝑘, then (𝐴∨, 𝑚∨, 𝑒∨) is a coalgebra
over 𝑘.

(c) Let 𝐶 be a coalgebra over 𝑘. Every right 𝐶-comodule is a left 𝐶∨-module.

(d) Let 𝐴 be an algebra over 𝑘. If 𝐴 is finite dimensional, then every left 𝐴-module is a
right 𝐴∨-comodule.
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Proof For (a) and (b), compare the definitions 1.2 and 1.3.
For (c), let (𝑀,𝜌) be a right 𝐶-comodule. For𝑚 ∈ 𝑀, write 𝜌(𝑚) =

∑
𝑖𝑚𝑖 ⊗ 𝑐𝑖, and

for 𝑓 ∈ 𝐶∨, define
𝑓 ⋅𝑚 =

∑
𝑖
𝑓(𝑐𝑖) ⋅𝑚𝑖.

This makes𝑀 into a left 𝐶∨-module.
For (d), let𝑀 be a left 𝐴-module. For 𝑚 ∈ 𝑀, let {𝑚1,… , 𝑚𝑛} be a basis of 𝐴 ⋅ 𝑚.

Then there exist 𝑓𝑖 ∈ 𝐴∨ such that 𝑎 ⋅𝑚 =
∑
𝑓𝑖(𝑎)𝑚𝑖 for all 𝑎 ∈ 𝐶∨. Now

𝜌(𝑚) =
∑

𝑚𝑖 ⊗ 𝑓𝑖

defines a co-action of 𝐴∨ on𝑀. 2

The operations in (c) and (d) are inverse, so, when 𝐶 is finite-dimensional, to give a
right co-action of 𝐶 on a 𝑘-vector space 𝑉 is the same as giving a left action of 𝐶∨ on 𝑉.

Let 𝖢 be an essentially small 𝑘-linear abelian category and 𝜔∶ 𝖢 → 𝖵𝖾𝖼𝖿(𝑘) an exact
faithful 𝑘-linear functor. Note that the existence of 𝜔 implies that 𝖢 is locally finite. For
an object 𝑋 of 𝖢, let 𝐴𝑋 = End(𝜔|⟨𝑋⟩), and let 𝐶𝑋 = 𝐴∨

𝑋 . For any 𝑌 in ⟨𝑋⟩, 𝐴𝑋 acts on
𝜔(𝑌) on the left, and so 𝜔(𝑌) is a right 𝐶𝑋-comodule; moreover, the functor 𝑌 ⇝ 𝜔(𝑌)
is an equivalence of categories (3.6, 3.11, 3.14)

⟨𝑋⟩ ∼,→ 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶𝑋).

Define an ordering on the set of isomorphism classes of objects in 𝖢 by the rule

[𝑋] ≤ [𝑌] if ⟨𝑋⟩ ⊂ ⟨𝑌⟩.

Note that [𝑋], [𝑌] ≤ [𝑋 ⊕𝑌], so the set is filtered, and that if [𝑋] ≤ [𝑌], then restriction
defines a homomorphism 𝐴𝑌 → 𝐴𝑋 . On passing to the limit over the isomorphism
classes, we obtain the following statement.

Theorem 3.15 Let𝖢 be an essentially small 𝑘-linear abelian category and𝜔∶ 𝖢 → 𝖵𝖾𝖼𝖿𝑘
an exact faithful 𝑘-linear functor. Let 𝐶(𝜔) be the 𝑘-coalgebra lim,,→[𝑋]

End(𝜔|⟨𝑋⟩)∨. Then

𝜔 defines an equivalence of categories 𝖢 ∼,→ 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶(𝜔)) carrying 𝜔 into the forgetful
functor.

Example 3.16 Let 𝐴 be a finite-dimensional 𝑘-algebra (not necessarily commutative)
and 𝜔 the forgetful functor 𝐴𝖬𝗈𝖽 → 𝖵𝖾𝖼𝖿(𝑘). For 𝑅 a commutative 𝑘-algebra, let 𝜙𝑅
denote the functor 𝑅⊗−∶ 𝖵𝖾𝖼𝖿(𝑘)→ 𝖬𝗈𝖽(𝑅). The action of 𝑅⊗𝐴 on 𝑅⊗𝜔(𝑀) defines
a map

𝛼∶ 𝑅 ⊗ 𝐴 → End(𝜙𝑅◦𝜔),

which we shall show to be an isomorphism by describing an inverse 𝛽. For 𝜆 ∈
End(𝜙𝑅◦𝜔), set 𝛽(𝜆) = 𝜆𝐴(1 ⊗ 1). Clearly 𝛽◦𝛼 = id, and so we need only show that
𝛼◦𝛽 = id. For 𝑀 ∈ ob(𝖬𝗈𝖽𝐴), let 𝑀0 = 𝜔(𝑀). The 𝐴-module 𝐴 ⊗ 𝑀0 is a direct
sum of copies of 𝐴, and the additivity of 𝜆 shows that 𝜆𝐴⊗𝑀0 = 𝜆𝐴 ⊗ id𝑀0 . The map
𝑎 ⊗𝑚 ↦ 𝑎𝑚∶ 𝐴⊗𝑀0 → 𝑀 is 𝐴-linear, and hence

𝑅 ⊗ 𝐴⊗𝑀0 𝑅 ⊗𝑀

𝑅 ⊗𝐴⊗𝑀0 𝑅 ⊗𝑀

←→

←→ 𝜆𝐴⊗id𝑀0 ←→ 𝜆𝑀

←→
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is commutative. Therefore

𝜆𝑀(1⊗𝑚) = 𝜆𝐴(1)⊗𝑚 = (𝛼◦𝛽(𝜆))𝑀(1⊗𝑚) for𝑚 ∈ 𝑀,

i.e., 𝛼◦𝛽 = id.
We have shown that 𝐴 ≃ End(𝜔), and it follows that, if in (3.15) we take 𝖢 = 𝐴𝖬𝗈𝖽,

so that 𝖢 = ⟨𝐴𝐴⟩, then the equivalence of categories obtained sends a left 𝐴-module to
the associated right 𝐴∨-comodule (3.14).

Notes

3.17 Theorem 3.15 was proved by Takeuchi (1977), but was known earlier to Bourbaki
(Serre 1993, §2, Thm 3).

3.18 The 𝑘-coalgebra 𝐶(𝜔) in 3.15 is the coend of the functor

𝑋 ⇝ 𝜔(𝑋)∨ ⊗𝜔(𝑋)∶ 𝖢op × 𝖢 → 𝖵𝖾𝖼𝖿𝑘.

See III, 6.1, below.

3.19 It is necessary in Theorem 3.15 that 𝖢 be essentially small, because otherwise the
underlying “set” of 𝐶(𝜔)may be a proper class. For example, let 𝑆 be a proper class, and
let 𝖢 be the category of finite-dimensional 𝑘-vector spaces graded by 𝑆. In this case 𝐶(𝜔)
contains an idempotent for each element of 𝑆, and so cannot be a set.

Whenwe assumeGrothendieck universes exist, we can say that𝖢 is always equivalent
to a category of comodules, but possibly only in a larger universe.

3.20 To realize the category in Theorem 3.15 as a category of modules over 𝑘-algebra, it
is necessary to introduce topologies. The category of coalgebras over 𝑘 is the ind-category
of the category of finite coalgebras over 𝑘. Hence, its opposite is the pro-category of
the category of finite 𝑘-algebras, i.e., the category of profinite 𝑘-algebras. Moreover, the
category of right comodules over a coalgebra is equivalent, as a 𝑘-linear category with
a fibre functor, to the category of finite continuous modules over the corresponding
profinite 𝑘-algebra. See mo202746 and Saavedra 1972, II, §1.

Exercise 3.21 Re-express everything in terms of 2-categories.

Categories of comodules

Let (𝐶,∆, 𝜖) be a coalgebra over the field 𝑘 (co-associative with co-identity), and let 𝜔 be
the forgetful functor 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶)→ 𝖵𝖾𝖼𝖿(𝑘).

By definition, an object of 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶) is a pair (𝑀,𝜌𝑀), where𝑀 is a finite-dimensional
𝑘-vector space and 𝜌𝑀 ∶ 𝑀 → 𝑀⊗𝐶 is a 𝑘-linear map satisfying certain conditions. On
varying𝑀, we obtain a natural transformation 𝜌∶ 𝜔 → 𝜔 ⊗ 𝐶. On combining 𝜌 with a
𝑘-linearmap 𝑎∶ 𝐶 → 𝑉, where𝑉 is a 𝑘-vector space (not necessarily finite-dimensional),
we get a natural transformation 𝛼∶ 𝜔 → 𝜔 ⊗ 𝑉.

Proposition 3.22 The map of 𝑘-vector spaces

𝑎 ↦ 𝛼∶ Hom𝑘-linear(𝐶,𝑉)→ Nat(𝜔, 𝜔 ⊗ 𝑉) (57)

is an isomorphism.

https://mathoverflow.net/questions/202746/


72 Chapter II. Neutral tannakian categories

Proof We construct an inverse. Let 𝛼 be natural transformation 𝜔 → 𝜔 ⊗ 𝑉. Let
𝑐 ∈ 𝐶, and let 𝑀 be a finite-dimensional subcomodule containing 𝑐 (which exists
by 1.14). Then 𝛼𝑀(𝑐) ∈ 𝑀 ⊗ 𝑉, and its image under 𝜖 ⊗ id𝑉 lies in 𝑉. The map
𝛼 ↦ (𝑐 ↦ (𝜖 ⊗ id𝑉)(𝛼𝑀(𝑐)) is well-defined, and is the required inverse. 2

The map (49) is natural in 𝑉, and so we have a natural isomorphism of functors

Hom𝑘-linear(𝐶,−) ≃ Nat(𝜔, 𝜔 ⊗ −). (58)

Remark 3.23 The comultiplication map ∆∶ 𝐶 → 𝐶 ⊗ 𝐶 corresponds under (85) to a
natural transformation

𝜔 → 𝜔 ⊗ (𝐶 ⊗ 𝐶).

This can be shown to be the composite

𝜔
𝜌
,→ 𝜔 ⊗ 𝐶

𝜌⊗𝐶
,,,,→ (𝜔 ⊗ 𝐶)⊗𝐶 ≃ 𝜔 ⊗ (𝐶 ⊗ 𝐶).

The coidentity map 𝜖∶ 𝐶 → 𝑘 corresponds under (85) to the natural isomorphism
𝜔 → 𝜔 ⊗ 𝑘. As the underlying vector space of 𝐶 represents the functor Nat(𝜔, 𝜔 ⊗ −),
we see that (𝐶,∆, 𝜖) can be recovered from the pair (𝖼𝗈𝖬𝗈𝖽𝖿(𝐶), 𝜔) (uniquely, up to a
unique isomorphism).

A homomorphism𝑚∶ 𝐶 ⊗ 𝐶 → 𝐶 of 𝑘-coalgebras defines a 𝐶-coaction 𝜌𝑚𝑀,𝑁

𝑀 ⊗𝑁
𝜌𝑀⊗𝜌𝑁,,,,,,,→ 𝑀 ⊗𝐶 ⊗𝑁 ⊗ 𝐶

𝑀⊗𝛾𝐶,𝑁⊗𝑁
,,,,,,,,,,→ 𝑀 ⊗𝑁 ⊗𝐶 ⊗ 𝐶

𝑀⊗𝑁⊗𝑚
,,,,,,,,→ 𝑀 ⊗𝑁 ⊗𝐶

on 𝑀 ⊗ 𝑁 for any 𝐶-comodules 𝑀,𝑁. On varying 𝑀 and 𝑁 in 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶), we get a
natural transformation

𝜌𝑚 ∶ 𝜔 ⊗ 𝜔 → 𝜔 ⊗ 𝜔 ⊗ 𝐶.

Proposition 3.24 The map

𝑚 ↦ 𝜌𝑚 ∶ Hom𝑘-coalgebra(𝐶 ⊗ 𝐶,𝐶)→ Nat(𝜔 ⊗ 𝜔,𝜔 ⊗ 𝜔 ⊗ 𝐶)

is an isomorphism of 𝑘-vector spaces.

Proof Construct an inverse, as in 3.22. 2

Define
𝜙𝑚 ∶ 𝖼𝗈𝖬𝗈𝖽𝖿𝐶 × 𝖼𝗈𝖬𝗈𝖽𝖿𝐶 → 𝖼𝗈𝖬𝗈𝖽𝖿𝐶

to be the functor sending a pair of 𝐶-comodules (𝑀,𝜌𝑀), (𝑁, 𝜌𝑁) to (𝑀 ⊗𝑁, 𝜌𝑚𝑀,𝑁).

Proposition 3.25 The map𝑚 ↦ 𝜙𝑚 defines a one-to-one correspondence between the
set of 𝑘-coalgebra homomorphisms𝑚∶ 𝐶 ⊗𝑘 𝐶 → 𝐶 and the set of 𝑘-bilinear functors

𝜙∶ 𝖼𝗈𝖬𝗈𝖽𝖿𝐶 × 𝖼𝗈𝖬𝗈𝖽𝖿𝐶 → 𝖼𝗈𝖬𝗈𝖽𝖿𝐶

with the property that 𝜙(𝑀,𝑁) = 𝑀 ⊗𝑁 as 𝑘-vector spaces.
(a) The homomorphism𝑚 is associative (48) if and only if, for all𝑀, 𝑁, 𝑃 in 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶),

the canonical isomorphism of 𝑘-vector spaces

𝑀 ⊗ (𝑁 ⊗ 𝑃) ≃ (𝑀 ⊗𝑁)⊗ 𝑃

is an isomorphism of 𝐶-comodules.
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(b) There exists a 𝑘-coalgebra homomorphism 𝑒∶ 𝑘 → 𝐶 satisfying (49), p. 57, if and
only if there exists a 𝐶-comodule𝑈 with underlying 𝑘-vector space of dimension 1
such that the canonical isomorphism of 𝑘-vector spaces

𝑈 ⊗𝑈 ≃ 𝑈

is an isomorphism of 𝐶-comodules.
(c) The homomorphism𝑚 is commutative (i.e.,𝑚(𝑎 ⊗ 𝑏) = 𝑚(𝑏 ⊗ 𝑎) for all 𝑎, 𝑏 ∈ 𝐶)

if and only if, for all 𝑀, 𝑁 in 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶), the canonical isomorphism of 𝑘-vector
spaces

𝑀 ⊗𝑁 ≃ 𝑁 ⊗𝑀

is an isomorphism of 𝐶-comodules.

Proof The first assertion is a restatement 3.24.
(a) Similar to (c).
(b) The map

𝑀 ≃ 𝑀 ⊗ 𝑘
𝜌𝑀⊗𝑒,,,,,→ 𝑀 ⊗𝐶 ⊗ 𝐶

𝑀⊗𝑚
,,,,,→ 𝑀 ⊗𝐶, 𝑀 ∈ 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶),

corresponds under (58) to 𝑐 ↦ 𝑚(𝑐 ⊗ 𝑒)∶ 𝐶 → 𝐶. Therefore the right identity property
(49) holds if and only if the above map is 𝜌𝑀 (see 7.5). This means precisely that the
canonical isomorphism𝑀 ⊗ 𝑘 ≃ 𝑀 of 𝑘-vector spaces is a 𝐶-comodule map.

(c) Note that𝑚 is commutative if and only if𝑚 = 𝑚◦𝛾, where 𝛾∶ 𝐶 ⊗ 𝐶 → 𝐶 ⊗ 𝐶
is 𝑐 ⊗ 𝑑 ↦ 𝑑 ⊗ 𝑐. This holds if and only if

(𝜌𝑚 ∶ 𝑀 ⊗𝑁 → 𝑀 ⊗𝑁 ⊗𝐶) = (𝜌𝑚◦𝛾 ∶ 𝑀 ⊗𝑁 → 𝑀 ⊗𝑁 ⊗𝐶).

From the definition of 𝜌𝑚, we see that this is the case if and only if the canonical
isomorphism of 𝑘-vector spaces𝑀 ⊗𝑁 ≃ 𝑁 ⊗𝑀 is an isomorphism of 𝐶-comodules.2
Notes Proposition 3.25 is due to Saavedra (1972, II, 2.6.3). See also Szamuely 2009, 6.2.

ToDo 1 TBA Need to rewrite this proof. See IV, 2.6, 2.10.

Completion of the proof of the main theorem 3.1

Theorem 3.26 Let (𝖢, ⊗) be an essentially small 𝑘-linear abelian tensor category and
𝜔∶ 𝖢 → 𝖵𝖾𝖼𝖿(𝑘) an exact faithful 𝑘-linear tensor functor.

(a) The functor End⊗(𝜔) is represented by an affine monoid scheme 𝐺 over 𝑘, and the
functor 𝖢 → 𝖱𝖾𝗉𝖿(𝐺) defined by 𝜔 is an equivalence of categories.

(b) If (𝖢, ⊗) is rigid, then 𝐺 is an affine group scheme.

Proof (a) After Theorem 3.15, we may suppose that 𝖢 = 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶) for 𝐶 a coalgebra
over 𝑘 and that 𝜔 is the forgetful functor. According to Proposition 3.25, the tensor
structure on 𝖢 defines 𝐶-coalgebra homomorphisms 𝑚∶ 𝐶 ⊗ 𝐶 → 𝐶 and 𝑒∶ 𝑘 → 𝐶
making 𝐶 into a commutative bialgebra (1.4) over 𝑘. The statement now follows from
the correspondence between bialgebras and affine monoid schemes (1.5).

(b) Because (𝖢, ⊗) is rigid, (I, 5.7) shows that End⊗(𝜔) = Aut⊗(𝜔), and so 𝐺(𝑅) is a
group for all 𝑘-algebras 𝑅. This implies that 𝐺 is a group scheme. 2

This completes the proof of Theorem 3.1. Note that, when (𝖢, ⊗) is rigid, 𝜔 is
automatically faithful (I, 6.5).
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Remark 3.27 (a) Let (𝖢, 𝜔) be (𝖱𝖾𝗉𝖿(𝐺), 𝜔𝐺). On following through the proof of Theo-
rem 3.1 in this case one recovers Corollary 2.2: Aut⊗(𝜔𝐺) is represented by 𝐺.

(b) In the proof of Theorem 3.26, it is possible to replace Proposition 3.25 with IV,
2.6.

Aside 3.28 The proof of Theorem 3.26 makes sense under weaker hypotheses on (𝖢, ⊗) at the
cost of weakening the properties of the 𝑘-coalgebra 𝐶. For example, if⊗ satisfies no commuta-
tivity condition, then the Hopf algebra 𝐶 may be neither commutative nor cocommutative, and
this an interesting way of constructing such Hopf algebras. For more on this theme, see Breen
1994, 1.5.

4 A criterion to be a neutral tannakian category

When the category 𝖢 comes equipped with a forgetful functor to 𝖵𝖾𝖼𝖿(𝑘), the following
criterion is useful.

Proposition 4.1 Let𝖢 be an essentially small 𝑘-linear abelian category and⊗∶ 𝖢×𝖢 →
𝖢 a 𝑘-bilinear functor. Suppose that there are given an exact faithful 𝑘-linear functor
𝐹∶ 𝖢 → 𝖵𝖾𝖼𝖿(𝑘), a natural isomorphism 𝛼𝑋,𝑌,𝑍 ∶ 𝑋 ⊗ (𝑌 ⊗ 𝑍) → (𝑋 ⊗ 𝑌)⊗ 𝑍, and a
natural isomorphism 𝛾𝑋,𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋 with the following properties,
(a) 𝐹◦⊗ = ⊗◦(𝐹 × 𝐹);
(b) 𝐹(𝛼𝑋,𝑌,𝑍) is the usual associativity constraint in 𝖵𝖾𝖼𝖿(𝑘);
(c) 𝐹(𝛾𝑋,𝑌) is the usual commutativity constraint in 𝖵𝖾𝖼𝖿(𝑘);
(d) there exists a unit (𝑈, 𝑢) in 𝖢 such that (𝐹𝑈, 𝐹𝑢) is a unit in 𝖵𝖾𝖼𝖿(𝑘);
(e) if 𝐹(𝐿) has dimension 1, then there exists an object 𝐿−1 in 𝖢 such that 𝐿 ⊗ 𝐿−1 ≈ 𝑈.

Then (𝐶,⊗, 𝛼, 𝛾) is a tannakian category over 𝑘, and 𝐹 is a 𝑘-valued fibre functor.

Proof Certainly (𝖢, ⊗, 𝛼, 𝛾) is a tensor category, and Theorem 3.26 shows that𝐹 defines
an equivalence of tensor categories 𝖢 ∼,→ 𝖱𝖾𝗉𝖿(𝐺), where 𝐺 is the affine monoid scheme
over 𝑘 representing ℰ𝑛𝑑⊗(𝐹). Thus, we may assume 𝖢 = 𝖱𝖾𝗉𝖿(𝐺) and that 𝐹 is the
forgetful functor. Let (𝑈, 𝑢) be as in (d). Because it is a unit object, 𝑈 can be identified
with 𝑘 (trivial action of 𝐺). Let 𝜆 ∈ 𝐺(𝑅). If 𝐿 in 𝖱𝖾𝗉𝖿(𝐺) has dimension 1, then
𝜆𝐿 ∶ 𝐿 → 𝐿 is invertible, as follows from the existence of a 𝐺-isomorphism 𝐿⊗𝐿−1 → 𝑈.
It follows that 𝜆𝑋 is invertible for all 𝑋 in 𝖱𝖾𝗉𝖿(𝐺), because

det(𝜆𝑋)
def
=
⋀𝑑

𝜆𝑋 = 𝜆⋀𝑑 𝑋 , 𝑑 = dim𝑋,

is invertible. Thus, 𝐺 is an affine group scheme. 2

Notes Nori (1976, §1) adopts the statement of 4.1 as a definition of tannakian category.

5 The functor defined by a homomorphism of group
schemes

Let 𝑓∶ 𝐺 → 𝐻 be a homomorphism of affine group schemes over 𝑘. Using 𝑓, we can
regard an𝐻-module as a 𝐺-module. In this way, we get an exact tensor functor

𝜔𝑓 ∶ 𝖱𝖾𝗉𝖿(𝐻)→ 𝖱𝖾𝗉𝖿(𝐺)

such that
𝜔forget◦𝜔𝑓 = 𝜔forget.
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Proposition 5.1 Let 𝑓∶ 𝐺 → 𝐻 be a homomorphism of affine group schemes over 𝑘.
(a) The homomorphism 𝑓 is faithfully flat if and only if the functor 𝜔𝑓 is fully faithful

and its essential image is stable under forming subobjects.2

(b) The homomorphism 𝑓 is a closed immersion if and only if every object of 𝖱𝖾𝗉𝖿(𝐺) is
a subquotient of an object in the image of 𝜔𝑓 .

Corollary 5.2 Suppose that 𝖱𝖾𝗉𝖿(𝐺) is semisimple. Then 𝑓 is faithfully flat if and only
if 𝜔𝑓 is fully faithful.

Remark 5.3 Let 𝑓∶ 𝐺 → 𝐻 be a faithfully flat homomorphism of affine group schemes
over 𝑘, and let 𝑁 = Ker(𝑓). Using 𝑓, we can regard a representation of 𝐻 as a repre-
sentation of 𝐺 and 𝖱𝖾𝗉𝖿(𝐻) as a subcategory of 𝖱𝖾𝗉𝖿(𝐺). Then 𝖱𝖾𝗉𝖿(𝐻) consists of the
representations of 𝐺 on which 𝑁 acts trivially. In this way, we get a one-to-one corre-
spondence between the normal subgroup schemes of 𝐺 and the tannakian subcategories
of 𝖱𝖾𝗉𝖿(𝐺) stable under taking subobjects.

Remark 5.4 Let
1→ 𝑁

𝑓
,→ 𝐺

𝑔
,→ 𝑄 → 1

be a sequence of homomorphisms of affine group schemes over 𝑘. Assume that 𝑓 is a
closed immersion and that 𝑔 is faithfully flat. The sequence is exact if and only if the
following statements hold.
(a) Let 𝑉 ∈ 𝖱𝖾𝗉𝖿(𝐺). Then 𝜔𝑓(𝑉) is trivial if and only if 𝑉 ≈ 𝜔𝑔(𝑊) for some

𝑊 ∈ 𝖱𝖾𝗉𝖿(𝑄).

(b) Let 𝑉 ∈ 𝖱𝖾𝗉𝖿(𝐺). There exists a subobject 𝑉0 ⊂ 𝑉 such that 𝜔𝑓(𝑉0) is the largest
trivial subobject of 𝜔𝑓(𝑉).

(c) Every object of 𝖱𝖾𝗉𝖿(𝑁) is a subobject of 𝜔𝑓(𝑉) for some 𝑉 in 𝖱𝖾𝗉𝖿(𝐺) (i.e., 𝜔𝑓 is
dominant, 5.8).

See Esnault et al. 2008, Appendix A .

Proof of (a) of Proposition 5.1

For a 𝑘-algebra 𝐴 (not necessarily commutative), we let 𝐴𝖬𝗈𝖽𝖿𝑘 denote the category of
left 𝐴-modules finite-dimensional over 𝑘.

Let𝑓∶ 𝐴 → 𝐵 be a homomorphismof 𝑘-algebras. Using𝑓, we can regard a𝐵-module
as an 𝐴-module and 𝐵𝖬𝗈𝖽𝖿𝑘 as a subcategory of 𝐴𝖬𝗈𝖽𝖿𝑘.

Lemma 5.5 Assume that 𝐵 is finite-dimensional over 𝑘. The homomorphism 𝑓∶ 𝐴 → 𝐵
is surjective if and only if 𝐵𝖬𝗈𝖽𝖿𝑘 is a full subcategory of 𝐴𝖬𝗈𝖽𝖿𝑘 stable under forming
submodules.

Proof If 𝑓 is surjective, then the subcategory 𝐵𝖬𝗈𝖽𝖿𝑘 certainly has the claimed proper-
ties. For the converse, let �̄� denote the image of 𝐴 in 𝐵. Then �̄� is an 𝐴-submodule of 𝐵,
and hence also a 𝐵-submodule. As it contains the identity element 1 of 𝐵, it equals 𝐵.2

2Let 𝐹∶ 𝖠 → 𝖡 be an exact fully faithful functor of abelian categories. We say that its essential image is
stable under forming subobjects if, for all objects 𝑋 of 𝖠, every subobject of 𝐹(𝑋) is isomorphic to 𝐹(𝑌)
for some subobject 𝑌 of 𝑋. This condition is automatic if 𝖡 is semisimple: every subobject of 𝐹(𝑋) is of
the form 𝑒(𝐹(𝑋)) with 𝑒 an idempotent in End(𝐹(𝑋)), and 𝑒(𝐹(𝑋)) ≃ 𝐹(𝑒′𝑋), where 𝑒′ is the idempotent in
End(𝑋) with image 𝑒.
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Let 𝑓∶ 𝐶 → 𝐷 be a homomorphism of 𝑘-coalgebras. Using 𝑓, we can regard a
𝐶-comodule as a 𝐷-comodule and 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶) as a subcategory of 𝖼𝗈𝖬𝗈𝖽𝖿(𝐷).

Lemma 5.6 The homomorphism 𝑓∶ 𝐶 → 𝐷 is injective if and only if 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶) is a full
subcategory of 𝖼𝗈𝖬𝗈𝖽𝖿(𝐷) stable under taking subobjects.

Proof If 𝐶 is finite-dimensional over 𝑘, this follows from 5.5 applied to 𝑓∨∶ 𝐷∨ → 𝐶∨
(see 3.14). In the general case, we can write 𝐶 as a union 𝐶 =

⋃
𝐶𝑖 of finite-dimensional

𝑘-subcoalgebras (1.18), and correspondingly 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶) =
⋃

𝑖 𝖼𝗈𝖬𝗈𝖽𝖿(𝐶𝑖). Now the
statement for 𝐶 follows from the statement for the 𝐶𝑖. 2

We now prove (a) of Proposition 3.25.
If 𝑓∶ 𝐺 → 𝐻 is faithfully flat, and therefore an epimorphism, then 𝖱𝖾𝗉𝖿(𝐻) can be

identified with the subcategory of 𝖱𝖾𝗉𝖿(𝐺) of representations of 𝐺 factoring through 𝐻.
It is therefore obvious that 𝜔𝑓 has the stated properties. Conversely, if 𝜔𝑓 has the stated
properties, then the homomorphism𝒪(𝐻)→ 𝒪(𝐺) of 𝑘-coalgebras is injective (5.6), and
so faithfully flat (Waterhouse 1979, 14.1).

Proof of (b) of Proposition 3.25

Let 𝑓∶ 𝐺 → 𝐻 be a homomorphism of affine group schemes over 𝑘. Let 𝖢 be the strictly
full subcategory of 𝖱𝖾𝗉𝖿(𝐺) whose objects are subobjects of objects of the form of 𝜔𝑓(𝑌),
𝑌 ∈ ob(𝖱𝖾𝗉𝖿(𝐻)). The functors

𝖱𝖾𝗉𝖿(𝐻)→ 𝖢 → 𝖱𝖾𝗉𝖿(𝐺)

correspond (see 3.15) to homomorphisms of 𝑘-coalgebras

𝒪(𝐻)→ 𝐵 → 𝒪(𝐺).

As 𝖢 is stable under taking subobjects in 𝖱𝖾𝗉𝖿(𝐺), we see that 𝐵 → 𝒪(𝐺) is injective
(Lemma 5.6). Moreover, for 𝑌 ∈ ob(𝖱𝖾𝗉𝖿(𝐻)),

End(𝜔𝐺|⟨𝜔𝑓(𝑌)⟩)→ End(𝜔𝐻|⟨𝑌⟩)

is injective, where 𝜔𝐺 and 𝜔𝐻 are the forgetful functors, and so 𝒪(𝐻)→ 𝐵 is surjective.
We now prove (b) of Proposition 3.25.
If 𝑓 is a closed immersion, then 𝒪(𝐻) → 𝒪(𝐺) is surjective, and it follows that

𝐵 ≃ 𝒪(𝐺) and 𝖢 = 𝖱𝖾𝗉𝖿(𝐺).
Conversely, if 𝖢 = 𝖱𝖾𝗉𝖿(𝐺), then 𝐵 = 𝒪(𝐺), and𝒪(𝐻)→ 𝒪(𝐺) is surjective, i.e., 𝑓 is

a closed immersion.

Aside 5.7 Statement (a) of Proposition 5.1 generalizes. A homomorphism 𝑓∶ 𝐺 → 𝐻 of
flat affine group schemes over a noetherian ring 𝑅 is faithfully flat if and only if the func-
tor 𝜔𝑓 ∶ 𝖱𝖾𝗉𝖿(𝐻) → 𝖱𝖾𝗉𝖿(𝐺) is fully faithful and its essential image is stable under forming
subobjects. See Hai et al. 2024

6 Properties of 𝐺 reflected in 𝖱𝖾𝗉𝖿(𝐺)

In view of the previous theorems, it is natural to ask how properties of 𝐺 are reflected in
𝖱𝖾𝗉𝖿(𝐺).
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Finiteness and connectedness

Proposition 6.1 An affine group scheme 𝐺 over 𝑘 is finite if and only if 𝖱𝖾𝗉𝖿(𝐺) = ⟨𝑋⟩
for some representation 𝑋, i.e., the objects of 𝖱𝖾𝗉𝖿(𝐺) are subquotients of 𝑋𝑛 for some 𝑛.

Proof If 𝐺 is finite, then the regular representation 𝑋 of 𝐺 is finite-dimensional and
has the required property. Conversely if 𝖱𝖾𝗉𝖿(𝐺) = ⟨𝑋⟩, then 𝐺 = Spec𝐵, where 𝐵 is the
linear dual of the finite 𝑘-algebra 𝐴𝑋 in the proof of 3.15. 2

Proposition 6.2 An algebraic group 𝐺 has no nontrivial finite quotients if and only if,
for every representation 𝑋 on which 𝐺 acts nontrivially, the subcategory ⟨𝑋⟩ is not stable
under⊗.

Proof According to 5.1(a) and Proposition 6.1, there exists a non-trivial epimorphism
𝐺 → 𝐺′ with 𝐺′ finite if and only if 𝖱𝖾𝗉𝖿(𝐺) has a non-trivial tensor subcategory of the
form ⟨𝑋⟩. 2

Corollary 6.3 In characteristic zero, an algebraic group 𝐺 is connected if 𝖱𝖾𝗉𝖿(𝐺) has
no tensor subcategory with only finitely many simple objects (up to isomorphism).

Proof In characteristic zero,𝐺 is disconnected ⇐⇒ 𝐺 has a nontrivial finite quotient ⇐⇒
𝖱𝖾𝗉𝖿(𝐺) has a tensor subcategory of the form ⟨𝑋⟩, which has only finitely many simple
objects (the quotients of any composition series for 𝑋 represent the isomorphism classes
of simple objects in ⟨𝑋⟩). 2

The converse to the corollary is false: in characteristic zero, every unipotent algebraic
group 𝐺 is connected, but 𝖱𝖾𝗉𝖿(𝐺) has a single simple object (up to isomorphism).

Algebraicity

Proposition 6.4 An affine group scheme 𝐺 over 𝑘 is algebraic if and only if 𝖱𝖾𝗉𝖿(𝐺)
admits a tensor generator, i.e., 𝖱𝖾𝗉𝖿(𝐺) = ⟨𝑋⟩⊗ for some object 𝑋.

Proof Restatement of 3.2. 2

Smoothness

6.5 Let 𝐺 be an algebraic group over a field 𝑘. Is there a criterion on 𝖱𝖾𝗉𝖿(𝐺) for 𝐺 to be
smooth (or reduced)? In characteristic zero, every algebraic group is smooth, and over a
perfect field of characteristic 𝑝, an algebraic group is smooth if and only if it is reduced
(Milne 2017, 3.29). Note that 𝖱𝖾𝗉𝖿(𝜇𝑝) is semisimple even though 𝜇𝑝 is not reduced.

ToDo 2 See 4.2 of arXiv:2306.03296 and mo356131.

Unipotent groups

6.6 An (affine) algebraic group 𝐺 over 𝑘 is unipotent if its only simple representations
are the one-dimensional representations with 𝐺 acting trivially. Thus, if 𝐺 is unipotent,

https://arxiv.org/abs/2306.03296
https://mathoverflow.net/questions/356131/
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then every nonzero representation has a nonzero fixed vector, and an easy induction
argument shows that, for any (𝑉, 𝑟) in 𝖱𝖾𝗉𝖿(𝐺), there exists a basis of 𝑉 for which

𝑟(𝐺) ⊂ 𝕌𝑛
def=

⎛
⎜
⎜
⎜
⎜
⎝

1 ∗ ∗ ⋯ ∗
1 ∗ ∗

⋱ ⋱
0 1 ∗

1

⎞
⎟
⎟
⎟
⎟
⎠

.

i.e., there exists a flag such that 𝐺 acts trivially on the quotients. Conversely, every
algebraic subgroup of 𝕌𝑛 is unipotent (see, for example, Milne 2017, 14.5). An algebraic
group over 𝑘 is unipotent if and only if every nontrivial algebraic subgroup of it admits a
nontrivial homomorphism to𝔾𝑎 (ibid., 14.22). In characteristic zero, unipotent algebraic
groups are connected.

Trigonalizable groups

6.7 An algebraic group 𝐺 over 𝑘 is trigonalizable if its only simple representations are
those of dimension 1. An easy induction argument shows that, for any (𝑉, 𝑟) in 𝖱𝖾𝗉𝖿(𝐺),
there exists a basis of 𝑉 for which

𝑟(𝐺) ⊂ 𝕋𝑛
def=

⎛
⎜
⎜
⎜
⎜
⎝

∗ ∗ ∗ ⋯ ∗
∗ ∗ ∗

⋱ ⋱
0 ∗ ∗

∗

⎞
⎟
⎟
⎟
⎟
⎠

.

Conversely, every algebraic subgroup of 𝕋𝑛 is trigonalizable (see, for example, Milne
2017, 16.2). A smooth connected algebraic group over an algebraically closed field is
solvable if and only if it is trigonalizable (Lie–Kolchin theorem, ibid., 16.30).

Reductive groups

6.8 A smooth connected algebraic group 𝐺 over 𝑘 is reductive if it has no nontrivial
smooth connected normal unipotent algebraic subgroup and this condition continues
to hold under extension of the base field 𝑘. When 𝑘 is perfect, the condition has to be
checked only over 𝑘, and a smooth connected algebraic group is reductive if and only if
it has a faithful semisimple representation (see, for example, Milne 2017, 19.17).

6.9 Let 𝐺 be an affine group scheme over a field of characteristic zero. Then 𝐺 is a
reductive if and only if

(a) 𝖱𝖾𝗉𝖿(𝐺) has a tensor generator (so 𝐺 is algebraic; 6.4),

(b) 𝖱𝖾𝗉𝖿(𝐺) contains no nontrivial object 𝑋 such that ⟨𝑋⟩ is stable under⊗ (so 𝐺 is
connected; 6.2), and

(c) 𝖱𝖾𝗉𝖿(𝐺) is semisimple (so 𝐺 is reductive; 6.13).
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Semisimple groups

6.10 A smooth connected algebraic group 𝐺 over 𝑘 is semisimple if it has no nontrivial
smooth connected normal solvable algebraic subgroup and this condition continues
to hold under extension of the base field 𝑘. When 𝑘 is perfect, the condition has to be
checked only over 𝑘.

6.11 A reductive group 𝐺 is semisimple if and only if its centre is finite. The centre
of 𝐺 is reflected in the gradations on 𝖱𝖾𝗉𝖿(𝐺) (see 9.2 below). For example, let 𝐷 be
a diagonalizable algebraic group with character group 𝑀. To give a homomorphism
𝐷 → 𝑍(𝐺) is the same as giving an𝑀-gradation on 𝖱𝖾𝗉𝖿(𝐺).

6.12 Let 𝐺 be a reductive group. Then 𝐺∕𝐺der is a torus, which is trivial if and only if 𝐺
is semisimple. It follows that 𝐺 is semisimple if and only if there do not exist nontrivial
representations 𝑉 and𝑊 of 𝐺 such that 𝑉 ⊗𝑊 is trivial.

Semisimple tannakian categories

In this subsection, the field 𝑘 has characteristic 0 (except in 6.19).

Theorem 6.13 Let 𝐺 be a connected affine group scheme over 𝑘. The category 𝖱𝖾𝗉𝖿(𝐺) is
semisimple if and only if 𝐺 is pro-reductive (i.e., a projective limit of reductive groups).

The theorem fails (both implications are false) if 𝑘 has nonzero characteristic.
This will be proved as a consequence of a series of lemmas (for another exposition of

the proof, see Milne 2017, 22.42). As every finite-dimensional representation 𝐺 → GL𝑉
of𝐺 factors through an algebraic quotient of𝐺, we can assume that𝐺 itself is an algebraic
group.

Lemma 6.14 Let (𝑉, 𝑟) be a representation of a connected algebraic group 𝐺 over 𝑘; a
subspace𝑊 ⊂ 𝑉 is stable under 𝐺 if and only if it is stable under Lie(𝐺).

Proof We have
𝑊 is stable under 𝐺 ⇐⇒ Stab𝐺(𝑊) = 𝐺.

As Stab𝐺(𝑊) is smooth and 𝐺 is connected,

Stab𝐺(𝑊) = 𝐺 ⇐⇒ Lie(Stab𝐺(𝑊)) = Lie(𝐺)

(Milne 2017, 10.15). On the other hand,

𝑊 is stable under Lie(𝐺) ⇐⇒ StabLie(𝐺)(𝑊) = Lie(𝐺).

As Lie(Stab𝐺(𝑊)) = StabLie(𝐺)(𝑊) (ibid., 10.31), the statement follows. 2

Lemma 6.15 The category 𝖱𝖾𝗉𝖿(𝐺) is semisimple if and only if 𝖱𝖾𝗉𝖿 �̄�(𝐺�̄�) is semisimple.

Proof This follows from Proposition 6.20. 2

Lemma 6.16 (Weyl) Let 𝔤 be a semisimple Lie algebra over 𝑘. Every finite-dimensional
representation of 𝔤 is semisimple.
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Proof For an algebraic proof, see, for example, Humphreys 1972, 6.3. Weyl’s original
proof is as follows: we can assume that 𝑘 = ℂ; let 𝔤0 be a compact real form of 𝔤, and let
𝐺0 be a connected simply-connected real Lie group with Lie algebra 𝔤0; as 𝐺0 is compact,
every finite-dimensional representation (𝑉, 𝑟) of it carries a 𝔤0-invariant positive-definite
form, namely, ⟨𝑥, 𝑦⟩0 = ∫𝐺0⟨𝑥, 𝑦⟩𝑑𝑔, where ⟨ , ⟩ is any positive-definite form on 𝑉, and
therefore is semisimple; thus every finite-dimensional (real or complex) representation
of 𝐺0 is semisimple, but, for any complex vector space 𝑉, the restriction map is an
isomorphism

Hom(𝐺,GL𝑉) ≃ Hom(𝐺0,GL𝑉),

and so every complex representation of 𝐺 is semisimple. 2

For the remainder of the proof, we assume that 𝑘 is algebraically closed.

Lemma 6.17 Let𝑁 be a normal algebraic subgroup of an algebraic group 𝐺. If (𝑉, 𝑟) is a
semisimple representation of 𝐺, then (𝑉, 𝑟|𝑁) is a semisimple representation of𝑁.

Proof We can assume that 𝑉 is a simple 𝐺-module. Let𝑊 be a nonzero simple 𝑁-
submodule of 𝑉. For any 𝑔 ∈ 𝐺(𝑘), 𝑔𝑊 is an 𝑁-module and it is simple because
𝑔 ↦ 𝑔−1𝑆maps𝑁-submodules of 𝑔𝑊 to𝑁-submodules of𝑊. The sum

∑
𝑔𝑊, 𝑔 ∈ 𝐺(𝑘),

is 𝐺-stable and nonzero, and therefore equals 𝑉. Thus 𝑉, being a sum of simple 𝑁-
submodules, is semisimple. 2

We now prove the theorem. If 𝐺 is reductive, then 𝐺 = 𝑍 ⋅ 𝐺′, where 𝑍 is the centre
of 𝐺 and 𝐺′ is the derived subgroup of 𝐺 (Milne 2017, 19.25). Let 𝑟∶ 𝐺 → GL𝑉 be a
finite-dimensional representation of 𝐺. As 𝑍 is a torus, 𝑟|𝑍 is diagonalizable: 𝑉 =

⨁
𝑖 𝑉𝑖

as a 𝑍-module, where each element 𝑧 of 𝑍 acts on 𝑉𝑖 as a scalar 𝜒𝑖(𝑧) (ibid., 12.14 et
seq.). Each 𝑉𝑖 is 𝐺′-stable and, as 𝐺′ is semisimple, is a direct sum of simple 𝐺′-modules.
It is now clear that 𝑉 is semisimple as a 𝐺-module.

Conversely, assume that 𝖱𝖾𝗉𝖿(𝐺) is semisimple and choose a faithful representation
𝑉 of 𝐺. Let 𝑁 be a normal unipotent algebraic subgroup of 𝐺. Lemma 6.17 shows that
𝑉 is semisimple as an 𝑁-module: 𝑉 =

⨁
𝑖 𝑉𝑖, where each 𝑉𝑖 is a simple 𝑁-module. As

𝑁 is solvable, the Lie-Kolchin theorem shows that each 𝑉𝑖 has dimension one, and as 𝑁
is unipotent, it has a fixed vector in each 𝑉𝑖. Therefore 𝑁 acts trivially on each 𝑉𝑖, and
on 𝑉, and, as 𝑉 is faithful, this shows that 𝑁 = {1}.

Remark 6.18 The proposition can be strengthened as follows: the identity compo-
nent 𝐺◦ of an affine group scheme 𝐺 over 𝑘 is pro-reductive if and only if 𝖱𝖾𝗉𝖿(𝐺) is
semisimple.

To prove this, we have to show that the category 𝖱𝖾𝗉𝖿(𝐺) is semisimple if and only
if 𝖱𝖾𝗉𝖿(𝐺◦) is semisimple. We may suppose that 𝐺 is algebraic. As 𝐺◦ is a normal
algebraic subgroup of 𝐺, the necessity follows from 6.17. For the sufficiency, let 𝑉 be
a representation of 𝐺. Replace 𝐺 with its image in GL𝑉 . Let𝑊 be a 𝐺-stable subspace
of 𝑉. By assumption, there is a 𝐺◦-equivariant map 𝑝∶ 𝑉 → 𝑊 such that 𝑝|𝑊 = id.
Define

𝑞∶ �̄� ⊗ 𝑉 → �̄� ⊗𝑊, 𝑞 = 1
𝑛
∑

𝑔
𝑔𝑊𝑝𝑔−1𝑉 ,

where 𝑛 = (𝐺(�̄�)∶ 𝐺◦(�̄�)) and 𝑔 runs over a set of coset representatives for 𝐺◦(�̄�) in
𝐺(�̄�). One checks easily that 𝑞 has the following properties:
(a) it is independent of the choice of the coset representatives;



6. Properties of 𝐺 reflected in 𝖱𝖾𝗉𝖿(𝐺) 81

(b) for all 𝜎 ∈ Gal(�̄�∕𝑘), 𝜎(𝑞) = 𝑞;

(c) for all 𝑦 ∈ �̄� ⊗𝑊, 𝑞(𝑦) = 𝑞;

(d) for all 𝑔 ∈ 𝐺(�̄�), 𝑔𝑊 ⋅ 𝑞 = 𝑞 ⋅ 𝑔𝑉 .
Thus 𝑞 is defined over 𝑘, restricts to the identity map on𝑊, and is 𝐺-equivariant.

Remark 6.19 An algebraic group𝐺 is said to be linearly reductive if its representations
are semisimple. Thus, in characteristic zero, 𝐺 is linearly reductive if and only if 𝐺◦ is
reductive. An algebraic group 𝐺 over a field of characteristic 𝑝 ≠ 0 is linearly reductive
if and only if 𝐺◦ is of multiplicative type and 𝑝 does not divide the index (𝐺∶ 𝐺◦). This
was proved by Nagata in 1961 for smooth algebraic groups, and is often referred to as
Nagata’s theorem. See Demazure and Gabriel 1970, IV, §3, 3.6.

Tannakian categories with the Chevalley property

A tannakian category is said to have the Chevalley property if the tensor product of any
two semisimple objects is semisimple. Chevalley’s theorem (Milne 2017, 22.43) says that,
for any algebraic group 𝐺 over field 𝑘 of characteristic zero, 𝖱𝖾𝗉𝖿(𝐺) has the Chevalley
property. It follows that, in characteristic zero, all neutral tannakian categories have the
Chevalley property. We can extend this to nonneutral categories.

Theorem 6.20 Let 𝖳 be a tannakian category over a field 𝑘 of characteristic zero. Then 𝖳
has the Chevalley property.

Proof We may suppose that 𝖳 is algebraic. Then there exists a finite extension 𝑘′ of 𝑘
such that 𝖳𝑘′ is a neutral tannakian category (III, §§9,10). Let 𝑉 and𝑊 be semisimple
objects in 𝖳, and let 𝑉′ and𝑊′ be their images in 𝖳𝑘′ . Then 𝑉′ and𝑊′ are semisimple
(I, 6.17a), and so 𝑉′⊗𝑊′ is semisimple. As (𝑉⊗𝑊)′ ≃ 𝑉′⊗𝑊′, it follows that 𝑉⊗𝑊
is semisimple (I, 6.17c). 2

In nonzero characteristic, there is only the following theorem of Deligne and Serre.

Theorem 6.21 Let 𝖳 be a tannakian category over a field of characteristic 𝑝 ≠ 0, and
let 𝑉1,… , 𝑉𝑚 be objects of 𝖳. If the 𝑉𝑖 are semisimple and

∑𝑚
𝑖=1 (dim𝑉𝑖 − 1) < 𝑝, then

𝑉1 ⊗⋯⊗𝑉𝑚 is semisimple.

Proof As for the preceding theorem, it suffices to prove this for 𝖱𝖾𝗉𝖿(𝐺). In that case,
it is proved in Serre 1994 when 𝐺 is smooth and in Deligne 2014 in general. 2

The bound
∑
(dim𝑉𝑖 − 1) < 𝑝 in the theorem is optimal, as the following example

shows. Let 𝐺 = SL2, and for 𝑑 ∈ ℕ, let 𝑉(𝑑) denote the 𝑘-vector space of homogeneous
polynomials of degree 𝑑 in two symbols. There is a canonical action of 𝐺 on 𝑉(𝑑) for
which𝑉(𝑑) is simple if 𝑑 < 𝑝 and nonsemisimple if 𝑑 = 𝑝. Let 𝑑1,… , 𝑑𝑚, 1 ≤ 𝑑𝑖 ≤ 𝑝−1,
be integers such that

∑
𝑑𝑖 = 𝑝. Then dim𝑉(𝑑𝑖) = 𝑑𝑖 + 1, so

∑
(dim𝑉(𝑑𝑖) − 1) = 𝑝,

and the existence of the homomorphism (𝑓1,… , 𝑓𝑚) ↦ 𝑓1⋯𝑓𝑚 from 𝑉(𝑑1) ⊗⋯⊗
𝑉(𝑑𝑚) onto 𝑉(𝑝) shows that the former is not semisimple.
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7 Torsors

Basic definitions

In this subsection, we allow 𝑘 to be a commutative ring. Unadorned tensor products are
over 𝑘, and unadorned products are over Spec 𝑘.

7.1 Let 𝐺 be an affine group scheme faithfully flat over 𝑘, and let 𝑋 be an affine scheme
over 𝑘. An action of 𝐺 on 𝑋 is a morphism 𝑋 × 𝐺 → 𝑋 such that, for every 𝑘-algebra 𝑅,
𝑋(𝑅) × 𝐺(𝑅) → 𝑋(𝑅) is an action of the group 𝐺(𝑅) on the set 𝑋(𝑅). This can also be
expressed in terms of diagrams. The action is said to be simply transitive if, for every 𝑅
and pair of points (𝑥1, 𝑥2) in 𝑋(𝑅), there is a unique 𝑔 in 𝐺(𝑅) such that 𝑔𝑥1 = 𝑥2. In
other words, for all 𝑅, the map

(𝑡, 𝑔)↦ (𝑡, 𝑡𝑔)∶ 𝑋(𝑅) × 𝐺(𝑅)→ 𝑋(𝑅) × 𝑋(𝑅)

is a bijection. This is equivalent to the morphism

𝑋 × 𝐺 → 𝑋 × 𝑋

being an isomorphism.

7.2 Let 𝜇∶ 𝑋 × 𝐺 → 𝑋 be a simply transitive action of 𝐺 on an affine 𝑘-scheme 𝑋. We
say that (𝑋, 𝜇) is a torsor under 𝐺 over 𝑘 (for the fpqc topology) if 𝑋(𝑅) ≠ ∅ for some
faithfully flat 𝑘-algebra 𝑅. For example, 𝐺 acting on itself by right translation is a torsor
under 𝐺 over 𝑘 (this is the trivial torsor). There is an obvious notion of a morphism of
torsors under 𝐺 over 𝑘.

7.3 Let (𝑋, 𝜇) be a torsor. By assumption, there exists a 𝑃 ∈ 𝑋(𝑅) for some 𝑅 faithfully
flat over 𝑘. For all 𝑅-algebras 𝑅′,

𝑔 ↦ 𝑃𝑔∶ 𝐺(𝑅′)→ 𝑋(𝑅′)

is a bijection compatible with the actions of 𝐺(𝑅′), and so 𝑋𝑅 ≃ 𝐺𝑅 as 𝐺𝑅-torsors. Hence
(𝑋, 𝜇) is locally trivial for the fpqc topology. Conversely, an affine 𝑘-scheme with an
action of 𝐺 is a torsor if it is locally isomorphic to the trivial torsor. Note that a torsor
over 𝑘 is faithfully flat over 𝑘 (because it becomes faithfully flat over some faithfully flat
𝑅).

Summary 7.4 Let𝐺 be an affine group scheme faithfully flat over 𝑘, and let 𝜇∶ 𝑋×𝐺 →
𝑋 be an action of 𝐺 on an affine scheme 𝑋 over 𝑘. The pair (𝑋, 𝜇) is a torsor under 𝐺
over 𝑘 if each of the following (equivalent) conditions holds:
(a) the action is simply transitive and 𝑋(𝑅) ≠ ∅ for some faithfully flat 𝑘-algebra 𝑅;
(b) the action is simply transitive and 𝑋 is faithfully flat over 𝑘;
(c) (𝑋, 𝜇) is locally isomorphic for the fpqc topology to the trivial torsor (𝐺 acting

itself by right translation).

We sometimes write “𝐺-torsor over 𝑅” instead of a “torsor under 𝐺 over 𝑅”.

7.5 Let 𝑆 = Spec 𝑘, and endow the category 𝖠𝖿𝖿𝑆 of affine schemes over 𝑆 with the
fpqc topology. Let 𝐺 be a sheaf of groups on 𝑆 and 𝜇∶ 𝑋 × 𝐺 → 𝑋 an action of 𝐺 on a
sheaf of sets 𝑋. We call 𝑋 a torsor under 𝐺 over 𝑆 if (𝑋, 𝜇) is locally isomorphic to the
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trivial torsor, i.e., there exists a finite surjective family of flat morphisms 𝑆𝑖 → 𝑆 of affine
𝑆-schemes such that (𝑋, 𝜇)|𝑆𝑖 is isomorphic to 𝐺|𝑆𝑖 acting on itself by right translation
for each 𝑖.

When 𝐺 is an affine group scheme flat over 𝑆, a torsor under 𝐺 in the sense of
schemes is also a torsor in the sense of sheaves of sets, and descent theory shows that
every torsor of sets arises from an essentially unique torsor of affine schemes.

7.6 Let 𝐺 → 𝐻 be a homomorphism of affine group schemes flat over 𝑘, and let 𝑃
be a torsor under 𝐺 over 𝑘. The quotient of the sheaf 𝑃 × 𝐻 by the diagonal action
(𝑝, ℎ)𝑔 = (𝑝𝑔, 𝑔−1ℎ) of 𝐺 is represented by a torsor 𝑃 ∧𝐺 𝐻 under𝐻 over 𝑘.

ToDo 3 Add the interpretation of torsors under affine group schemes as Hopf Galois extensions.

Projective limits

In this subsection, 𝑘 is a field.

Proposition 7.7 Let 𝑋 be a torsor under an affine group scheme 𝐺 over 𝑘. Let 𝐺=lim←,,𝐺𝑖 ,
as in 1.20, and let 𝑋𝑖 = 𝑋 ∧𝐺 𝐺𝑖 . For all 𝑖, the map 𝑋(𝑘al) → 𝑋𝑖(𝑘al) is surjective; in
particular, 𝑋(𝑘al) ≠ ∅.

We first need a lemma from topology. Let (𝑋𝑖)𝑖∈𝐼 , (𝜙𝑖,𝑗)𝑖≤𝑗, be a filtered projective
system of topological spaces and continuous maps. If the 𝑋𝑖 are non-empty and compact
(i.e., quasi-compact and 𝑇2), then lim←,,𝑋𝑖 is nonempty according to a standard theorem.The next lemma shows that we may weaken 𝑇2 to 𝑇1 in this statement provided that we
require the transition maps to be closed.

Lemma 7.8 Let (𝑋𝑖)𝑖∈𝐼 , (𝜙𝑖,𝑗)𝑖≤𝑗 be a filtered projective system of topological spaces and
continuous maps. If
(a) the 𝑋𝑖 are non-empty, quasi-compact, and 𝑇1, and

(b) the 𝜙𝑖,𝑗 are closed maps,
then lim←,,𝑋𝑖 is nonempty. Furthermore, if, for some fixed 𝑖, the maps 𝜙𝑖,𝑗 ∶ 𝑋𝑗 → 𝑋𝑖 are
surjective for all 𝑗 ≥ 𝑖, then the map lim←,,𝑋𝑗 → 𝑋𝑖 is surjective.

Proof Let 𝒮 be the set of families (𝐴𝑖)𝑖∈𝐼 such that 𝐴𝑖 is a nonempty closed subset
of 𝑋𝑖 and 𝜙𝑖,𝑗(𝐴𝑗) ⊂ 𝐴𝑖 for all 𝑖, 𝑗 ∈ 𝐼 with 𝑗 ≥ 𝑖. Define an ordering on 𝒮 by setting
(𝐴𝑖) ≤ (𝐵𝑖) if𝐴𝑖 ⊂ 𝐵𝑖 for all 𝑖 ∈ 𝐼. By quasicompactness (𝒮,≥) satisfies the hypotheses of
Zorn’s lemma, and so there exists an element (𝐴𝑖)𝑖∈𝐼 of 𝒮 that is minimal (with respect
to ≤). By (b), 𝐵𝑖

def=
⋂

𝑗≥𝑖 𝜙𝑖,𝑗(𝐴𝑗) is closed in 𝐴𝑖, and it is easy to see that (𝐵𝑖)𝑖∈𝐼 ∈ 𝒮. By
minimality, 𝐵𝑖 = 𝐴𝑖 for all 𝑖.

For some fixed 𝑖, let 𝑥𝑖 ∈ 𝐴𝑖, and define

𝐶𝑗 = {
𝜙−1𝑖𝑗 (𝑥𝑖) ∩ 𝐴𝑗 if 𝑗 ≥ 𝑖
𝐴𝑗 otherwise.

The condition 𝑇1 implies that (𝐶𝑗)𝑗∈𝐼 ∈ 𝒮. By minimality, 𝐴𝑖 = 𝐶𝑖 = {𝑥𝑖}. As this is true
for all 𝑖, we see that (𝑥𝑖)𝑖∈𝐼 ∈ lim←,,𝑋𝑖. This proves the first statement, that lim←,,𝑋𝑖 ≠ ∅,
and the second statement follows from the first applied to the projective system with
𝑌𝑗 = 𝜙−1𝑖𝑗 (𝑥𝑖) for 𝑗 ≥ 𝑖, where 𝑥𝑖 is any element of 𝑋𝑖. 2
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Proof (of Proposition 7.7) If 𝐺 is algebraic, then 𝑋 is an affine scheme of finite type
over 𝑘, say, 𝑋 = Spec𝐴 with 𝐴 a nonzero finitely generated 𝑘-algebra. For any maximal
ideal 𝔪 of 𝐴, 𝑘′ def= 𝐴∕𝔪 is a finite extension of 𝑘 (Zariski’s lemma), and 𝑋(𝑘′) ≠ ∅.
Hence 𝑋(𝑘al) ≠ ∅.

In the general case, if 𝐼 contains a countable cofinal subset, then we may suppose
that 𝐼 = ℕ. The maps

⋯→ 𝑋𝑗(𝑘al)→⋯→ 𝑋𝑖+1(𝑘al)→ 𝑋𝑖(𝑘al)

are surjective, and so the statement is obvious in this case.
For more general 𝐼, we want apply Lemma 7.8. However, the transition maps

𝑋𝑗(𝑘al) → 𝑋𝑖(𝑘al) are not closed for the Zariski topology, and so we need to define
a new “orbit topology”.

Let 𝑌 be a torsor under an algebraic group𝐻 over 𝑘, and consider the collection 𝒞
of subsets of 𝑌(𝑘al) that are finite unions of orbits 𝑦𝐻′(𝑘al), where 𝑦 ranges over 𝑌(𝑘al)
and𝐻′ ranges over the algebraic subgroups of𝐻. These sets are closed for the Zariski
topology on 𝑌(𝑘al), which is noetherian, and so any infinite intersection of such subsets
is actually a finite intersection. As 𝑦1𝐻1(𝑘al) ∩ 𝑦2𝐻2(𝑘al) is either empty or equal to
𝑧(𝐻1∩𝐻2)(𝑘al) for any element 𝑧 of the intersection, we see that every finite intersection
of sets in 𝒞, hence every intersection, lies in 𝒞. It follows that the elements of 𝒞 are the
closed sets of a topology on 𝑋(𝑘al) – this is the orbit topology. As every 𝑦 ∈ 𝐻(𝑘al) is an
orbit of the trivial group, the topology is 𝑇1. It is quasi-compact because of the property
we proved for infinite intersections.

We now prove Proposition 7.9. The transition maps 𝜙𝑖𝑗 ∶ 𝑋𝑗(𝑘al) → 𝑋𝑖(𝑘al) are
surjective. When we endow each set 𝑋𝑖(𝑘) with its orbit topology, they are continuous
because, if 𝐻 is an algebraic subgroup of 𝐺𝑖 and 𝑥 ∈ 𝑋𝑖(𝑘al), then 𝜙−1𝑗𝑖 (𝑥𝐻(𝑘

al)) =
𝑥′𝐻′(𝑘al), where 𝑥′ is any preimage of 𝑥 in 𝑋𝑗(𝑘al) and 𝐻′ is the preimage of 𝐻 in 𝐺𝑗.
They are also closed because, if𝐻 is an algebraic subgroup of 𝐺𝑗 and 𝑥 ∈ 𝑋𝑗(𝑘al), then
𝜙𝑗𝑖(𝑥𝐻(𝑘al)) = 𝜙𝑗𝑖(𝑥)𝐻′(𝑘al), where𝐻′ is the image of𝐻 in 𝐺𝑖 (an algebraic subgroup).
Thus, the proposition follows from Lemma 7.8. 2

Corollary 7.9 Let𝐺 be an affine 𝑘-group scheme, andwrite𝐺 as a projective limit lim←,,𝐺𝑖 ,
as in 1.20. For all 𝑖, the map 𝐺(𝑘al)→ 𝐺𝑖(𝑘al) is surjective.

Proof Apply Proposition 7.7 to 𝑋 = 𝐺. 2

Aside 7.10 Let 𝐺 → 𝐻 be a faithfully flat homomorphism of algebraic groups over a field 𝑘 and
𝑋 → 𝑌 an equivariant morphism of homogeneous spaces. When 𝑋(𝑘al) and 𝑌(𝑘al) are endowed
with the orbit topology, the map 𝑋(𝑘al)→ 𝑌(𝑘al) is closed and continuous.

Using this, it is possible to prove Proposition 7.7 for homogeneous spaces. More generally,
for any faithfully flat homomorphism 𝑓∶ 𝐺 → 𝐻 of affine group schemes over 𝑘, the map
𝑓(𝑘al)∶ 𝐺(𝑘al)→ 𝐻(𝑘al) is surjective (Demazure and Gabriel 1970, III, §3, 7.6).

Notes The orbit topology and Lemma 7.8 are used to prove Corollary 7.9 in Hochschild and
Mostow 1957, and to prove Proposition 7.7 in Wibmer 2022.

8 Classification of the fibre functors

Statements

Let 𝖢 be a neutral tannakian category over 𝑘. By definition, there exists a fibre functor
𝜔 with values in 𝑘 and we proved (3.1) that, if we let 𝐺 = 𝒜𝑢𝑡⊗(𝜔), then 𝜔 defines
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an equivalence 𝖢 ∼,→ 𝖱𝖾𝗉𝖿(𝐺). For any fibre functor 𝜂 with values in a 𝑘-algebra 𝑅,
composition defines a pairing

ℋ𝑜𝑚⊗(𝜔, 𝜂) ×𝒜𝑢𝑡⊗(𝜔)→ℋ𝑜𝑚⊗(𝜔, 𝜂)

of functors of 𝑅-algebras. Proposition 5.7 of Chapter I shows that ℋ𝑜𝑚⊗(𝜔, 𝜂) =
ℐ𝑠𝑜𝑚⊗(𝜔, 𝜂), and therefore thatℋ𝑜𝑚⊗(𝜔, 𝜂) satisfies condition (a) of 7.5 to be a torsor.

Theorem 8.1 Let 𝖢 be a neutral tannakian category over 𝑘,and let 𝜔 be a 𝑘-valued fibre
functor.

(a) For any fibre functor 𝜂 on 𝖢 with values in 𝑅,ℋ𝑜𝑚⊗(𝜔, 𝜂) is representable by an
affine scheme faithfully flat over Spec𝑅; it is therefore a 𝐺-torsor.

(b) The functor 𝜂 ⇝ℋ𝑜𝑚⊗(𝜔𝑅, 𝜂) determines an equivalence between the category of
fibre functors on 𝖢 with values in 𝑅 and the category of 𝐺-torsors over 𝑅.

We defer the proof to the next subsection.

Corollary 8.2 Any two fibre functors on a neutral tannakian category over 𝑘 are locally
isomorphic for the fpqc topology.

Proof Let 𝜂 be an𝑅-valuedfibre functor and𝜔 a𝑘-valuedfibre functor. Thenℋ𝑜𝑚⊗(𝜔𝑅, 𝜂)
is a torsor over Spec𝑅 for the fpqc topology, and so becomes trivial over some faithfully
flat 𝑅-algebra 𝑅′. This means that 𝜔 and 𝜂 become isomorphic over 𝑅′. 2

Corollary 8.3 Let 𝖢 be a neutral tannakian category over 𝑘. Any two 𝑘-valued fibre
functors of 𝖢 become isomorphic over 𝑘al (and over a finite extension of 𝑘 if 𝖢 is algebraic).

Proof Suppose first that 𝖢 is algebraic. If 𝜔 and 𝜂 are 𝑘-valued fibre functors, then
ℋ𝑜𝑚(𝜔, 𝜂) is represented by a scheme 𝑋 = Spec𝐴, where 𝐴 is a nonzero finitely
generated 𝑘-algebra. For anymaximal ideal of𝐴,𝐴∕𝔪 is a finite extension of 𝑘 (Zariski’s
lemma), and 𝑋(𝐴∕𝔪) ≠ ∅.

In the general case, let 𝜔 and 𝜂 be 𝑘-valued fibre functors. Then ℋ𝑜𝑚⊗(𝜔, 𝜂) is
represented by a torsor under the affine group scheme 𝒜𝑢𝑡⊗(𝜔) over 𝑘, and so has a
𝑘al-point by Proposition 7.7. 2

A nonassociative algebra3 in a tensor category is a pair (𝑋, 𝑡) consisting of an object
𝑋 and a morphism 𝑡∶ 𝑋 ⊗ 𝑋 → 𝑋 (no conditions). Let 𝐴 = (𝑉, 𝑡) be a nonassociative
algebra in 𝖵𝖾𝖼𝖿(𝑘). The functor of commutative 𝑘-algebras

𝑅 ⇝ Aut(𝐴⊗ 𝑅) (automorphisms of 𝑅-algebras)

is represented by an algebraic subgroup of GL𝑉 , denoted 𝒜𝑢𝑡(𝐴).

Corollary 8.4 Let (𝖢, ⊗) be a neutral algebraic tannakian category over 𝑘. There exists
a nonassociative algebra (𝑋, 𝑡) in 𝖢 such that, for every fibre functor over an extension 𝑘′ of
𝑘,

𝒜𝑢𝑡⊗(𝜔)𝑘′ = 𝒜𝑢𝑡(𝜔(𝑋), 𝜔(𝑡)).

3Of course, this is short for “possibly nonassociative algebra”.
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Proof As 𝖢 is neutral, there exists a 𝑘-valued fibre functor 𝜔0, and 𝜔0 defines an
equivalence of tensor categories 𝖢 ∼,→ 𝖱𝖾𝗉𝖿(𝐺), where 𝐺 = 𝒜𝑢𝑡⊗(𝜔0). According to
Milne 2020a, Theorem 1, 𝐺 = 𝒜𝑢𝑡(𝐴) for some nonassociative algebra 𝐴 = (𝑉, 𝑡𝑉) in
𝖱𝖾𝗉𝖿(𝐺). There exists a nonassociative algebra (𝑋, 𝑡) in𝖢 and an isomorphism𝜔0(𝑋, 𝑡) ≃
(𝑉, 𝑡𝑉) (unique up to a unique isomorphism). For any fibre functor 𝜔 with values in an
extension 𝑘′ of 𝑘,

𝒜𝑢𝑡⊗(𝜔)𝑘′ ⊂ 𝒜𝑢𝑡(𝜔(𝑋), 𝜔(𝑡)),

but 𝜔 becomes isomorphic to 𝜔0 over some extension of 𝑘′, and so the inclusion is an
equality. 2

Example 8.5 Let 𝑉 and 𝑉′ be vector spaces of the same dimension, each equipped with
a nondegenerate quadratic form. There is a canonical equivalence between 𝖱𝖾𝗉𝖿(𝑂(𝑉))
and 𝖱𝖾𝗉𝖿(𝑂(𝑉′)) given by the 𝑂(𝑉)-torsor of isomorphisms 𝑉 → 𝑉′.

Notes

8.6 Define the categories in (b) of the theorem.

8.7 Restate the theorem as an equivalenc of 2-categories.

8.8 Let𝐺 be an affine group scheme over 𝑘. Let𝖢 = 𝖱𝖾𝗉𝖿(𝐺), and let𝜔 be a fibre functor
on 𝖢. If 𝜔 is the forgetful functor, then 𝐺 ≃ 𝒜𝑢𝑡⊗(𝜔), but otherwise 𝒜𝑢𝑡⊗(𝜔) is the
inner twist of 𝐺 by the 𝐺-torsorℋ𝑜𝑚(𝜔forget , 𝜔). Thus, except when 𝑘 is algebraically
closed, 𝖢 only determines 𝐺 up to an inner twist (i.e., it determines the band of 𝐺).

8.9 We noted in 8.8 that, over an algebraically closed field, an affine group scheme 𝐺 is
determined up to isomorphism by the pair (𝖱𝖾𝗉𝖿(𝐺), ⊗). Without⊗, we have only the
following result.

Let 𝐺 be a connected reductive group over an algebraically closed field of character-
istic zero. Then 𝐺 is determined up to isomorphism by the set of isomorphism classes of
its finite-dimensional semisimple representations endowed with the obvious sum and
product (i.e., by the Grothendieck semiring of 𝖱𝖾𝗉𝖿(𝐺)). See, for example, Kazhdan et al.
2014.

Proof of Theorem 8.1

Recall (7.9), that we have defined 𝑉 ⊗ 𝑋 when 𝑉 and 𝑋 are objects of 𝖵𝖾𝖼𝖿𝑘 and 𝖢
respectively. We letℋ𝑜𝑚(𝑉,𝑋) = 𝑉∨ ⊗𝑋. If𝑊 ⊂ 𝑉 and 𝑌 ⊂ 𝑋, then the transporter
of𝑊 to 𝑌 is

(𝑌∶ 𝑊) def= Ker(ℋ𝑜𝑚(𝑉,𝑋)→ℋ𝑜𝑚(𝑊,𝑋∕𝑌).

Let 𝑋 ∈ ob(𝖢), and define

{ 𝐴𝑋 ⊂ End(𝜔𝑋), 𝐴𝑋 =
⋂

𝑌(𝜔𝑌∶ 𝜔𝑌), 𝑌 ⊂ 𝑋𝑛, 𝑛 ≥ 1
𝑃𝑋 ⊂ End(𝜔𝑋,𝑋), 𝑃𝑋 =

⋂
𝑌(𝑌∶ 𝜔𝑌), 𝑌 ⊂ 𝑋𝑛, 𝑛 ≥ 1.

Then 𝜔(𝑃𝑋) = 𝐴𝑋 and 𝑃𝑋 ∈ ob(⟨𝑋⟩). For any 𝑅-algebra 𝑅′, ℋ𝑜𝑚(𝜔|⟨𝑋⟩, 𝜂|⟨𝑋⟩)(𝑅′)
is the subspace of Hom(𝜔(𝑃𝑋) ⊗𝑘 𝑅′, 𝜂(𝑃𝑋) ⊗𝑅 𝑅′) of maps respecting all 𝑌 ⊂ 𝑋𝑛; it
therefore equals 𝜂(𝑃𝑋)⊗ 𝑅′. Thus

ℋ𝑜𝑚(𝜔|⟨𝑋⟩, 𝜂|⟨𝑋⟩)(𝑅′) ≃,→ Hom𝑅-linear(𝜂(𝑃∨𝑋), 𝑅
′).
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Let𝑄 be the ind-object (𝑃∨𝑋)𝑋 , and let 𝐵 = lim,,→𝐴∨
𝑋 . As we saw in 3.25, the tensor structure

on 𝖢 defines an algebra structure on 𝐵; it also defines a ring structure on 𝑄 (i.e., a map
𝑄⊗𝑄 → 𝑄 in Ind(𝖢)) making 𝜔(𝑄)→ 𝐵 into an isomorphism of 𝑘-algebras. We have

ℋ𝑜𝑚(𝜔, 𝜂)(𝑅′) = lim←,,ℋ𝑜𝑚(𝜔|⟨𝑋⟩, 𝜂|⟨𝑋⟩)(𝑅′)

= lim←,,Hom𝑅-linear(𝜂(𝑃∨𝑋), 𝑅
′)

= Hom𝑅-linear(𝜂(𝑄), 𝑅),

where 𝜂(𝑄) def= lim,,→ 𝜂(𝑃∨𝑋). Under this correspondence,

ℋ𝑜𝑚⊗(𝜔, 𝜂)(𝑅′) = Hom𝑅-algebra(𝜂(𝑄), 𝑅′),

and so ℋ𝑜𝑚⊗(𝜔, 𝜂) is represnted by 𝜂(𝑄). We know (7.4) that 𝜂(𝑃∨𝑋) is a projective
𝑅-module, in particular flat, and so 𝜂(𝑄) = lim,,→ 𝜂(𝑃∨𝑋) is flat over 𝑅. For each 𝑋, there is
an epimorphism 𝑃𝑋 ↠ 𝟙, and the exact sequence

0→ 𝟙→ 𝑃∨𝑋 → 𝑃∨𝑋∕𝟙→ 0

gives rise to an exact sequence

0→ 𝜂(𝟙)→ 𝜂(𝑃∨𝑋)→ 𝜂(𝑃∨𝑋∕𝟙)→ 0.

As 𝜂(𝟙) = 𝑅 and 𝜂(𝑃∨𝑋∕𝟙) is flat, this shows that 𝜂(𝑃
∨
𝑋) is a faithfully flat 𝑅-module.

Hence 𝜂(𝑄) is faithfully flat over 𝑅, which completes the proof thatℋ𝑜𝑚⊗(𝜔, 𝜂) is a
𝐺-torsor.

To show that 𝜂 ⇝ℋ𝑜𝑚⊗(𝜔, 𝜂) is an equivalence, we construct a quasi-inverse. Let
𝑇 be a 𝐺-torsor over 𝑅. For a fixed 𝑋, define 𝑅′ ⇝ 𝜂𝑇(𝑋)(𝑅′) to be the sheaf associated
with

𝑅′ ⇝
(
𝑇(𝑅′) × (𝜔(𝑋)⊗ 𝑅′)

)
∕𝐺(𝑅′).

Then 𝑋 ⇝ 𝜂𝑇(𝑋) is a fibre functor on 𝖢 with values in 𝑅.

Restatement in terms of Hopf Galois extensions

To be added.

9 Examples

Graded vector spaces

9.1 Let 𝖢 be the category whose objects are the families (𝑉𝑛)𝑛∈ℤ of vector spaces over 𝑘
with finite-dimensional direct sum𝑉 =

⨁
𝑉𝑛. There is an obvious rigid tensor structure

on 𝖢 for which End(𝟙) = 𝑘 and 𝜔∶ (𝑉𝑛) ⇝
⨁

𝑉𝑛 is a fibre functor. Thus, according
to Theorem 3.1, 𝜔 defines an equivalence of tensor categories 𝖢 ∼,→ 𝖱𝖾𝗉𝖿(𝐺) for some
affine 𝑘-group scheme 𝐺. This equivalence is easy to describe: take 𝐺 = 𝔾𝑚 and send
(𝑉𝑛) to the representation of 𝔾𝑚 on 𝑉 =

⨁
𝑉𝑛 for which 𝔾𝑚 acts on 𝑉𝑛 through the

character 𝜆 ↦ 𝜆𝑛.
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Gradations on tannakian categories

9.2 Let 𝑀 be a set. An 𝑀-gradation on an object 𝑋 of an additive category is a de-
composition 𝑋 =

⨁
𝑚∈𝑀 𝑋𝑚. An𝑀-gradation on an additive functor 𝑢∶ 𝖢 → 𝖢′ is an

𝑀-gradation on each 𝑢(𝑋), 𝑋 ∈ ob(𝖢), that depends functorially on 𝑋.
Suppose now that𝑀 is an abelian group, and let 𝐷 be the diagonalizable group over

𝑘 whose character group is𝑀. For example, if𝑀 = ℤ, then 𝐷 = 𝔾𝑚, and if𝑀 = ℤ∕𝑛ℤ,
then 𝐷 = 𝜇𝑛.

An𝑀-gradation on a tannakian category 𝖢 over 𝑘 can be variously described as
follows:
(a) an𝑀-gradation, 𝑋 =

⨁
𝑋𝑚, on each object 𝑋 of 𝖢 that depends functorially on 𝑋

and is compatible with tensor products in the sense that

(𝑋 ⊗ 𝑌)𝑚 =
⨁

𝑟+𝑠=𝑚
𝑋𝑟 ⊗𝑌𝑠;

(b) an 𝑀-gradation on the identity functor id𝖢 of 𝖢 that is compatible with tensor
products;

(c) a homomorphism 𝐷 → 𝒜𝑢𝑡⊗(id𝖢);
(d) a central homomorphism 𝐷 → 𝐺, where 𝐺 = 𝒜𝑢𝑡⊗(𝜔), for one (or every) fibre

functor 𝜔.
Definition (a) is simply a restatement of (b). By a central homomorphism in (d), we
mean a homomorphism from 𝐷 into the centre of 𝐺 defined over 𝑘. Although 𝐺 need
not be defined over 𝑘, its centre is, and equals𝒜𝑢𝑡⊗(id𝖢), from which the equivalence of
(c) and (d) follows. Finally, a homomorphism 𝑤∶ 𝐷 → 𝒜𝑢𝑡⊗(id𝖢) defines a gradation
𝑋 =

⨁
𝑋𝑚 on every 𝑋 ∈ ob𝖢: let 𝑋𝑚 be the subobject on which 𝑤(𝑑) acts as𝑚(𝑑) ∈ 𝑘.

Notes The results in this subsection are from Saavedra 1972, IV, 1.1.

Representations of groups of multiplicative type

9.3 Let �̄� be a separable algebraic closure of 𝑘, and let Γ = Gal(�̄�∕𝑘). Recall that an
algebraic group 𝐺 over 𝑘 is ofmultiplicative type if every representation of 𝐺 becomes
diagonalizable over �̄�. In characteristic zero, this is equivalent to the identity component
of 𝐺 being a torus. The character group 𝑋∗(𝐺) def= Hom(𝐺�̄�,𝔾𝑚) of such a 𝐺 is a finitely
generated abelian group on which Γ acts continuously. Let𝑀 = 𝑋∗(𝐺), and let 𝑘′ ⊂ �̄�
be a Galois extension of 𝑘 over which all elements of M are defined. For any finite-
dimensional representation 𝑉 of 𝐺, we have a decomposition

𝑉 ⊗𝑘 𝑘′ =
⨁

𝑚∈𝑀
𝑉𝑚, 𝑉𝑚 def= {𝑣 ∈ 𝑉 ⊗𝑘 𝑘′ ∣ 𝑔𝑣 = 𝑚(𝑔)𝑣 all 𝑔 ∈ 𝐺(𝑘)}.

A finite-dimensional vector space 𝑉 over 𝑘 together with a decomposition

𝑘′ ⊗𝑉 =
⨁

𝑚∈𝑀
𝑉𝑚

arises from a representation of 𝐺 if and only if 𝑉𝜎(𝑚) = 𝜎𝑉𝑚 for all𝑚 ∈ 𝑀 and 𝜎 ∈ Γ.
Thus an object of 𝖱𝖾𝗉𝖿(𝐺) can be identified with a finite-dimensional vector space 𝑉
over 𝑘 together with an𝑀-gradation on 𝑉 ⊗ 𝑘′ that is compatible with the action of Γ.
See, for example, Milne 2017, 12.30.
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Filtrations of 𝖱𝖾𝗉𝖿(𝐺)

Let 𝑉 be a vector space. A homomorphism 𝜆∶ 𝔾𝑚 → GL𝑉 defines a filtration

⋯ ⊃ 𝐹𝑛𝑉 ⊃ 𝐹𝑛+1𝑉 ⊃⋯ , 𝐹𝑛𝑉 =
⨁

𝑖≥𝑛
𝑉𝑖

of 𝑉, where 𝑉 =
⨁

𝑖 𝑉𝑖 is the gradation defined by 𝜆.
Let 𝐺 be an algebraic group over a field 𝑘. A homomorphism 𝜆∶ 𝔾𝑚 → 𝐺 defines a

filtration 𝐹∙ on 𝑉 for every representation (𝑉, 𝑟) of 𝐺, namely, that corresponding to 𝑟◦𝜆.
These filtrations are compatiblewith the formation of tensor products and duals, and they
are exact in the sense that the functor 𝑉 ⇝ Gr∙(𝑉) is exact. A functor (𝑉, 𝑟)⇝ (𝑉, 𝐹∙)
from representations of 𝐺 to filtered vector spaces satisfying these conditions is called a
filtration 𝐹∙ of 𝖱𝖾𝗉𝖿(𝐺), and a homomorphism 𝜆∶ 𝔾𝑚 → 𝐺 defining 𝐹∙ is said to split
𝐹∙. We write Filt(𝜆) for the filtration defined by 𝜆.

Define 𝐹0𝐺 to be the algebraic subgroup of 𝐺 respecting the filtration on each repre-
sentation of 𝐺, and, for 𝑛 ≥ 1, define 𝐹𝑛𝐺 to be the algebraic subgroup of 𝐹0𝐺 acting
trivially on the graded module

⨁
𝑖 𝐹

𝑖𝑉∕𝐹𝑖+𝑛𝑉 attached to each representation 𝑉 of 𝐺.
Clearly, 𝐹𝑛𝐺 is unipotent for 𝑛 ≥ 1.

Theorem 9.4 Let𝐺 be a reductive group over a field 𝑘, and let𝐹∙ be a filtration of 𝖱𝖾𝗉𝖿(𝐺).
From the adjoint action of 𝐺 on 𝔤, we acquire a filtration of 𝔤.
(a) There exists a cocharacter 𝜆 of 𝐺 splitting the filtration 𝐹∙.

(b) 𝐹0𝐺 is a parabolic subgroup of 𝐺 with Lie algebra 𝐹0𝔤.

(c) 𝐹1𝐺 is the unipotent radical of 𝐹0𝐺, and Lie(𝐹1𝐺) = 𝐹1𝔤.

(d) The centralizer 𝑍(𝜆) of any cocharacter 𝜆 splitting 𝐹∙ is a connected algebraic sub-
group of 𝐹0𝐺 such that the quotient map 𝑞∶ 𝐹0𝐺 → 𝐹0𝐺∕𝐹1𝐺 induces an isomor-
phism 𝑍(𝜆)→ 𝐹0𝐺∕𝐹1𝐺, so

𝐹0𝐺 = 𝐹1𝐺 ⋊ 𝑍(𝜆),

and the composite 𝑞◦𝜆 of 𝜆 with 𝑞 is central.

(e) Two cocharacters 𝜆 and 𝜆′ of 𝐺 define the same filtration of 𝐺 if and only if they
define the same group 𝐹0𝐺 and 𝑞◦𝜆 = 𝑞◦𝜆′; the cocharacters 𝜆 and 𝜆′ are then
conjugate under 𝐹1𝐺.

Proof Choose a faithful representation 𝑉 of 𝐺, and let 𝑃 be the algebraic subgroup of 𝐺
preserving the filtration on 𝑉. Then 𝑃 is obviously parabolic, and so 𝑃 = 𝑃(𝜆) for some
cocharacter 𝜆 of 𝐺, i.e., 𝑃 is the unique smooth algebraic subgroup of 𝐺 such that

𝑃(𝑘al) =
{
𝑔 ∈ 𝐺(𝑘al)

||||| lim𝑡→0
𝜆(𝑡) ⋅ 𝑔 ⋅ 𝜆(𝑡)−1 exists in 𝐺(𝑘al)

}

see Milne 2017, 25.1. Now 𝜆 splits the filtration, and so (a), (b), and (c) follow from ibid.,
13.3, 25.6. 2

Remark 9.5 It sometimes more convenient to work with ascending filtrations. To turn
a descending filtration 𝐹∙ into an ascending filtration𝑊∙, set𝑊𝑖 = 𝐹−𝑖; if 𝜇 splits 𝐹∙,
then 𝑧 ↦ 𝜇(𝑧)−1 splits𝑊∙. With this terminology, we have𝑊0𝐺 =𝑊−1𝐺 ⋊ 𝑍(𝜇).

Notes See Saavedra 1972, especially IV, 2.2.5.
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Filtered fibre functors

Let 𝖳 be a tannakian category (not necessarily neutral) over a field 𝑘, and let 𝑅 be a
commutative 𝑘-algebra.

A graded𝑅-module is an𝑅-module𝑀 togetherwith a decomposition𝑀 =
⨁

𝑛∈ℤ𝑀
𝑛.

With the obvious tensor structure, the graded 𝑅-modules become an 𝑅-linear abelian
tensor category. A graded𝑅-module admits a dual if and only if it is finitely generated and
projective. To give a gradation on an 𝑅-module𝑀 is the same as giving a representation
of 𝔾𝑚 on𝑀.

An 𝑅-valued graded fibre functor on 𝖳 is an exact 𝑘-linear tensor functor from 𝖳
to the category of graded 𝑅-modules. It takes values in the finitely generated projective
graded 𝑅-modules.

A filtered 𝑅-module is an 𝑅-module𝑀 together with a family (𝐹𝑛𝑀)𝑛∈ℤ of submod-
ules

⋯ ⊃ 𝐹𝑛𝑀 ⊃ 𝐹𝑛+1𝑀 ⊃⋯

such that ⋃

𝑛∈ℤ
𝐹𝑛𝑀 = 𝑀,

⋂

𝑛∈ℤ
𝐹𝑛𝑀 = 0.

A morphism (𝑀, (𝐹𝑛𝑀)) → (𝑁, (𝐹𝑛𝑁)) of filtered 𝑅-modules is an 𝑅-linear map
𝑓∶ 𝑀 → 𝑁 such that 𝑓(𝐹𝑛𝑀) ⊂ 𝐹𝑛𝑁 for all 𝑛. With the obvious tensor structure, the
filtered 𝑅-modules become an 𝑅-linear tensor category. A filtered 𝑅-module (𝑀, (𝐹𝑛𝑀))
admits a dual if and only if𝑀 is finitely generated and projective and the submodules
𝐹𝑛𝑀 are direct summands of𝑀 locally for the Zariski topology on Spec𝑅. There is a
tensor functor

𝑀 ⇝ Gr∙(𝑀) def=
⨁

𝑛
𝐹𝑛𝑀∕𝐹𝑛+1𝑀

from filtered 𝑅-modules to graded 𝑅-modules.
An 𝑅-valued filtered fibre functor on 𝖳 is a 𝑘-linear tensor functor 𝜔 from 𝖳 to

the category of filtered 𝑅-modules such that the functor 𝑋 ⇝ Gr∙(𝜔(𝑋)) is exact. For
example, if 𝜔 is an 𝑅-valued graded fibre functor on 𝖳, then

𝑋 ⇝ (𝑀, (𝐹𝑛𝑀)), 𝑀 def=
⨁

𝑖∈ℤ
𝜔(𝑋)𝑖, 𝐹𝑛𝑀 def=

⨁
𝑖≥𝑛

𝜔(𝑋)𝑖,

is a filtered fibre functor on 𝖳. Filtered fibre functors of this form are said to be splittable.
In the last subsection, we defined a filtration on 𝖱𝖾𝗉𝖿(𝐺) to be a filtration on its

forgetful functor, and we saw that such a filtration is splittable if 𝐺 is reductive.

Theorem 9.6 Let 𝜔 be a filtered fibre functor on 𝖳 with values in a 𝑘-algebra 𝑅.
(a) There exists a faithfully flat 𝑅-algebra 𝑅′ such that 𝜔 ⊗𝑅 𝑅′ is splittable.

(b) Let 𝜔′ be the composite of 𝜔 with the forgetful functor to𝖬𝗈𝖽(𝑅). If the affine group
scheme over 𝑅 representing𝒜𝑢𝑡⊗(𝜔′) is pro-smooth (i.e., a projective limit of smooth
algebraic groups), then 𝜔 is splittable.

Proof See Ziegler 2015, Theorems 1.2 and 1.3. 2

Notes Saavedra (1972, IV, 2.2.1) states 9.6(a) as an open problem. In ibid., IV, 2.4, he gives
proofs (due to Deligne) of the theorem under various additional hypotheses, for example, if 𝖳 is
neutral and 𝑘 has characteristic zero.
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Tannaka duality

9.7 Let 𝐾 be a topological group. The category 𝖱𝖾𝗉𝖿ℝ(𝐾) of continuous representations
of 𝐾 on finite-dimensional ℝ-vector spaces is, in a natural way, a neutral tannakian
category with the forgetful functor as an ℝ-valued fibre functor. There is therefore an
affine group scheme �̃� over ℝ, called the real envelope of 𝐾, and an equivalence of
categories 𝖱𝖾𝗉𝖿ℝ(�̃�)

∼,→ 𝖱𝖾𝗉𝖿ℝ(𝐾) compatible with the forgetful fibre functors. This
equivalence arises from a homomorphism 𝐾 → �̃�(ℝ). When 𝐾 is compact, 𝐾 = �̃�(ℝ)
and �̃� is of finite type if and only if 𝐾 is a Lie group. See Serre 1993, §5.

An algebraic group 𝐺 over ℝ is said to be compact if 𝐺(ℝ) is compact and the
canonical functor 𝖱𝖾𝗉𝖿ℝ(𝐺) ,→ 𝖱𝖾𝗉𝖿ℝ(𝐺(ℝ)) is an equivalence. The second condition
is equivalent to each connected component of 𝐺(ℂ) containing a real point (or to 𝐺(ℝ)
being Zariski dense in 𝐺).

Aside 9.8 For the original Tannaka duality, see Tannaka 1938. Here is a review of Tannaka’s
paper (zbMATH 0020.00904):

The continuous bounded representations 𝐷 of a topological group 𝐺 form a semi-
group �̄� in which three operations are defined: the Kronecker product 𝐷(1) × 𝐷(2),
the transformation 𝐶𝐷𝐶−1 with an arbitrary matrix 𝐶, and the formation of sums

(𝐷
(1) 0
0 𝐷(2)) .

�̄� is called the dual semigroup of 𝐺. A representation 𝐴 of �̄� is a mapping that
assigns to each representation𝐷 amatrix𝐷 ⋅𝐴 of the same degree as𝐷, such that the
product𝐷(1)×𝐷(2) is assigned the product𝐷(1) ⋅𝐴×𝐷(2) ⋅𝐴, the transformed𝐶𝐷𝐶−1
is assigned the transformed matrix 𝐶(𝐷 ⋅𝐴)𝐶−1, the sum is assigned the sum, and a
unitary representation is assigned a unitary matrix. The representations of �̄� form
a topological group ̄̄𝐺 with a suitable product and topology. This is compact, and
if 𝐺 has sufficiently many almost-periodic functions, then 𝐺 can be continuously
isomorphically and densely embedded in ̄̄𝐺. If 𝐺 itself is compact, then ̄̄𝐺 = 𝐺;
this is the duality theorem for compact groups. The main tool in the proof is the
examination of the prime ideals in the ring of almost-periodic functions on 𝐺.
van der Waerden (Leipzig)

Representations of Lie algebras

9.9 Let 𝔤 be a finite-dimensional Lie algebra over a field 𝑘. The category 𝖱𝖾𝗉𝖿(𝔤) of
representations of 𝔤 on finite-dimensional 𝑘-vector spaces is a tannakian category over
𝑘 with the forgetful functor 𝜔 as a 𝑘-valued fibre functor (apply 4.1). We examine this
category in two cases.

(a) Let 𝔤 be one-dimensional and assume that 𝑘 is algebraically closed. The affine
group scheme 𝒜𝑢𝑡⊗𝑘 (𝜔) is 𝐷(𝑀) × 𝔾𝑎, where 𝐷(𝑀) is the diagonalizable group scheme
with character group𝑀 = (𝑘,+), i.e., 𝑘 viewed as an abelian group under addition. This
follows from Iwahori 1954.

(b) Let 𝔤 be semisimple, and assume that 𝑘 has characteristic zero. Then 𝒜𝑢𝑡⊗𝑘 (𝜔)
is the simply connected semisimple algebraic group over 𝑘 with Lie algebra 𝔤 (Cartier
1956; Milne 2007b).

9.10 Using 9.9b, it is possible to attach a tannakian category to a root system (better, a
diagram) without using algebraic groups. Simply choose a Lie algebra 𝔤 with the given
root system and take the tannakian category to be 𝖱𝖾𝗉𝖿(𝔤). The category has a natural



92 Chapter II. Neutral tannakian categories

gradation by 𝑃∕𝑄 from which it is possible to read off the category corresponding to any
lattice 𝑋 in 𝑃 containing 𝑄.

Nori’s (true) fundamental group

9.11 Let 𝑆 be a scheme over a field 𝑘. By vector sheaf on 𝑆, we mean a locally free
sheaf of finite rank (equivalently, a vector bundle). A vector sheaf 𝐸 on 𝑆 is finite if there
exist polynomials 𝑔, ℎ ∈ ℕ[𝑡], 𝑔 ≠ ℎ, such that 𝑔(𝐸) ≈ ℎ(𝐸). For example, an invertible
𝐿 sheaf on 𝑆 is finite if and only of 𝐿⊗𝑚 ≈ 𝒪𝑆 for some𝑚. With the obvious structures,
the finite vector sheaves form 𝑘-linear rigid tensor category with 𝒪𝑆 as the unit object,
but it is not necessarily abelian.

Define a vector sheaf 𝐸 on a curve to be semi-stable if for every vector subsheaf
𝐸′ ⊂ 𝐸,

deg(𝐸′)
rank(𝐸′)

≤
deg(𝐸)
rank(𝐸)

def= 𝜇(𝐸).

Let 𝑆 be a complete connected reduced scheme over a field 𝑘. Following Nori 1976, we
say that a vector sheaf on 𝑆 is semi-stable if for every nonconstant morphism 𝑓∶ 𝐶 → 𝑆
with 𝐶 a complete connected normal curve, 𝑓∗𝐸 is semi-stable with slope 𝜇(𝑓∗𝐸) = 0.
Let 𝖢(𝑆∕𝑘) denote the category of semi-stable vector sheaves on 𝑆 that are subquotients
of finite vector sheaves. If 𝑆 has a 𝑘-rational point 𝑠, then 𝖢(𝑆∕𝑘) is a tannakian category
over 𝑘 (in particular, abelian) with a canonical 𝑘-valued fibre functor 𝜔𝑠 ∶ 𝐸 ⇝ 𝐸𝑠.
The affine group scheme attached to (𝖢, 𝜔𝑠) is called the fundamental group scheme
𝜋𝑁1 (𝑆, 𝑠) of 𝑆. It is a projective limit of finite group schemes over 𝑘. Note that 𝖢(𝑆∕𝑘)
also has a tautologous fibre functor 𝜂 over 𝑆 such that 𝜂𝑠 = 𝜔𝑠.

Fix an 𝑠 ∈ 𝑆(𝑘), and consider the triples (𝐺, 𝑃, 𝑝), where 𝐺 is a finite group scheme
over 𝑘, 𝑃 is a torsor under𝐺 over 𝑆, and 𝑝 ∈ 𝑃(𝑘)maps to 𝑠 ∈ 𝑆(𝑘). They form a category
𝑁(𝑆∕𝑘, 𝑠) in an obvious way. From a homomorphism 𝜋𝑁1 (𝑆, 𝑠) → 𝐺 from 𝜋𝑁1 (𝑆, 𝑠) to
a finite group scheme 𝐺 over 𝑘, we get an exact tensor functor 𝜙∶ 𝖱𝖾𝗉𝖿(𝐺) → 𝖢(𝑆∕𝑘),
and hence a fibre functor 𝜂 = 𝜂◦𝜙 over 𝑆, a fibre functor 𝜔 = 𝜔𝑠◦𝜙 over 𝑘, and an
isomorphism 𝜂𝑠 → 𝜔. Now ℋ𝑜𝑚(𝜂, 𝜔𝑆) is a torsor under 𝐺 over 𝑆 together with a
𝑘-rational point lying over 𝑠. In this way, we obtain an equivalence of categories

Hom(𝜋𝑁1 (𝑆, 𝑠),−)→ 𝑁(𝑆∕𝑘, 𝑠), (59)

where Hom(𝜋𝑁1 (𝑆, 𝑠),−) is the category whose objects are finite group schemes over 𝑘
equipped with a homomorphism from 𝜋𝑁1 (𝑆, 𝑠) and whose morphisms are the homo-
morphisms of 𝑘-group schemes compatible with the morphism from 𝜋𝑁1 (𝑆, 𝑠). When
𝑘 is algebraically closed, the largest étale quotient of 𝜋𝑁1 (𝑆, 𝑠) is 𝜋1(𝑆, 𝑠) as they both
classify the same objects.

See Nori 1976 for the original account and Szamuely 2009, 6.7, for a more recent
account.

The Galois theory of linear differential equations.

A differential field is a field 𝐾, which we shall always assume to have characteristic
zero, equipped with derivation, i.e., an additive map 𝜕∶ 𝐾 → 𝐾 such that 𝜕(𝑎𝑏) =
𝜕(𝑎)𝑏 + 𝑎𝜕(𝑏) for all 𝑎, 𝑏 ∈ 𝐾. We sometimes write 𝑎′ for 𝜕𝑎. For example, (ℂ(𝑇), 𝑑

𝑑𝑇
),

is a differential field.
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Let (𝐾, 𝜕) be a differential field. A differential module (𝑉,∇) is a finite-dimensional
𝐾-vector space 𝑉 with an additive map ∇ such that ∇(𝑓𝑚) = 𝑓′𝑚 + 𝑓∇𝑚 for all 𝑓 ∈ 𝐾,
𝑚 ∈ 𝑉. The choice of a basis for 𝑉 gives rise to amatrix differential equation

𝑦′ = 𝐴𝑦, 𝐴 ∈ 𝑀𝑛(𝐾), 𝑦 ∈ 𝐾𝑛.

Roughly speaking, the Picard–Vessiot field for a differential module is the differential
ring generated by the solutions of the matrix differential equation. The differential
Galois group is then the group of differential 𝑘-algebra automorphisms of the Picard–
Vessiot field. It has a natural structure of an affine algebraic group. The classical theory
provides a Galois correspondence between the algebraic subgroups of the differential
Galois group and the differential subfields of the Picard–Vessiot ring. The basic problem
in the theory is how to compute the differential Galois group of a given differential
module.

There is a tannakian interpretation of the above theory, which provides new insights,
and which we now briefly describe.

Let (𝐾, 𝜕) be a differential field. The kernel of 𝜕 is a subfield 𝑘 of 𝐾, called the
constant field. Let (𝑉,∇) be a differential module over (𝐾, 𝜕). The subset 𝑉∇ def= Ker(∇)
is 𝑘-subspace, whose elements are called the horizontal vectors. Given an extension
(𝐿, 𝜕) ⊂ (𝐾, 𝜕) of differential fields, define (𝑉𝐿,∇𝐿) to be the differential module over
(𝐿, 𝜕) with 𝑉𝐿 = 𝑉 ⊗𝐾 𝐿 and such that, relative to a basis for 𝑉, ∇𝐿 gives rise to a
differential equation with the same matrix 𝐴 as ∇.

The differential modules over (𝐾, 𝜕) form a tensorial category over 𝑘. For example,
the tensor product of (𝑉1,∇1) and (𝑉2,∇2) is (𝑉1 ⊗𝑉2,∇1 ⊗∇2), where

(∇1 ⊗∇2) (𝑣1 ⊗ 𝑣2) = ∇1(𝑣1)⊗ 𝑣2 + 𝑣1 ⊗∇2(𝑣2),

and the dual of (𝑉,∇) is (𝑉∨,∇∨), where

∇∨(𝜙)(𝑣) = 𝜕(𝜙(𝑣)) − 𝜙(∇(𝑣)).

The forgetful functor (𝑉,∇)⇝ 𝑉 is a 𝐾-valued fibre functor, and so the category is even
tannakian.

Definition 9.12 Let (𝑉,∇) be a differential module over a differential field (𝐾, 𝜕). A
differential field extension (𝐿, 𝜕) ⊃ (𝐾, 𝜕) is a Picard–Vessiot extension for (𝑉,∇) if it
has the following properties:
(a) (𝐿, 𝜕) has the same constant field 𝑘 as (𝐾, 𝜕);
(b) the 𝑘-subspace 𝑉∇𝐿

𝐿 of horizontal vectors in 𝑉𝐿 spans 𝑉𝐿 as an 𝐿-vector space;
(c) the coordinates of the horizontal vectors of 𝑉𝐿, relative to an 𝐿-basis of 𝑉𝐿 coming

from a 𝐾-basis of 𝑉, generate the field 𝐿 as an extension of 𝐾.

Note that if (𝐿, 𝜕) is a Picard–Vessiot extension for (𝑉,∇), then the condition (b)
holds for all differential modules in the tannakian subcategory ⟨(𝑉,∇)⟩⊗ generated by
(𝑉,∇).

Theorem 9.13 Let (𝑉,∇) be a differential module over a differential field (𝐾, 𝜕).
(a) Let (𝐿, 𝜕) be a Picard–Vessiot extension for (𝑉,∇). The functor

𝜔𝐿 ∶ ⟨(𝑉,∇)⟩⊗ → 𝖵𝖾𝖼𝖿(𝑘), (𝑊,∇)⇝ (𝑊𝐿)∇𝐿 ,

is a fibre functor on ⟨(𝑉,∇)⟩⊗, and𝒜𝑢𝑡⊗(𝜔𝐿) is canonically isomorphic to the dif-
ferential Galois group of (𝑉,∇).
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(b) Every 𝑘-valued fibre functor on ⟨(𝑉,∇)⟩⊗ arises, as in (a), from a Picard–Vessiot
extension.

In particular, when 𝑘 is algebraically closed, (III, 10.1) implies that there exists a Picard–
Vessiot extension for (𝑉,∇) (unique, up to a nonunique isomorphism).

Notes For more, see Deligne 1990, §9, van der Put and Singer 2003, and Szamuely 2009, 6.6.

Real Hodge structures

9.14 A real Hodge structure is a finite-dimensional vector space 𝑉 over ℝ together
with a decomposition

𝑉 ⊗ℝ ℂ =
⨁

𝑝,𝑞
𝑉𝑝,𝑞

such that𝑉𝑝,𝑞 and𝑉𝑞,𝑝 are conjugate complex subspaces of𝑉⊗ℝℂ. There is an obvious
rigid tensor structure on the category 𝖧𝗈𝖽ℝ of real Hodge structures, and

𝜔∶ (𝑉, (𝑉𝑝,𝑞))⇝ 𝑉

is a fibre functor. The group corresponding to 𝖧𝗈𝖽ℝ and 𝜔 is the real algebraic group
𝕊 obtained from 𝔾𝑚 by restriction of scalars from ℂ to ℝ, that is, 𝕊 = Resℂ∕ℝ𝔾𝑚 (the
Deligne torus). The real Hodge structure (𝑉, (𝑉𝑝,𝑞)) corresponds to the representation of
𝕊 on 𝑉 such that an element 𝜆 ∈ 𝕊(ℝ) = ℂ× acts on 𝑉𝑝,𝑞 as 𝜆−𝑝�̄�−𝑞. There is aweight
gradation𝑉 =

⨁
𝑉𝑚, where𝑉𝑚⊗ℂ =

⨁
𝑝+𝑞=𝑚 𝑉

𝑝,𝑞. The functor (𝑉, (𝑉𝑝,𝑞))⇝ (𝑉𝑚)
from𝖧𝗈𝖽ℝ to the category of graded real vector spaces corresponds to the homomorphism
𝔾𝑚 → 𝕊 that, on real points, is

𝑡 ↦ 𝑡−1∶ ℝ× → ℂ×.

Rational Hodge structures

9.15 A rational Hodge structure is a ℚ-vector space 𝑉 together with a real Hodge
structure on 𝑉 ⊗ ℝ such that the weight gradation is defined over ℚ. Thus, to give
a rational Hodge structure on 𝑉 is the same as giving a gradation 𝑉 =

⨁
𝑚 𝑉𝑚 on 𝑉

together with a real Hodge structure of weight 𝑚 on 𝑉𝑚 ⊗ ℝ for each 𝑚. The Tate
Hodge structureℚ(𝑚) is defined to be theℚ-subspace (2𝜋𝑖)𝑚ℚ of ℂ with ℎ(𝑧) acting
as (𝑧�̄�)𝑚. It has weight −2𝑚 and type (−𝑚,−𝑚).

For a real Hodge structure (𝑉, ℎ), the ℝ-linear map 𝐶 = ℎ(𝑖) is called the Weil
operator. It acts as 𝑖𝑞−𝑝 on 𝑉𝑝,𝑞, and 𝐶2 = ℎ(−1) acts as (−1)𝑚 on 𝑉𝑚.

A polarization of a real Hodge structure (𝑉, ℎ) of weight𝑚 is a morphism of Hodge
structures

𝜓∶ 𝑉 ⊗ 𝑉 → ℝ(−𝑚), 𝑚 ∈ ℤ,

such that
(𝑥, 𝑦)↦ (2𝜋𝑖)𝑚𝜓(𝑥, 𝐶𝑦)∶ 𝑉 × 𝑉 → ℝ

is symmetric and positive-definite. A polarization of a rational Hodge structure 𝑉
is a morphism of rational Hodge structures 𝜓∶ 𝑉 ⊗ 𝑉 → ℚ(−𝑚) such that 𝜓 ⊗ ℝ
is a polarization of 𝑉 ⊗ ℝ. A rational Hodge structure is polarizable, i.e., admits a
polarization, if and only if 𝑉 ⊗ℝ is polarizable. See Deligne 1979b, 1.1.

The polarizable rational Hodge structures form a tannakian category 𝖧𝗈𝖽ℚ with the
forgetful functor as a fibre functor. Let 𝐺 denote the associated affine group scheme over
ℚ. Then,
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(a) all algebraic quotients of 𝐺 are reductive (in particular, connected);

(b) the quotient of 𝐺 by its derived group is the (well-known) Serre protorus;

(c) the derived group of 𝐺 is simply connected (hence a product of simply connected
almost-simple algebraic groups over ℚ);

(d) the simple factors of the adjoint group of 𝐺 are the groups of the form Res𝐹∕ℚ(𝐻),
where 𝐹 is a totally real number field and 𝐻 is a geometrically simple algebraic
group over 𝐹 such that, for all embeddings 𝜎 of 𝐹 in ℝ, the real algebraic group
𝜎𝐻 contains a compact maximal torus.

See, for example, Milne 2020b.

Hodge–Tate modules

9.16 Let 𝐾 be a field of characteristic zero, complete with respect to a discrete valuation,
whose residue field is algebraically closed of characteristic 𝑝 ≠ 0. The Hodge-Tate
modules for 𝐾 form a neutral tannakian category over ℚ𝑝 (see Serre 1979).

10 Tensor products of abelian tensor categories

In this section, we explain a construction that will be needed in the next chapter.

Tensor products of abelian categories: definition and preliminaries

In this subsection, 𝑘 is a commutative ring. Unadorned tensor products are over 𝑘. When
𝖠, 𝖡, and 𝖣 are 𝑘-linear abelian categories, 𝖱𝖾𝗑𝑘(𝖠,𝖣) is the category of 𝑘-linear right
exact functors 𝖠 → 𝖣 and 𝖱𝖾𝗑𝑘(𝖠 × 𝖡,𝖣) the category of 𝑘-bilinear functors 𝖠 × 𝖡 → 𝖣
right exact in each variable.

Definition 10.1 (Deligne 1990, 5.1) Let 𝖠 and 𝖡 be 𝑘-linear abelian categories. A
pair (𝖠⊠ 𝖡,⊠) consisting of 𝑘-linear abelian category 𝖠⊠ 𝖡 and a 𝑘-bilinear functor
⊠∶ 𝖠 × 𝖡 → 𝖠⊠ 𝖡, right exact in each variable, is the tensor product of 𝖠 and 𝖡 if it
has the following universal property: for all 𝑘-linear abelian categories 𝖣, the functor

𝐹 ⇝ 𝐹◦⊠∶ 𝖱𝖾𝗑𝑘(𝖠⊠ 𝖡,𝖣)→ 𝖱𝖾𝗑𝑘(𝖠 × 𝖡,𝖣) (60)

is an equivalence of categories.4

Lemma 10.2 If it exists, (𝖠⊠𝖡,⊠) is unique (up to an equivalence, unique up to a unique
isomorphism).

Proof Let𝖠 and 𝖡 be 𝑘-linear abelian categories, and let ℎ𝖠 and ℎ𝖡 be the corresponding
pseudofunctors 𝒞op → 𝒞𝒶𝓉, where 𝒞 is a 2-category such that 𝒞0 is some set of 𝑘-
linear abelian categories and𝖧𝗈𝗆(𝖠,𝖡) = 𝖱𝖾𝗑𝑘(𝖠,𝖡). The 2-categoryYoneda embedding
theorem says that

ℎ∶ 𝖧𝗈𝗆(𝖠,𝖡)→ 𝖧𝗈𝗆(ℎ𝖠, ℎ𝖡) (61)

is an isomorphism of categories (A.31). In the present situation, we can replace 𝒞𝒶𝓉
with a 2-category of small 𝑘-linear abelian categories. If (𝖠⊠ 𝖡,⊠) and (𝖠⊠′ 𝖡,⊠′) are
two tensor products of 𝖠 and 𝖡, then we are given a specific equivalence ℎ𝖠⊠𝖡 → ℎ𝖠⊠′𝖡,

4In this section, we largely ignore sizes. If 𝖠 and 𝖡 are locally small, then 𝖧𝗈𝗆(𝖠,𝖡) need not be locally
small unless 𝖠 is small. In practice, 𝖠 and 𝖡 are essentially small, and we can require 𝖣 to be small.
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which corresponds under (61) to an equivalence 𝖠⊠ 𝖡 → 𝖠⊠′ 𝖡, uniquely determined
up to a unique isomorphism. 2

We shall prove the existence for locally finite 𝑘-linear abelian categories. Without
some finiteness condition, the tensor product need not exist, even for 𝑘 = ℚ (see 10.15
below).

Let 𝐴 and 𝑅 be rings (not necessarily commutative), and let𝑀 be an (𝐴, 𝑅)-module.
The functor

𝐹𝑀 ∶ 𝖬𝗈𝖽𝐴 → 𝖬𝗈𝖽𝑅, 𝑋 ⇝ 𝑋 ⊗𝐴 𝑀

is right exact and commutes with all direct sums. It has been known since about 1960
(Eilenberg, Gabriel, Watts) that every such functor arises in this way. We prove a more
precise statement. Note that 𝐹𝑀 is natural in 𝑀: a homomorphism 𝑓∶ 𝑀 → 𝑁 of
(𝐴, 𝑅)-bimodules defines a natural transformation 𝐹𝑀 → 𝐹𝑁 whose value on 𝑋 is

id𝑋⊗𝑓∶ 𝑋 ⊗𝐴 𝑀 → 𝑋 ⊗𝐴 𝑁.

Proposition 10.3 The functor

𝑀 ⇝ 𝐹𝑀 ∶ 𝐴𝖬𝗈𝖽𝑅 → 𝖱𝖾𝗑(𝖬𝗈𝖽𝖿𝐴,𝖬𝗈𝖽𝑅)

is an equivalence with quasi-inverse 𝐹 ⇝ 𝐹(𝐴𝐴).

Proof From a natural transformation 𝑢∶ 𝐹𝑀 → 𝐹𝑁 , we get a morphism

𝑀 ≃ 𝐴⊗𝐴 𝑀
𝑢𝐴,→ 𝐴⊗𝐴 𝑁 ≃ 𝑁.

When applied to 𝑢 = 𝐹𝑓, where 𝑓∶ 𝑀 → 𝑁, this gives back 𝑓. Thus, the functor
𝑀 ⇝ 𝐹𝑀 is faithful.

Let 𝑢∶ 𝐹𝑀 → 𝐹𝑁 be a natural transformation. For 𝑋 in𝖬𝗈𝖽𝖿𝐴, we shall show that

𝑢𝑋 ∶ 𝑋 ⊗𝑀 → 𝑋 ⊗𝑁

equals id𝑋⊗𝑢𝐴, so 𝑢 = 𝐹(𝑢𝐴). Let 𝒞 be the collection of 𝑋 for which this is true.
Certainly 𝒞 contains 𝐴𝐴, and it is closed under finite direct sums. If 𝑋,𝑌 ∈ 𝒞 and
𝑋 → 𝑌 → 𝑍 → 0 is exact, then the exact commutative diagram

𝑋 ⊗𝑀 𝑌 ⊗𝑀 𝑍 ⊗𝑀 0

𝑋 ⊗𝑁 𝑌 ⊗𝑁 𝑍 ⊗𝑁 0

←→

←→ id𝑋 ⊗𝑢𝐴𝑢𝑋

←→

←→ id𝑌 ⊗𝑢𝐴𝑢𝑌

←→

←→
←→ ←→ ←→

shows that 𝑍 ∈ 𝒞. By definition, every 𝑋 in𝖬𝗈𝖽𝖿𝐴 arises as a cokernel

𝐴𝑚 → 𝐴𝑛 → 𝑋 → 0,

and so it lies in 𝒞. We have shown that the functor𝑀 ⇝ 𝐹𝑀 is full.
Let 𝐹∶ 𝖬𝗈𝖽𝖿𝐴 → 𝖬𝗈𝖽𝑅 be right exact, and let 𝑀 = 𝐹(𝐴𝐴). Then 𝑀 is a right

𝑅-module by definition, and it becomes a left 𝐴-module through the map

𝐴 ≃ End𝐴(𝐴𝐴)
𝐹
,→ End𝑅(𝑀).
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Note that, for 𝑎 ∈ 𝐴, 𝑟 ∈ 𝑅,𝑚 ∈ 𝑀,

(𝑎𝑚)𝑟 def= (𝐹(𝑎)(𝑚))𝑟 = 𝐹(𝑎)(𝑚𝑟) = 𝑎(𝑚𝑟),

and so𝑀 ∈ 𝐴𝖬𝗈𝖽𝑅. We shall show that 𝐹 is isomorphic to 𝐹𝑀 .
For 𝑋 in𝖬𝗈𝖽𝖿𝐴, we regard Hom𝑅(𝑀,𝐹𝑋) as a right 𝐴-module by

(𝑓 ⋅ 𝑎)(𝑚) = 𝑓(𝑎𝑚).

Then

𝑓𝑋
def=
(
𝑋 ≃ Hom𝐴(𝐴,𝑋)

𝐹
,→ Hom𝑅(𝑀,𝐹𝑋)

)

is 𝐴-linear: for 𝑎 ∈ 𝐴,𝑚 ∈ 𝑀, 𝑡∶ 𝐴 → 𝑋,

𝐹(𝑡𝑎)(𝑚) = 𝐹(𝑡◦𝑎)(𝑚) = 𝐹(𝑡)(𝐹(𝑎)(𝑚)) = 𝐹(𝑡)(𝑎𝑚) = (𝐹(𝑡)𝑎)(𝑚).

Let 𝑔𝑋 ∶ 𝑋 ⊗𝑀 → 𝐹𝑋 be the 𝑅-linear map corresponding to 𝑓𝑋 under the canonical
isomorphism

Hom𝐴(𝑋,Hom𝑅(𝑀,𝐹𝑋)) ≃ Hom𝑅(𝑋 ⊗𝑀,𝐹𝑋),

and let 𝒞 be the collection of 𝑋 such that 𝑔𝑋 is an isomorphism. Then 𝒞 contains 𝐴𝐴, is
closed under finite direct sums, and contains the cokernel of 𝑋 → 𝑌 if it contains 𝑋 and
𝑌. As before, this implies that 𝒞 = ob𝖬𝗈𝖽𝐴, and so 𝑔 is an isomorphism 𝐹𝑀 ≃ 𝐹. 2

Tensor products of abelian categories: construction

In this section 𝑘 is a field.
Let 𝐴 be a finite-dimensional 𝑘-algebra and 𝑅 a 𝑘-algebra (not necessarily commu-

tative). We now let 𝐴𝖬𝗈𝖽𝑅 denote the category of (𝐴, 𝑅)-bimodules such that the two
actions of 𝑘 agree. For𝑀 in 𝐴𝖬𝗈𝖽𝑅, 𝐹𝑀 is 𝑘-linear, and so we have the following variant
of Proposition 10.15.

Proposition 10.4 The functor

𝑀 ⇝ 𝐹𝑀 ∶ 𝐴𝖬𝗈𝖽𝑅 → 𝖱𝖾𝗑𝑘(𝖬𝗈𝖽𝖿𝐴,𝖬𝗈𝖽𝑅)

is an equivalence of categories with quasi-inverse 𝐹 ⇝ 𝐹(𝐴𝐴)

Proposition 10.5 Let 𝐴, 𝐵 be finite-dimensional 𝑘-algebras and 𝑅 a 𝑘-algebra. The
functor

𝐹 ⇝ 𝐹(𝐴, 𝐵)∶ 𝖱𝖾𝗑𝑘(𝖬𝗈𝖽𝖿𝐴 ×𝖬𝗈𝖽𝖿𝐵,𝖬𝗈𝖽𝑅)→ 𝐴⊗𝐵𝖬𝗈𝖽𝑅

is an equivalence of categories.

Proof The proof is a variant of that of Proposition 10.3. 2

Proposition 10.6 Let 𝐴 and 𝐵 be finite-dimensional 𝑘-algebras. Then

⊗∶ 𝖬𝗈𝖽𝖿𝐴 ×𝖬𝗈𝖽𝖿𝐵 → 𝖬𝗈𝖽𝖿𝐴⊗𝑘𝐵, (𝑀,𝑁)⇝ 𝑀 ⊗𝑘 𝑁,

is the tensor product of𝖬𝗈𝖽𝖿𝐴 and𝖬𝗈𝖽𝖿𝐵.
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Proof We have to show that, for any small 𝑘-linear abelian category 𝖣, the functor

𝐹 ⇝ 𝐹◦⊗∶ 𝖱𝖾𝗑𝑘(𝖬𝗈𝖽𝖿𝐴⊗𝐵,𝖣)→ 𝖱𝖾𝗑𝑘(𝖬𝗈𝖽𝖿𝐴 ×𝖬𝗈𝖽𝖿𝐵,𝖣) (62)

is an equivalence of categories. If 𝖣 → 𝖣′ is fully faithful and exact, and the statement is
true for 𝖣′, then it is true for 𝖣. Now a variant of the full embedding theorem (Mitchell
1965, VI, 7.2) allows us to replace 𝖣 with𝖬𝗈𝖽𝑅 for some 𝑘-algebra 𝑅. In this case, (62)
has quasi-inverse

𝖱𝖾𝗑𝑘(𝖬𝗈𝖽𝖿𝐴 ×𝖬𝗈𝖽𝖿𝐵,𝖬𝗈𝖽𝑅)
10.5
,→ 𝐴⊗𝐵𝖬𝗈𝖽𝑅

10.4
,→ 𝖱𝖾𝗑𝑘(𝖬𝗈𝖽𝖿𝐴⊗𝐵,𝖬𝗈𝖽𝑅). 2

Theorem 10.7 (Deligne 1990, 5.13) Let 𝖠 and 𝖡 be essentially small 𝑘-linear abelian
categories (𝑘 a field). If 𝖠 and 𝖡 are locally finite (6.15), then their tensor product exists and
is locally finite.

Proof Write each of 𝖠 and 𝖡 as filtered unions of subcategories 𝖠 =
⋃

𝛼 𝖠𝛼 and 𝖡 =⋃
𝛽 𝖡𝛽 as in (II, 3.12). Now 𝖠𝛼⊠ 𝖡𝛽 exists for each 𝛼, 𝛽 (by 10.6), and the transition map

𝖠𝛼 ⊠ 𝖡𝛽 → 𝖠𝛼′ ⊠ 𝖡𝛽′ , 𝛼 ≤ 𝛼, 𝛽 ≤ 𝛽′,

is fully faithful and exact because it can be identified with the map

𝖬𝗈𝖽𝐴𝛼⊗𝐵𝛼 → 𝖬𝗈𝖽�̄�𝛼⊗�̄�𝛼

defined by a surjective map of 𝑘-algebras 𝐴𝛼 ⊗ 𝐵𝛽 → �̄�𝛼 ⊗ �̄�𝛽 (see II, 3.13). Therefore,

lim,,→
𝛼,𝛽

(⊠∶ 𝖠𝛼 × 𝖡𝛽 → 𝖠𝛼 ⊠ 𝖡𝛽)

has the required properties. 2

Proposition 10.8 Let 𝖠, 𝖡, and 𝖢 be locally finite 𝑘-linear abelian categories. There are
canonical equivalences of categories

𝖠⊠ (𝖡⊠ 𝖢) ∼←→ (𝖠⊠ 𝖡)⊠ 𝖢
𝖠⊠ 𝖡 ∼←→ 𝖡⊠ 𝖠.

Proof Obvious from the definitions. 2

Proposition 10.9 Let 𝖠 and 𝖡 be locally finite 𝑘-linear categories, and let (𝖠⊠ 𝖡,⊠) be
their tensor product.
(a) The functor⊠∶ 𝖠 × 𝖡 → 𝖠⊠ 𝖡 is exact in each variable.
(b) The functor⊠ induces isomorphisms

Hom𝖠(𝑋1, 𝑋2)⊗Hom𝖡(𝑌1, 𝑌2) ≃ Hom(𝑋1 ⊠𝑌1, 𝑋2 ⊠𝑌2),

all 𝑋1, 𝑋2 ∈ ob𝖠, 𝑌1, 𝑌2 ∈ ob𝖡.
(c) The functor⊠makes (𝖠⊠ 𝖡)op the tensor product of 𝖠op and 𝖡op.
(d) For all small 𝑘-linear abelian categories 𝖣, the functor⊠ induces an equivalence of

categories
𝖫𝖾𝗑(𝖠⊠ 𝖡,𝖣) ∼,→ 𝖫𝖾𝗑(𝖠 × 𝖡,𝖣),

where 𝖫𝖾𝗑 denotes the category of 𝑘-linear functors left exact (in each variable).
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Proof It suffices to prove each statement for 𝖠 = 𝖬𝗈𝖽𝖿𝐴 and 𝖡 = 𝖬𝗈𝖽𝖿𝐵, where 𝐴 and
𝐵 are finite-dimensional 𝑘-algebras (see the proof of 10.7).

(a) As⊠ = ⊗𝑘, this is obvious.
(b) For finitely generated 𝐴 and 𝐵 modules, we have a bijection

Hom𝑘(𝑀1,𝑀2)⊗Hom𝑘(𝑁1, 𝑁2) ≃ Hom𝑘(𝑀1 ⊗𝑁1,𝑀2 ⊗𝑁2)
𝑓 ⊗ 𝑔 ↦ (𝑚⊗ 𝑛 ↦ 𝑓(𝑚)⊗ 𝑔(𝑛)).

Under the bijection, maps that are 𝐴 and 𝐵 linear correspond to maps that are 𝐴⊗ 𝐵-
linear.

(c) For a finite-dimensional 𝑘-algebra 𝐴, the functor

𝑀 ⇝ 𝑀∨ def= Hom𝑘(𝑀, 𝑘)∶ (𝖬𝗈𝖽𝖿𝐴)
op → 𝖬𝗈𝖽𝖿𝐴op

is an equivalence of categories because𝑀∨∨ ≃ 𝑀 and (𝐴⊗𝐵)op ≃ 𝐴op⊗𝐵op. Therefore,

𝖬𝗈𝖽𝖿op𝐴 ⊠𝖬𝗈𝖽𝖿op𝐵 ∼ 𝖬𝗈𝖽𝖿𝐴op⊗𝐵op ∼ 𝖬𝗈𝖽𝖿 (𝐴⊗𝐵)op ∼ (𝖬𝗈𝖽𝖿𝐴 ⊠𝖬𝗈𝖽𝖿𝐵)
op .

This proves the statement.
(d) Under 𝖠 ↦ 𝖠op, right exact functors go to left exact functors. Therefore, this

follows from (c) . 2

Proposition 10.10 Suppose that the functors 𝐹∶ 𝖠 × 𝖡 → 𝖣 and 𝐹′∶ 𝖠 ⊠ 𝖡 → 𝖣
correspond under (60), p. 95. If 𝐹 is exact in both variables and 𝑘 is perfect, then 𝐹′ is exact.

Proof Again, it suffices to prove this in the key case 10.12 below. 2

10.11 Let 𝐴 and 𝐵 be finite-dimensional 𝑘-algebras and 𝑆 a simple 𝐴 ⊗𝑘 𝐵-module.
There exist a simple 𝐴-module𝑀 and a simple 𝐵-module 𝑁, both finite-dimensional
over 𝑘, such that 𝑆 is a quotient of𝑀 ⊗𝑘 𝑁 (Bourbaki A, 7.7, Pptn 8). The centres 𝑘𝑀
and 𝑘𝑁 of End𝐴(𝑀) and End𝐵(𝑁) are finite field extensions of 𝑘. If 𝑘 is perfect, they
are separable over 𝑘, and hence 𝑘𝑀 ⊗ 𝑘𝑁 is a semisimple 𝑘-algebra, which implies that
𝑀 ⊗𝑘 𝑁 is a semisimple 𝐴⊗𝑘 𝐵-algebra (Bourbaki A, 7.4, Thm 2). In this case, 𝑆 is a
direct summand of𝑀 ⊗𝑘 𝑁.

Lemma 10.12 Let𝐴 and 𝐵 be finite-dimensional 𝑘-algebras, and suppose that the functors
𝐹∶ 𝖬𝗈𝖽𝖿𝐴 ×𝖬𝗈𝖽𝖿𝐵 → 𝖬𝗈𝖽𝑅 and 𝐹′∶ 𝖬𝗈𝖽𝖿𝐴⊗𝐵 → 𝖬𝗈𝖽𝑅 correspond under (62), p. 98.
If 𝐹 is exact in both variables and 𝑘 is perfect, then 𝐹′ is exact.

Proof Let𝑀 = 𝐹(𝐴𝐴, 𝐵𝐵) = 𝐹′((𝐴⊗ 𝐵)𝐴⊗𝐵). Then

𝐹(𝑋,𝑌) = (𝑋 ⊗ 𝑌)⊗𝐴⊗𝐵 𝑀
𝐹′(𝑍) = 𝑍 ⊗𝐴⊗𝐵 𝑀.

We choose projective resolutions𝑋∙ → 𝑋 and𝑌∙ → 𝑌 for𝑋 and𝑌, and form the complex
(𝑋∙⊗𝑌∙)⊗𝐴⊗𝐵𝑀. LetTor𝐴,𝐵𝑛 ((𝑋,𝑌),𝑀) denote the 𝑛th homology group of this complex.
After our assumption, Tor𝐴,𝐵𝑛 ((𝑋,𝑌),𝑀) = 0 for 𝑛 > 0. For 𝑍 ∈ ob𝖬𝗈𝖽𝖿𝐴⊗𝐵, we define
Tor𝐴⊗𝐵𝑛 (𝑍,𝑀) similarly. We have to show thatTor𝐴⊗𝐵𝑛 (𝑍,𝑀) = 0 for 𝑛 > 0. If𝑍 = 𝑋⊗𝑌
as above, then 𝑋∙ ⊗𝑌∙ → 𝑍 is a projective resolution, and therefore

Tor𝐴⊗𝐵𝑛 (𝑋 ⊗ 𝑌,𝑀) = Tor𝐴,𝐵𝑛 ((𝑋,𝑌),𝑀) = 0.
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An exact sequence
0→ 𝑍′ → 𝑍 → 𝑍′′ → 0

in𝖬𝗈𝖽𝖿𝐴⊗𝐵 gives a long exact sequence

⋯→ Tor𝐴⊗𝐵𝑛 (𝑍′,𝑀)→ Tor𝐴⊗𝐵𝑛 (𝑍,𝑀)→ Tor𝐴⊗𝐵𝑛 (𝑍′′,𝑀).

As every finitely generated 𝐴 ⊗ 𝐵-module has finite length, it suffices to show that
Tor𝐴⊗𝐵𝑛 (𝑍,𝑀) for all 𝑛 > 0 and all simple 𝐴⊗ 𝐵-modules 𝑍. Because

Tor𝐴⊗𝐵𝑛 (𝑍 ⊗ 𝑍′,𝑀) ≃ Tor𝐴⊗𝐵𝑛 (𝑍,𝑀)⊗ Tor𝐴⊗𝐵𝑛 (𝑍′,𝑀)

(Mac Lane 1963, V, §§7,8) this follows from Lemma 10.11. 2

Notes The exposition in this subsection follows the original in Deligne 1990, §5, except that
we have been more careful in the passage to the inductive limits. See also Lattermann 1989, 3.5.
Tensor products of abelian categories in the sense of 10.1 have become known in the literature as
Deligne tensor products (see, for example, ncatlab.org).

Tensor products of abelian categories: an alternative approach

Let 𝑘 be a commutative ring. Recall that a category is finitely cocomplete if it has finite
inductive limits. For example, abelian categories are finitely cocomplete.

10.13 (Kelly 1982) Let 𝖠 and 𝖡 be small 𝑘-linear finitely cocomplete categories. There
exists a 𝑘-linear finitely cocomplete category 𝖠 ∙ 𝖡 and a 𝑘-bilinear functor

∙∶ 𝖠 × 𝖡 → 𝖠⊠ 𝖡,

right exact in each variable, with the following universal property: for all 𝑘-linear finitely
complete categories 𝖣, the functor

𝐹 ⇝ 𝐹◦∙∶ 𝖱𝖾𝗑(𝖠 ∙ 𝖡,𝖣)→ 𝖱𝖾𝗑(𝖠 × 𝖡,𝖣)

is an equivalence of categories.

10.14 (López Franco 2013, Theorem 3) If 𝑘 is a field, and 𝖠 and 𝖡 are locally finite
𝑘-linear abelian categories, then 𝖠 ∙ 𝖡 is abelian and (𝖠 ∙ 𝖡, ∙) is the tensor product of 𝖠
and 𝖡 in the sense of 10.1.

10.15 This gives a second proof of Theorem 10.7. In fact, Lopez Franco (ibid. Theorem
1) shows that two small abelian categories have a tensor product in the sense of 10.1
if and only if their tensor product in the sense of 10.13 is abelian, in which case the
two tensor products coincide. Using this, he gives an example (ibid. Corollary 2) of two
ℚ-linear abelian categories whose tensor product in the sense of 10.1 does not exist.

Tensor products of tensor categories

Let (𝖢, ⊗) be a locally finite 𝑘-linear rigid abelian tensor category. Then⊗ is 𝑘-bilinear
and exact in each variable (I, 6.2), and so it factors through 𝖢⊠ 𝖢,

𝖢 × 𝖢 𝖢⊠ 𝖢

𝖢

←→⊠

←

→⊗

←→ 𝑇
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When 𝑘 is perfect, 𝑇 is exact (10.10). After 10.9(a), ⊠ is 𝑘-linear and exact in each
variable.

Let 𝖢1 and 𝖢2 be 𝑘-linear rigid abelian categories.

Proposition 10.16 Let 𝑘 be a perfect field. If 𝖢1 and 𝖢2 are tensorial categories over 𝑘,
then so also is 𝖢1 ⊠ 𝖢2.

Proof Let 𝖢 = 𝖢1 ⊠ 𝖢2. For 𝑖 = 1, 2, we have a tensor 𝑇𝑖 ∶ 𝖢𝑖 ⊠ 𝖢𝑖 → 𝖢𝑖. On taking
their exterior tensor product, we get a natural transformation 𝑇

𝖢⊠ 𝖢 (𝖢1 ⊠ 𝖢2)⊠ (𝖢1 ⊠ 𝖢2) ≃ (𝖢1 ⊠ 𝖢1)⊠ (𝖢2 ⊠ 𝖢2) 𝖢,⇐⇐

← →

𝑇

←→
𝑇1⊠𝑇2

which is 𝑘-linear and exact (10.10). The middle isomorphism comes from the canonical
isomorphisms in Proposition 10.8. On composing 𝑇 with⊠∶ 𝖢 × 𝖢 → 𝖢⊠ 𝖢, we get a
functor

⊗∶ 𝖢 × 𝖢 → 𝖢.

As unit object, we choose 𝟙⊠ 𝟙. It follows from (10.9(b)) that End(𝟙⊗ 𝟙) ≃ 𝑘.
It remains to prove that 𝖢 is rigid. The equivalences (I, §5)

𝑋𝑖 ⇝ 𝑋∨
𝑖 ∶ 𝖢

op
𝑖 → 𝖢𝑖

induce an equivalence
𝖢op ≃ 𝖢op1 ⊠ 𝖢op2 → 𝖢,

denoted 𝑋 ⇝ 𝑋∨, which is characterized by

(𝑋1 ⊠𝑋2)∨ = 𝑋∨
1 ⊠𝑋∨

2 , 𝑋𝑖 ∈ 𝖢𝑖.

We shall show that internal Homs exist by constructing a natural isomorphism

Hom(𝑋 ⊗ 𝑌, 𝑍) ≃ Hom(𝑌,𝑋∨ ⊗𝑍), 𝑋, 𝑌, 𝑍 ∈ ob𝖢.

Let 𝐹1, 𝐹2∶ 𝖢op × 𝖢op × 𝖢 → 𝖵𝖾𝖼𝖿(𝑘), denote the two functors. Both are left exact in
each variable, so this is equivalent to constructing an isomorphism between the functors

�̃�1, �̃�2∶ 𝖢
op
1 × 𝖢op2 × 𝖢op1 × 𝖢op2 × 𝖢1 × 𝖢2 → 𝖵𝖾𝖼𝖿(𝑘),

where

�̃�1(𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑍1, 𝑍2) = Hom((𝑋1 ⊠𝑋2)⊠ (𝑌1 ⊠𝑌2) , 𝑍1 ⊠𝑍2)
≃ Hom((𝑋1 ⊗𝑌1)⊠ (𝑋2 ⊗𝑌2) , 𝑍1 ⊠𝑍2)
≃ Hom(𝑋1 ⊗𝑌1, 𝑍1)⊠Hom(𝑋2 ⊗𝑌2, 𝑍2)

and

�̃�2(𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑍1, 𝑍2) = Hom((𝑌1 ⊠𝑌2) ,
(
𝑋∨
1 ⊠𝑋∨

2
)
⊗ (𝑍1 ⊠𝑍2))

≃ Hom(𝑌1, 𝑋∨
1 ⊗𝑍1)⊠Hom(𝑌2,𝑋∨

2 ⊗𝑍2).

For this, combine the isomorphisms (I, 4.6)

Hom(𝑋1 ⊗𝑌1, 𝑍1) ≃ Hom(𝑌1, 𝑋∨
1 ⊗𝑍1), 𝑋1, 𝑌1, 𝑍1 ∈ ob𝖢1

Hom(𝑋2 ⊗𝑌2, 𝑍2) ≃ Hom(𝑌2, 𝑋∨
2 ⊗𝑍2), 𝑋2, 𝑌2, 𝑍3 ∈ ob𝖢2.
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It remains to show that the canonical morphism (24), p. 23,

𝜙∶ ℋ𝑜𝑚(𝑋, 𝟙)⊗𝑌 →ℋ𝑜𝑚(𝑋,𝑌)

is an isomorphism for all 𝑋,𝑌 ∈ ob(𝖢). We regard 𝜙 as a morphism of 𝑘-bilinear left
exact functors 𝖢op × 𝖢 → 𝖢. Then it suffices to show that 𝜙𝑋,𝑌 is an isomorphism for
𝑋 = 𝑋1 ⊠𝑋2 and 𝑌 = 𝑌1 ⊠𝑌2 with 𝑋𝑖, 𝑌𝑖 ∈ ob𝖢𝑖. When 𝑋 is of the form 𝑋1 ⊠𝑋2, it
has a dual, namely, (𝑋∨

1 ⊠𝑋∨
2 , ev𝑋1 ⊠ ev𝑋2) and 𝛿𝑋1 ⊠ 𝛿𝑋2 . From this the proposition

follows. 2

Corollary 10.17 Let 𝑘 be a perfect field. If 𝖢1 and 𝖢2 are tannakian categories over 𝑘,
then so also is 𝖢⊠ 𝖣.

Proof There exist fibre functors𝜔𝑖 ∶ 𝖢𝑖 → 𝖬𝗈𝖽(𝐵𝑖), where𝐵𝑖 is a nonzero commutative
𝑘-algebra. The functor

(𝑋1, 𝑋2)⇝ 𝜔1(𝑋1)⊗𝜔2(𝑋2)∶ 𝖢1 × 𝖢2 → 𝖬𝗈𝖽(𝐵1 ⊗ 𝐵2)

is 𝑘-linear and left exact in both variables, and so it induces a 𝑘-linear left exact functor

𝑋1 ⊠𝑋2 ⇝ 𝜔1(𝑋1)⊗𝜔2(𝑋2)∶ 𝖢1 ⊠ .𝖢2 → 𝖬𝗈𝖽(𝐵1 ⊗ 𝐵2).

We wish to define a natural isomorphism between 𝜔(𝑋 ⊗ 𝑌) and 𝜔𝑋 ⊗𝐵1⊗𝐵2 𝜔𝑌. It
suffices to do this with 𝑋 = 𝑋1 ⊠𝑋2 and 𝑌 = 𝑌1 ⊠𝑌2. In this case, we have

𝜔((𝑋1 ⊠𝑋2)⊗ (𝑌1 ⊠𝑌2)) ≃ 𝜔((𝑋1 ⊗𝑌1)⊠ (𝑋2 ⊗𝑌2))
≃ 𝜔1(𝑋1 ⊗𝑌1)⊠𝜔2 (𝑋2 ⊗𝑌2)
≃
(
𝜔1𝑋1 ⊗𝐵1 𝜔1𝑌1

)
⊠
(
𝜔2𝑋2 ⊗𝐵2 𝜔2𝑌2

)

≃ (𝜔1𝑋1 ⊗𝜔2𝑋2)⊗𝐵1⊗𝐵2 (𝜔1𝑌1 ⊗𝜔2𝑌2)
≃ 𝜔 (𝑋1 ⊠𝑋2)⊗𝐵1⊗𝐵2 𝜔 (𝑌1 ⊠𝑌2) .

We have shown that 𝖢1⊠𝖢2 has a fibre functor with values in the nonzero commutative
𝑘-algebra 𝐵1 ⊗ 𝐵2. 2

For the proof of Corollary 10.17 over nonperfect fields 𝑘, see Deligne 1990, 5.18. The
existence of a tensor product of tannakian categories is also an immediate consequence
of III, Theorem 1.1, whose proof, however, Corollary 10.17; see IV, §5.



Chapter III

General tannakian categories

The notion of a groupoid is a natural generalization of that of a group. In this chapter,
we show that affine groupoid schemes classify nonneutral tannakian categories in the
same way that affine group schemes classify neutral tannakian categories.

Throughout this chapter, 𝑘 is the base commutative ring (usually a field). Unadorned
tensor products (resp. products) are over 𝑘 (resp. Spec 𝑘).

1 Statement of the main theorem

Throughout this section, 𝑘 is a field.
A groupoid in the category 𝖲𝖾𝗍 is a small category in which all morphisms are

isomorphisms. Thus giving a groupoid amounts to giving a set 𝑆 (of objects), a set 𝐺
(of arrows), maps 𝑡, 𝑠∶ 𝐺 ⇉ 𝑆 (sending an arrow to its target and source respectively),
and a partial law of composition satisfying certain conditions. When 𝑆 has only a single
element, 𝐺 is just a group, and so we can think of a groupoid as being a “group with
many objects”.

A groupoid scheme is a groupoid in the category 𝖠𝖿𝖿𝑘 of affine schemes over 𝑘. Thus,
it consists of an affine 𝑘-scheme 𝑆, an affine 𝑘-scheme 𝐺, morphisms 𝑡, 𝑠∶ 𝐺 ⇉ 𝑆, and
a partial law of composition ◦ such that (𝑆(𝑇), 𝐺(𝑇), 𝑡, 𝑠, ◦) is a groupoid (in 𝖲𝖾𝗍) for all
affine 𝑘-schemes 𝑇. We usually refer to 𝐺 as a 𝑘-groupoid acting on 𝑆. The morphism
(𝑡, 𝑠)∶ 𝐺 → 𝑆×𝑆 allows us to regard𝐺 as an 𝑆×𝑆-scheme. We say that𝐺 acts transitively
on 𝑆 if there exists a faithfully flat morphism 𝑆′ → 𝑆 × 𝑆 such that Hom𝑆×𝑆(𝑆′, 𝐺) ≠ ∅;
we shall see that this is equivalent to 𝐺 itself being faithfully flat over 𝑆 × 𝑆.

The reader will find a detailed description of groupoids in §2. In §3, we define a
category 𝖱𝖾𝗉𝖿(𝑆∶𝐺) of representations of 𝐺 on locally free sheaves of finite rank on 𝑆.
This is a 𝑘-linear tensor category.

When (𝖳, ⊗) is a tannakian category over 𝑘 and 𝜔 is a fibre functor on 𝖳 over a
nonempty 𝑘-scheme 𝑆, we let 𝒜𝑢𝑡⊗𝑘 (𝜔) denote the functor sending an 𝑆 × 𝑆-scheme
(𝑏, 𝑎)∶ 𝑇 → 𝑆 × 𝑆 to the set of isomorphisms of tensor functors 𝑎∗𝜔 → 𝑏∗𝜔.

Theorem 1.1 (Deligne 1990, 1.12) Let 𝖳 be an essentially small tannakian category
over 𝑘 and 𝜔 a fibre functor on 𝖳 over a nonempty affine 𝑘-scheme 𝑆.

(a) The functor 𝒜𝑢𝑡⊗𝑘 (𝜔) of 𝑆 × 𝑆-schemes is represented by a 𝑘-groupoid 𝐺 acting
transitively on 𝑆.

(b) The functor 𝖳 → 𝖱𝖾𝗉𝖿(𝑆∶𝐺) defined by 𝜔 is an equivalence of tensor categories.
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Conversely, if 𝐺 is a 𝑘-groupoid acting transitively on a nonempty 𝑘-scheme 𝑆, then
𝖱𝖾𝗉𝖿(𝑆∶𝐺) is a tannakian category over 𝑘 and 𝐺 ≃ 𝒜𝑢𝑡⊗𝑘 (𝜔forget).

Thus the theoremprovides a dictionary between tannakian categories over𝑘 equipped
with a fibre functor over 𝑆 and 𝑘-groupoids acting transitively on 𝑆.

Example 1.2 When 𝑆 = Spec 𝑘, Theorem 1.1 becomes Theorem 3.1 of Chapter II.

Notation 1.3 Let 𝖳 be a tannakian category over 𝑘. When 𝜔1 and 𝜔2 are fibre functors
over 𝑆, we let ℐ𝑠𝑜𝑚⊗

𝑆 (𝜔1, 𝜔2) denote the functor of 𝑆-schemes

(𝑇
𝑢
,→ 𝑆)⇝ Isom⊗(𝑢∗𝜔1, 𝑢∗𝜔2).

When 𝜔1 and 𝜔2 are fibre functors over 𝑆1 and 𝑆2 respectively, we let

ℐ𝑠𝑜𝑚⊗
𝑘 (𝜔2, 𝜔1) = ℐ𝑠𝑜𝑚⊗

𝑆1×𝑆2
(pr∗2 𝜔2, pr

∗
1 𝜔1),

so, as a functor of 𝑆1 × 𝑆2-schemes, ℐ𝑠𝑜𝑚
⊗
𝑘 (𝜔2, 𝜔1) is

(𝑇
(𝑏,𝑎)
,→ 𝑆1 × 𝑆2)⇝ Isom⊗(𝑎∗𝜔2, 𝑏∗𝜔1).

For a fibre functor 𝜔 over 𝑆, we put

𝒜𝑢𝑡⊗𝑆 (𝜔) = ℐ𝑠𝑜𝑚⊗
𝑆 (𝜔, 𝜔)

𝒜𝑢𝑡⊗𝑘 (𝜔) = ℐ𝑠𝑜𝑚⊗
𝑘 (𝜔, 𝜔)

def= ℐ𝑠𝑜𝑚⊗
𝑆×𝑆(pr

∗
2 𝜔, pr

∗
1 𝜔).

Thus, 𝒜𝑢𝑡⊗𝑆 (𝜔) is the functor of 𝑆-schemes

(𝑇
𝑢
,→ 𝑆)⇝ Aut⊗(𝑢∗𝜔)

and 𝒜𝑢𝑡⊗𝑘 (𝜔) is the functor of 𝑆 × 𝑆-schemes

(𝑇
(𝑏,𝑎)
,→ 𝑆 × 𝑆)⇝ Isom⊗(𝑎∗𝜔, 𝑏∗𝜔).

As a functor of 𝑘-schemes, 𝒜𝑢𝑡⊗𝑘 (𝜔) sends a 𝑘-scheme 𝑇 to

{(𝑏, 𝑎, 𝜑) ∣ 𝑏, 𝑎∶ 𝑇 → 𝑆, 𝜑∶ 𝑎∗𝜔 ≈,→ 𝑏∗𝜔}.

According to the theorem,𝒜𝑢𝑡⊗𝑘 (𝜔) is represented by an 𝑆×𝑆-scheme (𝑡, 𝑠)∶ 𝐺 ,→ 𝑆×𝑆
and the partial law of composition on 𝒜𝑢𝑡⊗𝑘 (𝜔) makes (𝑆, 𝐺, 𝑡, 𝑠, ◦) into a 𝑘-groupoid
acting on 𝑆.

Before sketching the proof of the theorem, we prove an important corollary.

Corollary 1.4 Let 𝖳 be as in the theorem. Any two fibre functors on 𝖳 over an affine
𝑘-scheme 𝑆 become isomorphic over some faithfully flat covering of 𝑆.

Proof Let 𝜔1 and 𝜔2 be fibre functors on 𝖳 over 𝑆1 and 𝑆2 respectively. The functor
sending a fibre functor over 𝑇 def= 𝑆1 ⊔ 𝑆2 to its restrictions to 𝑆1 and 𝑆2 is an equivalence
of categories. Thus, 𝜔1 and 𝜔2 arise from a fibre functor 𝜔 over 𝑇, unique up to a unique
isomorphism. Let (𝐺, 𝑇) be the groupoid representing 𝒜𝑢𝑡⊗𝑘 (𝜔) as in (a) of the theorem.
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As 𝐺 acts transitively on 𝑇, there exists a faithfully flat morphism 𝑇′ → 𝑇 × 𝑇 such that
Hom𝑇×𝑇(𝑇′, 𝐺) ≠ ∅, i.e., such that𝒜𝑢𝑡⊗𝑘 (𝜔)(𝑇

′) ≠ ∅. Note that

𝑇 × 𝑇 = (𝑆1 × 𝑆1) ⊔ (𝑆1 × 𝑆2) ⊔ (𝑆2 × 𝑆1) ⊔ (𝑆2 × 𝑆2) .

We now take 𝑆1 = 𝑆2 = 𝑆. Then the restriction of𝒜𝑢𝑡⊗𝑘 (𝜔) to the subscheme

𝑆
∆
→ 𝑆 × 𝑆 = 𝑆2 × 𝑆1 ⊂ 𝑇 × 𝑇

of 𝑇 × 𝑇 is ℐ𝑠𝑜𝑚⊗
𝑆 (𝜔1, 𝜔2), and so ℐ𝑠𝑜𝑚

⊗
𝑆 (𝜔1, 𝜔2)(𝑇

′′) ≠ ∅, where 𝑇′′ def= 𝑇′ ×𝑇×𝑇 𝑆. As
𝑇′′ is faithfully flat over 𝑆, this completes the proof. 2

We prove Theorem 1.1 in §6, after presenting various preliminaries in §2–§5. Before
outlining the proof, we review the proof in the neutral case.

Let 𝖳 be a tannakian category over 𝑘 and 𝜔 a 𝑘-valued fibre functor on 𝖳. We want
to realize (𝖳, 𝜔) as (𝖱𝖾𝗉𝖿(𝐺), 𝜔forget) for some affine group scheme 𝐺. Initially, we forget
the tensor structure on 𝖳 and simply regard it as an abelian category. A result of Gabber
(II, 3.11) allows us to write 𝖳 as a union of categories of the form𝖬𝗈𝖽𝐴 with 𝐴 a finite-
dimensional 𝑘-algebra. An elementary argument then allows us to replace𝖬𝗈𝖽𝐴 with
𝖼𝗈𝖬𝗈𝖽𝐶 , where 𝐶 is a coalgebra, and realize the whole of (the abelian category) 𝖳 as the
category of comodules over a 𝑘-coalgebra 𝐶. Now the tensor structure on 𝖳 provides 𝐶
with an algebra structure, and the existence of duals implies the existence of an antipode.

The proof in the general case is similar except that, at each stage, we must replace
an object by its more complicated “-oid” generalization, and to realize 𝖳 (as an abelian
category) as a category of comodules, we appeal to the comonadic theorem in category
theory.

In §2 we develop the basic theory of affine groupoid schemes, and in §3 we show
(3.5) that the category of representations 𝖱𝖾𝗉𝖿(𝑆∶𝐺) is tannakian. In §4 we explain how
to interpret representations of affine 𝑘-groupoids as comodules over coalgebroids in the
same way that representations of affine 𝑘-groups can be interpreted as comodules over
coalgebras.

In §5, we prove the comonadic theorem of Barr and Beck. This is a result in category
theory that provides a solution to the following problem: given a faithful functor𝐹∶ 𝖢 →
𝖡, use 𝐹 to define a structure on 𝖡 with the property that 𝖢 can be recovered from 𝖡 and
the structure.

After these preparations, in §6 we prove Theorem 1.1. Let 𝖳 be a tannakian category
over 𝑘 and 𝜔 a fibre functor on 𝖳 over an affine 𝑘-scheme 𝑆. We first use the results on
abelian categories proved in Chapter II and the comonadicity theorem to show that the
abelian category 𝖳 is equivalent to the category of comodules over the coalgebroid 𝐿(𝜔)
of “endomorphisms of 𝜔”. Now the tensor structure on 𝖳 allows us to provide 𝐿(𝜔) with
an algebra structure, and the rigidity of 𝖳 implies that Spec𝐿(𝜔) is a 𝑘-groupoid 𝐺 acting
on 𝑆 (rather than a 𝑘-monoidoid).

It remains to show that𝐺 is faithfully flat over 𝑆×𝑆. For this, we use the statement (I,
9.8) that for a ring (𝐴,𝑚, 𝑒) in a tensorial category, the morphism 𝑒∶ 𝟙→ 𝐴 is faithfully
flat. In §10 of Chapter II, we constructed a tensorial category 𝖳⊠ 𝖳 with the property
that a fibre functor 𝜔 on 𝖳 over 𝑆 = Spec𝐵 defines a fibre functor 𝜔 × 𝜔 on 𝖳⊠ 𝖳 over
𝑆 × 𝑆. The 𝐵 ⊗ 𝐵-algebra 𝐿(𝜔) is faithfully flat because it is the image by 𝜔 × 𝜔 of an
Ind-object containing 𝟙 of 𝖳⊗ 𝖳.

The remaining sections §7–§10 add various complements.
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Remark 1.5 When one defines a groupoid scheme to be a groupoid in the category
of all (not necessarily affine) schemes over 𝑘 and allows fibre functors over nonaffine
schemes, one arrives at the following statement.

Let 𝖳 be an essentially small tannakian category over 𝑘 and 𝜔 a fibre functor
on 𝖳 over a nonempty 𝑘-scheme 𝑆.

(a) The functor 𝒜𝑢𝑡⊗𝑘 (𝜔) of 𝑆 × 𝑆-schemes is represented by a 𝑘-groupoid
𝐺 acting transitively on 𝑆.

(b) The functor 𝖳 → 𝖱𝖾𝗉𝖿(𝑆∶𝐺) defined by 𝜔 is an equivalence of tensor
categories.

Conversely, if 𝐺 is a 𝑘-groupoid acting transitively on a nonempty affine 𝑘-
scheme𝑆, then𝖱𝖾𝗉𝖿(𝑆∶𝐺) is a tannakian category over𝑘 and𝐺 ≃ 𝒜𝑢𝑡⊗𝑘 (𝜔forget).

This is Deligne’s original statement (Deligne 1990, 1.12). As he remarks (ibid., 1.13), it
suffices to prove the statement with 𝑆 affine. Moreover, 𝒜𝑢𝑡⊗𝑘 (𝜔) is represented by a
groupoid 𝐺 affine over 𝑆 × 𝑆 (see IV, 1.22 below). Thus, requiring everything to be affine
changes little (and the curious reader can consult the original works of Deligne for the
more general statements).

2 Groupoid schemes

Throughout this section, 𝑘 is a field.

Groupoids (in 𝖲𝖾𝗍)

A groupoid (in 𝖲𝖾𝗍) is a small category in which every morphism is an isomorphism.
Thus giving a groupoid amounts to giving a set 𝑆 (of objects), a set 𝐺 (of arrows), two
maps1 𝑡, 𝑠∶ 𝐺 ⇉ 𝑆 (sending an arrow to its target and source respectively), and a partial
law of composition,

(𝑔, ℎ)↦ 𝑔◦ℎ∶ 𝐺 ×
𝑠,𝑆,𝑡

𝐺 → 𝐺, where 𝐺 ×
𝑠,𝑆,𝑡

𝐺 = { (𝑔, ℎ) ∈ 𝐺 × 𝐺 ∣ 𝑠(𝑔) = 𝑡(ℎ) },

satisfying the following conditions: composition of arrows is associative; each object has
an identity arrow; each arrow has an inverse. We often refer to (𝑆, 𝐺) as a groupoid or to
𝐺 as a groupoid acting on 𝑆. The map (𝑡, 𝑠)∶ 𝐺 → 𝑆 × 𝑆 allows us to regard 𝐺 as a set
over 𝑆 × 𝑆.

Example 2.1 A group 𝐺 defines a groupoid as follows: take 𝑆 to be any singleton, so
that there are unique maps 𝑡, 𝑠∶ 𝐺 → 𝑆, and ◦ to be multiplication on 𝐺. Conversely, if
(𝑆, 𝐺) is a groupoid with 𝑆 a singleton, then 𝐺 is a group.

A groupoid (𝑆, 𝐺) is said to be transitive if the map

(𝑡, 𝑠)∶ 𝐺 → 𝑆 × 𝑆,

is surjective, i.e., if for every pair of objects (𝑏, 𝑎) of 𝑆 there exists an arrow 𝑎 → 𝑏.
Let 𝐺 be a transitive groupoid. Write 𝐺𝑏,𝑎 for the fibre of 𝐺 over (𝑏, 𝑎); thus

𝐺𝑏,𝑎 = {𝑔 ∈ 𝐺 ∣ 𝑠(𝑔) = 𝑎, 𝑡(𝑔) = 𝑏} = {𝑔 ∣ 𝑔∶ 𝑎 → 𝑏} = Hom(𝑎, 𝑏).
1In French, 𝑡 and 𝑠 become 𝑏 and 𝑠 (but and source), and in German 𝑧 and 𝑞 (Ziel and Quelle).
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There is a law of composition

𝐺𝑐,𝑏 × 𝐺𝑏,𝑎 → 𝐺𝑐,𝑎
Hom(𝑏, 𝑐) × Hom(𝑎, 𝑏)→ Hom(𝑎, 𝑐).

This law makes 𝐺𝑎
def= 𝐺𝑎,𝑎 into a group, called the vertex or isotropy group, and

𝐺𝑏,𝑎 into a right principal homogeneous space under 𝐺𝑎. The choice of an element
𝑢𝑏,𝑎 ∈ 𝐺𝑏,𝑎 defines an isomorphism ad𝑢𝑏,𝑎 ∶ 𝐺𝑎 → 𝐺𝑏, independent of 𝑢𝑏,𝑎 up to an
inner automorphism. The kernel 𝐺∆ of 𝐺 is the family (𝐺𝑎)𝑎∈𝑆. It can be viewed as a
relative group over 𝑆.

If 𝐺 is transitive and 𝐺𝑎 is commutative for one (hence all) 𝑎 ∈ 𝑆, then 𝐺 is said to
be commutative. In this case the isomorphism ad𝑢𝑏,𝑎 ∶ 𝐺𝑎 → 𝐺𝑏 is independent of
the choice of 𝑢𝑏,𝑎, and so there is a canonical isomorphism 𝐺𝑜 × 𝑆 → 𝐺∆ for any 𝑜 ∈ 𝑆.
Therefore, 𝐺∆ is a constant group over 𝑆.

Example 2.2 Let 𝑆 be a topological space. The fundamental groupoid Π of 𝑆 is the
groupoid acting on 𝑆 for which Π𝑏,𝑎 is the set of paths from 𝑎 to 𝑏 taken up to homo-
topy. The law of composition is the usual composition of paths. The group Π𝑎 is the
fundamental group 𝜋1(𝑆, 𝑎). The fundamental groupoid Π acts transitively on 𝑆 if 𝑆 is
path-connected.

This is the archetype that should be kept in mind when thinking of groupoids.

Example 2.3 Let 𝑆 be a set and 𝑘 a field. Let𝑉 = (𝑉𝑎)𝑎∈𝑆 be a family of 𝑘-vector spaces
indexed by 𝑆. For 𝑎, 𝑏 ∈ 𝑆, let

𝐺𝑏,𝑎 = Isom(𝑉𝑎, 𝑉𝑏).

Then 𝐺(𝑉) def=
⨆

𝑎,𝑏∈𝑆 𝐺𝑏,𝑎 becomes a groupoid acting on 𝑆 with 𝑠(𝐺𝑏,𝑎) = 𝑎, 𝑡(𝐺𝑏,𝑎) = 𝑏,
and 𝐺𝑐,𝑏 × 𝐺𝑏,𝑎 → 𝐺𝑐,𝑎 the composition of isomorphisms. If the 𝑉𝑎 all have the same
finite dimension, then 𝐺(𝑉) acts transitively on 𝑆.

Amorphism of groupoids acting on 𝑆 is a map 𝑓∶ 𝐺 → 𝐻 that, together with the
identity map 𝑆 → 𝑆, forms a functor. When 𝑓, 𝑓′∶ 𝐺 ⇉ 𝐻 are morphisms of groupoids
acting on 𝑆, amorphism 𝛼∶ 𝑓 → 𝑓′ is a natural transformation. Thus it is a family of
arrows 𝛼𝑎 ∶ 𝑎 → 𝑎 in𝐻, indexed by the elements of 𝑆, such that the diagrams

𝑎 𝑎

𝑏 𝑏

←→
𝛼𝑎

←→𝑓(𝑔𝑏,𝑎) ←→ 𝑓′(𝑔𝑏,𝑎)

←→
𝛼𝑏

commute for all 𝑔𝑏,𝑎 ∈ 𝐺𝑏,𝑎. In this way, the groupoids acting on a fixed 𝑆 form a
2-category.

Definition 2.4 Let 𝐺 be a groupoid acting on 𝑆, and let 𝑉 = (𝑉𝑎)𝑎∈𝑆 be a family of
𝑘-vector spaces of the same finite dimension. A representation of 𝐺 on𝑉 is a morphism
𝜌∶ 𝐺 → 𝐺(𝑉). Thus, for each 𝑔 ∈ 𝐺, we have an isomorphism 𝜌(𝑔)∶ 𝑉𝑠(𝑔) → 𝑉𝑡(𝑔),
such that
(a) for the identity element 𝑒𝑎 of 𝐺𝑎, 𝜌(𝑒𝑎)∶ 𝑉𝑎 → 𝑉𝑎 is the identity map,

(b) 𝜌(𝑔◦ℎ) = 𝜌(𝑔)◦𝜌(ℎ) if 𝑠(𝑔) = 𝑡(ℎ).
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Example 2.5 Let (𝐺, 𝑆, (𝑡, 𝑠), ◦) be a transitive groupoid, and let Γ be a group acting on
the system. Assume that Γ acts simply transitively on 𝑆. Fix an element 𝑎 ∈ 𝑆, and let

𝐸 = {𝑓 ∈ 𝐺 ∣ 𝑡(𝑓) = 𝑎} def=
⨆

𝛾
𝐺𝑎,𝛾𝑎

def=
⨆

𝛾
Hom(𝛾𝑎, 𝑎).

Write 𝜋 for the map 𝐸 → Γ sending 𝑓 ∈ 𝐺𝑎,𝛾𝑎 to 𝛾, so

𝜋(𝑓) = 𝛾 ⇐⇒ 𝑠(𝑓) = 𝛾(𝑡(𝑓)).

Define the product of 𝑓1∶ 𝛾1𝑎 → 𝑎 and 𝑓2∶ 𝛾2𝑎 → 𝑎 by

𝑓1 ⋅ 𝑓2 = 𝑓1◦𝛾1𝑓2.

Then 𝑓1 ⋅ 𝑓2 ∈ 𝐺𝑎,𝛾1𝛾2𝑎, and so

𝜋(𝑓1 ⋅ 𝑓2) = 𝛾1𝛾2 = 𝜋(𝑓1)𝜋(𝑓2).

Moreover,
⎧
⎪

⎨
⎪
⎩

(𝑓1 ⋅ 𝑓2) ⋅ 𝑓3 = 𝑓1◦ 𝛾1𝑓2◦ 𝛾1𝛾2𝑓3 = 𝑓1 ⋅ (𝑓2 ⋅ 𝑓3)

𝑓 ⋅ id𝑎 = 𝑓 = id𝑎 ⋅𝑓

𝑓 ⋅ 𝛾−1𝑓−1 = id𝑎 = 𝛾−1𝑓−1 ⋅ 𝑓,

so 𝐸 is a group. We have constructed an exact sequence

1→ 𝐺𝑎,𝑎 → 𝐸
𝜋
,→ Γ→ 1

of abstract groups and group homomorphisms.

Remark 2.6 Let (𝑆, 𝐺) be a transitive groupoid. For any 𝑎 ∈ 𝑆, the group 𝐺𝑎 is a
skeleton of the category (𝑆, 𝐺). This example should discourage readers from considering
equivalent categories, even with a given equivalence, as being “the same”.

Groupoids internal to a category

A groupoid internal to a category is a diagram

𝐺 ×
𝑠,𝑆,𝑡

𝐺 𝐺 𝑆

← →pr2

← →𝑚

← →pr1 ← →

inv

← →𝑠

← →𝑡
←→𝑒

in the category such that the following equalities hold,

⎧
⎪

⎨
⎪
⎩

𝑠◦𝑚 = 𝑠◦ pr2, 𝑡◦𝑚 = 𝑡◦ pr1,
𝑠◦𝑒 = id𝑆 = 𝑡◦𝑒,
𝑚◦(id𝐺 ×𝑆𝑚) = 𝑚◦(𝑚 ×𝑆 id𝐺),
𝑚◦(id𝐺 ×𝑆𝑒)◦(id𝐺 , 𝑠) = id𝐺 = 𝑚◦(𝑒 ×𝑆 id𝐺)◦(𝑠, id𝐺),

⎧

⎨
⎩

𝑠◦ inv = 𝑡, 𝑡◦ inv = 𝑠,
𝑚◦(inv, id𝐺) = 𝑒◦𝑠,
𝑚◦(id𝐺 , inv) = 𝑒◦𝑡
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The first collection of equalities expresses that the diagram is an internal category (𝑠
and 𝑡 send an arrow to its source and target respectively, 𝑒 sends an object to its identity
morphism, and𝑚 sends a pair of composable arrows to their composite), and the second
collection expresses that inv sends an arrow to its inverse (its existence means that
inverses exist).

Example 2.7 A Lie groupoid is a groupoid 𝑡, 𝑠∶ 𝐺 ⇉ 𝑆 internal to the category of
smooth manifolds. Usually the maps 𝑡 and 𝑠 are required to be submersions so that
𝐺 ×

𝑠,𝑆,𝑡
𝐺 is a submanifold of 𝐺 × 𝐺.

Groupoid schemes

A groupoid scheme over 𝑘 is a groupoid internal to the category 𝖠𝖿𝖿𝑘 of affine schemes
over 𝑘.

Definition 2.8 A groupoid scheme over 𝑘 consists of
⋄ affine 𝑘-schemes 𝑆 and 𝐺,

⋄ a pair of morphisms 𝑡, 𝑠∶ 𝐺 ⇉ 𝑆 of 𝑘-schemes (making 𝐺 into an 𝑆 × 𝑆-scheme),

⋄ a morphism ◦∶ 𝐺 ×
𝑠,𝑆,𝑡

𝐺 → 𝐺 of 𝑆 × 𝑆-schemes

such that, for all affine 𝑘-schemes 𝑇, the system

𝑆(𝑇), 𝐺(𝑇), 𝑡, 𝑠∶ 𝐺(𝑇)⇉ 𝑆(𝑇), ◦∶ 𝐺(𝑇) ×
𝑠,𝑆(𝑇),𝑡

𝐺(𝑇)→ 𝐺(𝑇)

is a groupoid (in 𝖲𝖾𝗍). We usually call (𝑆, 𝐺) a 𝑘-groupoid acting on 𝑆 or an 𝑆∕𝑘-
groupoid.

2.9 The condition in the definition can be expressed in terms of diagrams.
(a) The associativity of composition says that the two morphisms

𝐺 ×
𝑠,𝑆,𝑡

𝐺 ×
𝑠,𝑆,𝑡

𝐺 𝐺 ×
𝑠,𝑆,𝑡

𝐺 𝐺

←→◦×id←→
id ×◦

←→◦

are equal.
(b) The existence of identity maps says that there exists a morphism 𝑒∶ 𝑆 → 𝐺

of 𝑆 × 𝑆-schemes (regarding 𝑆 as an 𝑆 × 𝑆-scheme by ∆∶ 𝑆 → 𝑆 × 𝑆) such that both
morphisms

𝐺 ≃ 𝐺 ×
𝑠,𝑆,id

𝑆 𝐺 ×
𝑠,𝑆,𝑡

𝐺 𝐺

𝐺 ≃ 𝑆 ×
id,𝑆,𝑡

𝐺 𝐺 ×
𝑠,𝑆,𝑡

𝐺 𝐺

←→id ×𝑒 ←→◦

←→𝑒×id ←→◦

equal id𝐺 .
(c) The existence of inverses says that there exists a morphism inv ∶ 𝐺 → 𝐺 of

𝑘-schemes such that

{ 𝑠◦ inv = 𝑡
𝑡◦ inv = 𝑠
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and the diagrams

𝐺 𝐺 ×
𝑠,𝑆,𝑡

𝐺 𝐺 𝐺 ×
𝑠,𝑆,𝑡

𝐺

𝑆 𝐺 𝑆 𝐺

←→(inv,id)

←

→ 𝑠 ←→ ◦

←→(id,inv)

←

→ 𝑡 ←→ ◦

← →𝑒 ← →𝑒

commute.
The morphisms 𝑒 and inv, when they exist, are uniquely determined by (𝑆, 𝐺, 𝑡, 𝑠, ◦).

Remark 2.10 Without the condition (c), we get the notion of a monoidoid scheme
over 𝑘, i.e., a small category internal to the category 𝖠𝖿𝖿𝑘.

Definition 2.11 Let 𝑆 be an affine 𝑘-scheme, and let 𝐺 and𝐻 be 𝑘-groupoids acting
on 𝑆. A morphism 𝑓∶ 𝐺 → 𝐻 of 𝑆 × 𝑆-schemes is amorphism of 𝑘-groupoids acting
on 𝑆 if 𝑓(𝑇)∶ 𝐺(𝑇)→ 𝐻(𝑇) is a morphism of groupoids acting on 𝑆(𝑇) for every affine
𝑘-scheme 𝑇. This condition can also be expressed by saying that the diagrams

𝐺 ×
𝑠,𝑆,𝑡

𝐺 𝐻 ×
𝑠,𝑆,𝑡

𝐻 𝐺 𝐻

𝐺 𝐻 𝑆

←→
𝑓×𝑓

←→ ◦𝐺 ←→ ◦𝐻

← →
𝑓

← →
𝑓

←

→

𝑒𝐺 ←

→

𝑒𝐻
(63)

commute.

Definition 2.12 We can view a morphism 𝐺 → 𝐻 of 𝑆∕𝑘-groupoids as a functor from
𝐺 → 𝐻. When𝑓, 𝑓′∶ 𝐺 ⇉ 𝐻 aremorphisms of 𝑆∕𝑘-groupoids, amorphism𝛼∶ 𝑓 → 𝑓′
is a natural transformation.

Definition 2.13 We say that an 𝑆∕𝑘-groupoid 𝐺 is transitive, or that 𝐺 acts transi-
tively on 𝑆, if the morphism (𝑡, 𝑠)∶ 𝐺 → 𝑆 × 𝑆 is covering for the fpqc topology, i.e.,
there exists a faithfully flat map 𝑇 → 𝑆 × 𝑆 such that Hom𝑆×𝑆(𝑇, 𝐺) ≠ ∅.

Obviously, 𝐺 is transitive if (𝑡, 𝑠)∶ 𝐺 → 𝑆 × 𝑆 itself is faithfully flat. Later (IV, 1.14,
1.35), we shall see that the converse is true.

Example 2.14 When 𝑆 = Spec 𝑘, a 𝑘-groupoid acting on 𝑆 is nothing but an affine
group scheme over 𝑘. It is automatically transitive.

Let 𝐺 be a 𝑘-groupoid acting on 𝑆. For a scheme (𝑏, 𝑎)∶ 𝑇 → 𝑆 × 𝑆 over 𝑆 × 𝑆, we
write 𝐺𝑏,𝑎 for (𝑏, 𝑎)∗𝐺. Note that 𝑏 and 𝑎 are objects of the category 𝑆(𝑇), and 𝐺𝑏,𝑎 can
be thought of as the scheme of arrows 𝑎 → 𝑏,

𝐺𝑏,𝑎 = “Hom(𝑎, 𝑏)”.

The law of composition provides morphisms (of schemes over 𝑇)

𝐺𝑐,𝑏 ×𝑇 𝐺𝑏,𝑎 → 𝐺𝑐,𝑎.

This law makes 𝐺𝑎
def= 𝐺𝑎,𝑎

def= (𝑎, 𝑎)∗𝐺 into an affine group scheme over 𝑇, which is flat
if 𝐺 is transitive.
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Example 2.15 Let 𝑆 be an affine 𝑘-scheme and 𝑉 a locally free 𝒪𝑆-module of finite
rank. There exists a 𝑘-groupoid 𝐺(𝑉) acting transitively on 𝑆 such that, for any scheme
(𝑏, 𝑎)∶ 𝑇 → 𝑆 × 𝑆 over 𝑆 × 𝑆,

𝐺(𝑉)(𝑇) = Isom𝒪𝑇 (𝑎
∗𝑉, 𝑏∗𝑉).

For 𝑎 = 𝑏 = 𝑠 ∈ 𝑆, we have
𝐺(𝑉)𝑠 = GL𝑉𝑠 ,

where 𝑉𝑠 is the fibre of 𝑉 over 𝑠 (a finite-dimensional 𝜅(𝑠)-vector space).

Pullbacks of groupoid schemes

Let 𝐺 be a 𝑘-groupoid acting on 𝑆, and let 𝑢∶ 𝑇 → 𝑆 be a morphism of affine 𝑘-schemes.
The pullback of 𝐺 by 𝑢×𝑢∶ 𝑇×𝑇 → 𝑆×𝑆 is a 𝑘-groupoid acting on 𝑇, which we denote
by 𝐺𝑇.

For example, let 𝐺 be an affine group scheme over 𝑘, viewed as a 𝑘-groupoid acting
on Spec 𝑘. For any affine 𝑘-scheme 𝑆, we get a 𝑘-groupoid scheme

𝐺𝑆
def= 𝐺 × (𝑆 × 𝑆)

acting on 𝑆, which is called the neutral groupoid scheme defined by 𝐺. In the special
case that 𝐺 is the trivial group, 𝐺𝑆 = 𝑆 × 𝑆 and is called the trivial 𝑆∕𝑘-groupoid.

Aside 2.16 There is a more abstract version of the above theory. Let 𝖤 be a Grothendieck topos,
i.e., the category of sheaves of sets on some small site, and let 1 be a terminal object of 𝖤. A
groupoid (𝑆, 𝐺, (𝑠, 𝑡), ◦) in 𝖤 is a bouquet if

(a) (𝑆, 𝐺) is nonempty, i.e., the unique morphism 𝑆 → 1 is an epimorphism, and

(b) (𝑆, 𝐺) is connected i.e., the morphism (𝑡, 𝑠)∶ 𝐺 → 𝑆 × 𝑆 is an epimorphism,

(Duskin 1982, 2013). A 𝑘-groupoid scheme acting transitively on an affine 𝑘-scheme 𝑆 defines a
bouquet in the topos of sheaves of sets on 𝖠𝖿𝖿𝑘 for the fpqc topology.

3 Representations of groupoid schemes

Throughout this section, 𝑘 is a field.

Definition 3.1 Let 𝐺 be a 𝑘-groupoid acting on an affine 𝑘-scheme 𝑆, and let 𝑉 be
a locally free sheaf of 𝒪𝑆-modules of finite rank. A representation of 𝐺 on 𝑉 is a
morphism of 𝑆∕𝑘-groupoids 𝐺 → 𝐺(𝑉).

Explicitly, this means that for every affine 𝑘-scheme 𝑇 and 𝑔 ∈ 𝐺(𝑇), we have
a morphism 𝜌(𝑔)∶ 𝑉𝑔◦𝑠 → 𝑉𝑔◦𝑡 between the inverse images of 𝑉 with respect to
𝑔◦𝑠, 𝑔◦𝑡∶ 𝑇 ⇉ 𝑆; these satisfy the following conditions (cf. 2.4),
(a) for the element 𝑒 of 𝐺(𝑆), 𝜌(𝑒) is the identity map of 𝑉 = 𝑉𝑠◦𝑒 = 𝑉𝑡◦𝑒;
(b) 𝜌(𝑔◦ℎ) = 𝜌(𝑔)𝜌(ℎ) if 𝑠(𝑔) = 𝑡(ℎ);
(c) the formation of 𝜌(𝑔) commutes with base change 𝑇′ → 𝑇.

Remark 3.2 We can use the explicit description to define a representation of 𝐺 on any
quasi-coherent sheaf 𝑉 on 𝑆. If 𝐺 is transitive and for some 𝑠 ∈ 𝑆, the fibre 𝑉𝑠 of 𝑉 is a
vector space of dimension 𝑛 over the residue field at 𝑠, then 𝑉 is locally free of rank 𝑛
(see IV, 1.23).
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3.3 Let 𝐺 = Spec 𝐿, let 𝑆 = Spec𝐵, and let 𝑉 be a finitely generated projective 𝐵-
module (=locally free sheaf of finite rank on 𝑆). To give a representation of 𝐺 on 𝑉 is
the same as giving, for every 𝑘-algebra 𝑅 and 𝑔 ∈ 𝐺(𝑅) = Hom(𝐿, 𝑅), a homomorphism
of 𝑅-modules2

𝜌(𝑔)∶ 𝑉 ⊗𝐵,𝑠(𝑔) 𝑅 → 𝑉 ⊗𝐵,𝑡(𝑔) 𝑅,

satisfying the following conditions,
(a) 𝜌(𝑒) = id𝑉 ,

(b) 𝜌(𝑔◦ℎ) = 𝜌(𝑔)◦𝜌(ℎ) whenever 𝑔◦ℎ is defined,

(c) 𝜌 is compatible with base change, i.e., for any homomorphism of 𝑘-algebras
𝑢∶ 𝑅 → 𝑅′, the following diagram commutes

𝑉 ⊗𝐵,𝑠(𝑔) 𝑅 𝑉 ⊗𝐵,𝑡(𝑔) 𝑅

𝑉 ⊗𝐵,𝑠(𝑔′) 𝑅′ 𝑉 ⊗𝐵,𝑡(𝑔′) 𝑅′,

←→
𝜌(𝑔)

←→ 𝑉⊗𝑢 ←→ 𝑉⊗𝑢

←→
𝜌(𝑔′)

where 𝑔′ = 𝐺(𝑢)(𝑔) ∈ 𝐺(𝑅′).3

As 𝐺 is a groupoid, all 𝜌(𝑔) are isomorphisms.
Amorphism of representations (𝑉, 𝜌𝑉) and (𝑊,𝜌𝑊) of 𝐺 is a homomorphism of

𝐵-modules 𝜑∶ 𝑉 →𝑊 such that

𝑉 ⊗𝐵,𝑠(𝑔) 𝑅 𝑉 ⊗𝐵,𝑡(𝑔) 𝑅

𝑊 ⊗𝐵,𝑠(𝑔) 𝑅 𝑊 ⊗𝐵,𝑡(𝑔) 𝑅

←→
𝜌𝑉(𝑔)

←→ 𝜑⊗𝑅 ←→ 𝜑⊗𝑅

←→
𝜌𝑊(𝑔)

commutes for all 𝑘-algebras 𝑅 and 𝑔 ∈ 𝐺(𝑅).
Let 𝖱𝖾𝗉𝖿(𝑆∶𝐺) denote the category of representations of 𝐺 on finitely generated

projective 𝐵-modules. We define the tensor product of two such representations by

(𝑉, 𝜌𝑉)⊗ (𝑊,𝜌𝑊) = (𝑉 ⊗𝐵 𝑊,𝜌𝑉⊗𝐵𝑊),

where 𝜌𝑉⊗𝑊(𝑔) is determined by the commutative diagram

(𝑉 ⊗𝐵,𝑠(𝑔) 𝑅)⊗𝑅 (𝑊⊗𝐵,𝑠(𝑔) 𝑅) (𝑉 ⊗𝐵,𝑡(𝑔) 𝑅)⊗𝑅 (𝑊⊗𝐵,𝑡(𝑔) 𝑅)

(𝑉 ⊗𝐵 𝑊)⊗𝐵,𝑠(𝑔) 𝑅 (𝑉 ⊗𝐵 𝑊)⊗𝐵,𝑡(𝑔) 𝑅.

←→ ≃

← →
𝜌𝑉(𝑔)⊗𝑅𝜌𝑊(𝑔)

←→ ≃

← →
𝜌𝑉⊗𝑊(𝑔)

2Here 𝑠(𝑔) is the image of 𝑔 under 𝑠(𝑅)∶ 𝐺(𝑅)→ 𝑆(𝑅) = Hom(𝐵, 𝑅).
3When we use the same symbol for a map of affine schemes and the corresponding map of rings, we

have

𝑠(𝑔) def= 𝑔◦𝑠∶ 𝐵 → 𝐿 → 𝑅
𝑔′ def= 𝑢◦𝑔∶ 𝐵 → 𝑅 → 𝑅′

𝑠(𝑔′) def= 𝑔′◦𝑠 = 𝑢◦𝑠(𝑔)∶ 𝐵 → 𝑅′.
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There are obvious associativity and commutativity constraints, and 𝐵, equipped with
the trivial action, is an identity object. We define the dual of a representation (𝑉, 𝜌) to
be (𝑉∨, 𝜌∨), where 𝜌∨ is determined by the commutative diagram

𝑉∨ ⊗𝐵,𝑠(𝑔) 𝑅 𝑉∨ ⊗𝐵,𝑡(𝑔) 𝑅

(𝑉 ⊗𝐵,𝑠(𝑔) 𝑅)∨ (𝑉 ⊗𝐵,𝑡(𝑔) 𝑅)∨.

← →
𝜌∨(𝑔)

←→ ≃ ←→ ≃

← →
(𝜌𝑉(𝑔)−1)∨

In this way, 𝖱𝖾𝗉𝖿(𝑆∶𝐺) becomes a 𝑘-linear rigid tensor category.

Proposition 3.4 Let 𝐺 be a 𝑘-groupoid acting transitively on 𝑆, and let 𝑢∶ 𝑇 → 𝑆 be a
morphism of affine 𝑘-schemes with 𝑇 ≠ ∅. Then 𝐺𝑇 is a 𝑘-groupoid acting transitively on
𝑇, and 𝑢 induces an equivalence of categories

𝖱𝖾𝗉𝖿(𝑆∶𝐺) ∼,→ 𝖱𝖾𝗉𝖿(𝑇∶𝐺𝑇).

Proof The proof uses gerbes – see IV, 1.24, below.4 2

For example, if there exists an 𝑠 ∈ 𝑆(𝑘), then

𝖱𝖾𝗉𝖿(𝑆∶𝐺) ∼,→ 𝖱𝖾𝗉𝖿(𝐺𝑠),

where 𝐺𝑠 is the affine group scheme over 𝑘 fixing 𝑠 (the fibre of 𝐺 over (𝑠, 𝑠)).
For example, let 𝐺 be an affine group scheme over 𝑘, and let �̄� be the neutral 𝑘-

groupoid scheme 𝐺 × Spec(�̄� ⊗ �̄�) acting on Spec(�̄�). Then the restriction functor
𝖱𝖾𝗉𝖿(�̄�) ∼,→ 𝖱𝖾𝗉𝖿(𝐺) is an equivalence of categories.

Proposition 3.5 If 𝐺 is a transitive 𝑆∕𝑘-groupoid, then 𝖱𝖾𝗉𝖿(𝑆∶𝐺) is a tannakian cate-
gory over 𝑘 with the forgetful functor as a fibre functor over 𝑆.

Proof After 3.4, we may suppose that 𝑆 = Spec𝐵, where 𝐵 is a field. We know that
𝖱𝖾𝗉𝖿(𝑆∶𝐺) is a 𝑘-linear rigid tensor category.

We next show that it is abelian. Obviously, it is additive. Let

(𝑉, 𝜌𝑉)
𝑓
,→ (𝑊,𝜌𝑊)

be a morphism in 𝖱𝖾𝗉𝖿(𝑆∶𝐺). There is an exact sequence

0→ Ker𝑓 → 𝑉 →𝑊 → Coker𝑓 → 0

of 𝐵-vector spaces, and, for each 𝑔 ∈ 𝐺(𝑅), a commutative diagram with exact rows

0 Ker(𝑓)⊗𝐵,𝑠(𝑔) 𝑅 𝑉 ⊗𝐵,𝑠(𝑔) 𝑅 𝑊 ⊗𝐵,𝑠(𝑔) 𝑅 Coker(𝑓)⊗𝐵,𝑠(𝑔) 𝑅 0

0 Ker(𝑓)⊗𝐵,𝑡(𝑔) 𝑅 𝑉 ⊗𝐵,𝑡(𝑔) 𝑅 𝑊 ⊗𝐵,𝑡(𝑔) 𝑅 Coker(𝑓)⊗𝐵,𝑡(𝑔) 𝑅 0

←→ ←→

←→

←→

←→ 𝜌𝑉(𝑔)≃ ←→ 𝜌𝑊(𝑔)≃

←→ ←→

←→
←→ ←→ ←→ ←→ ←→

(here we use that 𝐵 is a field). The dashed arrows define an action of 𝐺 on Ker𝑓
and Coker𝑓 making them the kernel and cokernel of 𝑓 in 𝖱𝖾𝗉𝖿(𝑆∶𝐺). Obviously,

4The first section of Chapter IV is independent of the rest of this chapter – it could have been inserted
at this point.
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the canonical morphism Coker(Ker(𝑓)) → Ker(Coker(𝑓)) is an isomorphism, and so
𝖱𝖾𝗉𝖿(𝑆∶𝐺) is abelian. It is a 𝑘-linear rigid abelian tensor category, and the forgetful
functor 𝜔∶ 𝖱𝖾𝗉𝖿(𝑆∶𝐺)→ 𝖵𝖾𝖼𝖿𝐵 is an exact faithful tensor functor.

It remains to show that End(𝟙) = 𝑘. Let 𝐺 = Spec𝐿, and denote the maps 𝐵 ⇉ 𝐿
defined by 𝑠, 𝑡∶ 𝐺 → 𝑆 by the same letter. An endomorphism of 𝟙 = 𝐵 is given by
an element 𝑎 of 𝐵, and End(𝟙) is the equalizer of the pair of arrows 𝑠, 𝑡∶ 𝐵 ⇉ 𝐿. The
diagram

𝐵 𝐿

𝐵 ⊗𝑘 𝐵

← →𝑠← →𝑡←

→
𝑖1←

→𝑖2

← →
𝑠⊗𝑡

commutes with 𝑖1(𝑎) = 𝑎⊗1 and 𝑖2(𝑎) = 1⊗𝑎. As 𝑘 → 𝐵 is the equalizer of the parallel
pair (𝑖1, 𝑖2) and 𝑠 ⊗ 𝑡 is faithfully flat, hence injective, we see that End(𝟙) = 𝑘. 2

4 Representations of groupoids as comodules

Just as representations of affine group schemes can be realized as comodules over
coalgebras (II, §1), representations of groupoid schemes can be realized as comodules
over coalgebroids. From 4.6, 𝑘 is a field.

Terminology 4.1 Let 𝑅 and 𝑆 be rings (not necessarily commutative). An (𝑅, 𝑆)-
bimodule is an abelian group 𝑀 together with a left action of 𝑅 and a commuting
right action of 𝑆:

(𝑟 ⋅𝑚) ⋅ 𝑠 = 𝑟 ⋅ (𝑚 ⋅ 𝑠), 𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆.

Such a module is sometimes denoted 𝑅𝑀𝑆. If 𝑅, 𝑇, 𝑆 are rings and 𝑅𝑀𝑇 and 𝑇𝑀𝑆 are
bimodules, then

𝑅𝑀𝑇 ⊗
𝑇
𝑇𝑀𝑆

is a well-defined (𝑅, 𝑆)-bimodule. An (𝑅, 𝑅)-bimodule is also called an 𝑅-bimodule.
When the rings are 𝑘-algebras (𝑘 a commutative ring), we require that the various
actions of 𝑘 coincide.

Definition 4.2 Let 𝐵 be a ring, not necessarily commutative.5 A 𝐵-coalgebroid (or
coalgebroid acting on 𝐵) is a 𝐵-bimodule 𝐿 equipped with two 𝐵-bimodule homomor-
phisms (comultiplication and coidentity)

𝑐∶ 𝐿 → 𝐿 ⊗
𝐵
𝐿, i.e., 𝐵𝐿𝐵 → 𝐵𝐿𝐵 ⊗

𝐵
𝐵𝐿𝐵

𝜖∶ 𝐿 → 𝐵

such that the two composed maps

𝐿 𝐿 ⊗𝐵 𝐿 𝐿 ⊗𝐵 𝐿 ⊗𝐵 𝐿

←→𝑐

←→𝑐⊗𝐿

←→𝐿⊗𝑐

5We shall only need commutative 𝐵, but allowing noncommutative rings forces us to distinguish left
from right correctly.
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are equal and the two maps

𝐿 𝐿 ⊗𝐵 𝐿 𝐵 ⊗𝐵 𝐿 ≃ 𝐿

𝐿 𝐿 ⊗𝐵 𝐿 𝐿 ⊗𝐵 𝐵 ≃ 𝐿

←→𝑐 ←→𝜖⊗𝐿

←→𝑐 ←→𝐿⊗𝜖

equal the id𝐿.
Amorphismof𝐵-coalgebroids (𝐿, 𝑐, 𝜖)→ (𝐿′, 𝑐′, 𝜖′) is a homomorphism𝑓∶ 𝐿 → 𝐿′

of 𝐵-bimodules such that the following diagrams commute,

𝐿 ⊗𝐵 𝐿 𝐿′ ⊗𝐵 𝐿′ 𝐿 𝐿′

𝐿 𝐿′ 𝐵.

←→
𝑓⊗𝑓 ← →

𝑓

←

→𝜖
←→

𝜖′

← →
𝑓

← →𝑐 ← →𝑐′

When 𝐵 is an algebra over a commutative ring 𝑘, a 𝐵∕𝑘-coalgebroid (or 𝑘-coalgebroid
acting on 𝐵) is a 𝐵-coalgebroid 𝐿 such that the two 𝑘-module structures on 𝐿 coincide.

Definition 4.3 Let 𝐿 be a 𝐵-coalgebroid. A representation of 𝐿 is a right 𝐵-module
𝑀 equipped with a coaction of 𝐿, i.e., a homomorphism 𝜌∶ 𝑀 → 𝑀 ⊗𝐵 𝐿 of right
𝐵-modules such that the two composed maps

𝑀 𝑀 ⊗𝐵 𝐿 𝑀 ⊗𝐵 𝐿 ⊗𝐵 𝐿

←→
𝜌 ←→

𝜌⊗𝐿

←→𝑀⊗𝑐
(64)

are equal and the map

𝑀 𝑀 ⊗𝐵 𝐿 𝑀 ⊗𝐵 𝐵 ≃ 𝑀←→
𝜌 ←→𝑀⊗𝜖 (65)

equals id𝑀 . We call (𝑀,𝜌) an 𝐿-comodule.
Amorphism of 𝐿-comodules (𝑀,𝜌𝑀)→ (𝑁, 𝜌𝑁) is a homomorphism of 𝐵-modules

𝑓∶ 𝑀 → 𝑁 such that the following diagram commutes

𝑀 ⊗𝐵 𝐿 𝑁 ⊗𝐵 𝐿

𝑀 𝑁.

←→
𝑓⊗𝐿

← →
𝑓

← →𝜌𝑀 ← →𝜌𝑁

When 𝐿 is a 𝐵-coalgebroid, we let 𝖼𝗈𝖬𝗈𝖽𝖿(𝐿) denote the category of 𝐿-comodules
that are finitely generated and projective as right 𝐵-modules.

Example 4.4 If 𝐵 is commutative and the two 𝐵-module structures on 𝐿 agree , then
𝐿 is a 𝐵-coalgebra (see II, §1), which helps explains the terminology. The notions of a
𝐵-comodule agree in the two cases.

Example 4.5 Let 𝐿 be a 𝐵-coalgebroid. If 𝐿 is flat as a left 𝐵-module, then category of
𝐿-comodules is abelian and the forgetful functor is exact. The proof of this is the same
as that of Proposition 3.5.

Now let 𝑘 be a field.
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Example 4.6 Let 𝐺 be a 𝑘-groupoid acting on 𝑆, and let 𝐺 = Spec𝐿 and 𝑆 = Spec𝐵.
From the morphism (𝑡, 𝑠)∶ 𝐺 → 𝑆 × 𝑆, we get the structure of a 𝐵 ⊗𝑘 𝐵-module on 𝐿,
i.e., a 𝐵-bimodule structure such that the two 𝑘-module structures coincide. We write
the 𝐵-module structure defined by 𝑡 (resp. 𝑠) on the left (resp. right). The composition
law

𝐺 ×
𝑠,𝑆,𝑡

𝐺 → 𝐺

corresponds to a map of 𝐵-bimodules

𝑐∶ 𝐿 → 𝐿 ⊗
𝐵
𝐿

and the identity 𝑒∶ 𝑆 → 𝐺 corresponds to a map of 𝐵-bimodules

𝜖∶ 𝐿 → 𝐵.

A comparison of the diagrams in 2.9 and 4.2 shows that these structures make 𝐿 into a
𝐵∕𝑘-coalgebroid, which helps explains the terminology.

Proposition 4.7 Let 𝐺 = Spec𝐿 be a 𝑘-groupoid acting transitively on 𝑆 = Spec𝐵 (so
𝐿 is a 𝐵∕𝑘-coalgebroid), and let𝑀 be a right 𝐵-module. There is a canonical one-to-one
correspondence between the representations of 𝐺 on𝑀 and the representations of 𝐿 on𝑀.

Proof A representation 𝜌 of 𝐺 on 𝑀 is determined by its action on the “universal”
element

𝑢 def= id𝐺 ∈ Hom(𝐺,𝐺) = 𝐺(𝐿)

because, according to 3.3(c), the diagram

𝑀 ⊗𝐵,𝑠 𝐿 𝑀 ⊗𝐵,𝑡 𝐿

𝑀 ⊗𝐵,𝑠(𝑔) 𝑅 𝑀 ⊗𝐵,𝑡(𝑔) 𝑅

← →
𝜌(𝑢)

←→ 𝑀⊗𝑔 ←→ 𝑀⊗𝑔

←→
𝜌(𝑔)

commutes for all 𝑔 ∈ 𝐺(𝑅) = Hom(𝐿, 𝑅). In turn, the 𝐿-linear map

𝜌(𝑢)∶ 𝑀 ⊗𝐵,𝑠 𝐿 → 𝑀 ⊗𝐵,𝑡 𝐿,

is determined by its restriction to a 𝐵-linear map

𝜌𝑀 ∶ 𝑀 → 𝑀 ⊗𝐵,𝑡 𝐿.

In the other direction, given a coaction 𝜌𝑀 of 𝐿 on a 𝐵-module𝑀 an a 𝑔 ∈ 𝐺(𝑅) =
Hom(𝐿, 𝑅), we define 𝜌(𝑔) by the following diagram

𝑀 ⊗𝐵,𝑠(𝑔) 𝑅 𝑀 ⊗𝐵,𝑡 𝐿 ⊗
𝑠,𝐵,𝑠(𝑔)

𝑅

𝑀 ⊗𝐵,𝑡(𝑔) 𝑅 𝑀 ⊗𝐵,𝑡(𝑔) 𝑅 ⊗
𝑠(𝑔),𝐵,𝑠(𝑔)

𝑅.

← →
𝜌𝑀⊗𝑅

←

→𝜌(𝑔) ←→ 𝑀⊗𝑔⊗𝑅

←→

𝑀⊗mult.

(66)

If 𝜌𝑀 is obtained from a 𝜌 as in the first paragraph, then the action of id𝐺 given by
(66) returns 𝜌𝑀 . Conversely, let 𝜌 be a representation of 𝐺 on𝑀. We get a coaction 𝜌𝑀
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as in the first paragraph, and from 𝜌𝑀 a representation �̃� of 𝐺. Now 𝜌 = �̃� because they
agree on 𝑢 = id𝐺 .

It remains to show that, under the correspondence 𝜌 ↔ 𝜌𝑀 , 𝜌 satisfies the axioms
for a representation if and only if 𝜌𝑀 satisfies the axioms for a comodule.

If 𝑔, ℎ ∈ 𝐺(𝑅) with 𝑡(𝑔) = 𝑠(ℎ), then 𝜌(ℎ◦𝑔) is given by the diagram

𝑀 ⊗𝐵,𝑠(𝑔) 𝑅 𝑀 ⊗𝐵,𝑡 𝐿 ⊗
𝑠,𝐵,𝑠(𝑔)

𝑅 𝑀 ⊗𝐵,𝑡 𝐿 ⊗
𝑠,𝐵,𝑡

𝐿 ⊗
𝑠,𝐵,𝑠(𝑔)

𝑅

𝑀 ⊗𝐵,𝑡(ℎ) 𝑅 𝑀 ⊗𝐵,𝑡(ℎ) 𝑅 ⊗
𝑠(ℎ),𝐵,𝑡(𝑔)

𝑅 ⊗
𝑠(ℎ),𝐵,𝑠(𝑔)

𝑅.

←→
𝜌𝑀⊗𝑅

←

→𝜌(ℎ◦𝑔)

← →𝑀⊗𝑐⊗𝑅

←→ 𝑀⊗ℎ⊗𝑔⊗𝑅

←→𝑀⊗𝑅⊗mult.

and 𝜌(ℎ)◦𝜌(𝑔) is given by

𝑀 ⊗𝐵,𝑠(𝑔) 𝑅 𝑀 ⊗𝐵,𝑡 𝐿 ⊗
𝑠,𝐵,𝑠(𝑔)

𝑅 𝑀 ⊗𝐵,𝑡(𝑔) 𝑅 ⊗
𝑠(𝑔),𝐵,𝑠(𝑔)

𝑅

𝑀 ⊗𝐵,𝑡(𝑔) 𝑅

𝑀 ⊗𝐵,𝑡(ℎ) 𝑅 𝑀 ⊗𝐵,𝑡(ℎ) 𝑅 ⊗
𝑠(ℎ),𝐵,𝑠(ℎ)

𝑅 𝑀 ⊗𝐵,𝑡 𝐿 ⊗
𝑠,𝐵,𝑠(ℎ)

𝑅.

← →
𝜌𝑀⊗𝑅

←

→

𝜌(ℎ)◦𝜌(𝑔)

← →
𝑀⊗𝑔⊗𝑅

←→ 𝑀⊗mult.

←→ 𝜌𝑀⊗𝑅

←→

𝑀⊗mult.
←→

𝑀⊗ℎ⊗𝑅

When we write 𝜌𝑀(𝑚) =
∑
𝑚𝑖 ⊗ 𝓁𝑖, then these homomorphisms agree if and only if

(1⊗ ℎ ⊗ 𝑔)(
∑

𝑚𝑖 ⊗ 𝑐(𝓁𝑖)) = (1⊗ ℎ ⊗ 𝑔)(
∑

𝜌(𝑚𝑖)⊗ 𝓁𝑖)

for all 𝑘-algebra homomorphisms ℎ, 𝑔∶ 𝐿 → 𝑅 with 𝑡(𝑔) = 𝑠(ℎ). This is obviously
equivalent to the maps in (64) agreeing.

Let 𝜌 be a representation of 𝐺 on𝑀, and let 𝜌𝑀 be the associated coaction. Then the
action of 𝜌(𝜖) is given by the top row of the following commutative diagram

𝑀 ⊗𝐵 𝐵 𝑀 ⊗𝐵,𝑡 𝐿 ⊗𝑠,𝐵 𝐵 𝑀 ⊗𝐵 𝐵 ⊗𝐵 𝐵 𝑀 ⊗𝐵 𝐵

𝑀 𝑀 ⊗𝐵,𝑡 𝐿

←→

←→ ≃

←→𝑀⊗𝜖⊗𝐵

←→ ≃

←→≃

← →
𝜌𝑀

←

→

id⊗𝜖

It follows that the map in (65) is the identity if and only if 𝜖 acts trivially on𝑀. 2

Proposition 4.8 Let 𝐺 = Spec𝐿 be a groupoid acting transitively on 𝑆 = Spec𝐵. The
functor

(𝑀,𝜌)⇝ (𝑀,𝜌𝑀)∶ 𝖱𝖾𝗉𝖿(𝑆∶𝐺)→ 𝖼𝗈𝖬𝗈𝖽𝖿(𝐿)

is an equivalence of categories

Proof After proposition 4.7, it remains to show that a 𝐵-module homomorphism
𝑓∶ 𝑀 → 𝑁 is 𝐺-equivariant if and only if it is a morphism of 𝐿-comodules, but this is
straighforward. 2
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4.9 If we define the tensor product of 𝐿-comodules 𝑀,𝜌𝑀) and (𝑁, 𝜌𝑁) to be the 𝐿-
comodule (𝑀 ⊗𝑁, 𝜌𝑀⊗𝑁), where 𝜌𝑀⊗𝑁 is given by

𝑀 ⊗𝐵 𝑁 (𝑀 ⊗𝐵,𝑡 𝐿) ⊗
𝐵⊗𝐵

(𝑁 ⊗𝐵,𝑡 𝐿)

(𝑀 ⊗𝐵 𝑁)⊗𝐵,𝑡 𝐿 (𝑀 ⊗𝐵 𝑁)⊗𝐵,𝑡 (𝐿 ⊗
𝐵⊗𝐵

𝐿),

← →
𝜌𝑀⊗𝜌𝑁

←

→ 𝜌𝑀⊗𝑁 ←→ ≃

←→

id⊗𝑚

then the equivalence
𝖱𝖾𝗉𝖿(𝑆∶𝐺) ∼,→ 𝖼𝗈𝖬𝗈𝖽𝖿(𝐿)

respects tensor products.

Notes The exposition of the proof of 4.7 follows that in Lattermann 1989, 1.4.7.

5 The comonadic theorem and applications

A faithful functor 𝐹∶ 𝖢 → 𝖡 creates a “shadow” of 𝖢 on 𝖡, and it is sometimes possible
to recover 𝖢 from 𝖡 and the shadow. For example, in (II, Theorem 3.15), we were able to
recover 𝖢 from its shadow (a coalgebra) in 𝖵𝖾𝖼𝖿𝑘. In the case we are interested in here,
the shadow is a “comonad” on 𝖡, and a standard result in category theory (Theorem
5.12) describes 𝖢 as the category of “𝐺-modules” in 𝖡.

Comonads

Definition 5.1 A comonad on a category 𝖡 consists of
⋄ a functor 𝐺∶ 𝖡 → 𝖡,
⋄ a natural transformation 𝑐∶ 𝐺 → 𝐺◦𝐺 (the comultiplication),
⋄ a natural transformation 𝜖∶ 𝐺 → id𝖡 (the counit)

such that the two natural transformations

𝐺 𝐺◦𝐺 𝐺◦𝐺◦𝐺←→𝑐

←→𝑐𝐺←→
𝐺𝑐

are equal and the two natural transformations

𝐺 𝐺◦𝐺 𝐺←→𝑐

←→𝜖𝐺←→
𝐺𝜖

equal id𝐺 . The counit, if it exists, is uniquely determined by (𝐺, 𝑐).

Example 5.2 Fix a set 𝐸, and let 𝐺∶ 𝖲𝖾𝗍 → 𝖲𝖾𝗍 be the functor 𝑋 ⇝ 𝑋 × 𝐸. Then

(𝑥, 𝑒)↦ (𝑥, 𝑒, 𝑒)∶ 𝑋 × 𝐸 → 𝑋 × 𝐸 × 𝐸

is a natural transformation 𝑐∶ 𝐺 → 𝐺◦𝐺, and

(𝑥, 𝑒)↦ 𝑒∶ 𝑋 × 𝐸 → 𝑋

is a natural transformation 𝐺 → id. The triple (𝐺, 𝑐, 𝜖) is a comonad.

Remark 5.3 Let 𝖢 be a category. There is a monoidal category whose objects are the
functors 𝖢 → 𝖢, whose morphisms are the natural transformations, and whose tensor
product is ◦. A comonad is a comonoid in this category (monoid in the opposite category),
which explains the similarity of the above diagrams to earlier diagrams.
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Comonads from adjunctions

We refer the reader to A.1 for our notation concerning adjoint pairs.

Proposition 5.4 Let 𝖢 𝖡

←→𝐹←→𝑈
be an adjoint pair with unit 𝜂∶ id𝖢 → 𝑈◦𝐹 and

counit 𝜖∶ 𝐹◦𝑈 → id𝖡. Then 𝐹◦𝑈 is a comonad on 𝖡 with comultiplication

𝐹𝜂𝑈∶ 𝐹◦𝑈 ,→ 𝐹◦𝑈◦𝐹◦𝑈

and counit 𝜖.

Proof The two composites in

𝐹𝑈 𝐹𝑈◦𝐹𝑈 𝐹𝑈◦𝐹𝑈◦𝐹𝑈← →
𝐹𝜂𝑈 ← →

𝐹𝜂𝑈𝐹𝑈

← →𝐹𝑈𝐹𝜂𝑈

agree because they both equal the horizontal natural transformation in

𝖡 𝖡

𝖡 𝖢 𝖢 𝖢 𝖡.

←

→
𝑈 ←

→
𝑈

← →𝑈

← →𝐹

⇐ ⇐

⇐ ⇒𝜂 ← →𝐹

⇐ ⇐

⇐ ⇒𝜂

← →𝐹

The two natural transformations

𝐹◦𝑈 𝐹◦𝑈◦𝐹◦𝑈 𝐹◦𝑈←→
𝐹𝜂𝑈 ←→𝜖𝐹𝑈←→𝐹𝑈𝜖

equal id𝐹𝑈 by the triangle identities for the adjunction. 2

Example 5.5 For the standard adjoint pair

𝖲𝖾𝗍 𝖠𝖻,

←→𝐹←→𝑈
{ 𝐹 = forget the group structure
𝑈 = form the free abelian group

the endofunctor 𝐹◦𝑈 sends an abelian group 𝐴 to the free abelian group on the underly-
ing set of 𝐴.

Statement of the comonadicity theorem

Definition 5.6 Let (𝐺, 𝑐, 𝜖) be a comonad. A coaction of 𝐺 on an object 𝑋 of 𝖡 is a
morphism 𝜌𝑋 ∶ 𝑋 → 𝐺𝑋 such that (coassociativity) the two morphisms

𝑋 𝐺𝑋 𝐺◦𝐺𝑋←→
𝜌𝑋 ←→

𝐺𝜌𝑋←→𝑐𝑋

are equal and (counit) the morphism

𝑋 𝐺𝑋 𝑋←→
𝜌𝑋 ←→

𝜖𝑋

is the identity. We call such a pair (𝑋, 𝜌𝑋) a 𝐺-comodule.
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Amorphism of 𝐺-comodules (𝐵, 𝜌𝐵) → (𝐵′, 𝜌𝐵′) is a morphism 𝑓∶ 𝐵 → 𝐵′ such
that the following diagram commutes,

𝐺𝐵 𝐺𝐵′

𝐵 𝐵′.

←→
𝐺𝑓

← →𝜌𝐵

←→
𝑓

← →𝜌𝐵′

The category 𝖡𝐺 of 𝐺-modules in 𝖡 is called the Eilenberg–Moore category of the
comonad (𝐺, 𝑐, 𝜖).

Definition 5.7 Let 𝖢 𝖡

←→𝐹←→𝑈
be an adjoint pair and (𝐺, 𝑐, 𝜖) the associated comonad.

The (Eilenberg–Moore) comparison functor

Φ∶ 𝖢 → 𝖡𝐺

is defined to be

{ Φ𝐶 = (𝐹𝐶, 𝐹𝜂𝑐)
Φ𝑓 = 𝐹𝑓.

It follows from the triangle identities and the naturality of 𝜂 that Φ𝐶 is a 𝐺-comodule
and Φ𝑓 is a morphism of 𝐺-comodules.

Definition 5.8 An adjoint pair 𝖢 𝖡

←→𝐹←→𝑈
is comonadic if the comparison functor

Φ∶ 𝖢 → 𝖡𝐺 is an equivalence of categories.

Let 𝖢 𝖡

←→𝐹←→𝑈
be an adjoint pair and define functors

𝖡𝐺 𝖡

←→𝐹𝐺

←→

𝑈𝐺
{ 𝐹

𝐺(𝐵, 𝜌𝐵) = 𝐵
𝐹𝐺𝑓 = 𝑓 { 𝑈

𝐺𝐵 = (𝐺𝐵, 𝐹𝜂𝑈𝐵)
𝑈𝐺𝑓 = 𝐺𝑓.

Then the following diagrams commute,

𝖢 𝖡 𝖢 𝖡

𝖡𝐺 𝖡𝐺 .

← →𝐹

←

→Φ

←

→Φ

←→ 𝑈

←→

𝑈𝐺

← →
𝐹𝐺

Lemma 5.9 The functors 𝖡𝐺 𝖡

←→𝐹𝐺

←→

𝑈𝐺
are an adjoint pair.

Proof Consider the morphisms 𝜂∶ id𝖡𝐺 → 𝑈𝐺◦𝐹𝐺 , 𝜖∶ 𝐹𝐺◦𝑈𝐺 = 𝐺 → id𝖡, and
𝜌𝐵 ∶ (𝐵, 𝜌𝐵) → (𝐺𝐵, 𝐹𝜂𝑈𝐵). The triangle identities for (𝜂, 𝜖) must be proven, which
means that the compositions

(𝐺𝐵, 𝐹𝜂𝑈𝐵)
𝐹𝜂𝑈𝐵,→ (𝐺𝐺𝐵, 𝐹𝜂𝑈𝐺𝐵)

𝐺𝜖𝐵,→ (𝐺𝐵, 𝐹𝜂𝑈𝐵)

and
𝐵

𝜌𝐵,→ 𝐺𝐵
𝜖𝐵,→ 𝐵

are the identity for all 𝐵 ∈ ob𝖡, resp. (𝐵, 𝜌𝐵) ∈ ob(𝖡𝐺). In the first case, this follows
from the triangle identities (147), p. 285, and in the second from the co-identity axiom.2
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Definition 5.10 A split equalizer diagram consists of morphisms

𝐴 𝐵 𝐶← →ℎ ← →𝑓← →𝑔
←→

𝑠 ←→

𝑡

(67)

such that 𝑓◦ℎ = 𝑔◦ℎ, 𝑠◦ℎ = id𝐴, 𝑡◦𝑔 = id𝐵, 𝑡◦𝑓 = ℎ◦𝑠.

5.11 In the diagram (67), ℎ is the equalizer of 𝑓 and 𝑔.6 As split equalizer diagrams
remain so under all functors, ℎ is, in fact, the universal equalizer of 𝑓 and 𝑔.

Theorem 5.12 (Comonadicity theorem) Anadjoint pair 𝖢 𝖡

←→𝐹←→𝑈
is comonadic

if and only if the following conditions hold:
(a) 𝐹 reflects isomorphisms, i.e., 𝑓 is an isomorphism whenever 𝐹𝑓 is.
(b) if the image by 𝐹 of a parallel pair 𝑓, 𝑔 of morphisms in 𝖢 embeds in a split equalizer

diagram in 𝖡, then the pair 𝑓, 𝑔 has an equalizer in 𝖢 that is preserved by 𝐹.

We present the proof in the next subsection. For the proof of the opposite (dual)
statement, see Borceux 1994b, Theorem 4.4.4, Mac Lane 1998, pp. 147–150, or Riehl
2016, 5.5.1.

Corollary 5.13 Let 𝐹∶ 𝖢 → 𝖡 be an exact faithful functor of abelian categories. If 𝐹
admits a right adjoint functor, then the comparison functor

Φ∶ 𝖢 → 𝖡𝐺 , Φ(𝐶) = (𝐹𝐶, 𝐹𝜂𝑐)

is an equivalence of categories.

Proof We check that 𝐹 satisfies the conditions of Theorem 5.12. Let 𝑓∶ 𝐴 → 𝐵 be a
morphism in 𝖢, and consider the exact sequence

0→ 𝐾 → 𝐴
𝑓
,→ 𝐵 → 𝐶 → 0.

This sequence remains exact when we apply 𝐹. If 𝐹𝑓 is an isomorphism, then 𝐹𝐾 =
0 = 𝐹𝐶, so 𝐾 = 0 = 𝐶, and 𝑓 is an isomorphism. This proves (a), and the conditions
imply that every parallel pair in 𝖢 has an equalizer in 𝖢 that is preserved by 𝐹. 2

Proof of the comonadicity theorem

Before beginning the proof, we need some definitions.

Definition 5.14 A regular monomorphism is the equalizer of some parallel pair of
morphisms.

As the name suggests, regular monomorphisms are monomorphisms.

Definition 5.15 Let 𝐹∶ 𝖢 → 𝖡 be a functor. An 𝐹-split equalizer is a parallel pair
𝑓, 𝑔∶ 𝐴 ⇉ 𝐵 in 𝖢 together with an extension of 𝐹𝑓, 𝐹𝑔∶ 𝐹𝐴 ⇉ 𝐹𝐵 to a split equalizer
diagram in 𝖡. If, in addition, there exists a 𝑡∶ 𝐵 → 𝐴 such that 𝑡◦𝑓 = 𝑡◦𝑔 = id𝐴, then
𝑓, 𝑔∶ 𝐴 → 𝐵 is said to be reflexive.

6The first condition says that ℎ equalizes 𝑓 and 𝑔. Suppose that 𝑤∶ 𝑋 → 𝐵 also equalizes 𝑓 and 𝑔, so
𝑓◦𝑤 = 𝑔◦𝑤. Let 𝑗 = 𝑠◦𝑤. Then ℎ◦𝑗 = ℎ◦𝑠◦𝑤 = 𝑡◦𝑓◦𝑤 = 𝑡◦𝑔◦𝑤 = 𝑤, and so 𝑤 factors through 𝐴 → 𝐵.
The uniqueness of the factorization follows from the condition 𝑠◦ℎ = id𝐴.
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Let 𝖢 𝖡

←→𝐹←→𝑈
be an adjoint pair and Φ∶ 𝖢 → 𝖡𝐺 the comparison functor.

Lemma 5.16 For all 𝐶, 𝐶′ in 𝖢, Φ induces a bijection

Hom𝖢(𝑈,𝑈𝐹𝐶′) ≃ Hom𝖡𝐺 (Φ𝐶,Φ𝑈𝐹𝐶′).

Proof We have

Homℂ(𝐶,𝑈𝐹𝐶′) ≃ Hom𝖡(𝐹𝐶, 𝐹𝐶′)
≃ Hom𝖡(𝐹𝐺(𝐹𝐶, 𝐹𝜂𝐶), 𝐹𝐶′)
≃ Hom𝖡𝐺 ((𝐹𝐶, 𝐹𝜂𝐶), 𝑈𝐺𝐹𝐶′)
≃ Hom𝖡𝐺 ((𝐹𝐶, 𝐹𝜂𝐶), (𝐺𝐹𝐶′, 𝐹𝜂𝑈𝐹𝐶′))
≃ Hom𝖡𝐺 (Φ𝐶,Φ𝑈𝐹𝐶′).

. 2

Lemma 5.17 For all (𝐵, 𝜌𝐵) in 𝖡𝐺 ,

(𝐺𝐵, 𝑐𝐵) (𝐺𝐺𝐵, 𝑐𝐺𝐵)

←→
𝑐𝐵←→
𝐺𝜌𝐵

is a reflexive 𝐹𝐺-split equalizer.

Proof The naturality of 𝑐 implies that 𝐺𝜌𝐵 and 𝑐𝐵 are morphisms of comodules. Their
common left inverse is 𝐺𝜖𝐵 (which is a comodule morphism for the same reason). We
have

𝐺𝜖𝐵◦𝑐𝐵 = 𝐹𝑈𝜖𝐵◦𝐹𝜂𝑈𝐵 = 𝐹(𝑈𝜖𝐵◦𝜂𝑈𝐵) = id

because of the triangle identities (p. 285), and 𝐺𝜖𝐵◦𝑐𝐵 = id because of the co-identity
axiom. It remains to show that

𝐵 𝐵 𝐶← →𝜌𝐵 ← →𝑐𝐵← →𝐺𝜌𝐵←→

𝜖𝐵 ←→

𝜖𝐺𝐵

(68)

is a split equalizer diagram in𝖡. However, this follows directly from the triangle equalities
and the comodule axioms. 2

Lemma 5.18 In the situation of Lemma 5.17,

(𝐵, 𝜌𝐵) (𝐺𝐵, 𝑐𝐵) (𝐺𝐺𝐵, 𝑐𝐺𝐵)

←→
𝜌𝐵 ←→

𝑐𝐵←→
𝐺𝜌𝐵

is an equalizer in 𝐵𝐺 .

Proof Let 𝑓∶ (𝐵′, 𝜌𝐵′) → (𝐺𝐵, 𝑐𝐵) be a morphism of modules with 𝑐𝐵◦𝑓 = 𝐺𝜌𝐵◦𝑓.
After 5.17 and 5.11, there exists a unique map 𝑔∶ 𝐵′ → 𝐵 such that 𝜌𝐵◦𝑔 = 𝑓, and it
remains to show that 𝑔 is a morphism of comodules. For this, we consider

𝐺𝐵′ 𝐺𝐵 𝐺𝐺𝐵

𝐵′ 𝐵 𝐺𝐵.

←→
𝐺𝑔 ←→

𝐺𝜌𝐵

← →
𝑔

← →𝜌𝐵′

←→
𝜌𝐵

← →𝜌𝐵 ← →𝑐𝐵
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The outer rectangle commutes by assumption and the right-hand rectangle because of
coassociativity. It follows that

𝐺𝜌𝐵◦𝐺𝑔◦𝜌𝐵′ = 𝐺𝜌𝐵◦𝜌𝐵◦𝑔.

Since 𝐺𝜌𝐵 has left inverse 𝐺𝜖𝐵, the assertion follows. 2

Lemma 5.19 For all 𝐶 in 𝖢,

𝑈𝐹𝐶 𝑈𝐹𝑈𝐹𝐶

←→
𝜂𝑈𝐹𝐶←→𝑈𝐹𝜂𝐶

is a reflexive 𝐹-split equalizer.

Proof The triangle identities show that the two arrows have 𝑈𝜉𝐹𝐶 as a common left
inverse. The assertion now follows fromLemma 5.17, applied to the comodule (𝐹𝐶, 𝜂𝐶).2

Lemma 5.20 If 𝜂𝐶 ∶ 𝐶 → 𝑈𝐹𝐶 is a regular monomorphism for all 𝐶 in 𝖢, then

𝐶 𝑈𝐹𝐶 𝑈𝐹𝑈𝐹𝐶←→
𝜂𝐶 ←→

𝑈𝐹𝜂𝐶←→𝜂𝑈𝐹𝐶

is an equalizer for all 𝐶.

Proof By assumption, 𝜂𝐶 is the equalizer of a pair 𝐴 𝐵

←→𝑑
0

←→
𝑑1

. We have to show that,

for every morphism 𝑤∶ 𝑋 ,→ 𝑈𝐹𝐶,

𝑈𝐹𝜂𝐶◦𝑤 = 𝜂𝑈𝐹𝐶◦𝑤 ⇐⇒ 𝑑0◦𝑤 = 𝑑1◦𝑤.

First of all 𝜂𝑈𝐹𝐶◦𝑤 = 𝑈𝐹𝜂𝐶◦𝑤, and it follows

𝑈𝐹𝜂𝐶◦𝑈𝐹𝑤 = 𝑈𝐹𝑈𝐹𝜂𝐶◦𝑈𝐹𝑤.

We claim that

𝑈𝐹𝐶 𝑈𝐹𝑈𝐹𝐶 𝑈𝐹𝑈𝐹𝑈𝐹𝐶← →𝑈𝐹𝜂𝐶 ← →𝑈𝐹𝜂𝑈𝐹𝐶← →𝑈𝐹𝑈𝐹𝜂𝐶
←→

𝑈𝜖𝐹𝐶
←→

𝑈𝜖𝐹𝑈𝐹𝐶

is a split kernel pair in 𝖢. This follows from (68) applied to (𝐹𝐶, 𝐹𝜂𝐶) and (5.11). From
the claim it follows that 𝑈𝐹𝑤 factors through 𝑈𝐹𝐶. Let ℎ∶ 𝑋 → 𝑈𝐹𝐶 be a morphism
with 𝑈𝐹𝑤 = 𝑈𝐹𝜂𝐶◦ℎ. It follows that

𝑈𝐹𝑑0◦𝑈𝐹𝑤 = 𝑈𝐹𝑑0◦𝑈𝐹𝜂𝐶◦ℎ
= 𝑈𝐹𝑑1◦𝑈𝐹𝜂𝐶◦ℎ
= 𝑈𝐹𝑑1◦𝑈𝐹𝑤.

Because of the naturality of 𝜂, the following diagram commutes

𝑋 𝑈𝐹𝐶 𝐶′

𝑈𝐹𝑋 𝑈𝐹𝑈𝐹𝐶 𝑈𝐹𝐶′.

← →𝑤

←→ 𝜂𝑋 ←→ 𝜂𝑈𝐹𝐶

← →𝑑0← →
𝑑1 ←→ 𝜂𝐶′

←→𝑈𝐹𝑤 ←→𝑈𝐹𝑑0←→
𝑈𝐹𝑑1
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It follows that 𝜂𝐶′◦𝑑0◦𝑤 = 𝜂𝐶′◦𝑑1◦𝑤, and from this the assertion follows because 𝜂𝐶′
is a monomorphism. Now the converse applies, 𝑑0◦𝑤 = 𝑑1◦𝑤. Then 𝑤 = 𝜂𝐶◦𝑔 for a
𝑔∶ 𝑋 → 𝐶. From this follows

𝜂𝑈𝐹𝐶◦𝑤 = 𝜂𝑈𝐹𝐶◦𝜂𝐶◦𝑔 = 𝑈𝐹𝜂𝐶◦𝜂𝐶◦𝑔 = 𝑈𝐹𝜂𝐶◦𝑤. 2

Lemma 5.21 If 𝜂𝐶 is a regular monomorphism for all 𝐶 ∈ ob𝖢, then Φ is fully faithful.

Proof After Lemma 5.20,

𝐶 𝑈𝐹𝐶 𝑈𝐹𝑈𝐹𝐶←→
𝜂𝐶 ←→

𝑈𝐹𝜂𝐶←→𝜂𝑈𝐹𝐶

is an equalizer for all 𝐶 ∈ ob𝖢, and after Lemma 5.18,

Φ𝐶 Φ𝑈𝐹𝐶 Φ𝑈𝐹𝑈𝐹𝐶←→
Φ𝜂𝐶 ←→

Φ𝑈𝐹𝜂𝐶←→
Φ𝜂𝑈𝐹𝐶

is an equalizer in 𝖡𝐺 . So, for all 𝐴 ∈ ob𝖢, the rows in the commutative diagram

Hom(𝐴,𝐶) Hom(𝐴,𝑈𝐹𝐶) Hom(𝐴,𝑈𝐹𝑈𝐹𝐶)

Hom(Φ𝐴,Φ𝐶) Hom(Φ𝐴,Φ𝑈𝐹𝐶) Hom(Φ𝐴,Φ𝑈𝐹𝑈𝐹𝐶)

← →

←→ Φ ←→ Φ

← →← →

←→ Φ

←→

←→←→

are equalizers. According to Lemma 5.16, the middle and right vertical arrows are
bijective, and so the left is also. 2

Proof (of Theorem 5.12) Let 𝐶 ∈ ob𝖢. We first show that 𝜂𝐶 is a regular homomor-
phism. According to Lemma 5.19,

𝑈𝐹𝐶 𝑈𝐹𝑈𝐹𝐶

←→
𝜂𝑈𝐹𝐶←→𝑈𝐹𝜂𝐶

is a reflexive 𝐹-split kernel pair in 𝖢. According to hypothesis (b) of the theorem, there

exists an equalizer 𝐾
𝑑
,→ 𝑈𝐹𝐶. Because of the naturalness of 𝜂, the morphism 𝜂𝐶

equalizes 𝜂𝑈𝐹𝐶 and 𝑈𝐹𝜂𝐶 , and so it factors through 𝐾,

𝐾 𝑈𝐹𝐶 𝑈𝐹𝑈𝐹𝐶

𝐶

←→𝑑

←→
𝜂𝑈𝐹𝐶←→𝑈𝐹𝜂𝐶← →𝑓 ← →

𝜂𝐶

According to (68) with 𝐵 = 𝐹𝐶, when we apply 𝐹 to the bottom row we get an equalizer,
and after hypothesis (b), when we apply 𝐹 to the top row, we get an equalizer in 𝖡.
Therefore is 𝐹𝑓 an isomorphism, which implies that 𝑓 is an isomorphism. Thus 𝜂𝐶
is a regular monomorphism. According to Lemma 5.21, Φ is fully faithful. Now let
(𝐵, 𝜌𝐵) ∈ ob𝖡𝐺 . According to Lemma 5.17

(𝐹𝑈𝐵, 𝐹𝜂𝑈𝐵) (𝐹𝑈𝐹𝑈𝐵, 𝐹𝜂𝑈𝐹𝑈𝐵)

←→
𝐹𝜂𝑈𝐵←→𝐹𝑈𝜌𝐵
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is a reflexive 𝐹𝐺-split kernel pair in 𝖡𝐺 . On the other hand, this pair is the image of

𝑈𝐵 𝑈𝐹𝑈𝐵

←→
𝜂𝑈𝐵←→𝑈𝜌𝐵

underΦ. Therefore this is a reflexive𝐹-split kernel pair in𝖢, and the common left inverse
of both arrows is 𝑈𝜖𝐵. After hypothesis (b), there exists an equalizer 𝑑∶ 𝐾 → 𝑈𝐵 and

𝐹𝐾 𝐹𝑈𝐵 𝐵←→𝐹𝑑 ←→
𝐹𝜂𝑈𝐵←→𝐹𝑈𝜌𝐵

is an equalizer in 𝖡. After (68), 𝜌𝐵 ∶ 𝐵 → 𝐹𝑈𝐵 is the equalizer of the same pair, and
so there exists a unique isomorphism 𝑔∶ 𝐵 → 𝐹𝐾 such that 𝐹𝑑◦𝑔 = 𝜌𝐵. It remains to
show that 𝑔 is a morphism of comodules. Consider

𝐹𝑈𝐵 𝐹𝑈𝐹𝐾 𝐹𝑈𝐹𝑈𝐵

𝐵 𝐹𝐾 𝐹𝑈𝐵.

←→
𝐹𝑈𝑔 ←→𝐹𝑈𝐹𝑑

← →
𝑔

← →𝜌𝐵

← →𝐹𝑑

← →𝐹𝜂𝐾 ← →𝐹𝜂𝑈𝐵

The right-hand square commutes because of the naturalness of 𝜂, and the outer one
because of the coassociativity. The map 𝜌𝐵 is left invertible, and so 𝐹𝑑 is also left
invertible. From this the commutativity of the left square follows. Thus Φ𝐾 ≃ (𝐵, 𝜌𝐵),
and we have shown that Φ is essentially surjective. 2

Notes As noted, this section is standard category theory, although usually expressed for monads
rather than comonads. Our proof of the comonadicity theorem follows that in Lattermann 1989,
2.3.

Application to modules and comodules

5.22 Throughout this subsection, 𝐴 and 𝐵 are rings (not necessarily commutative), and
𝑀 = 𝐴𝑀𝐵 is an (𝐴, 𝐵)-bimodule, finitely generated and projective as a 𝐵-module, and
faithfully flat as an 𝐴-module. The 𝐵-dual of𝑀,

𝑀′ = 𝐵𝑀′
𝐴

def= Hom𝐵(𝑀,𝐵),

is a (𝐵,𝐴)-bimodule with the actions

{ (𝑏 ⋅𝑚
′)(𝑚) = 𝑏𝑚′(𝑚)

(𝑚′ ⋅ 𝑎)(𝑚) = 𝑚′(𝑎𝑚) 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,𝑚 ∈ 𝑀,𝑚′ ∈ 𝑀′.

Lemma 5.23 For any right 𝐵-module 𝑌, the homomorphism
(
𝑦 ⊗𝑚′)↦

(
𝑚 ↦ 𝑦𝑚′(𝑚)

)
∶ 𝑌𝐵 ⊗

𝐵
𝐵𝑀′

𝐴 → Hom𝐵(𝑀,𝑌),

is an isomorphism.

Proof After replacing 𝐵 with 𝐵𝑓 for 𝑓 in a suitable finite set of elements of 𝐵, we may
suppose that𝑀 is free as a 𝐵-module. For a fixed 𝑌, both sides commute with finite
direct sums, and so it suffices to check this for𝑀 = 𝐵, where it is obvious. 2
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When 𝑌 = 𝑀, the lemma says that

𝐴𝑀𝐵 ⊗
𝐵
𝐵𝑀′

𝐴 ≃ End𝐵(𝑀), 𝑚 ⊗𝑚′ ↔ (𝑥 ↦ 𝑚 ⋅𝑚′(𝑥)). (69)

5.24 We have functors

𝖬𝗈𝖽𝐴 𝖬𝗈𝖽𝐵

←→𝐹←→

𝑈
{ 𝐹𝑋 = 𝑋 ⊗𝐴 𝑀
𝑈𝑌 = 𝑌 ⊗𝐵 𝑀′. (70)

For 𝑋 ∈ ob(𝖬𝗈𝖽𝐴), 𝑌 ∈ ob(𝖬𝗈𝖽𝐵), there are canonical isomorphisms

Hom𝐵(𝑋 ⊗𝐴 𝑀,𝑌) ≃ Hom𝐴(𝑋,Hom𝐵(𝑀,𝑌)) ≃ Hom𝐴(𝑋,𝑌 ⊗𝐵 𝑀′),

natural in 𝑋 and 𝑌. The first is defined by the pairing

(𝑓, 𝑥)↦ (𝑚 ↦ 𝑓(𝑥 ⊗𝑚)) ∶ Hom𝐵(𝑋 ⊗𝐴 𝑀,𝑌) × 𝑋 → Hom𝐵(𝑀,𝑌),

and the second is induced by the isomorphism in Lemma 5.23. Hence (70) is an adjunc-
tion. The corresponding unit and counit are

𝜂∶ 𝑋 → 𝑋 ⊗𝐴 𝑀 ⊗𝐵 𝑀′, 𝜂(𝑥) = 𝑥 ⊗ 𝛿
𝜖∶ 𝑌 ⊗𝐵 𝑀′ ⊗𝐴 𝑀 → 𝑌, 𝜖(𝑦 ⊗𝑚′ ⊗𝑚) = 𝑦𝑚′(𝑚),

where 𝛿 ∈ 𝑀 ⊗𝐵 𝑀′ corresponds to the identity map under the isomorphism (69).

5.25 We can now apply Proposition 5.4. Let 𝐿 denote the 𝐵-bimodule

𝐵𝑀′
𝐴 ⊗

𝐴
𝐴𝑀𝐵,

The functor 𝐺 def= 𝐹◦𝑈 sends a right 𝐵-module 𝑌 to 𝑌 ⊗𝐵 𝐿, and 𝐺◦𝐺 sends 𝑌 to
𝑌 ⊗𝐵 𝐵𝐿𝐵 ⊗𝐵 𝐵𝐿𝐵. We have 𝐵-bimodule homomorphisms

𝑐∶ 𝐿 → 𝐿 ⊗𝐵 𝐿, 𝑚′ ⊗𝑚 ↦ 𝑚′ ⊗ 𝛿 ⊗𝑚
𝜖∶ 𝐿 → 𝐵, 𝑚′ ⊗𝑚 ↦ 𝑚′(𝑚),

whichmake 𝐿 a 𝐵-coalgebroid (with 𝑘 = ℤ). The corresponding natural transformations

𝑐∶ 𝐺 → 𝐺◦𝐺
𝜖∶ 𝐺 → id

make 𝐺 into a comonad. The functor 𝐹 is faithful and exact because 𝐴𝑀𝐵 is faithfully
flat over 𝐴. From Corollary 5.13 we deduce the first statement of the following theorem.

Theorem 5.26 Let𝑀 = 𝐴𝑀𝐵 be an (𝐴, 𝐵)-bimodule, finitely generated and projective as
a 𝐵-module, and faithfully flat as an𝐴-module; let𝑀∨ be its 𝐵-dual and 𝐿 the coalgebroid
𝑀∨ ⊗𝐴 𝑀 defined above. The functor

𝜔∶ 𝖬𝗈𝖽𝐴 ,→ 𝖼𝗈𝖬𝗈𝖽𝐿, 𝑋𝐴 ⇝ (𝑋𝐴 ⊗
𝐴

𝐴𝑀𝐵, 𝜌𝑋),

where
𝜌𝑋(𝑥 ⊗𝑚) = 𝑥 ⊗ 𝛿 ⊗𝑚 ∈ (𝑋 ⊗𝐴 𝑀)⊗ (𝑀∨ ⊗𝐴 𝑀) ,

is an equivalence of categories. Under the equivalence, 𝐴-modules of finite type (resp. of
finite presentation) correspond to comodules of finite type (resp. of finite presentation) as
𝐵-modules.
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Note that the diagram

𝖬𝗈𝖽𝐴 𝖼𝗈𝖬𝗈𝖽𝐿

𝖬𝗈𝖽𝐵

← →𝜔

←

→𝐹
←→

forget

commutes.

Proof It remains to prove the second statement.
If 𝑋 is finitely generated over𝐴, then there exists a surjection𝐴𝑛 → 𝑋. On tensoring

this with𝑀, we get a surjection𝑀𝑛 → 𝑋 ⊗𝐴 𝑀. As𝑀 is finitely generated over 𝐵, so
also are𝑀𝑛 and 𝑋 ⊗𝐴 𝑀.

If 𝑋 ⊗𝐴 𝑀 is finitely generated as a 𝐵-module, then it has a finite set of generators

𝑥𝑖 ⊗𝑚𝑖, 𝑥𝑖 ∈ 𝑋, 𝑚𝑖 ∈ 𝑀, 𝑖 ∈ 𝐼.

The𝐴-submodule 𝑋′ of 𝑋 generated by the 𝑥𝑖 has the property that 𝑋′⊗𝐴𝑀 ≃ 𝑋⊗𝐴𝑀.
As𝑀 is faithfully flat over 𝐴, this implies that 𝑋′ = 𝑋.

Let 𝑋 be finitely generated over 𝐴. Then 𝑋 = 𝐴𝑛∕𝑅 for some 𝑛 ≥ 0, and 𝑋 is
finitely presented if and only if 𝑅 is finitely generated, and 𝜔(𝑋) ≃ 𝐴𝑀𝑛

𝐵∕𝜔(𝑅) is finitely
presented if and only if 𝜔(𝑅) is finitely generated. Now use that 𝑅 is finitely generated if
and only if 𝜔(𝑅) is. 2

Remark 5.27 When 𝐴 and 𝐵 are 𝑘-algebras (𝑘 a commutative ring) and the two 𝑘-
module structures on 𝐴𝑀𝐵 coincide, the coalgebroid 𝐿

def= 𝐵𝑀∨
𝐴⊗
𝐴
𝐴𝑀𝐵 is a 𝑘-coalgebroid.

Example 5.28 In the case 𝐴 = 𝑘 is a field and 𝐵 a 𝑘-algebra, we obtain from a finitely
generated projective 𝐵-module𝑀, a 𝑘-coalgebroid 𝐿 def= 𝑀∨ ⊗𝑘 𝑀 whose coidentity is
the evaluation map. This coalgebroid coacts on𝑀 (the image of 𝑘 by −⊗𝑘 𝑀) by

𝜌0∶ 𝑀 → 𝑀 ⊗𝐵 𝐿, 𝑚 ↦ 𝛿 ⊗𝑚 ∈ 𝑀 ⊗𝐵 𝑀′ ⊗𝐵 𝑀 ≃ 𝑀 ⊗𝐵 𝐿.

Faithfully flat descent for noncommutative rings

We explain how to deduce a faithfully flat descent theorem for noncommutative rings
from the comonadicity theorem. This subsection can be skipped.

Definition 5.29 Let 𝑓∶ 𝐴 → 𝐵 be a ring homomorphism that makes 𝐵 into a faithfully
flat left𝐴-module. A descent datum on a right 𝐵-module 𝑌 is a homomorphism of right
𝐵-modules 𝜌𝑌 ∶ 𝑌 → 𝑌 ⊗𝐴 𝐵 (where 𝑌 ⊗𝐴 𝐵 becomes a right 𝐵-module through the
action on 𝐵) such that the two composed maps

𝑌 𝑌 ⊗𝐴 𝐵 𝑌 ⊗𝐴 𝐵 ⊗𝐴 𝐵

← →
𝜌𝑌 ← →

𝜌𝑌⊗𝐵← →
𝑦⊗𝑏↦𝑦⊗1𝐵⊗𝑏

are equal and the map

𝑌 𝑌 ⊗𝐴 𝐵 𝑌← →
𝜌𝑌 ← →

𝑦⊗𝑏↦𝑦𝑏

equals the identity map.
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With the obvious notion of morphism, the pairs (𝑌, 𝜌) consisting of a right 𝐵-module
and a descent datum form a category 𝖣𝖾𝗌𝖼(𝐵∕𝐴). Theorem 5.26 with 𝑀 = 𝐵 now
provides a generalization of the faithfully flat descent theorem to non-commutative
rings.

Theorem 5.30 (Faithfully flat descent) The functor

Φ∶ 𝖬𝗈𝖽𝐴 → 𝖣𝖾𝗌𝖼(𝐵∕𝐴), 𝑋 ⇝ (𝑋 ⊗𝐴 𝐵, 𝜌𝑋), 𝜌𝑋(𝑥 ⊗ 𝑏) = 𝑥 ⊗ 1⊗ 𝑏

is an equivalence of categories.

This follows from the next more precise statement.

Lemma 5.31 Let (𝑌, 𝜌𝑌) be a right 𝐵-module equipped with a descent datum. Then

𝑌′ def= {𝑦 ∈ 𝑌 ∣ 𝜌𝑌(𝑦) = 𝑦 ⊗ 1}

is an 𝐴-submodule of 𝑌 such that

𝑌′ ⊗𝐴 𝐵 ≃ 𝑌.

Proof Consider the proof of 5.12. To an arbitrary (𝐵, 𝜌𝐵) ∈ ob𝖡𝐺 , we attached an
𝐸 ∈ ob𝖢, defined to be the equalizer of

𝑈𝐵 𝑈𝐹𝑈𝐵

←→
𝜂𝑈𝐵←→𝑈𝜌𝐵

and we showed that Φ𝐸 ≃ (𝐵, 𝜌𝐵). In our case, the parallel arrows become

𝑌 𝑌 ⊗𝐴 𝐵.

←→
𝑦↦𝑦⊗1

←→𝜌𝑌 2

Notes When the rings are commutative, it is possible to show that descent data in the above
sense correspond to descent data in the commutative sense (e.g., Waterhouse 1979, 17.1), and
so deduce faithfully flat descent for modules over commutative rings from the comonadicity
theorem. However, even for those familiar with the comonadicty theorem, this approach is
scarcely easier than the direct approach (ibid., 17.2). See Lattermann 1989, 2.4.10, 2.4.11.

6 Proof of the main theorem

After these preliminaries, we are ready to prove Theorem 1.1

The coalgebroid of endomorphisms of a fibre functor

In this subsection, we attach a coalgebroid 𝐿(𝜔) to a fibre functor 𝜔 on a tannakian
category. Recall that when 𝑘 is a commutative ring and 𝐵1 and 𝐵2 are 𝑘-algebras, we
always require the two actions of 𝑘 on a (𝐵1, 𝐵2)-module to be equal.

6.1 We begin with a general definition. Let 𝖢 be a small category and 𝐹∶ 𝖢op × 𝖢 →
𝖣 a functor. A cowedge 𝑒∶ 𝐹 → 𝑤 is an object 𝑤 of 𝖣 and a family of morphisms
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𝑒𝑐 ∶ 𝐹(𝑐, 𝑐)→ 𝑤, indexed by the objects 𝑐 of 𝖢, such that, for all morphisms 𝑓∶ 𝑐′ → 𝑐,
the following diagram commutes,

𝐹(𝑐, 𝑐′) 𝐹(𝑐′, 𝑐′)

𝐹(𝑐, 𝑐) 𝑤.

←→
𝐹(𝑓,𝑐′)

←→ 𝐹(𝑐,𝑓) ←→ 𝑒𝑐′

← →
𝑒𝑐

Given a cowedge 𝑒∶ 𝐹 → 𝑤 and amorphism ℎ∶ 𝑤 → 𝑣, we obtain a cowedge ℎ◦𝑒∶ 𝐹 →
𝑣 by composition. A cowedge 𝑒∶ 𝐹 → 𝑤 is a coend if it is universal, i.e., any other
cowedge 𝑒′∶ 𝐹 → 𝑤′ factors uniquely through a morphism ℎ∶ 𝑤 → 𝑤′. When 𝖢 has
direct sums, a wedge can be viewed as a morphism

𝑒∶
⨁

𝑐∈ob𝖢
𝐹(𝑐, 𝑐)→ 𝑤,

and such amorphism is a coend if and only if it is the coequalizer of the pair ofmorphisms

⨁

(𝑓∶ 𝑐′→𝑐)∈ar𝖢
𝐹(𝑐, 𝑐′)

𝑒𝑐′◦𝐹(𝑓,𝑐′)−−−−−−−−→
−−−−−−−−→
𝑒𝑐◦𝐹(𝑐,𝑓)

⨁

𝑐∈ob𝖢
𝐹(𝑐, 𝑐).

6.2 Let 𝐵1, 𝐵2 be 𝑘-algebras (𝑘 a commutative ring) and 𝜔1, 𝜔2 functors from a small
category 𝖢 to the categories of finitely generated projective right modules over 𝐵1, 𝐵2,

{
𝜔1∶ 𝖢 → Proj𝐵1
𝜔2∶ 𝖢 → Proj𝐵2 .

Let 𝜔1(𝑌)∨ denote the 𝐵1-dual of 𝜔1(𝑌) – it is a left 𝐵1-module (5.22). We define
𝐿𝑘(𝜔1, 𝜔2) to be the coend of the functor

(𝑌,𝑋)⇝ 𝜔1(𝑌)∨ ⊗𝑘 𝜔2(𝑋)∶ 𝖢op × 𝖢 → {(𝐵1, 𝐵2)-bimodules} .

Thus 𝐿𝑘(𝜔1, 𝜔2) is a (𝐵1, 𝐵2)-bimodule equipped with a morphism of (𝐵1, 𝐵2)-bimodules

𝜔1(𝑋)∨ ⊗𝑘 𝜔2(𝑋)→ 𝐿𝑘(𝜔1, 𝜔2) (71)

for each𝑋 ∈ ob𝖢 such that certain diagrams commute and 𝐿𝑘(𝜔1, 𝜔2) is universal. More
concretely, it is the coequalizer of the parallel pair of morphisms

⨁

(𝑓∶ 𝑋→𝑌)∈ar𝖢
𝜔1(𝑌)∨ ⊗𝜔2(𝑋) −−→−−→

⨁

𝑋∈ob𝖢
𝜔1(𝑋)∨ ⊗𝑘 𝜔2(𝑋).

When it causes no confusion, we drop the 𝑘 from 𝐿𝑘(𝜔1, 𝜔2).
To give the morphisms (71) is equivalent to giving morphisms of 𝐵2-modules

𝜆(𝑋)∶ 𝜔2(𝑋)→ 𝜔1(𝑋)⊗𝐵1 𝐿(𝜔1, 𝜔2), 𝑋 ∈ ob𝖢. (72)

The commutativity of the diagrams means that 𝜆(𝑋) is functorial in 𝑋, and the universal
property of 𝐿(𝜔1, 𝜔2) says that, for all (𝐵1, 𝐵2)-bimodules 𝑈, the map

𝑓 ↦ (id𝜔1(𝑋)⊗𝑓◦𝜆(𝑋))𝑋
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sending a (𝐵1,𝐵2)-bimodule homomorphism 𝑓∶ 𝐿(𝜔1, 𝜔2) → 𝑈 into the system of
morphisms 𝑢(𝑋), natural in 𝑋,

𝜔2(𝑋) 𝜔1(𝑋)⊗𝐵1 𝐿(𝜔1, 𝜔2) 𝜔1(𝑋)⊗𝐵1 𝑈

← →
𝜆(𝑋)

← →
𝑢(𝑋)

← →
id𝜔1(𝑋)⊗𝑓

is a bijection, so

Hom(𝐵1,𝐵2)(𝐿(𝜔1, 𝜔2), 𝑈) ≃ Nat(𝜔2(−), 𝜔1(−)⊗𝐵1 𝑈).

6.3 For three functors 𝜔1, 𝜔2, 𝜔3 , iterating (72), we obtain a morphism

𝜔3(𝑋)→ 𝜔2(𝑋)⊗𝐵2 𝐿(𝜔2, 𝜔3)→ 𝜔1(𝑋)⊗𝐵1 𝐿(𝜔1, 𝜔2)⊗𝐵2 𝐿(𝜔2, 𝜔3),

natural in 𝑋, and hence a morphism

𝐿(𝜔1, 𝜔3)→ 𝐿(𝜔1, 𝜔2)⊗𝐵2 𝐿(𝜔2, 𝜔3). (73)

The coproduct (73) is coassociative: for four functors 𝜔1, 𝜔2, 𝜔3, 𝜔4, the diagram

𝐿(𝜔1, 𝜔4) 𝐿(𝜔1, 𝜔2)⊗𝐵2 𝐿(𝜔2, 𝜔4)

𝐿(𝜔1, 𝜔3)⊗𝐵3 𝐿(𝜔3, 𝜔4) 𝐿(𝜔1, 𝜔2)⊗𝐵2 𝐿(𝜔2, 𝜔3)⊗𝐵3 𝐿(𝜔3, 𝜔4)

← →

←→ ←→

←→

is commutative. The evaluationmaps𝜔𝑗(𝑋)∨⊗𝐵𝑗𝜔𝑗(𝑋)→ 𝐵𝑗 define a counit 𝜖∶ 𝐿(𝜔𝑗, 𝜔𝑗)→
𝐵𝑗: the two maps

𝐿(𝜔1, 𝜔2)→ 𝐿(𝜔1, 𝜔2)⊗𝐵2 𝐿(𝜔2, 𝜔3)
1⊗𝜖
,→ 𝐿(𝜔1, 𝜔2)

𝐿(𝜔1, 𝜔2)→ 𝐿(𝜔1, 𝜔1)⊗𝐵1 𝐿(𝜔1, 𝜔2)
𝜖⊗1
,→ 𝐿(𝜔1, 𝜔2)

equal the identity map.

6.4 The important case for us is 𝐵1 = 𝐵2 and 𝜔1 = 𝜔2. Let 𝐵 = 𝐵1 = 𝐵2. Then the map
(73) for 𝜔1 = 𝜔2 = 𝜔3 = 𝜔makes

𝐿𝑘(𝜔)
def= 𝐿𝑘(𝜔, 𝜔)

into a 𝑘-coalgebroid acting on 𝐵. Note that 𝐿𝑘(𝜔) is the coequalizer of

⨁

(𝑓∶ 𝑋→𝑌)∈ar𝖢
𝜔(𝑌)∨ ⊗𝜔(𝑋) −−→−−→

⨁

𝑋∈ob𝖢
𝜔(𝑋)∨ ⊗𝑘 𝜔(𝑋).

The map (72)
𝜆(𝑋)∶ 𝜔(𝑋)→ 𝜔(𝑋)⊗𝐵 𝐿(𝜔)

is a coaction of 𝐿(𝜔) on 𝜔(𝑋), functorial in 𝑋. The universal property of 𝐿(𝜔) says that,
for any 𝑘-coalgebroid 𝐿′ acting on 𝐵, to give an action of 𝐿′ on 𝜔(𝑋), natural in 𝑋, is
the same as giving a morphism of coalgebroids 𝐿(𝜔) → 𝐿′. We call 𝐿(𝜔) = 𝐿𝑘(𝜔) the
coalgebroid of 𝑘-endomorphisms of 𝜔.
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Example 6.5 When 𝖢 has consists of a single object and its identity morphism, to give
𝜔 is the same as giving a finitely generated projective right 𝐵-module𝑀. The coalgebroid
𝐿(𝜔) is𝑀∨ ⊗𝑘 𝑀 and its coaction on𝑀 is that in 5.28. The universal property of 𝐿(𝜔)
says that, for any 𝑘-coalgebroid 𝐿′ acting on 𝐵, the canonical isomorphism

Hom𝐵(𝑀,𝑀 ⊗𝑘 𝐿′) ≃ Hom(𝐵,𝐵)(𝑀∨ ⊗𝑘 𝑀,𝐿′)

makes coactions of 𝐿′ on𝑀 correspond to morphisms of coalgebroids𝑀∨ ⊗𝑘 𝑀 → 𝐿′.

Proposition 6.6 Let 𝐿 be a coalgebroid acting on a division algebra 𝐵.
(a) Every representation𝑉 of𝐿 is a filtered union of subrepresentations of finite dimension

over 𝐵.

(b) The coalgebroid 𝐿 is a filtered union of subcoalgebras of finite type as 𝐵⊗𝐵-modules.

Proof (a) Let 𝜌∶ 𝑉 → 𝑉 ⊗𝐵 𝐿 be a coaction. Each 𝑎 ∈ 𝑉 ⊗𝐵 𝐿 is contained in a
subspace 𝑉1 ⊗𝐵 𝐿 with 𝑉1 finite-dimensional, and the smallest 𝑉1 is the set of elements
𝜆(𝑎), where 𝜆 runs over the morphisms 𝐿 → 𝐵 of left 𝐵-vector spaces. For 𝑎 = 𝜌(𝑣), this
𝑉1 contains 𝑣 (take 𝜆 to be the coidentity) and is stable: if 𝜌(𝑣) =

∑
𝑣𝑖 ⊗ 𝓁𝑖 with the 𝓁𝑖

linearly independent, then 𝑉1 is generated by the 𝑣𝑖; the axiom for coactions gives
∑

𝜌(𝑣𝑖)⊗ 𝓁𝑖 =
∑

𝑣𝑖 ⊗ 𝑐(𝓁𝑖) ∈ 𝑉1 ⊗ 𝐿 ⊗ 𝐿,

and so 𝜌(𝑣𝑖) ∈ 𝑉1 ⊗ 𝐿 for all 𝑖.
(b) The comultiplication 𝑐∶ 𝐿 → 𝐿⊗𝐵 𝐿 is a coaction of 𝐿 on 𝐿 (the regular represen-

tation). After (a), 𝐿 is a filtered union of the subrepresentations 𝑉𝑖 of finite dimension
over 𝐵. The coaction of 𝐿 on 𝑉𝑖 corresponds, after 6.5, to a morphism of coalgebroids
𝑓𝑖 ∶ 𝑉∨

𝑖 ⊗𝑉𝑖 → 𝐿. The coidentity 𝑒 of 𝐿 induces a linear form on𝑉𝑖, and 𝑓𝑖(𝑒|𝑉𝑖⊗𝑥) = 𝑥.
The image of 𝑓𝑖 therefore contains 𝑉𝑖. Because 𝐵 is a division algebra, the image of 𝑓𝑖
is a subcoalgebroid of 𝐿. The coalgebroid 𝐿 is a filtered union of the images of the 𝑓𝑖,
which completes the proof. 2

Functorialities

6.7 (a) Consider homomorphisms 𝑓∶ 𝐵𝑗 → 𝐵′𝑗 and the corresponding extensions of
scalars 𝜔𝑗 ↦ 𝜔′𝑗. We have

𝐿(𝜔1, 𝜔2)⊗𝐵1⊗𝑘𝐵2 (𝐵
′
1 ⊗𝑘 𝐵′2)

≃,→ 𝐿(𝜔′1, 𝜔
′
2). (74)

(b) Consider a functor 𝑇∶ 𝖣 → 𝖢. The morphisms

𝜔2(𝑇(𝐷))→ 𝜔1(𝑇(𝐷))⊗ 𝐿(𝜔1, 𝜔2), 𝐷 ∈ ob𝖣,

define a morphism of coalgebroids

𝐿(𝜔1◦𝑇, 𝜔2◦𝑇)→ 𝐿(𝜔1, 𝜔2). (75)

(c) If 𝖢 is a filtered inductive limit of categories 𝖢𝑖 and 𝑇𝑖 is the natural functor 𝖢𝑖 → 𝖢,
then the morphisms (75) induce an isomorphism

lim,,→𝐿(𝜔1◦𝑇𝑖, 𝜔2◦𝑇𝑖)→ 𝐿(𝜔1, 𝜔2). (76)
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(d) Assume that 𝐵1, 𝐵2 are commutative. Let (𝖢𝑖)𝑖∈𝐼 be a finite family of categories,
and let

{
𝜔𝑖1∶ 𝖢 → Proj𝐵1
𝜔𝑖2∶ 𝖢 → Proj𝐵2

𝑖 ∈ 𝐼

be functors. Define

{
⨂

𝑖 𝜔
𝑖
1∶ 𝖢 → Proj𝐵1 ,

(⨂
𝑖 𝜔

𝑖
1
)
(𝐶) =

⨂
𝑖 𝜔

𝑖
1(𝐶)⨂

𝑖 𝜔
𝑖
2∶ 𝖢 → Proj𝐵2 ,

(⨂
𝑖 𝜔

𝑖
2
)
(𝐶) =

⨂
𝑖 𝜔

𝑖
2(𝐶).

Then
𝐿(⊗𝜔𝑖1, ⊗𝜔

𝑖
2)

≃,→
⨂

𝐵1⊗𝑘𝐵2

𝐿(𝜔𝑖1, 𝜔
𝑖
2).

As in 5.22 et seq., let 𝐴𝑀𝐵 be an (𝐴, 𝐵)-module, finitely generated and projective as
a right 𝐵-module, let 𝐵𝑀∨

𝐴 be its 𝐵-dual, and let 𝐿 be the 𝐵 coalgebroid 𝐵𝑀∨
𝐴 ⊗𝐴 𝐴𝑀𝐵.

We suppose that, for some commutative ring 𝑘, 𝐴 and 𝐵 are 𝑘-algebras and that the two
𝑘-module structures on 𝐴𝑀𝐵 coincide. For example, we could have 𝑘 = ℤ, in which
case the hypothesis is automatic.

Lemma 6.8 Let 𝖢 be a full subcategory of the category of right 𝐴-modules, containing 𝐴𝐴,
and such, if 𝐸 ∈ ob𝖢, then 𝐸 ⊗𝐴 𝐴𝑀𝐵 is finitely generated and projective over 𝐵. Let 𝜔 be
the functor 𝐸 ⇝ 𝐸 ⊗𝐴 𝐴𝑀𝐵. By 5.26, 𝐿 coacts on the 𝜔(𝐸), 𝐸 ∈ ob𝖢, and hence we have a
morphism

𝐿(𝜔)→ 𝐿. (77)

This morphism is an isomorphism.

Proof When 𝖢 consists only of the 𝐴-module 𝐴, this is the definition of the tensor
product over 𝐴. We now give the general proof.

Let 𝖣 be the full subcategory of 𝖢 having 𝐴𝐴 as its only object. The functoriality
6.7(b) gives a map 𝐿(𝜔|𝖣) → 𝐿(𝜔). As we just noted, we have 𝐿(𝜔|𝖣) ≃,→ 𝐿, and the
triangle

𝐿(𝜔|𝖣) 𝐿(𝜔)

𝐿

← →6.7(𝑏)

←

→(77)
←→

(77)

commutes. The morphism (75) therefore admits a retraction, and it suffices to show that
𝐿(𝜔|𝖣)maps onto 𝐿(𝜔), i.e., that for all 𝐶 in 𝖢, the image in 𝐿(𝜔) of 𝜔(𝐶)∨ ⊗𝑘 𝜔(𝐶) is
contained in 𝜔(𝐴)∨ ⊗𝑘 𝜔(𝐴). Every element of 𝜔(𝐶)∨ ⊗𝜔(𝐶) is a finite sum

∑
𝛼𝑖 ⊗ 𝑥𝑖

and each 𝑥𝑖 ∈ 𝐶 ⊗𝐴 𝐴𝑀𝐵 is a finite sum
∑
𝛼𝑖𝑗 ⊗𝑚𝑗, and therefore a sum of elements

of the form 𝑓(𝑦) with 𝑓∶ 𝐴 → 𝐶 and 𝑦 ∈ 𝜔(𝖠). It therefore suffices to show that an
element of 𝜔(𝐶)∨ ⊗𝑘 𝜔(𝐶) of the form 𝛼 ⊗ 𝑓(𝑦), 𝑓∶ 𝐴 → 𝐶, 𝑦 ∈ 𝜔(𝐴), has image in
𝐿(𝜔) contained in that of 𝜔(𝐴)∨ ⊗𝑘 𝜔(𝐴). By definition of 𝐿(𝜔), the diagram

𝜔(𝐶)∨ ⊗𝑘 𝜔(𝐴) 𝜔(𝐴)∨ ⊗𝑘 𝜔(𝐴)

𝜔(𝐶)∨ ⊗𝑘 𝜔(𝐶) 𝐿

←→
𝑡𝑓⊗1

←→ 1⊗𝑓 ←→

← →

commutes. Applying this to 𝛼 ⊗ 𝑦 ∈ 𝜔(𝐶)∨ ⊗𝜔(𝐴), we find that the image of 𝛼 ⊗ 𝑓(𝑦)
in 𝐿 is also the image of the element 𝑓𝑡(𝛼)⊗ 𝑦 of 𝜔(𝐴)∨ ⊗𝑘 𝜔(𝐴). 2
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Let 𝐵 be a division 𝑘-algebra and 𝐿 a 𝑘-coalgebroid acting on 𝐵. Let 𝖼𝗈𝖬𝗈𝖽𝖿(𝐿)
denote the category of 𝐿-comodules of finite dimension as 𝐵-vector spaces, and let 𝜔
be the forgetful functor. Since 𝐿 coacts on each 𝜔(𝑋), the universal property of 𝐿(𝜔)
furnishes a morphism 𝑢 from 𝐿(𝜔) to 𝐿.

Proposition 6.9 The morphism 𝑢∶ 𝐿(𝜔)→ 𝐿 is an isomorphism.

Proof By construction, a coaction of 𝐿 on a finite-dimensional 𝑉 has a natural lift
to 𝐿(𝜔). Applying 6.6 and passing to the inductive limit, we see that the restriction
“finite-dimensional” is unnecessary. Taking 𝑉 = 𝐿 and the coaction 𝑐∶ 𝐿 → 𝐿 ⊗𝐵 𝐿, we
obtain 𝑐1∶ 𝐿 → 𝐿 ⊗𝐵 𝐿(𝜔). Let 𝑎 = (counit⊗1)◦𝑐1∶ 𝐿 → 𝐿(𝜔). As (1⊗ 𝑢)◦𝑐1 = 𝑐, we
have 𝑢𝑎 = id.

Let 𝑉 be equipped with a coaction 𝜌, which lifts to a coaction �̃� of 𝐿(𝜔). Since
𝜌∶ 𝑉 → 𝑉 ⊗ 𝐿 is a morphism of vector spaces with coaction, the diagram

𝑉 𝑉 ⊗ 𝐿

𝑉 ⊗ 𝐿𝜔 𝑉 ⊗ 𝐿 ⊗ 𝐿𝜔 𝑉 ⊗ 𝐿𝜔

← →
𝜌

←→ �̄� ←→ 1⊗𝑐1

← →
𝜌⊗1 ← →1⊗counit⊗1

commutes, and so �̃� = (1⊗𝑎)𝜌. The morphism deduced from 𝜌∶ 𝑉∨⊗𝑉 → 𝐿𝜔 admits
the factorization 𝑉∨ ⊗𝑉 → 𝐿

𝑎
,→ 𝐿𝜔. The definition of 𝐿𝜔 shows that 𝑎 is surjective,

and therefore 𝑢 is an isomorphism. 2

Realizing (𝖳, 𝜔) as a category of comodules

The next theorem generalizes (II, 3.15).

Theorem 6.10 Let 𝐵 be an algebra over a field 𝑘. Let 𝖠 be an essentially small, locally
finite, 𝑘-linear abelian category and𝜔∶ 𝖠 → Proj(𝐵) an exact faithful 𝑘-linear functor. Let
𝐿(𝜔) be the 𝑘-coalgebroid of 𝑘-endomorphisms of 𝜔 (6.4). Then 𝜔 defines an equivalence
of categories 𝖠 ∼,→ 𝖼𝗈𝖬𝗈𝖽𝖿(𝐿(𝜔)) carrying 𝜔 into the forgetful functor.

Proof Recall (II, 5.7) that, for an object𝑋 of an abelian category, ⟨𝑋⟩ denotes the strictly
full subcategory whose objects are subquotients of a finite direct sum of copies of 𝑋. It is
an abelian subcategory containing 𝑋.

For𝑋 in𝖠, the category ⟨𝑋⟩ admits a projective generator𝑃 (II, 3.11). Let𝐴 = End(𝑃).
Then the functor 𝑌 ⇝ Hom(𝑃, 𝑌) is an equivalence of ⟨𝑋⟩ with the category 𝖬𝗈𝖽𝖿𝐴
of right 𝐴-modules of finite type. Under this equivalence, 𝑃 corresponds to 𝐴𝐴. Put
𝐴𝑀𝐵 = 𝜔(𝑃). By (the proof of) 3.6, the right exact functor 𝜔|⟨𝑋⟩ can be identified with
the functor 𝐸 ⇝ 𝐸 ⊗𝐴 𝐴𝑀𝐵 ∶ 𝖬𝗈𝖽𝖿𝐴 → 𝖬𝗈𝖽𝐵. Note that, 𝜔 being linear, the two
𝑘-module structures on 𝐴𝑀𝐵 coincide.

After 6.8, 𝐿(𝜔|𝑋) is the 𝑘-coalgebroid 𝐵𝑀∨
𝐴 ⊗𝐴 𝐴𝑀𝐵 of 5.26. By hypothesis, 𝜔|⟨𝑋⟩ is

exact and faithful. The 𝐴-module 𝐴𝑀𝐵 is therefore faithfully flat over 𝐴. After 5.26 and
5.27, 𝜔 induces an equivalence of ⟨𝑋⟩ with the category of right 𝐵-modules of finite type
equipped with a coaction of 𝐿(𝜔|⟨𝑋⟩).

The category Ind⟨𝑋⟩ of Ind-objects of ⟨𝑋⟩ can be identified with that of all right
𝐴-modules 𝖬𝗈𝖽𝐴 (see B.8). The extension of 𝐿(𝜔|⟨𝑋⟩) to Ind-objects, 𝜔(“lim,,→”𝑋𝑖) =
lim,,→𝜔(𝑋𝑖) is again 𝐸 ⇝ 𝐸 ⊗𝐴 𝐴𝑀𝐵. By 5.26, this extension is an equivalence of Ind⟨𝑋⟩
with the category of right 𝐵-modules equipped with a coaction of 𝐿(𝜔|⟨𝑋⟩). This, and
the assumed properties of 𝜔, show that any right 𝐵-module of finite type, equipped with
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a coaction of 𝐿(𝜔|⟨𝑋⟩), is finitely generated projective, and that any right 𝐵-module with
a coaction is a inductive limit of finitely generated projective right 𝐵-modules, and, in
particular, is flat.

The exactness of 𝜔 ensures that 𝐴𝑀𝐵 is 𝐴-flat. Moreover, for any right 𝐴-module 𝑁,
the right 𝐵-module 𝑁 ⊗𝐴 𝐴𝑀𝐵 is flat. The formula

𝐿(𝜔|⟨𝑋⟩) = 𝐵𝑀∨
𝐴 ⊗𝐴 𝐴𝑀𝐵

then shows that 𝐿(𝜔|⟨𝑋⟩) is flat for the two 𝐵-module structures.
If𝑌 is in ⟨𝑋⟩, i.e., ⟨𝑌⟩ ⊂ ⟨𝑋⟩, and 𝔞 is the 2-sided ideal of𝐴 such that ⟨𝑌⟩ corresponds

to the 𝐴-modules killed by 𝔞 (see 3.13), we have

𝐿(𝜔|⟨𝑌⟩) = (𝐴∕𝔞⊗𝐴 𝐴𝑀𝐵)∨ ⊗𝐴∕𝔞 (𝐴∕𝔞⊗𝐴 𝐴𝑀𝐵)
= (𝐴∕𝔞⊗𝐴 𝐴𝑀𝐵)∨ ⊗𝐴∕𝔞 𝑀𝐵,

and (𝐴∕𝔞⊗𝐴 𝐴𝑀𝐵)∨ is the kernel of the epimorphism 𝐵𝑀∨
𝐴 → (𝔞⊗𝐴 𝐴𝑀𝐵)∨, and so

there is an exact sequence

0→ 𝐿(𝜔|⟨𝑌⟩)→ 𝐿(𝜔|⟨𝑋⟩)→ (𝔞⊗𝐴 𝐴𝑀𝐵)∨ ⊗𝐴 𝐴𝑀𝐵 → 0.

The morphism 6.7(b) of 𝐿(𝜔|⟨𝑌⟩) into 𝐿(𝜔|⟨𝑋⟩) is therefore injective, with kernel flat as
a left and as a right 𝐵-module.

A 𝐵-module of finite type with a coaction of 𝐿(𝜔|⟨𝑋⟩) corresponds to an object of
⟨𝑌⟩ if the coaction

𝑁 → 𝑁 ⊗ 𝐿(𝜔|⟨𝑋⟩)

factors through 𝑁 ⊗ 𝐿(𝜔|⟨𝑌⟩).
The category 𝖠 is the filtered union of the subcategories ⟨𝑋⟩ and 𝐿(𝜔) is the inductive

limit of the 𝐿(𝜔|⟨𝑋⟩) (6.7(c)). Passing to the limit, we obtain the theorem. 2

Example 6.11 Let 𝖠 be a small locally finite 𝑘-linear abelian category, 𝐵 an extension
field of 𝑘, and 𝜔∶ 𝖢 → 𝖵𝖾𝖼𝖿𝐵 an exact faithful 𝑘-linear functor. Then 𝜔 factors into

𝖢
𝑖
,→ 𝖼𝗈𝖬𝗈𝖽𝖿𝐿(𝜔)

forget
,→ 𝖵𝖾𝖼𝖿𝐵.

The functor 𝑖 is an equivalence of categories.

Proof of the main theorem, except for the faithful flatness

6.12 Let 𝐵 be a commutative ring. We shall use the construction of 𝐿(𝜔1, 𝜔2) in 6.2 for
𝐵1 = 𝐵2 = 𝑘 = 𝐵. Later, we shall need to consider two commutative 𝑘-algebras 𝐵1, 𝐵2
and we shall take 𝐵 to be the commutative algebra 𝐵1 ⊗𝑘 𝐵2.

Suppose that we have three categories 𝖠1, 𝖠2, 𝖠3 and, for each category, two functors

{
𝜔𝑖1∶ 𝖠𝑖 → 𝖯𝗋𝗈𝗃(𝐵)
𝜔𝑖2∶ 𝖠2 → 𝖯𝗋𝗈𝗃(𝐵).

Suppose also that we have a functor⊗∶ 𝖠1 × 𝖠2 → 𝖠3 and isomorphisms of functors

{
𝜔11(𝑋1)⊗𝐵 𝜔21(𝑋2)→ 𝜔31(𝑋1 ⊗𝑋2)
𝜔12(𝑋1)⊗𝐵 𝜔2𝑗 (𝑋2)→ 𝜔3𝑗 (𝑋1 ⊗𝑋2).
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In 6.2, we defined 𝐵-modules 𝐿𝐵(𝜔𝑖1, 𝜔
𝑖
2), and 6.7b and 6.7d furnish a 𝐵-bilinear product

𝐿𝐵(𝜔11, 𝜔
1
2)⊗𝐵 𝐿𝐵(𝜔21, 𝜔

2
2)→ 𝐿𝐵(𝜔31, 𝜔

3
2). (78)

For any 𝑋1 and 𝑋2 in 𝖠1 and 𝖠2, the morphism (72)

𝜔32(𝑋1 ⊗𝑋2)→ 𝜔31(𝑋1 ⊗𝑋2)⊗𝐵 𝐿𝐵(𝜔31, 𝜔
3
2)

can be deduced from the analogous morphisms for 𝜔𝑗1(𝑋𝑗) and 𝜔
𝑗
2(𝑋𝑗) by (78).

Let 𝖠 be a tensor category and 𝜔1 and 𝜔2 two tensor functors 𝖠 → 𝖯𝗋𝗈𝗃(𝐵) (see
Chapter I). When we take 𝖠𝑖 = 𝖠 and 𝜔𝑖𝑗 = 𝜔𝑗 (𝑖 = 1, 2, 3), the product (78) becomes a
product

𝐿𝐵(𝜔1, 𝜔2)⊗𝐵 𝐿𝐵(𝜔1, 𝜔2)→ 𝐿𝐵(𝜔1, 𝜔2). (79)

Proposition 6.13 The product (79) makes 𝐿𝐵(𝜔1, 𝜔2) into a commutative 𝐵-algebra.

Proof For 𝑗 = 1, 2, we have essentially commutative diagrams,

𝖠 × 𝖠 𝖠 × 𝖠 𝖠

𝖬𝗈𝖽(𝐵) 𝖬𝗈𝖽(𝐵) 𝖬𝗈𝖽(𝐵)

← →(𝑋,𝑌)↦(𝑌,𝑋)

←→ 𝜔𝑗⊗𝜔𝑗

← →⊗

←→ 𝜔𝑗⊗𝜔𝑗 ←→ 𝜔𝑗

⇐ ⇐ ⇐ ⇐

The left-hand square is rendered commutative by the isomorphism of functors

𝜔𝑗(𝑋)⊗𝐵 𝜔𝑗(𝑌)→ 𝜔𝑗(𝑌)⊗𝐵 𝜔𝑗(𝑋),

and the right-hand square by the isomorphism

𝜔𝑗(𝑋 ⊗ 𝑌)→ 𝜔𝑗(𝑋)⊗𝐵 𝜔𝑗(𝑌).

By the definition of a tensor functor, the isomorphism of composed functors makes
commutative the boundary of the diagram, and also the left-hand square once we identify
𝜔(𝑌 ⊗ 𝑋) with 𝜔(𝑋 ⊗ 𝑌) using the commutativity of ⊗ in 𝖠. Applying 𝐿(⋅, ⋅) to the
diagram, we obtain the commutativity in (79). The associativity is obtained the same way.
If {𝟙} is the subcategory of 𝖠 consisting only of the identity object and the identity arrow,
then we obtain, by definition of tensor functor, that 𝜔𝑗(1)

≃,→ 𝐵 and 𝐿𝐵(𝜔1|{𝟙}, 𝜔2|{𝟙}) =
𝐵. The identity 𝐵 → 𝐿𝐵(𝜔1, 𝜔2) of 𝐿𝐵(𝜔1, 𝜔2) is defined by 6.7(b). 2

6.14 Recall (1.3) that when 𝖠 is a tensor category and 𝜔1 and 𝜔2 are tensor functors
from 𝖠 to the quasi-coherent sheaves on an affine scheme 𝑆, we defineℋ𝑜𝑚⊗

𝑆 (𝜔1, 𝜔2)
(resp. ℐ𝑠𝑜𝑚⊗

𝑆 (𝜔1, 𝜔2)) to be the functor on 𝖠𝖿𝖿𝑆 sending 𝑢∶ 𝑇 → 𝑆 to the set of mor-
phisms (resp. isomorphisms) of tensor functors 𝑢∗𝜔1 → 𝑢∗𝜔2. If 𝜔1 and 𝜔2 take values
in the category of locally free modules of finite rank, for example, if 𝖠 is rigid (I, 7.4),
then these functors are representable by an affine scheme over 𝑆 and

ℋ𝑜𝑚⊗
𝑆 (𝜔1, 𝜔2) ≃ ℐ𝑠𝑜𝑚⊗

𝑆 (𝜔1, 𝜔2).

6.15 As in 1.3, when 𝜔𝑖 has values in the category of quasi-coherent sheaves on 𝑆𝑖, we
put

ℋ𝑜𝑚⊗
𝑘 (𝜔2, 𝜔1) =ℋ𝑜𝑚⊗

𝑆1×𝑆𝑠
(pr∗2 𝜔2, pr

∗
1 𝜔1),

and similarly for ℐ𝑠𝑜𝑚. For 𝜔1 = 𝜔2, we let

ℰ𝑛𝑑(𝜔) =ℋ𝑜𝑚(𝜔, 𝜔)
𝒜𝑢𝑡(𝜔) = ℐ𝑠𝑜𝑚(𝜔, 𝜔).
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Proposition 6.16 Let 𝖠 be a tensor category and 𝜔1 and 𝜔2 tensor functors 𝖠 → 𝖯𝗋𝗈𝗃(𝐵).
Put 𝑆 = Spec𝐵. The scheme 𝐿𝐵(𝜔1, 𝜔2) represents the functorℋ𝑜𝑚⊗

𝑆 (𝜔2, 𝜔1).

Proof Let 𝑢∶ 𝑇 → 𝑆, 𝑇 = Spec𝐶, be an affine scheme over 𝑆. By definition (6.2), a
morphism 𝑓∶ 𝐿𝐵(𝜔1, 𝜔2)→ 𝐶 of 𝐵-modules can be identified with a functorial system
of 𝐵-modules

𝑓𝑋 ∶ 𝜔2(𝑋)→ 𝜔1(𝑋)⊗𝐵 𝐶.
Giving the 𝑓𝑋 is equivalent to giving 𝐶-linear morphisms

𝑓′𝑋 ∶ 𝜔2(𝑋)⊗𝐵 𝐶 → 𝜔1(𝑋)⊗𝐵 𝐶,

functorial in 𝑋, i.e., a morphism 𝑓′ of functors 𝑢∗𝜔1 to 𝑢∗𝜔1. It can be checked that 𝑓 is
a morphism of algebras if and only if 𝑓′ is a morphism of tensor functors. 2

6.17 Let 𝑘 be a commutative ring, and let 𝐵1 and 𝐵2 be two commutative 𝑘-algebras.
Let 𝖠 be a 𝑘-linear tensor category and 𝜔1 and 𝜔2 tensor functors from 𝖠 to 𝖯𝗋𝗈𝗃(𝐵1) and
𝖯𝗋𝗈𝗃(𝐵2). By extension of scalars, 𝜔1 and 𝜔2 define tensor functors 𝖠 → 𝖯𝗋𝗈𝗃(𝐵1 ⊗𝑘 𝐵2),
which we denote 𝜔1 ⊗ 1 and 1⊗𝜔2 respectively. We have

𝐿𝑘(𝜔1, 𝜔2) = 𝐿𝐵1⊗𝑘𝐵2(𝜔1 ⊗ 1, 1⊗𝜔2).

After 6.16, Spec𝐿𝑘(𝜔1, 𝜔2) represents the functorℋ𝑜𝑚⊗
𝑘 (𝜔2, 𝜔1), which is equal to

ℐ𝑠𝑜𝑚⊗
𝑘 (𝜔1, 𝜔2) if 𝖠 is rigid (see 6.14).

For three 𝐵𝑗 and 𝜔𝑗, composition of morphisms

ℋ𝑜𝑚⊗
𝑘 (𝜔3, 𝜔2) ×𝑆2 ℋ𝑜𝑚⊗

𝑘 (𝜔2, 𝜔1)→ℋ𝑜𝑚⊗
𝑘 (𝜔3, 𝜔1)

corresponds to a morphism of 𝑘-algebras

𝑐∶ 𝐿𝑘(𝜔1, 𝜔3)→ 𝐿𝑘(𝜔1, 𝜔2)⊗𝐵2 𝐿𝑘(𝜔2, 𝜔3).

By definition, the morphism of 𝐿𝑖(𝜔1, 𝜔2)⊗𝐵2 𝐿𝑘(𝜔2, 𝜔3)-modules deduced by extension
of scalars (by 𝑐) from

𝜔3(𝑋)⊗𝐵3 𝐿𝑘(𝜔1, 𝜔3)→ 𝜔1(𝑋)⊗𝐵1 𝐿𝑘(𝜔1, 𝜔3)

is the composite of the morphisms deduced by extension of scalars from

𝜔3(𝑋)⊗𝐵3 𝐿𝑘(𝜔2, 𝜔3)→ 𝜔2(𝑋)⊗𝐵2 𝐿𝑘(𝜔2, 𝜔3) and
𝜔2(𝑋)⊗𝐵2 𝐿𝑘(𝜔1, 𝜔2)→ 𝜔1(𝑋)⊗𝐵1 𝐿𝑘(𝜔1, 𝜔2).

This returns to the commutativity

𝜔3(𝑋);𝜔1(𝑋)⊗𝐵1 𝐿𝑘(𝜔1, 𝜔2)
𝜔2(𝑋)⊗𝐵2 𝐿𝑘(𝜔2, 𝜔3);𝜔1(𝑋)⊗𝐵1 𝐿𝑘(𝜔1, 𝜔2)⊗𝐵2 𝐿𝑘(𝜔2, 𝜔3)

and 𝑐 is therefore (73).

6.18 Let 𝑘 be a field. Let 𝖳 be a tensorial category over 𝑘 and 𝜔 a fibre functor on 𝖳 over
𝑆 = Spec𝐵, 𝐵 a nonzero 𝑘-algebra. We prove that 𝜔 induces an equivalence of 𝖳 with
𝖱𝖾𝗉𝖿(𝑆∶𝐺), where 𝐺 is the groupoid 𝒜𝑢𝑡⊗𝑘 (𝜔).

In the above, we take 𝖠 = 𝖳, 𝐵1 = 𝐵2 = 𝐵, 𝜔1 = 𝜔2 = 𝜔. According to (I, 7.12),
𝖳 is locally finite, and so we can apply 6.10. After 6.17, 𝒜𝑢𝑡⊗𝑘 (𝜔) is the spectrum of
𝐿(𝜔) = 𝐿𝑘(𝜔1, 𝜔2). The action of 𝒜𝑢𝑡

⊗
𝑘 (𝜔) on 𝜔(𝑋) is defined by the morphisms

𝜔(𝑋)→ 𝜔(𝑋)⊗𝐵 𝐿(𝜔, 𝜔)

which defined 𝐿 (72). By 6.17 again, the law of composition of the groupoid 𝒜𝑢𝑡⊗𝑘 (𝜔) is
defined by the comultiplication of 𝐿(𝜔), and 6.10 is equivalent to the required statement.
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Proof of the faithful flatness

Proposition 6.19 Let 𝖢 be a tannakian category over 𝑘 and let 𝜔 be a fibre functor with
values in a (commutative) 𝑘-algebra 𝐵 ≠ 0. Let Ind𝜔∶ Ind𝖢 → 𝖬𝗈𝖽(𝐵) denote the
extension of 𝜔 to Ind𝖢. For all nonzero objects 𝑇 in Ind𝖢, Ind(𝜔)(𝑇) is faithfully flat over
𝐵.

Proof The category 𝖢 is abelian and its objects are noetherian (I, 7.12). On applying
Proposition B.6, we see that 𝑇 = lim,,→𝑋𝑖 with 𝑋𝑖 ∈ ob𝖢, 𝑋𝑖 ⊂ 𝑇. Fix an 𝑋𝑗 ≠ 0, and
consider the exact sequence

0→ 𝑋𝑗 → 𝑇 → 𝑇∕𝑋𝑗 → 0

in Ind𝖢. Because 𝜔 is right exact, Ind𝜔 commutes with arbitrary inductive limits (B.4),
and so (Ind𝜔) (𝑇) = lim,,→𝜔(𝑋𝑖). We deduce an exact sequence

0→ 𝜔𝑋𝑗 → (Ind𝜔)(𝑇)→ (Ind𝜔)(𝑇∕𝑋𝑗)→ 0.

Now Ind(𝜔)(𝑇) is an inductive limit of finitely generated projective (hence flat) modules,
and so is a flat 𝐵-module. Similarly, Ind(𝜔)(𝑇∕𝑋𝑗) is a flat 𝐵-module. Moreover, the
finitely generated projective 𝐵-module 𝜔(𝑋𝑗) is nonzero because 𝜔 is faithful (7.7). If𝑀
is an arbitrary nonzero 𝐵-module, then the sequence

0→ 𝜔(𝑋𝑗)⊗𝐵 𝑀 → (Ind𝜔)(𝑇)⊗𝐵 𝑀 → (Ind𝜔)(𝑇∕𝑋𝑗)⊗𝐵 𝑀 → 0

is exact because (Ind𝜔)(𝑇∕𝑋𝑗) is flat.7 As𝜔(𝑋𝑗)⊗𝐵𝑀 ≠ 0, we have (Ind(𝜔)(𝑇))⊗𝐵𝑀 ≠
0, and so Ind(𝜔)(𝑇) is a faithfully flat 𝐵-module. 2

Corollary 6.20 Let 𝖢 be a tannakian category over a perfect field 𝑘, and let 𝜔 be a fibre
functor with values in a (commutative) 𝑘-algebra 𝐵. Then 𝐿𝑘(𝜔) (see 6.4) is a faithfully flat
𝐵 ⊗𝑘 𝐵-algebra.

Proof Define 𝑇 to be the coequalizer of the parallel pair of morphisms

⨁

(𝑓∶ 𝑋→𝑌)∈ar𝖢
𝑌∨ ⊗𝑋 −−→

−−→
⨁

𝑋∈ob𝖢
𝑋∨ ⊗𝑋

in Ind(𝖢⊠𝖢) (cf. 6.2). According to (10.17), we have a fibre functor 𝜔⊠𝜔 on 𝖢⊠𝖢, and
clearly Ind(𝜔⊠ 𝜔)(𝑇) = 𝐿(𝜔). If 𝐵 ≠ 0, then 𝐿(𝜔) ≠ 0, and so 𝑇 ≠ 0. Now Proposition
6.19 shows that 𝐿(𝜔) is faithfully flat. 2

Corollary 6.21 Let 𝖢 be a tannakian category over a perfect field 𝑘, and let 𝜔 be a fibre
functor with values in a 𝑘-algebra 𝐵 ≠ 0. Then there exists a faithfully flat map 𝑓∶ 𝐵 → 𝐵′
such that 𝑓∗𝜔 ≈ 𝑓∗𝜔′.

Proof See 1.4. 2

7Let 0→ 𝐺 → 𝐻 → 𝐸 → 0 be an exact sequence of right 𝐴-modules. If 𝐸 is flat, then

0→ 𝐺 ⊗𝐴 𝐹 → 𝐻 ⊗𝐴 𝐹 → 𝐸 ⊗𝐴 𝐹 → 0

is exact for all left𝐴-modules 𝐹. This is most naturally proved using the Tor functor, but, for a proof without
them, see Bourbaki AC, I, 2.5, Pptn 4.
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This completes the proof of Theorem 1.1 when 𝑘 is perfect. For the case of a nonper-
fect base field, we refer the reader to Deligne 1990.

Remark 6.22 We used the hypothesis that 𝑘 is perfect to show that the functor 𝖠⊠𝖡 →
𝖣 defined by a functor 𝖠× 𝖡 → 𝖣, exact in both variables, is exact (10.10). This was used
in the proof (10.16) that a tensor product of tensorial categories over a perfect field is
tensorial and hence in the proof of the similar statement (10.17) for tannakian categories.
For an explanation of how to remove the perfectness hypothesis in 10.17, hence in the
proof of Theorem 1.1, see Deligne 1990, 5.18. It is not clear (to the author) what interest
there is in tannakian categories over nonperfect fields.

Notes The exposition of the proof Theorem 1.1 and of its preliminaries largely follows the
original (Deligne 1990, §§1–6). See also Lattermann 1989.

7 Restatement for 2-categories

Let 𝑆 be a nonempty affine scheme over 𝑘. Theorem 1.1 can be interpreted as saying that
the 2-category of 𝑘-groupoids acting transitively on 𝑆 is biequivalent (not 2-equivalent)
to the category of tannakian categories equipped with a fibre functor over 𝑆.

Definition 7.1 The 2-category 𝒢𝓇𝓅𝒹𝑆 has
⋄ objects the affine 𝑘-groupoids acting transitively on 𝑆;

⋄ a 1-morphism from 𝐺 to𝐻 is a morphism 𝑓∶ 𝐺 → 𝐻 of 𝑆 × 𝑆-schemes such that
the diagrams (63), p. 110, commute;

⋄ a 2-morphism 𝑓 → 𝑔 is a natural transformation from 𝑓 to 𝑔 (viewing 𝑓 and 𝑔 as
functors of affine 𝑆 × 𝑆-schemes).

Definition 7.2 The 2-category𝒯𝒶𝓃𝓃∙
𝑆 of 𝑆-pointed tannakian categories over 𝖠𝖿𝖿𝑘

has
⋄ objects the pairs (𝖳, 𝜔), where 𝖳 is an essentially small tannakian category over 𝑘

and 𝜔 is a fibre functor on 𝖳 over 𝑆;

⋄ a 1-morphism from (𝖳, 𝜔) to (𝖳′, 𝜔′) is an exact 𝑘-linear tensor functor from 𝖳 to
𝖳′ carrying 𝜔 into 𝜔′;

⋄ a 2-morphism is a morphism of tensor functors.

The functors we defined in §1 extend in an obvious way to 2-functors

Φ∶ 𝒯𝒶𝓃𝓃∙op
𝑆 → 𝒢𝓇𝓅𝒹𝑆, (𝖳, 𝜔)⇝ 𝒜𝑢𝑡⊗(𝜔)

Ψ∶ 𝒢𝓇𝓅𝒹𝑆 → 𝒯𝒶𝓃𝓃∙op
𝑆 , 𝐺 ⇝ 𝖱𝖾𝗉𝖿(𝑆∶ 𝐺),

and we also defined functors 𝜂∶ id→ Ψ◦Φ and 𝜖∶ Φ◦Ψ→ id .

Theorem 7.3 The system

𝒯𝒶𝓃𝓃∙op
𝑆 𝒢𝓇𝓅𝒹𝑆,

←→Φ←→

Ψ
𝜂∶ id→ Ψ◦Φ, 𝜖∶ Φ◦Ψ→ id,

is an equivalence of 2-categories.

Proof This is little more than a restatement of Theorem 1.1. 2
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Corollary 7.4 Let 𝖳1 and 𝖳2 be tannakian categories over 𝑘, and let 𝜔1 and 𝜔2 be fibre
functors on 𝖳1 and 𝖳2 over 𝑆. Then

𝖧𝗈𝗆((𝖳1, 𝜔1), (𝖳2, 𝜔2))→ 𝖧𝗈𝗆(𝒜𝑢𝑡⊗(𝜔2),𝒜𝑢𝑡⊗(𝜔1))

is an equivalence of categories.

Proof Immediate consequence of the theorem (see A.24). 2

ToDo 4 TBA: add detailed proof of 7.3.

8 Properties of a tannakian category reflected in its band

As in (II, §5, §6), there is a dictionary relating the properties of tannakian categories and
their morphisms to those of their bands. Here are some examples.

8.1 Let 𝖢 be a tannakian category over 𝑘 with band 𝐿.
(a) 𝐿 is finite (i.e., locally represented by a finite group scheme) if and only only if

𝖢 = ⟨𝑋⟩ for some object 𝑋.

(b) When 𝑘 has characteristic 0, 𝐿 is pro-reductive if and only if 𝖢 is semisimple.

8.2 Let𝜔∶ 𝖢′ → 𝖢 be amorphism of tannakian categories over 𝑘, bound by amorphism
of bands 𝑢∶ 𝐿 → 𝐿′.
(a) 𝑢 is faithfully flat (i.e., an epimorphism of bands) if and only if 𝜔 is fully faithful

and its essential image is stable under forming subobjects.

(b) 𝑢 is injective (i.e., locally represented by a monomorphism of groups) if and only
if every object of 𝖢 is a subquotient of an object in the image of 𝜔.

See Saavedra 1972, III, 3.3.3, p. 205.

9 Extension of scalars for tannakian categories

Recall (Appendix B) that, for any category 𝖳, there is a category Ind(𝖳)whose objects are
the small filtered inductive systems of objects in 𝖳, and whose morphisms are given by

Hom((𝑋𝛼), (𝑌𝛽)) = lim←,,
𝛼
lim,,→
𝛽
Hom(𝑋𝛼, 𝑌𝛽).

When 𝖳 is an abelian category whose objects are noetherian (for example, a tannakian
category), 𝖳 is a full subcategory of Ind(𝖳), limits of small filtered inductive systems in
Ind(𝖳) exist and are exact, and every object of Ind(𝖳) is the limit of such a system of
objects of 𝖳. Conversely, these conditions determine Ind(𝖳) uniquely up to a unique
equivalence of categories.

Let (𝖳, ⊗) be a tannakian category over 𝑘, and let 𝜔 be a fibre functor on 𝖳 with
values in a field 𝐾. Consider a diagram of fields

𝐾 𝐾′

𝑘 𝑘′.

←→

←→

← → ← →
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Let 𝑋 be an object of Ind(𝖳) equipped with a homomorphism 𝑖∶ 𝑘′ → End𝑘(𝑋) of 𝑘-
algebras. We say that 𝑌 ⊂ 𝑋 generates (𝑋, 𝑖) as a 𝑘′-module if it is not contained in
any proper 𝑘′-module. Define 𝖳(𝑘′) to be the category whose objects are the 𝑘′-modules
in Ind(𝖳) that are generated as 𝑘′-modules by subobjects in 𝖳.

Proposition 9.1 The category 𝖳(𝑘′) is a tannakian category over 𝑘′, the 𝐾-valued fibre
functor𝜔 extends to a𝐾′-valued fibre functor𝜔′ on𝖳(𝑘′), and the𝐾′∕𝑘′-groupoid𝒜𝑢𝑡⊗𝑘′(𝜔

′)
is the pullback of the groupoid 𝐾∕𝑘-groupoid𝒜𝑢𝑡⊗𝑘 (𝜔).

Proof After Theorem 1.1, we may suppose that 𝖳 = 𝖱𝖾𝗉𝖿(𝑆∶𝐺), where 𝑆 = Spec𝐾,
and that 𝜔 is the forgetful functor. Then the statement follows from B.17(c). 2

Example 9.2 Take 𝑘′ = 𝐾′ = 𝐾, so 𝖳 is a tannakian category over 𝑘 and 𝜔 is a 𝑘′-valued
fibre functor. The proposition then shows that 𝖳(𝑘′) is a neutral tannakian category over
𝑘′, and that 𝜔 extends to a 𝑘′-valued fibre functor 𝜔′ on 𝖳(𝑘′). The affine group scheme
attached to (𝖳(𝑘′), 𝜔′) is the kernel of the groupoid attached to (𝖳, 𝜔),

𝒜𝑢𝑡⊗𝑘′(𝜔
′) ≃ 𝒜𝑢𝑡⊗𝑘 (𝜔)

∆.

10 Existence of a fibre functor over 𝑘al

Theorem 10.1 Let 𝖳 be an essentially small tannakian category over 𝑘 and 𝑘al an alge-
braic closure of 𝑘. Then 𝖳 has a fibre functor with values in 𝑘al.

Proof when 𝖳 is algebraic (i.e., admits a tensor generator)

We first state a result from commutative algebra.

Lemma 10.2 Let 𝐴0 be a ring and let 𝐴 = lim,,→𝑖∈𝐼
𝐴𝑖 be the limit of a filtered inductive

system of𝐴0-algebras. Let𝐵0 be an𝐴0-algebra of finite presentation, and set𝐵𝑖 = 𝐵0⊗𝐴0𝐴𝑖
and 𝐵 = 𝐵0 ⊗𝐴0 𝐴.
(a) If spec𝐵 → spec𝐴 is surjective, then there exists an 𝑖 such that spec𝐵𝑖 → spec𝐴𝑖 is

surjective.

(b) If 𝐵 is flat over 𝐴, then there exists an 𝑖 such that 𝐵𝑖 is flat over 𝐴𝑖 .

Proof (a) EGA IV, 8.10.5.
(b) EGA IV, 11.2.6.1. 2

10.3 We now prove Theorem 10.1 for an algebraic 𝖳. By assumption, 𝖳 has a fibre
functor over a nonempty 𝑘-scheme 𝑆, which we may suppose to be the spectrum of a
field, and then we may suppose that 𝖳 = 𝖱𝖾𝗉𝖿(𝑆∶𝐺), where 𝐺 is a groupoid of finite
presentation and faithfully flat over 𝑆 × 𝑆 (Theorem 1.1). Let 𝑆 = Spec𝐵, and write 𝐵 as
a union 𝐵 =

⋃
𝛼 𝐵𝛼 of finite generated 𝑘-algebras 𝐵𝛼. For some 𝛼, 𝐺 is the pullback of

a groupoid of finite presentation over 𝑆𝛼 × 𝑆𝛼, where 𝑆𝛼 = Spec𝐵𝛼. As 𝐺 is faithfully
flat over 𝑆 × 𝑆, 𝐺𝛼 is faithfully flat over 𝑆𝛼 × 𝑆𝛼 for 𝛼 sufficiently large (10.2). Now
𝖳 = 𝖱𝖾𝗉𝖿(𝑆𝛼 ∶ 𝐺𝛼) (see 1.24). In particular, 𝖳 has a fibre functor over 𝑆𝛼. As 𝑆𝛼 has a
𝑘al-point (Zariski’s lemma), it follows that 𝖳 has a fibre functor with values in 𝑘al.

This is the proof Deligne 1990, 6.20. See Saavedra 1972, III, 3.3.1.1, p. 204, for a
somewhat different proof, which is included in Appendix C (C.18)
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Proof in the general case

Let 𝐴𝑓 be the set of all strictly full subcategories 𝖳𝛼 of 𝖳 of the form ⟨𝑋⟩⊗ for some
𝑋 ∈ ob𝖳, ordered by inclusion, and let 𝐹𝛼 be the set of all 𝑘al-valued fibre functors of
𝖳𝛼. If 𝖳𝛼 ⊂ 𝖳𝛽 , then the restriction map 𝐹𝛽 → 𝐹𝛼 is surjective, and we have to show that
lim←,,𝐹𝛼 is nonempty. If 𝐴𝑓 contains a countable cofinal subset, then this follows from
the axiom of dependent choice.

For the general case, we need the full axiom of choice (Zorn’s lemma). After I, 7.19
(or 9.2), we may suppose that 𝑘 = 𝑘al.

Let 𝐴 be the set of strictly full subcategories of 𝖳, stable by ⊗, subquotients, and
duals. For 𝛼 ∈ 𝐴, we denote by 𝖳𝛼 the corresponding subcategory (so 𝖳𝛼 = 𝛼). The
set 𝐴 is ordered by inclusion. We already know the existence and uniqueness up to
isomorphism of the fibre functors for the 𝖳𝛼, 𝛼 ∈ 𝐴𝑓.

If 𝖳𝛼 ⊂ 𝖳𝛽 , it makes sense to say that a fibre functor 𝜔𝛽 on 𝖳𝛽 extends a fibre functor
𝜔𝛼 on 𝖳𝛼. If an extension up to isomorphism exists, then an actual extension exists too.

We consider the set of pairs (𝛼, 𝜔𝛼) with 𝛼 ∈ 𝐴 and 𝜔𝛼 a fibre functor on 𝖳𝛼, and we
write

(𝛼, 𝜔𝛼) ≤ (𝛽, 𝜔𝛽) ⇐⇒ 𝖳𝛼 ⊂ 𝖳𝛽 and 𝜔𝛽 extends 𝜔𝛼.

To avoid set theoretical difficulties, we should consider only the fibre functors 𝜔𝛼 taking
values in the category of vector spaces 𝑘𝑛, 𝑛 ∈ ℕ.

The ordered set of pairs (𝛼, 𝜔𝛼) is inductive: if 𝐼 is a totally ordered subset, then
the union 𝖳 of the 𝖳𝛼, (𝛼, 𝜔𝛼) ∈ 𝐼, lies in 𝐴 and has a fibre functor 𝜔 characterized by
𝜔|𝖳𝛼 = 𝜔𝛼; moreover, (𝖳, 𝜔) is an upper bound for 𝐼. By Zorn’s lemma the ordered set
of (𝛼, 𝜔𝛼) has a maximal element (𝖳1, 𝜔1). To show that 𝖳1 = 𝖳, it suffices to prove the
following statement.

10.4 Let 𝖳′ be in 𝐴 and 𝖳′′ in 𝐴𝑓 . Let ⟨𝖳′,𝖳′′⟩ be the smallest element of 𝐴 containing 𝖳′
and 𝖳′′. Then, every fibre functor 𝜔 on 𝖳′ extends to ⟨𝖳′,𝖳′′⟩.

We first prove a lemma.

Lemma 10.5 Suppose that𝖳′ is also in𝐴𝑓 . “Restriction” is then an equivalence of categories

{fibre functors𝜔 on ⟨𝖳′,𝖳′′⟩} ,→
⎧

⎨
⎩

triples (𝜔′, 𝜔′′, 𝜏) with 𝜔′ and 𝜔′′ fibre func-
tors on 𝖳′ and 𝖳′′ and 𝜏 an isomorphism of
the restrictions of 𝜔′ and 𝜔′′ to 𝖳′ ∩ 𝖳′′

⎫

⎬
⎭

.

Note that 𝖳′ ∩ 𝖳′′ is also is in 𝐴𝑓.

Proof We may suppose that ⟨𝖳′,𝖳′′⟩ is the category of representations of an algebraic
group 𝐺 over 𝑘. There exist normal algebraic subgroups 𝐴 and 𝐵 of 𝐺 such that 𝖳′
(resp. 𝖳′′) is the subcategory of representations on which 𝐴 (resp. 𝐵) acts trivially. To say
that 𝖳′ and 𝖳′′generate ⟨𝖳′,𝖳′′⟩means that 𝐴 ∩ 𝐵 = {𝑒}. The intersection 𝖳′ ∩ 𝖳′′ is the
category of representations on which 𝐴𝐵 acts trivially.

we claim that the triples (𝜔′, 𝜔′′, 𝜏) are all isomorphic. As all 𝜔′ (resp. all 𝜔′′) are
isomorphic, it suffices to show that (𝜔′, 𝜔′′, 𝜏1) and (𝜔′, 𝜔′′, 𝜏2) are isomorphic. Indeed,
𝜏1 and 𝜏2 differ by an automorphism of 𝜔′|𝖳′ ∩ 𝖳′′, and such an automorphism lifts to
an automorphism of 𝜔′: the homomorphism

(𝐺∕𝐴) (𝑘)→ (𝐺∕𝐴𝐵)(𝑘)
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is surjective.
Thus, we have categories with just one isomorphism class of objects, and so it is a

question of comparing their automorphism groups. But

𝐺 𝐺∕𝐴

𝐺∕𝐵 𝐺∕𝐴𝐵

← →

←→ ←→

←→

is a pullback diagram because 𝐴 ∩ 𝐵 = 𝑒, and so the same is true when we take 𝑘-valued
points. 2

We now prove the statement 10.4. Let 𝐵 be the set of 𝖳𝛼 (𝛼 ∈ 𝐴𝑓) contained in 𝖳′.
We have

𝖳′ =
⋃

𝛽∈𝐵
𝖳𝛽, ⟨𝖳′,𝖳′′⟩ =

⋃

𝛽∈𝐵
⟨𝖳𝛽,𝖳′′⟩,

and equivalences

{fibre functors on 𝖳′} ∼,→
⎧

⎨
⎩

fibre functors 𝜔𝛽 on the 𝖳𝛽 , plus a compatible system
of isomorphisms 𝜔𝛽|𝖳𝛾

∼
,→ 𝜔𝛾 for 𝖳𝛾 ⊂ 𝖳𝛽, plus a

compatibility condition for 𝖳𝛿 ⊂ 𝖳𝛾 ⊂ 𝖳𝛽

⎫

⎬
⎭

{fibre functors on ⟨𝖳′,𝖳′′⟩} ∼,→ {fibre functors on the ⟨𝖳𝛽,𝖳
′′⟩ plus similar

conditions.
}

There is a largest 𝖳𝛽 ∩ 𝖳′′: if 𝖳′′ = 𝖱𝖾𝗉𝖿(𝐺′′), then each 𝖳𝛽 ∩ 𝖳′′ corresponds to a
normal algebraic subgroups𝑁𝛽 of𝐺′′, and among the𝑁𝛽 , there is a smallest one, namely,⋂

𝛽 𝑁𝛽 . If 𝛽0 is such that 𝖳𝛽0 ∩ 𝖳
′′ is the largest 𝖳𝛽 ∩ 𝖳′′, then, for any 𝛽 > 𝛽0, extending

𝜔𝛽
def= 𝜔|𝖳𝛽 to ⟨𝖳𝛽,𝖳′′⟩ amounts to extending 𝜔𝛽|𝖳𝛽 ∩ 𝖳′′ to 𝖳′′ (lemma 10.5), that is, to

extending 𝜔𝛽0 from 𝖳𝛽0 ∩ 𝖳
′′ to 𝖳′′. If we choose one such extension, then we get, up to

unique isomorphisms, a system of extensions of the 𝜔𝛽 to ⟨𝖳𝛽,𝖳′′⟩, and by gluing them
an extension of 𝜔 to ⟨𝖳′,𝖳′′⟩.

This completes the proof of 10.4, which is all that is needed to conclude that 𝖳1 = 𝖳.

Notes

10.6 We require the category 𝖳 to be essentially small only so that the “sets” occurring
in the proof are, in fact, sets. Readers willing to pass to a larger universe can ignore this
restriction.

10.7 When the band of 𝖳 is smooth, then there exists a fibre functor with values in a
separable closure of 𝑘. Is the same true if the band is only pro-smooth?

10.8 If we could prove 10.3 without appealing to the Main Theorem 1.1, then we would
only need to prove the Key Lemma (IV, ??) in the finite case, which is elementary (does
not require III, 10.2).

Notes Theorem 10.1 and its proof are from a letter of Deligne dated November 30, 2011.
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11 Galois groupoids
[Let 𝐺 be an algebraic group over a field 𝑘 of characteristic 0.] A Galoisgerbe8 over
𝑘 is an extension of groups

1→ 𝐺(�̄�)→ 𝒢→ Gal(�̄�∕𝑘)→ 1

together with a section 𝜎 ↦ 𝑔𝜎 for 𝜎 ∈ Gal(�̄�∕𝐾), where 𝐾 is a suitable finite
extension of 𝑘, such that the 𝜎-linear automorphisms

𝛾(𝜎)∶ 𝑔 ↦ 𝑔𝜎𝑔𝑔−1𝜎 , 𝑔 ∈ 𝐺(�̄�),

arise from 𝐾-structures on 𝐺. For each 𝜎 ∈ Gal(�̄�∕𝑘) and each representative 𝑔𝜎,
the automorphism 𝛾(𝜎) is required to be 𝜎-linear. It is understood that the finite
extension 𝐾 can be replace by a larger finite extension 𝐾′, so that {𝑔𝜎} is actually
a germ of a section for the Krull topology on Gal(�̄�∕𝑘). We call 𝐺 the kernel of
the Galoisgerbe. A homomorphism of Galoisgerbes is a homomorphism of the
corresponding extensions carrying one section into the other and whose restriction
to the kernel is algebraic. An element 𝑔 of the kernel defines by conjugation an
automorphism of the gerbe. . .Two homomorphisms 𝜙1 and 𝜙2 between two Galois-
gerbes are equivalent if 𝜙2 = ad(𝑔)◦𝜙1 with 𝑔 in the kernel of the second gerbe.

Langlands and Rapoport 1987, p. 118.

Following Langlands and Rapoport 1987, we give in this section a down-to-earth
interpretation of groupoids, and hence of the classification of tannakian categories.

Throughout, 𝑘 is a field of characteristic zero9 and �̄� is an algebraic closure of 𝑘. We
let Γ = Gal(�̄�∕𝑘). Finite extensions of 𝑘 are required to be subfields of �̄�. Recall that all
group schemes are affine and that an algebraic group over 𝑘 is an affine group scheme
of finite type over 𝑘.

An algebraic scheme over 𝑘 is a separated scheme of finite type over 𝑘. Recall that a
group scheme of finite type over a field is automatically separated (Milne 2017, 1.22).
An algebraic variety over 𝑘 is a geometrically reduced algebraic scheme over 𝑘.

Review of Galois descent

Let 𝑉 be an algebraic scheme over a field 𝑘1 and let 𝜎∶ 𝑘1 → 𝑘2 be a homomorphism
of fields. We let 𝜎𝑉 denote the algebraic scheme over 𝑘2 obtained by applying 𝜎 to the
coefficients of the equations defining 𝑉, and for 𝑃 ∈ 𝑉(𝑘1), we let 𝜎𝑃 denote the point
on 𝜎𝑉 obtained by applying 𝜎 to the coordinates of 𝑃.

11.1 Let 𝑉 be an affine algebraic variety over �̄�. Let 𝐴 = Γ(𝑉,𝒪𝑉), and let 𝜎 ∈ Γ. We
say that a bijection 𝜆∶ 𝑉(�̄�)→ 𝑉(�̄�) is 𝜎-linear if there exists a 𝜎-linear automorphism
𝜆′ of the �̄�-algebra 𝐴 such that

(𝜆′𝑓)(𝜆𝑃) = 𝜎(𝑓(𝑃)), all 𝑓 ∈ 𝐴, 𝑃 ∈ 𝑉(�̄�) (= Hom�̄�(𝐴, �̄�)). (80)

To give such a 𝜆 is the same as giving an isomorphism Λ∶ 𝜎𝑉 → 𝑉 of algebraic varieties
over �̄�. Indeed, such an isomorphism defines an automorphism 𝜆 of 𝑉(�̄�),

𝑉(�̄�)
can𝜎,→ (𝜎𝑉)(�̄�)

Λ(�̄�)
,→ 𝑉(�̄�),

8Translated here as Galois groupoid. When Langlands and Rapoport wrote their article, the description
of tannakian categories in terms of groupoids (Deligne 1990) was unavailable.

9We could drop the condition and take �̄� to be a separable algebraic closure of 𝑘 provided we require
all group schemes to be smooth. Recall that algebraic groups over fields of characteristic zero are smooth,
and that 𝑉(𝑘) is schematically dense in 𝑉 when 𝑉 is a geometrically reduced scheme of finite type over a
separably closed field 𝑘 (Milne 2017, 1.17, 3.23).
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and a �̄�-algebra automorphism 𝜆′ of 𝐴,

Γ(𝑉,𝒪𝑉)
can𝜎,→ Γ(𝜎𝑉,𝒪𝑉)

Γ(𝑉,Λ)−1
,→ Γ(𝑉,𝒪𝑉),

which are related by (80). Moreover, Λ is uniquely determined by 𝜆, and a 𝜆 arises from
a Λ if and only if there exists a 𝜆′ satisfying (80).

An action ∗∶ Γ×𝑉(�̄�)→ 𝑉(�̄�) of Γ on 𝑉(�̄�) is said to be regular if, for all 𝜎 ∈ Γ, the
map

𝜎𝑃 ↦ 𝜎∗𝑃∶ (𝜎𝑉)(�̄�)→ 𝑉(�̄�)

is regular, i.e., defined by a morphism 𝜎𝑉 → 𝑉 of algebraic varieties over �̄�. An action ∗
of Γ on 𝑉(�̄�) is regular if and only if the map

𝑃 ↦ 𝜎∗𝑃∶ 𝑉(�̄�)→ 𝑉(�̄�)

is 𝜎-linear for all 𝜎 ∈ Γ. There is a one-to-one correspondence between regular actions
∗ of Γ on 𝑉(�̄�) and actions (𝜎, 𝑓)↦ 𝜎𝑓∶ Γ × 𝐴 → 𝐴 of Γ on 𝐴 by semilinear �̄�-algebra
homomorphisms, related by

(𝜎𝑓)(𝜎∗𝑃) = 𝜎(𝑓(𝑃)), all 𝑃 ∈ 𝑉(�̄�).

For example, if𝑊 = Spec𝐵 is a variety over 𝑘, then the natural action of Γ on𝑊(�̄�) is
regular, and corresponds to the action of Γ on 𝐵 ⊗𝑘 �̄� through its action on �̄�.

11.2 Let 𝑉 be an algebraic variety over �̄�. An action ∗ of Γ on 𝑉(�̄�) is said to be continu-
ous if there exists a subfield 𝐾 of �̄� finite over 𝑘 and a model (𝑊,𝜑∶ 𝑊 → 𝑉) of 𝑉 over
𝐾 such that the action of Gal(�̄�∕𝐾) is that defined by𝑊. This means that the bijection

𝜑(�̄�)∶ 𝑊(�̄�)→ 𝑉(�̄�)

is Γ-equivariant, that is,
𝜑(�̄�)(𝜎𝑃) = 𝜎∗(𝜑(�̄�)(𝑃)).

Two such models, over 𝐾 and 𝐾′ say, become isomorphic over some finite extension of
𝐾 ⋅ 𝐾′.

Suppose that 𝑉 is affine, and let 𝐴 = Γ(𝑉,𝒪𝑉). The action of Γ on 𝑉 is continuous if
and only if the corresponding action of Γ on 𝐴 is continuous for the Krull topology on Γ
and the discrete topology on 𝐴.

It is easy to write down actions that are not continuous, but, in practice, those
“occurring in nature” are continuous.

11.3 Let 𝑉 be an algebraic scheme over �̄�. A �̄�∕𝑘-descent system on 𝑉 is a family of
isomorphisms 𝜑𝜎 ∶ 𝜎𝑉 → 𝑉, 𝜎 ∈ Gal(�̄�∕𝑘), satisfying the cocycle condition

𝜑𝜎𝜏 = 𝜑𝜎◦(𝜎𝜑𝜏) for all 𝜎, 𝜏 ∈ Gal(�̄�∕𝑘).

Amodel (𝑉0, 𝜑) of 𝑉 over a subfield 𝐾 of �̄� splits the descent system if 𝜑𝜎 = 𝜑−1◦𝜎𝜑 for
all 𝜎 fixing 𝐾. A descent system is continuous if it is split by some subfield 𝐾 finite over
𝑘. A descent datum is a continuous descent system. A descent datum is effective if it
is split by a model over 𝑘. When 𝑉 is quasi-projective, every descent datum is effective
(see, for example, Milne 2024, 7.3).
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Theorem 11.4 The functor 𝑉 ⇝ (�̄�, ∗) sending an affine algebraic variety 𝑉 over 𝑘 to an
affine algebraic variety over �̄� over �̄� equipped with an action of Γ on �̄�(�̄�) is fully faithful
with essential image the pairs (�̄�, ∗) such that ∗ is continuous and regular.

Proof For the fully faithfulness, see, for example, Milne 2024, 4.5. For the description of
the essential image, let𝑉 be an affine algebraic variety over �̄� equippedwith a continuous
regular action of Γ. For each 𝜎 ∈ Γ, there is an isomorphism of algebraic varieties
𝜑𝜎 ∶ 𝜎𝑉 → 𝑉 sending 𝜎𝑃 to 𝜎 ∗ 𝑃. The family (𝜑𝜎)𝜎 obviously satisfies the cocycle
condition, and it is continuous because the action is continuous. Therefore, it is a
descent datum on 𝑉. As 𝑉 is affine, this descent datum is effective. 2

In particular, algebraic groups over 𝑘 correspond to algebraic groups over �̄� equipped
with a continuous regular action of Γ on their �̄�-points. This gives a description of
algebraic groups over 𝑘 that is close to the classical (pre-scheme) description. In a step
that some may consider retrograde, we extend this to a description of 𝑘-groupoids acting
transitively on Spec �̄�.

Definition

11.5 Let 𝐺 be an algebraic group over �̄�. A �̄�∕𝑘-Galois groupoid with kernel 𝐺 is an
exact sequence of groups

1→ 𝐺(�̄�)→ 𝒢→ Gal(�̄�∕𝑘)→ 1, (81)

together with a section 𝜎 ↦ 𝑔𝜎 ∶ Gal(�̄�∕𝐾)→ 𝒢, where 𝐾 is a suitable finite extension
of 𝑘, such that the automorphisms

𝛾𝜎 ∶ 𝐺(�̄�)→ 𝐺(�̄�), 𝛾𝜎
def= (𝑔 ↦ 𝑔𝜎 ⋅ 𝑔 ⋅ 𝑔−1𝜎 ), 𝜎 ∈ Gal(�̄�∕𝐾),

define a 𝐾-structure on 𝐺. We also require that for every representative 𝑔𝜎 of 𝜎 ∈
Gal(�̄�∕𝑘), the automorphism 𝛾𝜎 of 𝐺(�̄�) is 𝜎-linear. It is to be understood that 𝐾 can be
replaced by a larger finite extension, so that (𝑔𝜎)𝜎 is actually a germ of a section for the
Krull topology on Gal(�̄�∕𝑘).

11.6 In more detail, consider an extension 𝒢 of Gal(�̄�∕𝑘) by 𝐺(�̄�). Let 𝐾 ⊂ �̄� be a finite
extension of 𝑘 and 𝑠 a homomorphism such that

Gal(�̄�∕𝐾)

𝒢 Gal(�̄�∕𝑘)

←

→

𝑠 ←
→
←→

commutes. To say that the automorphisms

𝛾𝜎 ∶ 𝐺(�̄�)→ 𝐺(�̄�), 𝛾𝜎(𝑔) = 𝑠𝜎 ⋅ 𝑔 ⋅ 𝑠−1𝜎 , 𝜎 ∈ Gal(�̄�∕𝐾),

define a 𝐾-structure on 𝐺 means that there exists an algebraic group 𝐺0 over 𝐾 and an
isomorphism 𝜑∶ 𝐺0�̄� → 𝐺 such that

𝜑(𝜎𝑔) = 𝛾𝜎(𝜑(𝑔)), all 𝜎 ∈ Gal(�̄�∕𝐾).

Two sections 𝑠∶ Gal(�̄�∕𝐾)→ 𝒢 and 𝑠′∶ Gal(�̄�∕𝐾′)→ 𝒢 are said to be equivalent if they
agree on Gal(�̄�∕𝐾′′) for some field 𝐾′′ containing 𝐾 and 𝐾′ and finite over 𝑘. Now a
�̄�∕𝑘-Galois groupoid with kernel 𝐺 is an extension of Gal(�̄�∕𝑘) by 𝐺(�̄�) together with
an equivalence class of sections such that the following condition holds: if 𝑔𝜎 maps to
𝜎 ∈ Gal(�̄�∕𝑘), then the map 𝑔 ↦ 𝑔𝜎 ⋅ 𝑔 ⋅ 𝑔−1𝜎 ∶ 𝐺(�̄�)→ 𝐺(�̄�) is 𝜎-linear.



146 Chapter III. General tannakian categories

ToDo 5 Is it really necessary to include the germ of a section as part of the data, and not simply
require that there exists a section over some 𝐾?

11.7 A homomorphism of Galois groupoids 𝒢→ℋ is a commutative diagram

1 𝐺(�̄�) 𝒢 Gal(�̄�∕𝑘) 1

1 𝐻(�̄�) ℋ Gal(�̄�∕𝑘 1

← → ← →

←→

← →

←→ homomorphism𝜙

← →

⇐⇐

←→ 𝑠

← → ← → ← → ← →
←→

𝑠′

such that 𝜙 preserves the germs of sections and such that the restriction of 𝜙 to 𝐺(�̄�) is
regular (i.e., defined by a homomorphism of algebraic groups). From a different point-
of-view, a homomorphism of Galois groupoids is a homomorphism of algebraic groups
𝜑∶ 𝐺 → 𝐻 together with an extension of 𝜑(�̄�) to a homomorphism 𝒢→ℋ compatible
with the germs of sections10 and inducing the identity map on the Galois groups.

11.8 Let 𝒢 be a �̄�∕𝑘-Galois groupoid with kernel 𝐺, and let 𝑔 ∈ 𝐺(�̄�). Conjugation by 𝑔
defines an automorphism ad(𝑔) of 𝒢. Indeed, for a sufficiently large finite extension 𝐾
of 𝑘, we have

𝑔𝜎𝑔𝑔−1𝜎 = 𝜎(𝑔) = 𝑔,

and so conjugation preserves the germ of scctions.

11.9 Let 𝒢1 and 𝒢2 be Galois groupoids with kernels 𝐺1 and 𝐺2, and let 𝜙, 𝜙′∶ 𝒢1 ⇉ 𝒢2
be morphisms. Amorphism 𝜙 → 𝜙′ is an element 𝑔 of 𝐺2(�̄�) such that ad(𝑔)◦𝜙 = 𝜙′,
i.e., such that

𝑔 ⋅ 𝜙(𝑥) ⋅ 𝑔−1 = 𝜙′(𝑥), all 𝑥 ∈ 𝒢1.

In this way, the Galois groupoids form a 2-category.

Readers mystified by these definitions should skip to 11.29.

11.10 If 𝐺 is an algebraic group over 𝑘, then

1→ 𝐺(�̄�)→ 𝐺(�̄�)⋊ Gal(�̄�∕𝑘)→ Gal(�̄�∕𝑘)→ 1,

together equipped with the section 𝜎 ↦ (1, 𝜎) is a Galois gerb 𝒢𝐺 with kernel 𝐺. A
�̄�∕𝑘-Galois groupoid 𝒢 is split if it is isomorphic to 𝒢𝐺 for some 𝐺. Equivalently, if there
exists a section 𝑠 to the homomorphism 𝜋∶ 𝒢→ Gal(�̄�∕𝑘) such that the automorphisms

𝛾𝜎 ∶ 𝐺(�̄�)→ 𝐺(�̄�), 𝛾𝜎(𝑔) = 𝑠𝜎 ⋅ 𝑔 ⋅ 𝑠−1𝜎 , 𝜎 ∈ Gal(�̄�∕𝑘),

define a 𝑘-structure on 𝐺.

11.11 Let
1→ 𝐺(�̄�)→ 𝒢

𝜋
,→ Gal(�̄�∕𝑘)→ 1

10As 𝑘 has characteristic zero, algebraic groups are smooth, in particular geometrically reduced, and so a
homomorphism of algebraic groups over �̄� is uniquely determined by its action on the �̄�-points. Otherwise
we would have included it as part of the data.
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be a �̄�∕𝑘-Galois groupoid with kernel𝐺. The choice of a section 𝑠 in the germ determines
a model (𝐺0, 𝜑) of 𝐺 over some finite extension 𝐾 of 𝑘 and a commutative diagram

1 𝐺0(�̄�) 𝐺(�̄�)⋊ Gal(�̄�∕𝐾) Gal(�̄�∕𝐾) 1

1 𝐺(�̄�) 𝒢 Gal(�̄�∕𝑘) 1.

←→ ←→

←→ 𝜑(�̄�)≃

←→

←


→ homomorphism

←→

←
→

←→ ← → ← →𝜋 ←→

We call such a diagram a splitting of 𝒢 over 𝐾.

11.12 Let 𝐸 be an extension of Gal(�̄�∕𝑘) by 𝐺(�̄�). When 𝑘′ is a subfield of �̄� containing
𝑘, we can form an extension ofGal(�̄�∕𝑘′) by 𝐺(�̄�) by pullback. It is uniquely determined,
up to a unique isomorphism, by the diagram

1 𝐺(�̄�) 𝐸′ Gal(�̄�∕𝑘′) 1

1 𝐺(�̄�) 𝐸 Gal(�̄�∕𝑘) 1.

←→ ←→

⇐⇐

←→
←


→

←→

←
→

←→ ←→ ←→ ←→

When 𝐸 is a �̄�∕𝑘-Galois groupoid, 𝐸′ becomes a �̄�∕𝑘′-Galois groupoid with the obvious
germ of sections.

11.13 Let 𝐸 be an extension of Gal(�̄�∕𝑘) by 𝐺(�̄�). When 𝐺 → 𝐻 is a homomorphism of
algebraic groups over �̄�, we can form an extension 𝐸′ of Gal(�̄�∕𝑘) by 𝐻(�̄�) by pushout.
It is uniquely determined, up to a unique isomorphism, by the diagram

1 𝐺(�̄�) 𝐸 Gal(�̄�∕𝑘) 1

1 𝐻(�̄�) 𝐸′ Gal(�̄�∕𝑘) 1.

←→ ←→

←→

←→

←→

←→

⇐⇐

←→ ←→ ←→ ←→

When 𝐸 is a �̄�∕𝑘-Galois groupoid with kernel 𝐺, 𝐸′ becomes a �̄�∕𝑘-Galois groupoid with
kernel𝐻 and the obvious germ of sections.

11.14 When𝐺 is an affine group scheme over 𝑘, we define a �̄�∕𝑘-Galois groupoid with
kernel 𝐺 to be an extension of groups

1→ 𝐺(�̄�)→ 𝒢→ Gal(�̄�∕𝑘)→ 1

such that, for all algebraic quotients 𝐺 → 𝐺𝛼 of 𝐺, the pushout

1→ 𝐺𝛼(�̄�)→ 𝒢𝛼 → Gal(�̄�∕𝑘)→ 1

is a �̄�∕𝑘-Galois groupoid with kernel 𝐺𝛼. In particular, this means that we are given a
compatible system of germs of sections on the 𝒢𝛼.

11.15 Let
1→ 𝐺(�̄�)→ 𝒢

𝜋
,→ Gal(�̄�∕𝑘)→ 1

be a �̄�∕𝑘-Galois groupoid. Assume that 𝐺 is algebraic, and let 𝑠∶ Gal(�̄�∕𝑘) → 𝒢 be a
set-theoretic section to 𝜋 such that the restriction of 𝑠 to Gal(�̄�∕𝐾) lies in the given germ
for some 𝐾 ⊂ �̄� finite over 𝑘.11 Then 𝒢 is determined by the following data:

11For example, choose a group-theoretic section to 𝒢→ Gal(�̄�∕𝐾) in the given germ, and extend to a
set-theoretic section on Gal(�̄�∕𝑘).
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(a) the family (𝛾𝜎)𝜎 of automorphisms of 𝐺 (as an algebraic group over �̄�) given by

𝛾𝜎(𝑔) = 𝑠𝜎 ⋅ 𝑔 ⋅ 𝑠−1𝜎 , 𝜎 ∈ Gal(�̄�∕𝑘), 𝑔 ∈ 𝐺(�̄�);

(b) the family (𝑎𝜎,𝜏)𝜎,𝜏 of elements of 𝐺(�̄�) given by

𝑠𝜎𝑠𝜏 = 𝑎𝜎,𝜏𝑠𝜎𝜏, 𝜎, 𝜏 ∈ Gal(�̄�∕𝑘).

Indeed, every element of 𝒢 can be written uniquely

𝑔 ⋅ 𝑠𝜎, 𝑔 ∈ 𝐺(�̄�), 𝜎 ∈ Gal(�̄�∕𝑘),

and
(𝑔 ⋅ 𝑠𝜎)(ℎ ⋅ 𝑠𝜏) = (𝑔 𝛾𝜎(ℎ) 𝑎𝜎,𝜏) ⋅ 𝑠𝜎𝜏.

11.16 A homomorphism 𝜙∶ 𝒢→ 𝒢′ of �̄�∕𝑘-Galois groupoids is an isomorphism if and
only if it is an isomorphism on the kernels. Indeed, if 𝜙′ is an inverse for 𝜙, then 𝜙′|𝐺′

is an inverse for 𝜙|𝐺. Conversely, suppose that 𝜙|𝐺 is an isomorphism, and choose a
section 𝑠 as in 11.15. Then 𝜎 ↦ 𝑠′𝜎

def= 𝜙◦𝑠𝜎 is a section for 𝒢′ with similar properties, and
clearly 𝑔 ⋅ 𝑠𝜎 ↦ 𝜙(𝑔 ⋅ 𝑠𝜎) = 𝜙(𝑔) ⋅ 𝑠′𝜎 is a bijection.

Representations of Galois groupoids

11.17 Let 𝑉 be a vector space over �̄� and let 𝜎 ∈ Gal(�̄�∕𝑘). An additive map 𝛼∶ 𝑉 → 𝑉
is said to be 𝜎-linear if 𝛼(𝑐 ⋅ 𝑣) = 𝜎𝑐 ⋅ 𝛼(𝑣) for all 𝑐 ∈ �̄� and 𝑣 ∈ 𝑉. Note that if 𝛼1 is
𝜎1-linear and 𝛼2 is 𝜎2-linear, then 𝛼2◦𝛼1 is 𝜎2𝜎1-linear,

(𝛼2◦𝛼1)(𝑐 ⋅ 𝑣) = 𝛼2(𝜎1𝑐 ⋅ 𝛼1(𝑣)) = 𝜎2𝜎1𝑐 ⋅ 𝛼2◦𝛼1(𝑣).

11.18 Let 𝑉 be a finite-dimensional vector space over �̄�. Let 𝒢𝑉 be the collection of all
additive isomorphisms 𝑔∶ 𝑉 → 𝑉 that are 𝜎-linear for some 𝜎 ∈ Gal(�̄�∕𝑘). Then 𝒢𝑉
becomes a group under composition, and there is an exact sequence

1→ GL(𝑉) ,→ 𝒢𝑉
𝜋
,→ Gal(�̄�∕𝑘)→ 1

in which 𝜋 sends a 𝜎-linear map to 𝜎. The choice of a basis (𝑣𝑖)𝑖 for 𝑉 over �̄� determines
a section

𝑠(𝜎)(
∑
𝑐𝑖 ⋅ 𝑣𝑖) =

∑
𝜎𝑐𝑖 ⋅ 𝑣𝑖

over some finite extension 𝐾 of 𝑘. A different basis determines an equivalent section
and so, in this way, we get a Galois groupoid 𝒢𝑉 with kernel GL𝑉 .

11.19 Let 𝒢 be a Galois groupoid with kernel 𝐺. A representation of 𝒢 on a finite
dimensional �̄�-vector space 𝑉 is a homomorphism of �̄�∕𝑘-Galois groupoids 𝜌∶ 𝒢→ 𝒢𝑉 .
In other words, a representation of 𝒢 on 𝑉 is a representation 𝜌0∶ 𝐺 → GL𝑉 of 𝐺 on 𝑉
together with an extension 𝜌 of 𝜌0(�̄�) to a commutative diagram

1 𝐺(�̄�) 𝒢 Gal(�̄�∕𝑘) 1

1 GL(𝑉) 𝒢𝑉 Gal(�̄�∕𝑘) 1

←→ ←→

←→ 𝜌0(�̄�)

←→

←→ 𝜌

←→

⇐⇐

←→ ←→ ←→ ←→

compatible with the germs of sections.
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11.20 A morphism of representations (𝑉, 𝜌𝑉) and (𝑊,𝜌𝑊) of 𝒢 is a �̄�-linear map
𝜑∶ 𝑉 →𝑊 such that

𝑉 𝑊

𝑉 𝑊

←→
𝜑

←→ 𝜌𝑉(𝑔) ←→ 𝜌𝑊(𝑔)

←→
𝜑

commutes for all 𝑔 ∈ 𝒢 (equality of 𝜎-linear maps). Let 𝖱𝖾𝗉𝖿(𝒢) denote the category of
representations of 𝒢 on finite-dimensional �̄�-vector spaces. It is a 𝑘-linear category.

11.21 Let 𝐺 be an affine group scheme over 𝑘 and 𝒢𝐺 the split Galois groupoid with
kernel 𝐺. The restriction functor

𝖱𝖾𝗉𝖿(𝒢𝐺)→ 𝖱𝖾𝗉𝖿(𝐺)

is an equivalence of categories. In particular, every representation of 𝐺 on 𝑉 extends to
a representation of 𝒢𝐺 , unique up to a unique isomorphism.

More generally, let 𝒢 be a �̄�∕𝑘-Galois groupoid with kernel 𝐺. The choice of a section
𝑠 over a finite extension 𝐾 of 𝑘 determines an equivalence of categories

𝖱𝖾𝗉𝖿(𝐺𝐾)→ 𝖱𝖾𝗉𝖿(𝒢)(𝐾).

See Lattermann 1989, 4.2.7, 4.2.8, 4.2.9.

11.22 Let 𝒢 be a �̄�∕𝑘-Galois groupoid. The category 𝖱𝖾𝗉𝖿(𝒢) of representations of 𝒢 is
abelian and 𝑘-linear. It has a natural structure of a tensor category. For example, the
trivial representation

1 𝐺(�̄�) 𝒢 Gal(�̄�∕𝑘) 1

1 𝔾𝑚(�̄�) 𝒢𝑘 Gal(�̄�∕𝑘) 1.

←→ ←→

←→
←→𝜋

←→ 𝜌trivial

←→

⇐⇐

←→ ←→ ←→ ←→

in which 𝜌trivial(𝑔) = 𝜋(𝑔) = 𝜎, viewed as a 𝜎-linear isomorphism �̄� → �̄�. Duals exist,
and obviously End(𝟙) = 𝑘. The functor mapping a representation to its underlying
vector space is a �̄�-valued fibre functor. Therefore, 𝖱𝖾𝗉𝖿(𝒢) is tannakian category over 𝑘.

The band of a Galois groupoid

11.23 Let 𝒢 be a Galois groupoid with kernel an algebraic group𝐺. Let (𝑠𝜎)𝜎 be a section
to 𝜋, as in 11.15. The automorphisms

𝛾𝜎 ∶ 𝐺(�̄�)→ 𝐺(�̄�), 𝛾𝜎(𝑔) = 𝑠𝜎 ⋅ 𝑔 ⋅ 𝑠−1𝜎 , 𝜎 ∈ Gal(�̄�∕𝑘),

form a descent datummodulo inner automorphisms on 𝐺, and so define the structure of
a band on 𝐺 (Appendix C, §5). This structure is independent of the choice of the section
(𝑠𝜎)𝜎. The band 𝐵(𝒢) of 𝒢 is well-defined up to a unique isomorphism.

When the kernel is commutative, the family of automorphisms (𝛾𝜎)𝜎 is a descent
datum on𝐺, and so𝐺 acquires a model over 𝑘, well-defined up to a unique isomorphism.
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The cohomology class of a Galois groupoid

11.24 We fix a band 𝐵 over 𝑘, and consider �̄�∕𝑘-Galois groupoids equipped with an
isomorphism 𝐵 ≃ 𝐵(𝒢). The cohomology set𝐻2(𝑘, 𝐵) is the set of isomorphism classes
of such systems. We shall see 11.29 that this agrees with the definition in Appendix C,
§6.

11.25 When 𝐵 is commutative, we can identify it with a commutative affine group
scheme 𝐺 over 𝑘. When 𝐺 is of algebraic over 𝑘,𝐻2(𝑘, 𝐺) becomes the familiar Galois
cohomology group𝐻2(Gal(�̄�∕𝑘), 𝐺(�̄�)). See the next subsection.

Galois groupoids admitting a special section

In this subsection, we study an important class of Galois groupoids, which includes all
those with commutative kernels.

Let 𝒢 be a �̄�∕𝑘-Galois groupoid with algebraic kernel 𝐺, and let (𝑠𝜎)𝜎 be a section
to 𝜋, as in 11.15. We say that (𝑠𝜎)𝜎 is special if the family (𝛾𝜎)𝜎 satisfies the cocycle
condition (11.3),

𝛾𝜎𝜏 = 𝛾𝜎◦(𝜎𝛾𝜏), 𝜎, 𝜏 ∈ Gal(�̄�∕𝑘).

Then (𝛾𝜎)𝜎 is a continuous cocycle and so defines a model 𝐺0 of 𝐺 over 𝑘. Moreover,

𝑎𝜎,𝜏
def= 𝛾𝜎 ⋅ 𝜎𝛾𝜏 ⋅ 𝛾−1𝜎𝜏

is a continuous 2-cocycle on Gal(�̄�∕𝑘) with values in 𝑍𝐺(�̄�), where 𝑍𝐺 is the centre of 𝐺.
Consider the category whose objects are the pairs (𝐺, 𝑎), where 𝐺 is an algebraic

group over 𝑘 and 𝑎 = (𝑎𝜎,𝜏)𝜎,𝜏∈Γ is a continuous 2-cocycle on Γ with values in 𝑍𝐺(�̄�). A
morphism (𝐺′, 𝑎′) → (𝐺, 𝑎) is a pair (𝜑, 𝑓), where 𝜑∶ 𝐺′ → 𝐺 is a homomorphism of
algebraic groups over �̄� and 𝑓 = (𝑓𝜎)𝜎∈Γ is a continuous 1-cochain with values in 𝐺(�̄�)
such that, for all 𝜎, 𝜏 ∈ Gal(�̄�∕𝑘),

{
𝑎𝜎,𝜏 ⋅ 𝑓𝜎𝜎(𝑓𝜏)𝑓−1𝜎𝜏 = 𝜑(𝑎′𝜎,𝜏)

ad(𝑓𝜎)◦𝜎∗(𝜑) = 𝜑.

Composition of morphisms is given by

(𝜑, 𝑓)◦(𝜑′, 𝑓′) = (𝜑◦𝜑′, 𝑓′′),

where 𝑓′′𝜎 = 𝜑(𝑓′𝜎)𝑓𝜎, 𝜎 ∈ Γ.
For an object (𝐺, 𝑎), we let 𝒢 be the extension

1→ 𝐺(�̄�)→ 𝒢→ Gal(�̄�∕𝑘)→ 1

defined by the 2-cocycle 𝑎: the elements of 𝒢 are the pairs (𝑔, 𝜎) ∈ 𝐺(�̄�) ×Gal(�̄�∕𝑘), and

(𝑔, 𝜎)(ℎ, 𝜏) = (𝑔 ⋅ 𝜎ℎ ⋅ 𝑎𝜎,𝜏, 𝜎𝜏).

For example, if 𝑎𝜎,𝜏 = 1 for all 𝜎, 𝜏, then 𝒢 is the split Galois groupoid 𝐺(�̄�)⋊ Gal(�̄�∕𝑘).

Proposition 11.26 The functor (𝐺, 𝑎)⇝ 𝒢 from pairs (𝐺, 𝑎) to �̄�∕𝑘-Galois groupoids is
fully faithful; its essential image consists of the Galois groupoids admitting a special section.

Proof Routine verification using descent theory. 2



11. Galois groupoids 151

Remark 11.27 Let 𝒫 be a commutative �̄�∕𝑘-groupoid with kernel 𝑃. Let 𝜑∶ 𝑃 → 𝐺 be
a homomorphism of algebraic groups over 𝑘, and let 𝑍𝜑 be the centralizer of 𝜑(𝑃) in 𝐺.
Assume that 𝜑 extends to a homomorphism 𝜙∶ 𝒫 → 𝒢𝐺 , and let 𝐼𝜙 = 𝒜𝑢𝑡(𝜙). Then
𝐼𝜙 is an inner form of 𝑍𝜙 whose cohomology class can be described as follows. Choose
a suitable section 𝑠, as before, and let (𝑑𝜌,𝜏) be the corresponding 2-cocycle. When we
write 𝜙(𝑠(𝜌)) = (𝑐𝜌, 𝜌), we obtain a 1-cochain (𝑐𝜌) splitting the cocycle (𝜑(𝑑𝜌,𝜏)):

𝑐𝜌 ⋅ 𝜌𝑐𝜏 = 𝜑(𝑑𝜌,𝜏) ⋅ 𝑐𝜌𝜏.

For 𝑝 ∈ 𝑃(�̄�) we have

𝜌𝜑(𝑝) = 𝜑(𝜌𝑝) = 𝜑(𝑠(𝜌) ⋅ 𝑝 ⋅ 𝑠(𝜌)−1) = (𝑐𝜌, 𝜌) ⋅ 𝜑(𝑝) ⋅ (𝑐𝜌, 𝜌)−1 = 𝑐𝜌 ⋅ 𝜌𝜑(𝑝) ⋅ 𝑐−1𝜌 ,

and so 𝑐𝜌 ∈ 𝑍𝜑(�̄�). The formula displayed above shows that the image of (𝑐𝜌) in 𝑍𝜑∕𝜑(𝑃)
is a cocycle. Its class in 𝐻1(𝑘, 𝑍𝜑∕𝜑(𝑃)) depends only on the isomorphism class of 𝜑,
and it is the cohomology class of 𝐼𝜑.

The category of Galois groupoids

Proposition 11.28 Let 𝖣 be the category of �̄�∕𝑘-Galois groupoids and 𝖢 the full subcate-
gory of �̄�∕𝑘-Galois groupoids with algebraic kernel.

(a) The objects of 𝖢 are artinian.
(b) The functor

“lim←,,”𝐺𝛼 ⇝ lim←,,𝐺𝛼 ∶ Pro𝐶 → 𝖣
is an equivalence of categories, with quasi-inverse the functor sending an affine group
scheme 𝐺 to the projective system of its algebraic quotients.

Proof Let 𝒢 be a �̄�∕𝑘-Galois groupoid with kernel 𝐺. The subobjects of 𝒢 are in one-to-
one correspondence with the subgroup schemes of 𝐺 (see 11.16), and so 𝒢 is artinian if
𝐺 is algebraic. The rest of the proof is opposite to that of Appendix B, B.7. 2

In other words, the category of �̄�∕𝑘-Galois groupoids is the category of pro-objects
in the category of �̄�∕𝑘-Galois groupoids with algebraic kernel.

Groupoids and Galois groupoids

Let 𝑆0 = Spec 𝑘, 𝑆 = Spec �̄�. The left action of Γ def= Gal(�̄�∕𝑘) on �̄� defines a right action
on �̄�, and the map

𝑆 × Γ→ 𝑆 ×𝑆0 𝑆, (𝑠, 𝜎)↦ (𝑠, 𝑠 ⋅ 𝜎) (82)

is an isomorphism of schemes. Here Γ is to be interpreted as a pro-finite scheme over 𝑘.
Let 𝐺 be a 𝑘-groupoid acting transitively on 𝑆, and assume that the kernel 𝐺∆ is of

finite type over �̄�. When we view (82) as a morphism of 𝑆-schemes (through projection
on the first factor), it identifies (𝑆 ×𝑆0 𝑆)(𝑆) with Γ = Gal(�̄�∕𝑘), and the morphism
(𝑡, 𝑠)∶ 𝐺 → 𝑆 ×𝑆0 𝑆 defines a map

𝜋∶ 𝐺(�̄�) = 𝐺(𝑆)→ (𝑆 ×𝑆0 𝑆)(𝑆) ≃ Gal(�̄�∕𝑘) def= Γ.

More precisely, 𝐺(�̄�) is the set of sections to the morphism 𝑡 in the diagram

𝐺 𝑆 ×𝑆0 𝑆 𝑆 × Γ

𝑆= Spec(�̄�).

←→(𝑡,𝑠)

←

→𝑡

←→ pr1
←

→ pr1

←→≃
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The map 𝐺(�̄�) → Γ is surjective because (𝑡, 𝑠) is faithfully flat and �̄� is algebraically
closed.

Now (𝐺(�̄�), 𝑆(�̄�), (𝑠, 𝑡), ◦) is a transitive groupoid (in 𝖲𝖾𝗍) with a canonical point
𝑎 ∈ 𝑆(�̄�), namely, the identity map. Therefore (see 2.5) there is a well-defined group
structure on 𝐺(�̄�) for which the sequence

1→ 𝐺∆(�̄�)→ 𝐺(�̄�)→ Gal(�̄�∕𝑘)→ 1

is exact.
In this way, a 𝑘-groupoid 𝐺 acting transitively on 𝑆 with kernel 𝐺∆ defines a �̄�∕𝑘-

Galois groupoid,
1→ 𝐺∆ → 𝐺(�̄�)→ Gal(�̄�∕𝑘)→ 1,

with kernel 𝐺∆. A morphism of 𝑘-groupoids acting transitively on 𝑆 defines a morphism
of �̄�∕𝑘-Galois groupoids.

Proposition 11.29 The functor 𝐺 ⇝ 𝐺(�̄�) is an equivalence from the category of 𝑘-
groupoids acting transitively on 𝑆 with algebraic kernel to the category of �̄�∕𝑘-Galois
groupoids with algebraic kernel.

Proof Descent theory (11.4) shows that the functor is fully faithful and essentially
surjective. 2

The statement can be extended to all groupoids by passing to the pro-categories (see
11.28 and Appendix B, B.21).

Let 𝐺 be a 𝑘-groupoid acting transitively on 𝑆 = Spec(�̄�). A section 𝑢 of 𝐺 over
𝑆 ×𝑆0 𝑆 is special if the map

ad(𝑢)∶ pr∗2(𝐺
∆)→ pr∗1(𝐺

∆)

satisfies the cocycycle condition. When 𝐺 corresponds to 𝒢 under the equivalence in
Proposition 11.29, special sections of 𝐺 correspond (one-to-one) with special sections of
𝒢.

11.30 We sketch an alternative approach to the relationship between groupoids and
Galois groupoids.

Let 𝑆 be a finite Galois covering of 𝑆0 with Galois group Γ, and let 𝑃 be a transitive
𝑆∕𝑆0-groupoid. Thus 𝑃 is a scheme over 𝑆 ×𝑆0 𝑆 plus a partial law of composition
satisfying certain conditions. We have a commutative diagram

𝑆 𝑆 × Γ 𝑆 × Γ × Γ

𝑆 𝑆 ×𝑆0 𝑆 𝑆 ×𝑆0 𝑆 ×𝑆0 𝑆

⇐⇐ ←→ (𝑠,𝜎)↦(𝑠,𝑠𝜎)

←→←→

←→ (𝑠,𝜎1,𝜎2)↦(𝑠,𝑠𝜎1,𝑠𝜎1𝜎2)
←→ ←→ ←→

←→←

→

←→←

→←→

in which the vertical arrows are isomorphisms. From this, we see that the partial law of
composition is a family of morphisms

𝑃(𝜎) × 𝜎∗𝑃(𝜏)→ 𝑃(𝜎𝜏).

Now take 𝑆0 = Spec(𝑘), and define a multiplication on 𝑃 by

𝑎𝜎 ∗ 𝑎𝜏 = 𝑎𝜎 ⋅ 𝜎𝑎𝜏
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The conditions then show that we have an exact sequence

1→ 𝑃(1)→ 𝑃 → Γ→ 1.

Now let 𝑆 = Spec(𝑘′) with 𝑘′ ⊂ �̄� a finite extension of 𝑘. According to the above
discussion, a transitive 𝑆∕𝑆0-groupoid defines a �̄�∕𝑘-Galois groupoid together with a
splitting over 𝑘′.

Now let 𝑃 be a �̄�∕𝑘-groupoid. According to 10.3, 𝑃 comes from a 𝑘′∕𝑘-groupoid
some 𝑘′ finite over 𝑘, and so defines a �̄�∕𝑘-Galois groupoid together with a splitting over
𝑘′. Every �̄�∕𝑘-Galois groupoid comes in this way from a transitive �̄�∕𝑘-groupoid (almost
by definition).

Tannakian categories and Galois groupoids

Let 𝖳 be a tannakian category over 𝑘. We begin with two remarks.

11.31 A �̄�-valued fibre functor on 𝖳(�̄�) defines a �̄�-valued fibre functor on 𝖢. Conversely,
a �̄�-valued fibre functor on 𝖳 defines a �̄� ⊗𝑘 �̄�-valued fibre functor on 𝖳(�̄�) (I, 7.19), and
hence a �̄�-valued fibre functor on 𝖳 (because 𝑘 has characteristic zero). Any two �̄�-valued
fibre functors on 𝖳 are isomorphic (because the same is true of 𝖢(�̄�)).

11.32 Let 𝖢0 be an algebraic tannakian subcategory of 𝖢, say 𝖢0 = ⟨𝑋⟩⊗. For some
subfield 𝐾 of �̄� finite over 𝑘, 𝜔 restricts to a 𝐾-valued fibre functor on 𝖢0.

Let 𝜔 be a �̄�-valued fibre functor on 𝖢 (assumed to exist). For 𝜎 ∈ Gal(�̄�∕𝑘), define
𝜎𝜔 to be the fibre functor 𝑋 ⇝ 𝜔(𝑋)⊗�̄�,𝜎 �̄�. Then

𝜎2(𝜎1𝜔) ≃ 𝜎2𝜎1𝜔.

Define
𝒢 =

⨆

𝜎∈Γ
Isom⊗(𝜎𝜔, 𝜔),

and let 𝜋∶ 𝒢→ Gal(�̄�∕𝑘) be the map sending the elements of Isom⊗(𝜎𝜔, 𝜔) to 𝜎. From
an isomorphism 𝑓∶ 𝜎𝜔 → 𝜔 and an element 𝜌 of Gal(�̄�∕𝑘), we obtain an isomorphism
𝜌𝑓∶ 𝜌𝜎𝜔 → 𝜌𝜔 by applying the functor −⊗�̄�,𝜌 �̄�. We define the product of the elements
𝑓1∶ 𝜎1𝜔 → 𝜔 and 𝑓2∶ 𝜎2𝜔2 → 𝜔 of 𝒢 by the rule

𝑓1 ⋅ 𝑓2 = 𝑓1◦ 𝜎1𝑓2, 𝜎1𝜎2𝜔 𝜎1𝜔 𝜔.

← →
𝑓1⋅𝑓2

←→𝜎1𝑓2

←→
𝑓1

Then
𝜋(𝑓1 ⋅ 𝑓2) = 𝜎1𝜎2 = 𝜋(𝑓1)𝜋(𝑓2),

and
⎧
⎪

⎨
⎪
⎩

(𝑓1 ⋅ 𝑓2) ⋅ 𝑓3 = 𝑓1◦ 𝜎1𝑓2◦ 𝜎1𝜎2𝑓3 = 𝑓1 ⋅ (𝑓2 ⋅ 𝑓3)

𝑓 ⋅ id𝜔 = 𝑓 = id𝜔 ⋅𝑓

𝑓 ⋅ 𝜋(𝑓)−1(𝑓−1) = id𝜔 = 𝜋(𝑓)−1(𝑓−1) ⋅ 𝑓,

and so 𝒢 has a group structure for which 𝜋 is a homomorphism. We have an exact
sequence

1 ,→ Aut⊗(𝜔)→ 𝒢
𝜋
,→ Gal(�̄�∕𝑘) ,→ 1.
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of abstract groups. The homomorphism 𝜋 is surjective because any two fibre functors
on 𝖢 with values in �̄� are isomorphic. Every algebraic tannakian subcategory admits a
fibre functor with values in a finite extension 𝐾 of 𝑘 in �̄�, which can be used to define a
section of 𝜋 over Gal(�̄�∕𝐾). From 𝖢 and 𝜔 we have constructed a �̄�∕𝑘-Galois groupoid
𝒢 def= 𝒜𝑢𝑡⊗𝑘 (𝜔) with kernel 𝒜𝑢𝑡

⊗
�̄� (𝜔).

Theorem 11.33 Let 𝖳 be an essentially small tannakian category over 𝑘 and 𝜔 a �̄�-valued
fibre functor on 𝖳.
(a) The extension 𝒢 is a �̄�∕𝑘-Galois groupoid with kernel𝒜𝑢𝑡⊗�̄� (𝜔).
(b) The functor 𝖳 → 𝖱𝖾𝗉𝖿(𝒢) defined by 𝜔 is an equivalence of tensor categories.

Conversely, if 𝒢 is a �̄�∕𝑘-Galois groupoid, then 𝖱𝖾𝗉𝖿(𝒢) is a tannakian category over 𝑘, the
forgetful functor is a fibre functor, and 𝒢 ≃ 𝒜𝑢𝑡⊗𝑘 (𝜔forget).

Proof Statement (a) is proved above. In proving (b), we may suppose that 𝖳 is algebraic.
Then 𝖳 has a fibre functor 𝜔 over a finite exension 𝐾, and

𝖳
𝜔
,→ 𝖱𝖾𝗉𝖿(𝒢)

is an equivalence because it becomes an equivalence after we have extended scalars to 𝐾,

𝖳(𝐾)
∼,,→
3.1

𝖱𝖾𝗉𝖿(𝐺𝐾)
∼,,,,→

11.21
𝖱𝖾𝗉𝖿(𝒢)(𝐾).

The final statement is proved in 11.21. 2

Note that the proof of Theorem 11.33 is independent of the results of this chapter. In
its statement, we assumed that the tannakian category has a fibre functor over �̄�. The
proof (10.1) that this is always true uses 10.3, which relies on Theorem 1.1.

Let 𝑘′ be a finite extension of 𝑘. Essentially small tannakian categories over 𝑘
equipped with a fibre functor over 𝑘′ correspond to �̄�∕𝑘-Galois groupoids equipped with
a splitting over 𝑘′.

Galois groupoids for ℂ∕ℝ

11.34 Let
1→ 𝐺(ℂ) ,→ 𝒢

𝜋
,→ Gal(ℂ∕ℝ)→ 1

be a ℂ∕ℝ-Galois groupoid with kernel 𝐺. Choose an 𝑠 ∈ 𝒢 such that 𝜋(𝑠) = 𝜄 (complex
conjugation). Let 𝜎∶ 𝐺(ℂ)→ 𝐺(ℂ) be conjugation by 𝑠, and let 𝑐 = 𝑠2. Then 𝜎 is 𝜄-linear,
𝑐 ∈ 𝐺(ℂ), and

𝜎2 = ad(𝑐), 𝜎(𝑐) = 𝑐. (*)

Every triple (𝐺, 𝜎, 𝑐) satisfying these conditions arises in this way from a ℂ∕ℝ-Galois
groupoid. When we replace the section 𝑠 with 𝑠𝑚,𝑚 ∈ 𝐺(ℂ), the pair (𝜎, 𝑐) is replaced
by (𝜎◦ ad(𝑚), 𝜎(𝑚)𝑐𝑚).

11.35 Let (𝐺, 𝜎, 𝑐) be a triple satisfying the conditions in 11.34, and let 𝒢 be the corre-
sponding ℂ∕ℝ-Galois groupoid. Then 𝖱𝖾𝗉𝖿(𝒢) is a tannakian category over ℝ with a
ℂ-valued (forgetful) fibre functor 𝜔 such that 𝐺 = 𝒜𝑢𝑡⊗(𝜔). Together with Theorem
11.33, this gives a description of tannakian categories over ℝ that we exploit in Chapter
V, §1.

ToDo 6 Add the 2-category statements.

Notes This section is largely based on Langlands and Rapoport 1987 and Lattermann 1989.
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12 Descent of tannakian categories

12.1 Let 𝑘′∕𝑘 be a finite Galois extension with Galois group Γ, and let 𝖢′ be a Tannakian
category over 𝑘′. A descent datum on 𝖢′ relative to 𝑘′∕𝑘 is

(a) a family (𝛽𝛾)𝛾∈Γ of equivalences of tensor categories 𝛽𝛾 ∶ 𝖢′ → 𝖢′, 𝛽𝛾 being
semi-linear relative to 𝛾, together with

(b) a family (𝜇𝛾′,𝛾) of isomorphisms of tensor functors 𝜇𝛾′,𝛾 ∶ 𝛽𝛾′𝛾
≈,→ 𝛽𝛾′◦𝛽𝛾 such

that

𝛽𝛾′′𝛾′𝛾(𝑋) 𝛽𝛾′′(𝛽𝛾′𝛾(𝑋))

𝛽𝛾′′𝛾′(𝛽𝛾(𝑋)) 𝛽𝛾′′(𝛽𝛾′(𝛽𝛾(𝑋)))

← →
𝜇𝛾′′ ,𝛾′𝛾(𝑋)

←

→ 𝜇𝛾′′𝛾′ ,𝛾(𝑋)

←

→ 𝛽𝛾′′ (𝜇𝛾′𝛾(𝑋))

← →
𝜇𝛾′′𝛾′ (𝛽𝛾(𝑋))

commutes for all 𝑋 ∈ ob(𝖢).

12.2 A Tannakian category 𝖢 over 𝑘 gives rise to a Tannakian category 𝖢′ = 𝖢(𝑘′) over
𝑘′ together with a descent datum for which 𝛽𝛾(𝑋, 𝛼𝑋) = (𝑋, 𝛼𝑋◦𝛾−1). Conversely, a
Tannakian category 𝖢′ over 𝑘′ together with a descent datum relative to 𝑘′∕𝑘 gives rise to
a Tannakian category 𝖢 over 𝑘 whose objects are pairs (𝑋, (𝑎𝛾)), where 𝑋 ∈ ob(𝖢′) and
(𝑎𝛾 ∶ 𝑋 → 𝛽𝛾(𝑋))𝛾∈Γ is such that (𝜇𝛾′,𝛾)𝑋◦𝑎𝛾′𝛾 = 𝛽𝛾′(𝑎𝛾)◦𝑎𝛾′ , and whose morphisms
are morphisms in 𝖢′ commuting with the 𝑎𝛾. These two operations are quasi-inverse,
so that to give a Tannakian category over 𝑘 (up to a tensor equivalence, unique up to a
unique isomorphism) is the same as giving a Tannakian category over 𝑘′ together with a
descent datum relative to 𝑘′∕𝑘 (Saavedra 1972, III, 1.2).

12.3 On combining 12.2 this statement with (3.1) we see that to give a Tannakian
category over 𝑘 together with a fibre functor with values in 𝑘′ is the same as giving
an affine group scheme 𝐺 over 𝑘′ together with a descent datum on the Tannakian
category 𝖱𝖾𝗉𝑘′(𝐺). Giving a descent datum on 𝖱𝖾𝗉𝑘′(𝐺) amounts to extending 𝐺 to a
𝑘′∕𝑘-groupoid, or extending 𝐺 to a �̄�∕𝑘-Galois groupoid equipped with a splitting over
𝑘′.

13 Tannakian categories whose band is of multiplicative
type

ToDo 7 Remove the repetition in this section.

In this section, we study tannakian categories whose band is of multiplicative type.
They form an important class – for example, the category of motives over a finite field
is conjectured to be of this type. Recall that an affine commutative band over 𝑘 can be
viewed simply as a commutative affine group scheme over 𝑘. Throughout, �̄� denotes a
separable closure of 𝑘.

Tannakian categories whose band is diagonalizable

We first consider the split case.
Let𝑀 be an abelian group. The functor of 𝑘-algebras

𝑅 ⇝ Hom(Γ, 𝑅×)
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is represented by an affine group scheme 𝐷(𝑀) over 𝑘. Any group scheme isomorphic
to such a group scheme is said to be diagonalizable. If 𝐺 = 𝐷(𝑀), then

𝑀 = 𝑋∗(𝐺) def= Hom(𝐺�̄�,𝔾𝑚) (characters of 𝐺).

The functor 𝐺 ⇝ 𝑋∗(𝐺) is a contravariant equivalence from the category of diagonal-
izable algebraic groups over 𝑘 to the category of abelian groups, with quasi-inverse 𝐷.
Under the equivalence, finitely generated groups correspond to algebraic groups, ℤ cor-
responds to 𝔾𝑚, and ℤ∕𝑝ℤ corresponds to the étale group scheme ℤ∕𝑝ℤ if 𝑝 ≠ char(𝑘)
and to the finite connected group scheme 𝜇𝑝 if 𝑝 = char(𝑘).

Let 𝐺 be a diagonalizable algebraic group over 𝑘. The simple objects of 𝖱𝖾𝗉𝖿(𝐺) are
the one-dimensional spaces on which 𝐺 acts through a character. The abelian group𝑀
can be recovered from 𝖱𝖾𝗉𝖿(𝐺) as the set of isomorphism classes of simple objects with
addition corresponding to tensor product (better as the set of “types” of isotypic objects –
two isotypic objects𝑀 and 𝑁 have the same type if𝑀𝑚 ≈ 𝑁𝑛 for some𝑚, 𝑛 ∈ ℕ).

For simplicity, in the rest of this subsection, we assume that 𝑘 has characteristic 0.

Proposition 13.1 An essentially small tannakian category 𝖳 over 𝑘 has diagonalizable
band if and only if
(a) it is semisimple, and
(b) the tensor product of any two isotypic objects is isotypic.

In this case, the set of types of isotypic objects𝑀 forms a group under tensor product, and
the band of 𝖳 is 𝐷(𝑀).

Proof If 𝖳 has diagonalizable band, then 𝖢(�̄�) ∼ 𝖱𝖾𝗉𝖿(𝐷(𝑀)) for some abelian group
𝑀 (apply II, 3.1, and III, 10.1), and the above remarks show that (a) and (b) hold for
𝖱𝖾𝗉𝖿(𝐷(𝑀)). It then follows from 6.17 that they hold also for 𝖢.

Conversely, suppose that (a) and (b) hold, and let 𝑀 be the set of isomorphism
classes of simple objects. The conditions (a) and (b) say that 𝖢 is has an𝑀-gradation
whose homogeneous objects are the isotypic objects (cf. 9.2). The gradation defines a
homomorphism

𝐷(𝑀)→ 𝒜𝑢𝑡⊗(id𝖢) = 𝑍(band of 𝖢),

and it remains to show that this induces an isomorphism of 𝐷(𝑀) onto the band of 𝖢.
It suffices to check this locally for the fpqc topology, and so we may suppose that there
is a 𝑘-valued fibre functor 𝜔 on 𝖢. Once we have shown that the simple objects of 𝖢
have (categorical) dimension 1, the functor 𝜔 will define an equivalence of 𝖢 with the
category of𝑀-graded finite-dimensional 𝑘-vector spaces, and hence with 𝖱𝖾𝗉𝖿(𝐷(𝑀)),
as required. Let 𝑆 be a simple object of dimension 𝑟, so dim (𝑆 ⊗ 𝑆∨) = 𝑟2 (by I, 5.4).
Then 𝑆 ⊗ 𝑆∨ is isotypic, hence trivial, and so Hom(𝟙, 𝑆 ⊗ 𝑆∨) has dimension 𝑟2. Recall
that End(𝑆) = Hom(𝟙, 𝑆 ⊗ 𝑆∨) ((14), p. 21). As 𝜔 induces an isomorphism

End(𝑆)→ End(𝜔(𝑆)) ≃ 𝑀𝑟(𝑘)

and End(𝑆) is a division algebra, we see that 𝑟 = 1. 2

Remark 13.2 Let 𝖳 be a tannakian category over 𝑘. If the band of 𝖳 is diagonalizable,
then, for any isotypic object 𝑆 of 𝖳, End(𝑆) is a division algebra with centre 𝑘 and

dim𝑘(End(𝑆)) = dim(𝑆)2. (83)

Conversely, if 𝖳 is semisimple and (83) holds for all isotypic objects, then the band of 𝖳
is diagonalizable.
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Let 𝖳 be a tannakian category whose band is the diagonalizable group 𝐷(𝑀). Then
𝖳 is determined up to tensor equivalence by its class in𝐻2(𝑘, 𝐷(𝑀)). An element𝑚 of
𝑀 determines a homomorphism ℤ→ 𝑀 and hence a homomorphism

𝜑𝑚 ∶ 𝐻2(𝑘, 𝐷(𝑀))→ 𝐻2(𝑘, 𝐷(ℤ)) ≃ Br(𝑘).

Proposition 13.3 For any isotypic object 𝐸 of type𝑚, the homomorphism 𝜑𝑚 sends the
class of 𝖳 in𝐻2(𝑘, 𝐷(𝑀)) to the class of End(𝐸) in Br(𝑘).

Proof For a proof in terms of gerbes, see Saavedra 1972, 3.5.3. For a proof in terms of
Galois groupoids, see 13.17 below. 2

From 𝜑𝑚, we get a pairing

𝐻2(𝑘, 𝐷(𝑀)) ×𝑀 → Br(𝑘), 𝑥,𝑚 ↦ 𝜑𝑚(𝑥).

Proposition 13.4 The homomorphism

𝐻2(𝑘, 𝐷(𝑀))→ Hom(𝑀,Br(𝑘)) (84)

defined by the above pairing is an isomorphism.

Proof When 𝑀 = ℤ, the homomorphism 𝜑1∶ 𝐻2(𝑘,𝔾𝑚) → Br(𝑘) is the canonical
isomorphism𝐻2(𝑘,𝔾𝑚) ≃ Br(𝑘). It follows that the proposition holds for ℤ, hence for
ℤ(𝐼), where 𝐼 is any set, because both sides of (84) transform sums into products. For
the left-hand side, this follows from the interpretation of𝐻2 as equivalence classes of
gerbes.12

In the general case, there is an exact sequence

0→ ℤ(𝐼) → ℤ(𝐽) → 𝑀 → 0,

and hence an exact sequence

0→ 𝐷(𝑀)→ 𝔾𝐽
𝑚 → 𝔾𝐼

𝑚 → 0.

As for 𝐻2, we have 𝐻1(𝑘,𝔾𝐼
𝑚) ≃ 𝐻1(𝑘,𝔾𝑚)𝐼 , which is zero, and so we have an exact

sequence
0→ 𝐻2(𝑘, 𝐷(𝑀))→ 𝐻2(𝑘,𝔾𝑚)𝐽 → 𝐻2(𝑘,𝔾𝑚)𝐼 .

On comparing this with the exact sequence

0→ Hom(𝑀,Br(𝑘))→ Hom(ℤ(𝐽),Br(𝑘))→ Hom(ℤ(𝐼),Br(𝑘)),

we obtain the statement for𝑀. 2

Corollary 13.5 If Br(𝑘) = 0, for example, if 𝑘 is algebraically closed or finite, then every
tannakian category over 𝑘 with diagonalizable band in neutral.

12This requires that we use the fpqc topology. It is not true that𝐻2 for the fppf topology commutes with
products of affine group schemes over 𝑘.
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Summary 13.6 Let 𝖢 be tannakian category over 𝑘 with band 𝐷(𝑀). Then 𝖢 is deter-
mined up to tensor equivalence by a homomorphism

𝑢∶ 𝑀 → Br(𝑘).

The category𝖢 is graded of type𝑀. The homogeneous objects are the isotypic objects. For
each𝑚 ∈ 𝑀, there is exactly one simple object (up to isomorphism) 𝑆𝑚 homogeneous of
degree𝑚, and End(𝑆𝑚) is a division algebra with centre 𝑘 and invariant 𝑢(𝑚) in Br(𝑘).

Let 𝑑(𝑚) be the order of 𝑢(𝑚) in Br(𝑘). When 𝑘 is a local or global field, 𝑑(𝑚) =√
dim(End(𝑆𝑚)), but not generally otherwise (period-index problem).
The Grothendieck ring of 𝖢 is the subring 𝐾(𝖢) ⊂ ℤ[𝑀] determined by

∑
𝑛𝑚[𝑆𝑚] ∈ 𝐾(𝖢) ⇐⇒ 𝑛𝑚 ≡ 0mod 𝑑(𝑚) for all𝑚 ∈ 𝑀.

A canonical basis of 𝐾(𝖢) is formed by the elements of the form 𝑑(𝑚)[𝑆𝑚].

13.7 When𝑀 = ℤ(𝐼), i.e., 𝐺 = 𝔾𝐼
𝑚, to give 𝑢 amounts to giving elements 𝜉𝑖 ∈ Br(𝑘),

each 𝑖 ∈ 𝐼. Choose, for each 𝑖, a nonzero isotypic object 𝐸𝑖 of degree 𝑖, and let 𝐴𝑖 =
End(𝐸𝑖) be a central simple 𝑘-algebra with invariant 𝜉𝑖. It is possible to reconstruct 𝖢
(up to tensor equivalence) from the 𝐴𝑖 (exercise).

Numeric study of Tannakian categories (Grothendieck)

We first study abelian categories. Let 𝑘 be a field and 𝖠 a locally finite 𝑘-linear abelian
category. Recall that an object of an abelian category is simple if it is nonzero and
contains no proper nonzero subobject.

13.8 If 𝑀 is a simple object of 𝖠, then the abelian subcategory of 𝖠 it generates is
equivalent to the category of finite-dimensional vector spaces over the division algebra
𝐷 = End(𝑀). One sees therefore that the object 𝑀 remains semisimple under an
extension 𝑘′∕𝑘 if and only if 𝐷 ⊗𝑘 𝑘′ is a product of matrix algebras over division
algebras. This is true for all 𝑘′ if it is true for one perfect field containing 𝑘, which is
equivalent to the centre 𝑍 of𝐷 being separable over 𝑘. One then says that𝑀 is absolutely
semisimple. A similar statement holds for semisimple𝑀.

13.9 The Grothendieck group 𝐾(𝖠) is the free abelian group generated by the set Σ(𝖠)
of isomorphism classes of simple objects of 𝖠. If 𝑘′ is an extension of 𝑘, the way in which
a simple object𝑀 of𝖠 such that𝑀𝑘′ is semisimple decomposes is seen in the structure of
𝐷 ⊗𝑘 𝑘′ = 𝐷′: if 𝐷′ is a product of algebras𝑀𝑛𝑖 (𝐷

′
𝑖 ), where the 𝐷

′
𝑖 are division algebras,

1 ≤ 𝑖 ≤ 𝑟, then𝑀𝑘′ decomposes into 𝑟 isotypic components (corresponding to the 𝐷′
𝑖 )

each having 𝑛𝑖 simple components 𝐷′
𝑖 . Assume that 𝑘

′ is Galois over 𝑘. Then the classes
of the 𝑀′

𝑖 are conjugate among themselves under the action of Gal(𝑘
′∕𝑘) = Π. We

therefore have a canonical bijection

Σ(𝖠) ≃ Σ(𝖠′)∕Π.

13.10 Assume that 𝖠 is semisimple, that is, that every object is a sum of its simple
subobjects, and hence a finite direct sum of simple objects. If 𝑒 is simple, then every
nonzero morphism 𝑒 → 𝑒 is an isomorphism. Therefore, End(𝑒) is a division algebra. It
contains 𝑘 in its centre, and is finite-dimensional over 𝑘. Let 𝑟𝑒 denote the direct sum of
𝑟 copies of 𝑒. Then End(𝑟𝑒) ≃ 𝑀𝑟(End(𝑒)). If 𝑒′ is a second simple object, then either
𝑒 ≈ 𝑒′ orHom(𝑒, 𝑒′) = 0. Therefore, if 𝑥 =

∑
𝑟𝑖𝑒𝑖 (𝑟𝑖 ≥ 0) and 𝑦 =

∑
𝑠𝑖𝑒𝑖 (𝑠𝑖 ≥ 0) are two
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objects of 𝖠 expressed as sums of copies of the simple objects 𝑒𝑖, and 𝑒𝑖 ≉ 𝑒𝑗 for 𝑖 ≠ 𝑗,
then

Hom(𝑥, 𝑦) ≃
∏

𝑀𝑠𝑖 ,𝑟𝑖 (End(𝑒𝑖)).

Thus, the category 𝖠 is described up to equivalence by
(a) the set Σ(𝖠) of isomorphism classes of simple objects in 𝖠;
(b) for each 𝜎 ∈ Σ, the isomorphism class [𝐷𝜎] of the endomorphism algebra 𝐷𝜎 of a

representative of 𝜎.
We call Σ(𝖠) and ([𝐷𝜎])𝜎∈Σ(𝑀) the numeric characters of 𝖠.

Let 𝑘𝜎 denote the centre of 𝐷𝜎. The isomorphism class of 𝐷𝜎 as an 𝑘-algebra is
determined by the isomorphism class of 𝑘𝜎 as an extension of 𝑘 and the class 𝐷𝜎 in
Br(𝑘𝜎).

Summary 13.11 If𝖠 is semisimple, then the category𝖠 is determined up to equivalence
by the set Σ = Σ(𝖠) and the map

𝜎 ↦ (𝑍𝜎, 𝜁𝜎 ∈ Br(𝑍𝜎))

sending the class 𝜎 of the simple object𝑀 to the centre 𝑍𝜎 of End(𝑀) and the class of
End(𝑀) in Br(𝑍𝜎) (the pair (𝑍𝜎, 𝜁𝜎) is defined up to a unique isomorphism).

13.12 Now suppose that 𝖠 has a 𝑘-linear tensor structure. We call the numeric charac-
ters of 𝖠 the following data:
(a) the set (up to a bijection) Σ of isomorphism classes of simple objects of 𝖠;
(b) the multiplication in 𝐾(𝖠) = ℤ(Σ); this amounts to giving for all 𝜎, 𝜏 ∈ Σ, the

product
𝜎𝜏 =

∑

𝜌
𝑐𝜌𝜎𝜏𝜌 (𝑐𝜌𝜎𝜏 ∈ ℕ),

i.e., a system of natural numbers 𝑐𝜌𝜎,𝜏;
(c) the map

𝜎 ↦ (𝑍𝜎, 𝜁𝜎), 𝜁𝜎 ∈ Br(𝑍𝜎)

considered in (13.11);

(d) the function
dim∶ 𝖠 → ℤ

when 𝖠 is assumed to be tannakian.

13.13 Note that to give (a) and (b) is equivalent to giving the commutative ring 𝐾(𝖠)
together with its “effective subset”

𝐾(𝖠)eff = subgroup of 𝐾(𝖠) generated by [𝑀], 𝑀 ∈ ob𝐴,
= ℕ(Σ).

Indeed, Σ can be recovered starting from the datum𝐾(𝖠)eff ⊂ 𝐾(𝖠) as the set of minimal
nonzero elements of 𝐾(𝖠)eff. The datum (3) then allows us to recover, as has been made
explicit above, the functorial variance of the ring 𝐾(𝖠𝑘′) with respect to 𝑘′. Finally,
the datum in (d) allows us to recover in principal the characteristic polynomial (in
particular, the trace and determinant) of a semisimple object 𝑀 of 𝖠 in terms of the
reduced characteristic polynomial (resp. reduced trace, reduced norm) in the central
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simple algebra End(𝑀𝑖) corresponding to the isotypic components𝑀𝑖 of𝑀. Let𝑀 be
isotypic of rank 𝑛, and suppose that 𝐷 = End(𝑀) has centre 𝑍 of rank 𝑟 over 𝑘; then
𝑛 = 𝑛′𝑟 where 𝑛′ is the rank of𝑀 over 𝑍, and 𝐷 is of rank 𝑑2 over 𝑍 with 𝑑|𝑛′:

det𝑀 𝑓 = Nm𝑍∕𝑘(rd𝐷∕𝑍𝑓)𝑛
′∕𝑑

Tr𝑀 𝑓 = Tr𝑍∕𝑘(rd𝐷∕𝑍𝑓)
𝑛′

𝑑
𝑃𝑀(𝑓, 𝑡) = Nm𝑍∕𝑘(rd𝐷∕𝑍(𝑓, 𝑡))𝑛

′∕𝑑, 𝑛′∕𝑑 = 𝑛∕𝑑𝑟.

13.14 Note that the knowledge of the numeric characters of a Tannakian category 𝖠
does not allow us to reconstruct it up to equivalence, even if 𝑘 is an algebraically closed
field of characteristic zero (in which case the datum (c) is vacuous) and 𝖠 is semisimple,
even in the particular case where moreover 𝖠 is the category of representations of a
finite group.13 As an exception to this remark, we note however the case of a Tannakian
category 𝖠 with diagonalizable band is determined by its numeric characters (then Σ
becomes a subgroup of 𝐾(𝖠)×, which determines the band, and the datum (c) gives a
homomorphism Σ→ Br(𝑘) which suffices to determine everything).

Tannakian categories whose band is a torus

Let 𝑘 be a field of characteristic 0, and let 𝒢 be a �̄�∕𝑘-Galois groupoid. If the identity
component of the kernel of 𝒢 is a reductive group, then 𝖱𝖾𝗉𝖿(𝒢) is a semisimple locally
finite 𝑘-linear abelian category, and so is described, up to equivalence, by its numerical
invariants (see above). We explain how to compute these invariants when the kernel is a
torus. Let Γ = Gal(�̄�∕𝑘).

Let 𝑇 be a torus over 𝑘 – it is split by �̄�. The category 𝖱𝖾𝗉(𝑇) of representations of 𝑇
on finite-dimensional vector spaces is semisimple, and the simple representations are
classified by the orbits of Γ acting on 𝑋∗(𝑇),

Σ(𝖱𝖾𝗉(𝑇)) = Γ∖𝑋∗(𝑇).

If 𝑉Γ𝜒 is the simple object corresponding to the orbit Γ𝜒, then �̄� ⊗𝑘 𝑉Γ𝜒 ≃
⨁

𝜒′∈Γ𝜒 𝑉𝜒′ ,
where 𝑉𝜒′ is the one-dimensional 𝑘-vector subspace on which Γ acts through 𝜒′. Let
𝑘(𝜒) = �̄�Γ(𝜒), where Γ(𝜒) is the subgroup of Γ fixing 𝜒. Then there is a canonical action
of 𝑘(𝜒) on 𝑉Γ𝜒 , and End(𝑉Γ𝜒 ) = 𝑘(𝜒).

We have determined the numerical invariants of the category 𝖱𝖾𝗉(𝒢) when 𝒢 is the
split Galois groupoid with kernel 𝑇. For nonsplit groupoids, we need to take account of
the cohomology class of 𝒢 in𝐻2(𝑘, 𝑇).

Again let 𝑇 be a torus over 𝑘. Let 𝜒 ∈ 𝑋∗(𝑇), and let Γ(𝜒) and 𝑘(𝜒) be as before.
Then Hom(𝑘(𝜒), �̄�) ≃ Γ∕Γ(𝜒), and so 𝑋∗((𝔾𝑚)𝑘(𝜒)∕𝑘) ≃ ℤΓ∕Γ(𝜒). The map

∑

𝜎∈Γ∕Γ(𝜒)
𝑛𝜎𝜎 ↦

∑

𝜎
𝜎𝜒

defines a homomorphism
𝑇 → (𝔾𝑚)𝑘(𝜒)∕𝑘.

13The first order for which there are two nonisomorphic noncommutative groups is 8, and their character
groups do not distinguish them. However, over an algebraically closed field of characteristic zero, a
connected reductive group is determined (up to isomorphism) by the set of isomorphism classes of its
finite-dimensional representations endowed with an obvious sum and product, i.e., by its semiring of
representations. See 8.9.
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From this, we get a homomorphism

𝐻2(𝑘, 𝑇)→ 𝐻2(𝑘, (𝔾𝑚)𝑘(𝜒)∕𝑘) ≃ 𝐻2(𝑘(𝜒),𝔾𝑚) ≃ Br(𝑘(𝜒). (85)

Proposition 13.15 Let 𝒢 be an �̄�∕𝑘-Galois groupoid whose kernel is a torus 𝑇. Then
𝖱𝖾𝗉(𝒢) is a semisimple locally finite 𝑘-linear abelian category. We have

Σ(𝖱𝖾𝗉(𝒢)) ≃ Γ∖𝑋∗(𝑇),

and if 𝑉Γ𝜒 is a simple representation corresponding to the orbit Γ𝜒, then
End(𝑉𝑘𝜒) has centre 𝑘(𝜒), and its class in Br(𝑘(𝜒)) is the image of cl(𝒢) under the homo-
morphism (85).

Proof When the kernel is split, we proved this in 13.6. As the kernel is split by �̄�, the
general case follows from the discussion in 13.9. 2

Tannakian categories whose band is of multiplicative type

Review of algebraic groups of multiplicative type

Let 𝑘 be a field, and let Γ = Gal(�̄�∕𝑘). An algebraic group over 𝑘 is of multiplicative
type if it becomes diagonalizable over some field containing 𝑘, in which case it becomes
diagonalizable over �̄�. The functor 𝐺 ⇝ 𝑋∗(𝐺) is a contravariant equivalence from
the category of algebraic groups of multiplicative type over 𝑘 to the category of finitely
generated ℤ-modules equipped with a continuous action of Γ. Let 𝑀 be a finitely
generated abelian group. A continuous action of Γ on𝑀 defines a continuous action of
Γ on 𝐷(𝑀), and hence a model of 𝐷(𝑀) over 𝑘. In this way, we get a quasi-inverse to the
functor 𝐺 ⇝ 𝑋∗(𝐺).

Review of extensions

Let𝑀 be a multiplicative abelian group. An extension of 𝐺 by𝑀 is an exact sequence
of groups

1→ 𝑀 → 𝐸
𝜋
,→ 𝐺 → 1.

We set
𝜎𝑚 = 𝑠(𝜎) ⋅𝑚 ⋅ 𝑠(𝜎)−1, 𝜎 ∈ 𝐺,𝑚 ∈ 𝑀,

where 𝑠(𝜎) is any element of 𝐸 mapping to 𝜎. Because𝑀 is commutative, 𝜎𝑚 depends
only on 𝜎, and this defines an action of 𝐺 on𝑀. Note that

𝑠(𝜎) ⋅𝑚 = 𝜎𝑚 ⋅ 𝑠(𝜎), all 𝜎 ∈ 𝐺, 𝑚 ∈ 𝑀.

Now choose a section 𝑠 to 𝜋, i.e., a map (not necessarily a homomorphism) 𝑠∶ 𝐺 → 𝐸
such that 𝜋◦𝑠 = id. Then 𝑠(𝜎)𝑠(𝜎′) and 𝑠(𝜎𝜎′) both map to 𝜎𝜎′ ∈ 𝐺, and so they differ
by an element 𝜑(𝜎, 𝜎′) ∈ 𝑀,

𝑠(𝜎)𝑠(𝜎′) = 𝜑(𝜎, 𝜎′) ⋅ 𝑠(𝜎𝜎′).

From
𝑠(𝜎)(𝑠(𝜎′)𝑠(𝜎′′)) = (𝑠(𝜎)𝑠(𝜎′))𝑠(𝜎′′)

we deduce that
𝜎𝜑(𝜎′, 𝜎′′) ⋅ 𝜑(𝜎, 𝜎′𝜎′′) = 𝜑(𝜎, 𝜎′) ⋅ 𝜑(𝜎𝜎′, 𝜎′′),
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i.e., that 𝜑 ∈ 𝑍2(𝐺,𝑀). If 𝑠 is replaced by a different section, 𝜑 is replaced by a coho-
mologous cocycle, and so the class of 𝜑 in 𝐻2(𝐺,𝑀) is independent of the choice of 𝑠.
Every such 𝜑 arises from an extension. In this way,𝐻2(𝐺,𝑀) classifies the isomorphism
classes of extensions of 𝐺 by𝑀 with a given action of 𝐺 on𝑀.

Review of the Brauer group

Let 𝐿 be a finite Galois extension of 𝑘, and let𝒜(𝐿∕𝑘) be the collection of central simple
algebras 𝐴 over 𝑘 containing 𝐿 and of degree [𝐴∶ 𝑘] = [𝐿∶ 𝑘]2 (so 𝐿 is a maximal
subfield of 𝐴).

Let𝐴 ∈ 𝒜(𝐿∕𝑘), and let 𝐸 be the set of invertible elements 𝛼 ∈ 𝐴 such that 𝛼𝐿𝛼−1 =
𝐿. Then each 𝛼 ∈ 𝐸 defines an element 𝑥 ↦ 𝛼𝑥𝛼−1 of Gal(𝐿∕𝑘), and the Noether-
Skolem theorem implies that every element of Gal(𝐿∕𝑘) arises from an 𝛼 ∈ 𝐸. Because
[𝐿∶ 𝑘] =

√
[𝐴∶ 𝑘], the centralizer of 𝐿 is 𝐿 itself, and so the sequence

1→ 𝐿× → 𝐸× → Gal(𝐿∕𝑘)→ 1

is exact. Let 𝛾(𝐴) be the cohomology class of this extension in𝐻2(𝐿∕𝑘, 𝐿×).

Theorem 13.16 The map 𝐴 ↦ 𝛾(𝐴) induces an isomorphism

Br(𝐿∕𝑘)→ 𝐻2(𝐿∕𝑘,𝔾𝑚).

On passing to the limit over the finite Galois extensions of 𝑘 in �̄�, we obtain an isomorphism

Br(𝑘) ≃ 𝐻2(𝑘,𝔾𝑚) (Galois cohomology group).

Proof Standard result. 2

Tannakian categories whose band is of multiplicative type

Let 𝖳 be an essentially small tannakian category over a field 𝑘 of characteristic zero, and
let 𝜔 be a fibre functor of 𝖳 over �̄�. Assume that 𝒜𝑢𝑡⊗�̄� (𝜔) is an algebraic group 𝐺 of
multiplicative type. Then

1→ 𝐺(�̄�)→ 𝒢→ Γ→ 1

with
𝒢 = 𝒜𝑢𝑡⊗𝑘 𝜔

def=
⨆

𝜎∈Γ
Isom⊗(𝜎𝜔, 𝜔)

is a �̄�∕𝑘-Galois groupoid and the functor

𝖳 → 𝖱𝖾𝗉𝖿(𝒢)

is an equivalence of tensor categories (11.33).
Let 𝜒 ∈ 𝑋∗(𝐺), let Γ(𝜒) be the subgroup of Γ fixing 𝜒, and let 𝑘(𝜒) = �̄�Γ(𝜒). Then 𝜒

is defined over 𝑘(𝜒), and from 𝜒∶ 𝐺𝑘(𝜒) → 𝔾𝑚 (of commutative algebraic groups over
𝑘(𝜒)), we get a homomorphism

𝐻2(𝑘(𝜒), 𝐺𝑘(𝜒))→ 𝐻2(𝑘(𝜒),𝔾𝑚).

On combining this with the restriction map𝐻2(𝑘, 𝐺)→ 𝐻2(𝑘(𝜒), 𝐺𝑘(𝜒)) and the isomor-
phism𝐻2(𝑘(𝜒),𝔾𝑚) ≃ Br(𝑘(𝜒)), we get a homomorphism

𝐻2(𝑘, 𝐺)→ Br(𝑘(𝜒)). (*)
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Proposition 13.17 Let 𝑉(𝜒) =
⨁

𝜒′∈Γ𝜒 𝑉𝜒′ . Then 𝑉(𝜒) is simple, End(𝑉(𝜒)) is a divi-
sion algebra with centre 𝑘(𝜒), and the homomorphism (*) sends the class of 𝖳 in𝐻2(𝑘, 𝐺)
to the class of End(𝑉(𝜒)) in Br(𝑘(𝜒)).

Proof This is a straightforward consequence of the above definitions (see the case of a
torus), 2

Theorem 13.18 The category 𝖳 is a semisimple locally finite 𝑘-linear abelian category,
and the fibre functor 𝜔 defines a bijection

Σ(𝖳) ≃ Γ∖𝑋∗(𝐺),

where 𝐺 = 𝒜𝑢𝑡⊗�̄� (𝜔). If 𝑉(𝜒) is the simple representation corresponding to the orbit Γ𝜒,
thenEnd(𝑉(𝜒)) is a division algebra with centre 𝑘(𝜒), and its class in Br(𝑘(𝜒)) is the image
of the class of 𝖳 under the homomorphism ∗.

Proof This summarizes previous results. 2

When do the numerical characters determine a tannakian category up to a
numerical equivalence?

13.19 The question of deciding whether the numeric characters determine the Tan-
nakian category up to equivalence comes down, for a fixed 𝐺, to determining whether
an element 𝜉 ∈ 𝐻2(𝑘, 𝐺) is known when 𝑢𝜎(𝜉) is known for all 𝑢∶ 𝐺 → (𝔾𝑚)𝑍𝜎∕𝑘 as
before. This is true when 𝐺 is diagonalizable (pro-countable). We look at some other
examples.

13.20 Let 𝐺 be a torus of dimension 1, therefore equal to either 𝔾𝑚 or 𝔾𝑚 twisted by a
quadratic extension 𝑍 of 𝑘. In the second case, we have an exact sequence

0 𝐺 (𝔾𝑚)𝑍∕𝑘 𝔾𝑚 0←→ ←→𝑢 ←→
Nm𝑍∕𝑘 ←→

and we conclude, from the exact cohomology sequence and Hilbert’s theorem 90, that
Ker(𝑢∶ 𝐻2(𝑘, 𝐺)→ 𝐻2(𝑘, (𝔾𝑚)𝑍∕𝑘) is zero. In this case, the numeric characters deter-
mine 𝖳 up to equivalence.

13.21 Let 𝑃 be the group of multiplicative type conjecturally attached to the category of
motives over 𝔽. An element of𝐻2(ℚ, 𝑃) is zero if its image in 𝐻2(ℚ, (𝔾𝑚)ℚ[𝜋]∕ℚ) is zero
for all characters 𝜋 of 𝑃. See the statement (*) and its proof following Lemma 3.15 in
Milne 1994.

14 Generalizations

This section is not yet written. It will be only a few pages, perhaps none.

Generalizations.

Summary of what is known (beginning with Saavedra) about the above theory over a
more general base, especially Dedekind domains.
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Applications

For example: Any subvariety of an abelian variety gives rise to a reductive group via the
convolution of perverse sheaves. For smooth subvarieties these Tannaka groups have
recently been used to obtain arithmetic finiteness results for varieties over number fields
and the big monodromy criterion.

Construction of the Langlands dual group

It is possible to construct the Langlands dual group over ℤ as the group attached to a
tannakian category over ℤ.

Tannakian interpretation of the Langlands program

Discuss the hoped for “tannakian category of automorphic representations”.



Chapter IV

The gerbe of fibre functors

There are three main steps in the basic theory of general tannakian categories.
(a) Relate pointed tannakian categories to groupoids.

(b) Relate groupoids to pointed gerbes.

(c) Relate tannakian categories to gerbes.
Given (b), steps (a) and (c) are more-or-less equivalent, but we include both approaches.
Groupoids can be viewed as being a down-to-earth version of gerbes, especially in their
Galois form.

In Chapter III, §1–§6, we explained (a), which is the approach taken in Deligne 1990.
In the first section of this chapter we explain (b), and in the next two sections, we explain
(c).

Throughout this chapter, 𝑘 is a field unless indicated otherwise. Unadorned tensor
products are over 𝑘, and unadorned products are over Spec 𝑘. We let 𝖠𝖿𝖿𝑘 denote the
category of affine 𝑘-schemes and 𝖠𝖿𝖿𝑆 the category of schemes affine over an affine
scheme 𝑆.

1 Gerbes and groupoids

In this section, we review the definition of gerbes and explain their relation to groupoids.

Gerbes

We begin by reviewing some terminology from Giraud 1971 (see also Appendix C).

1.1 Let 𝜙∶ 𝖥 → 𝖠𝖿𝖿𝑘 be a fibred category over 𝖠𝖿𝖿𝑘. For any morphism 𝑎∶ 𝑇 → 𝑆 in
𝖠𝖿𝖿𝑘 there exists an “inverse image” functor 𝑎∗∶ 𝖥𝑆 → 𝖥𝑇 such that

Homid𝑇 (𝑍, 𝑎
∗𝑋) ≃ Hom𝑎(𝑍,𝑋), for 𝑋 ∈ 𝖥𝑆, 𝑍 ∈ 𝖥𝑇.

Here 𝖥𝑆 is the fibre 𝜙−1(𝑆) over 𝑆 and Hom𝑎(𝑍,𝑋) consists of the 𝑓 such that 𝜙(𝑓) = 𝑎.
Composites of inverse image functors are inverse image functors.

1.2 Let 𝜙∶ 𝖥 → 𝖠𝖿𝖿𝑘 and 𝜙′∶ 𝖥′ → 𝖠𝖿𝖿𝑘 be fibred categories over 𝖠𝖿𝖿𝑘. A functor
𝛼∶ 𝖥 → 𝖥′ such that 𝜙′◦𝛼 = 𝜙 is cartesian if it preserves inverse images, i.e., for any
morphism 𝑎∶ 𝑇 → 𝑆 of affine 𝑘-schemes and 𝑋 ∈ ob 𝖥𝑆, 𝛼𝑇(𝑎∗𝑋) is the inverse image
of 𝛼𝑆(𝑋). Here 𝛼𝑇 ∶ 𝖥𝑇 → 𝖥′𝑇 is the restriction of 𝛼. We view 𝛼 as a family of functors
𝛼𝑆 ∶ 𝖥𝑆 → 𝖥′𝑆, indexed by the affine 𝑘-schemes 𝑆, compatible with base change.

165



166 Chapter IV. The gerbe of fibre functors

1.3 A fibred category is a prestack if, for every affine 𝑘-scheme 𝑆 and pair of objects
𝑋,𝑌 of 𝖥𝑆, the functor sending an affine 𝑆-scheme 𝑎∶ 𝑇 → 𝑆 to Hom(𝑎∗𝑋, 𝑎∗𝑌) is a
sheaf for the fpqc topology on 𝖠𝖿𝖿𝑆. It is a stack if, in addition, for every faithfully flat
morphism 𝑇 → 𝑆 in 𝖠𝖿𝖿𝑘, the functor sending an object of 𝖥𝑆 to an object of 𝖥𝑇 equipped
with a descent datum is an equivalence of categories (i.e., descent is effective on objects).
In other words, a fibred category is a stack if both morphism and objects, given locally
for the fpqc topology on 𝖠𝖿𝖿𝑘, patch to global objects.

Example 1.4 There are the following are stacks.
⋄ Mod → 𝖠𝖿𝖿𝑘 with Mod𝑆 the category of Γ(𝑆,𝒪𝑆)-modules (= quasi-coherent

sheaves on 𝑆);
⋄ Proj → 𝖠𝖿𝖿𝑘 with Proj𝑆 the category of finitely generated projective Γ(𝑆,𝒪𝑆)-

modules (= locally free sheaves of finite rank on 𝑆);
⋄ Aff→ 𝖠𝖿𝖿𝑘 with Aff𝑆 = 𝖠𝖿𝖿𝑆, the category of affine 𝑆-schemes.

1.5 A gerbe over 𝖠𝖿𝖿𝑘 is a stack 𝖦 → 𝖠𝖿𝖿𝑘 such that
(a) every fibre 𝖦𝑆 is a groupoid,
(b) for some nonempty 𝑆, 𝖦𝑆 is nonempty, and
(c) any two objects of a fibre 𝖦𝑆 are locally isomorphic.

The last condition means that the inverse images of the objects under some faithfully
flat map 𝑇 → 𝑆 are isomorphic. Amorphism of gerbes over 𝖠𝖿𝖿𝑘 is a cartesian functor.

1.6 Let𝖦 → 𝖠𝖿𝖿𝑘 be a gerbe. A representation of𝖦 is a cartesian functor𝑅∶ 𝖦 → Mod.
Thus, to give 𝑅 amounts to giving, for each affine 𝑘-scheme 𝑆, a functor from 𝖦𝑆 to the
category of quasi-coherent sheaves on 𝑆, these functors being required to be compatible
with base change. Amorphism between two representations is a natural transformation
of functors. We let 𝖱𝖾𝗉𝖿(𝖦) denote the category of representations of 𝖦 on locally free
sheaves of finite rank (cartesian functors 𝖦 → Proj).

Thus, an object 𝜙 of 𝖱𝖾𝗉𝖿(𝖦) determines (and is determined by) functors 𝜙𝑅 ∶ 𝖦𝑅 →
𝖯𝗋𝗈𝗃𝑅, one for each 𝑘-algebra 𝑅, and isomorphisms

𝜙𝑅′(𝑔∗𝑄)↔ 𝜙𝑅(𝑄)⊗𝑅 𝑅′,

natural 𝑄 ∈ ob(𝖦𝑅), defined whenever 𝑔∶ 𝑅 → 𝑅′ is a homomorphism of 𝑘-algebras.
There is an obvious rigid tensor structure on 𝖱𝖾𝗉𝖿(𝖦), and End(𝟙) = 𝑘.

1.7 Let 𝑓∶ 𝖥 → 𝖠𝖿𝖿𝑘 and 𝑔∶ 𝖦 → 𝖠𝖿𝖿𝑘 be fibred categories over 𝖠𝖿𝖿𝑘. The category
𝖢𝖺𝗋𝗍(𝐹, 𝐺) has objects the cartesian functors 𝑢∶ 𝖥 → 𝖦 and morphisms the natural
transformations𝑚∶ 𝑢 → 𝑢′ such that id𝑔 ∗𝑚 = id𝑓.

There is a 2-categoryℱ𝒾𝒷𝑘 with objects the fibred categories over 𝖠𝖿𝖿𝑘 and

𝖧𝗈𝗆(𝖥,𝖦) = 𝖢𝖺𝗋𝗍(𝖥,𝖦)

for all objects 𝖥,𝖦 (Giraud 1971, 0, 1.8). We define 𝒢ℯ𝓇𝒷𝑘 to be the sub 2-category of
ℱ𝒾𝒷𝑘 with objects the gerbes over 𝖠𝖿𝖿𝑘 and the same Hom categories.

Example 1.8 Let 𝐺 be an affine group scheme over 𝑘, and let Tors(𝐺) be the gerbe
over𝖠𝖿𝖿𝑆 such that Tors(𝐺)𝑈 is the category of𝐺-torsors over𝑈. Let𝐺𝑟 be𝐺 viewed as a
right𝐺-torsor, and letΦ be an object of 𝖱𝖾𝗉𝖿(Tors(𝐺)). The isomorphism𝐺 ≃,→ 𝒜𝑢𝑡(𝐺𝑟)
defines a representation of 𝐺 on the vector space Φ𝑘(𝐺𝑟), and it is not difficult to show
that Φ⇝ Φ𝑘(𝐺𝑟) extends to an equivalence of categories

𝖱𝖾𝗉𝖿(Tors(𝐺))→ 𝖱𝖾𝗉𝖿(𝐺).
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Example 1.9 Let 𝖳 be a neutral tannakian category over 𝑘. The fibre functors on 𝖳
form a gerbe Fib(𝖳) over 𝖠𝖿𝖿𝑘, and the canonical functor

𝖳 → 𝖱𝖾𝗉𝖿(Fib(𝖳)), 𝑋 ⇝ (𝜔 ⇝ 𝜔(𝑋)) (86)

is an equivalence of tensor categories. That Fib(𝖳) is a gerbe (any two fibre functors are
locally isomorphic for the fpqc topology) follows from I, 8.1. For the rest, we can take
𝖳 = 𝖱𝖾𝗉𝖿(𝐺) for some affine group scheme 𝐺 over 𝑘.

Descent within gerbes

Let 𝖦 be a gerbe over 𝖠𝖿𝖿𝑘 for the fpqc topology. Since any two objects are locally
isomorphic, if one object in 𝖦 has a certain property and the property is local for the
fpqc topology, then all objects will have the property. We make this explicit.

1.10 Let 𝑃 be a property of affine schemes. We say that 𝑃 is local for the fpqc topology
if, for any finite surjective family of flat morphisms 𝑈𝑖 → 𝑈 of affine schemes,

𝑃 holds for 𝑈 ⇐⇒ 𝑃 holds for each 𝑈𝑖.

This is equivalent to saying that 𝑃 is local for the Zariski topology and, for any faithfully
flat morphism 𝑈′ → 𝑈,

𝑃 holds for 𝑈 ⇐⇒ 𝑃 holds for 𝑈′.

There is a similar definition for other objects. For example, a property 𝑃 of quasi-
coherent sheaves is local for the fpqc topology if it is local for the Zariski topology and,
for any faithfully flat morphism 𝑎∶ 𝑈′ → 𝑈 of affine schemes and quasi-coherent sheaf
𝑀 on 𝑈,

𝑃 holds for𝑀 on 𝑈 ⇐⇒ 𝑃 holds for 𝑎∗𝑀 on 𝑈′.

For quasi-coherent sheaves, the properties “finite type”, “finitely presented”, “flat”, and
“locally free of finite rank” are all local for the fpqc topology.

Lemma 1.11 Let 𝖦 be a gerbe over 𝖠𝖿𝖿𝑘. Let 𝑄 ∈ ob𝖦𝑆 and 𝑄′ ∈ ob𝖦𝑆′ , where 𝑆 and 𝑆′
are nonempty affine 𝑘-schemes. Then there exists an affine 𝑘-scheme 𝑇 and faithfully flat
maps 𝑎∶ 𝑇 → 𝑆 and 𝑎′∶ 𝑇 → 𝑆′ such that 𝑎∗𝑄 ≈ 𝑎′∗𝑄′.

Proof Note that pr∗1 𝑄 and pr∗2 𝑄
′ are both objects in the fibre of 𝖦 over 𝑆 ×𝑘 𝑆′, and so

there exists a faithfully flat map 𝑏∶ 𝑇 → 𝑆 × 𝑆′ such that 𝑏∗ pr∗1 𝑄 ≈ 𝑏∗ pr∗2 𝑄
′. We can

take 𝑎 = pr1 ◦𝑏 and 𝑎
′ = pr2 ◦𝑏,

𝑆

𝑇 𝑆 × 𝑆′

𝑆′.

←→𝑏

←

→𝑎

←

→𝑎′

← →
pr1

←

→
pr2

The projection maps are faithfully flat because the structure maps 𝑆 → Spec 𝑘 and
𝑆′ → Spec 𝑘 are. 2
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1.12 Similarly, if 𝑄1, 𝑄2 ∈ ob𝖦𝑆 and 𝑄′
1, 𝑄

′
2 ∈ ob𝖦𝑆′ , then there exist faithfully flat

maps 𝑎∶ 𝑇 → 𝑆 and 𝑎′∶ 𝑇 → 𝑆′ such that 𝑎∗𝑄1 ≈ 𝑎′∗𝑄′
1 and 𝑎

∗𝑄2 ≈ 𝑎′∗𝑄′
2.

Lemma 1.13 Let 𝑈 be an affine scheme and ℱ a sheaf on 𝑈 for the fpqc topology. If for
some 𝑉 affine and faithfully flat over𝑈, the restriction ofℱ to 𝑉 is representable, thenℱ is
representable on𝑈 (by an affine scheme over𝑈).

Proof Let 𝑋 be an affine scheme over 𝑉 representing the restriction of ℱ to 𝑉. The
canonical isomorphism pr∗1(ℱ|𝑉)→ pr∗2(ℱ|𝑉) (over 𝑉 ×𝑈 𝑉) satisfies the cocycle con-
dition (Appendix C, §3). By the Yoneda embedding, this defines an isomorphism
pr∗1 𝑋 → pr∗2 𝑋 (over 𝑉 ×𝑈 𝑉) satisfying the cocycle condition, i.e., a descent datum
on 𝑋 relative to 𝑉∕𝑈. This descent datum is effective by faithfully flat descent. Thus,
we get a scheme 𝑋0 affine over𝑈 such that 𝑋0 andℱ define the same sheaf over 𝑉. This
implies that they define the same sheaf on 𝑈. 2

1.14 Let 𝖦 be a gerbe over 𝖠𝖿𝖿𝑘. For an affine 𝑘-scheme 𝑆 and 𝑄1, 𝑄2 ∈ ob𝖦𝑆, we let
ℐ𝑠𝑜𝑚𝑆(𝑄1, 𝑄2) denote the functor of affine 𝑆-schemes

(
𝑇

𝑎
,→ 𝑆

)
⇝ Isom𝖦𝑇 (𝑎

∗𝑄1, 𝑎∗𝑄2).

For 𝑄 ∈ ob𝖦𝑆, we let 𝒜𝑢𝑡𝑆(𝑄) = ℐ𝑠𝑜𝑚𝑆(𝑄,𝑄), so it is the functor
(
𝑇

𝑎
,→ 𝑆

)
⇝ Isom𝖦𝑇 (𝑎

∗𝑄, 𝑎∗𝑄).

It follows from 1.12 and 1.13, that if there exist an 𝑆 ≠ ∅ and 𝑄1, 𝑄2 ∈ ob𝖦𝑆 such
that ℐ𝑠𝑜𝑚𝑆(𝑄1, 𝑄2) is representable by an affine scheme over 𝑆, then the same is true
for every 𝑆′ and 𝑄′

1, 𝑄
′
2 ∈ ob𝖦𝑆′ . We then say that 𝖦 has affine band or, more simply,

that it is an affine gerbe. Thus, a gerbe 𝖦 is affine if and only if for one (hence every)
𝑆 ≠ ∅ and 𝑄 ∈ 𝖦𝑆, 𝒜𝑢𝑡𝑆(𝑄) is representable by an affine group scheme over 𝑆.

The gerbe attached to a groupoid

1.15 Let (𝐺, 𝑆, (𝑡, 𝑠), ◦) be a 𝑘-groupoid acting on 𝑆 (in the sense of III, 2.8; in particular,
affine). By definition, for any affine 𝑘-scheme 𝑇, the quadruple

(𝑆(𝑇), 𝐺(𝑇), (𝑡, 𝑠), ◦)

is a groupoid (in sets). For varying 𝑇, these categories form a fibred category over 𝖠𝖿𝖿𝑘,
which we denote by 𝖦0(𝑆∶𝐺), or just 𝖦0.

Thus, for an affine 𝑘-scheme 𝑇,

ob𝖦0𝑇 = 𝑆(𝑇) def= Hom𝑘(𝑇, 𝑆),

and, for 𝑎, 𝑏 ∈ ob𝖦0𝑇 = 𝑆(𝑇),

Hom𝖦0𝑇
(𝑎, 𝑏) = {ℎ ∈ 𝐺(𝑇) ∣ 𝑠◦ℎ = 𝑎, 𝑡◦ℎ = 𝑏}.

For a morphism 𝑓∶ 𝑇′ → 𝑇 of affine 𝑘-schemes, the inverse image functor 𝑓∗ sends an
object 𝑎 ∈ 𝑆(𝑇) to 𝑎◦𝑓 ∈ 𝑆(𝑇′) and a morphism ℎ ∈ 𝐺(𝑇) to ℎ◦𝑓.

Lemma 1.16 For any two objects 𝑎, 𝑏 of 𝖦0𝑇
def= 𝑆(𝑇), the presheafℋ𝑜𝑚𝑇(𝑎, 𝑏) on 𝑇,

(𝑇′
𝑓
,→ 𝑇)⇝ Hom𝖦0

𝑇′
(𝑓∗𝑎, 𝑓∗𝑏),

is a sheaf for the fpqc topology. Hence 𝖦0(𝑆∶𝐺) is a prestack.
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Proof We have to show that, for 𝑎, 𝑏 ∈ 𝑆(𝑇) and 𝑓∶ 𝑇′ → 𝑇 faithfully flat, the map

Hom𝖦0𝑇
(𝑎, 𝑏)→ Hom𝖣𝖾𝗌𝖼(𝑇′∕𝑇)(𝑓∗𝑎, 𝑓∗𝑏)

is bijective. But the left-hand side is

{ℎ∶ 𝑇 → 𝐺 ∣ 𝑠◦ℎ = 𝑎, 𝑡◦ℎ = 𝑏}

whereas the right-hand side is

{ℎ′∶ 𝑇′ → 𝐺 ∣ 𝑠◦ℎ′ = 𝑎, 𝑡◦ℎ′ = 𝑏 and pr1 ◦ℎ
′ = pr2 ◦ℎ

′}.

The mapping from the first to the second is composition with 𝑓. Now 𝑓 is faithfully flat,
in particular, an epimorphism, so

{ 𝑠◦ℎ = 𝑎 ⇐⇒ 𝑠◦ℎ◦𝑓 = 𝑎◦𝑓,
𝑡◦ℎ = 𝑎 ⇐⇒ 𝑡◦ℎ◦𝑓 = 𝑎◦𝑓.

It therefore suffices to show that the sequence

Hom(𝑇, 𝐺) Hom(𝑇′, 𝐺) Hom(𝑇′ ×𝑇 𝑇′, 𝐺)

←→

←→
pr1←→pr2

is exact, but this follows directly from the exactness of

𝑇′ ×𝑇 𝑇′ 𝑇′ 𝑇

←→
pr1←→pr2

←→
𝑓

for faithfully flat 𝑓 (see, for example, Waterhouse 1979, 13.1).
Alternatively, note that

Hom𝖦0
𝑇′
(𝑓∗𝑎, 𝑓∗𝑏) = {ℎ∶ 𝑇′ → 𝐺 ∣ 𝑠◦ℎ = 𝑎◦𝑓, 𝑡◦ℎ = 𝑏◦𝑓}

= Hom𝑆×𝑆(𝑇′, 𝐺)
≃ Hom𝑇(𝑇′, 𝐺 ×𝑆×𝑆 𝑇),

𝐺 ×𝑆×𝑆 𝑇 𝐺

𝑇′ 𝑇 𝑆 × 𝑆,

← →

←→ ←→ (𝑡,𝑠)

← →
𝑓

←

→
ℎ

←

→

← →(𝑏,𝑎)

which says that the presheafℋ𝑜𝑚𝑇(𝑎, 𝑏) on 𝑇 is represented by the 𝑇-scheme 𝐺 ×𝑆×𝑆 𝑇,
and hence is a sheaf (1.13). 2

1.17 Let𝖦(𝑆∶𝐺) be the associated stack of𝖦0(𝑆∶𝐺) (Appendix C, §3). Because𝖦0(𝑆∶𝐺)
is a prestack,𝖦(𝑆∶𝐺) contains it as a full subcategory and is characterized by the property
that every object of 𝖦(𝑆∶𝐺) is locally in 𝖦0(𝑆∶𝐺). It follows that the fibres of 𝖦(𝑆∶𝐺)
are groupoids. For any stack 𝖧 over 𝖠𝖿𝖿𝑘, the inclusion functor 𝑖∶ 𝖦0 → 𝖦 induces an
equivalence of categories

𝖧𝗈𝗆(𝖦,𝖧) ∼,→ 𝖧𝗈𝗆(𝖦0,𝖧), (87)

compatible with base change, i.e., an equivalence of stacks over 𝖠𝖿𝖿𝑘,

Hom(𝖦,𝖧) ∼,→ Hom(𝖦0,𝖧). (88)
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1.18 Let 𝐺 be a 𝑘-groupoid acting on 𝑆. From (87) with 𝖧 =Proj we get an equivalence
of categories

𝖱𝖾𝗉𝖿(𝖦(𝑆∶𝐺)) ∼,→ 𝖱𝖾𝗉𝖿(𝖦0(𝑆∶𝐺)).
Let 𝑅 be a representation of 𝖦0. For each 𝑘-scheme 𝑇 and object 𝑎∶ 𝑇 → 𝑆 of 𝖦0𝑇,

we get an isomorphism
𝑅(𝑎)→ 𝑎∗𝑅(id𝑆),

and 𝑅 is determined by the sheaf 𝑅0
def= 𝑅(id𝑆) on 𝑆 and the isomorphisms

𝑅(𝑔) def= (𝑎∗𝑅0 → 𝑏∗𝑅0)

defined by the arrows 𝑎 → 𝑏 in in 𝖦0𝑇. These 𝑅(𝑔) form a representation of 𝐺, and the
functor

𝑅 ⇝ (𝑅(id𝑆), (𝑅(𝑔))𝑔)
is an equivalence of categories

𝖱𝖾𝗉𝖿(𝖦) ∼ 𝖱𝖾𝗉𝖿(𝖦0) ∼,→ 𝖱𝖾𝗉𝖿(𝑆∶𝐺). (89)

Proposition 1.19 Let 𝐺 be a 𝑘-groupoid acting on 𝑆 ≠ ∅. The stack 𝖦(𝑆∶𝐺) is a gerbe if
and only if 𝐺 is transitive.

Proof We know that 𝖦(𝑆∶𝐺) satisfies the conditions (a) and (b) to be a gerbe (1.5), and
so it remains to check that any two objects of 𝖦(𝑆∶ 𝐺) are locally isomorphic. We show
that

𝐺 is transitive ⇐⇒ pr1, pr2 locally isomorphic ⇐⇒ all 𝑎, 𝑏 locally isomorphic.

To say that the objects pr1 and pr2 in 𝖦
0
𝑆×𝑆 are locally isomorphic means that there

exists a faithfully flat map 𝑓∶ 𝑇 → 𝑆 × 𝑆 and an ℎ∶ 𝑇 → 𝐺 such that

𝑠◦ℎ = pr1 ◦𝑓, 𝑡◦ℎ = pr2 ◦𝑓,

i.e., such that ℎ ∈ Hom𝑆×𝑆(𝑇, 𝐺). Thus the condition for pr1 and pr2 to be locally
isomorphic is the definition of “transitive” (2.13).

Assume that pr1 and pr2 are locally isomorphic. We show that any two 𝑎, 𝑏 ∈
ob𝖦𝑇 (𝑇 an affine 𝑘-scheme) are locally isomorphic. After passing to a faithfully flat
cover, we may assume that 𝑎, 𝑏 ∈ ob𝖦0𝑇 = 𝑆(𝑇). From

𝑇 𝑆 × 𝑆 𝑆,←→(𝑏,𝑎)

← →
𝑏

← →𝑎

←→
pr2←→pr1

we see that 𝑏 = (𝑏, 𝑎)∗ pr2 and 𝑎 = (𝑏, 𝑎)∗ pr1. If pr1 and pr2 become isomorphic on a
faithfully flat covering 𝑈 → 𝑆 × 𝑆, then 𝑎 and 𝑏 become isomorphic on the faithfully
flat covering 𝑇 ×𝑆×𝑆 𝑈 → 𝑇. 2

Proposition 1.20 Let 𝐺 be a 𝑘-groupoid acting transitively on 𝑆 ≠ ∅. The canonical
functor

𝖱𝖾𝗉𝖿(𝑆∶ 𝐺)→ 𝖱𝖾𝗉𝖿(𝖦(𝑆∶ 𝐺))
is an equivalence of categories.

Proof A representation of 𝐺 defines a cartesian functor 𝖦0(𝑆∶ 𝐺)→Proj, which ex-
tends uniquely to 𝖦(𝑆∶ 𝐺). In this way, we get a functor 𝖱𝖾𝗉𝖿(𝑆∶ 𝐺)→ 𝖱𝖾𝗉𝖿(𝖦(𝑆∶ 𝐺)),
and “restriction” provides a quasi-inverse. 2
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The groupoid attached to a pointed gerbe

1.21 Let 𝖦 be an affine gerbe over 𝖠𝖿𝖿𝑘, and let 𝑄 ∈ ob𝖦𝑆 for some 𝑆 ≠ ∅. Consider
the presheaf on 𝖠𝖿𝖿𝑘,

𝒜𝑢𝑡𝑘(𝑄)∶ 𝑇 ⇝ {(𝑏, 𝑎, 𝜑) ∣ 𝑏, 𝑎∶ 𝑇 → 𝑆, 𝜑∶ 𝑎∗𝑄 ≃,→ 𝑏∗𝑄}.

For an 𝑆 × 𝑆-scheme (𝑏, 𝑎)∶ 𝑇 → 𝑆 × 𝑆, we have

𝒜𝑢𝑡𝑘(𝑄)(𝑇) = Isom𝖦𝑇 (𝑎
∗𝑄, 𝑏∗𝑄) = ℐ𝑠𝑜𝑚𝑆×𝑆(pr∗2 𝑄, pr

∗
1 𝑄)(𝑇).

Because 𝖦 is affine, ℐ𝑠𝑜𝑚𝑆×𝑆(pr∗2 𝑄, pr
∗
1 𝑄) is represented by an affine 𝑆 × 𝑆-scheme 𝐺

(1.14). The universal element in 𝒜𝑢𝑡𝑘(𝑄)(𝐺) is a triple (𝑡, 𝑠, 𝜑) with 𝑡, 𝑠∶ 𝐺 ⇉ 𝑆 and
𝜑∶ 𝑠∗𝑄 → 𝑡∗𝑄 an isomorphism. To an arbitrary 𝑓∶ 𝑇 → 𝐺, there corresponds a triple

(𝑠◦𝑓, 𝑡◦𝑓, (𝑠◦𝑓)∗𝑄
𝑓∗𝜑
,→ (𝑡◦𝑓)∗𝑄).

Composition of isomorphisms provides a natural transformation

𝒜𝑢𝑡𝑘(𝑄) ×
𝑠,𝑆,𝑡

𝒜𝑢𝑡𝑘(𝑄)→ 𝒜𝑢𝑡𝑘(𝑄),

which corresponds to a morphism of 𝑆 × 𝑆-schemes

𝑚∶ 𝐺 ×
𝑠,𝑆,𝑡

𝐺 → 𝐺.

The identity automorphism of 𝑄 corresponds to a morphism 𝑒∶ 𝑆 → 𝐺 with 𝑠◦𝑒 =
𝑡◦𝑒 = id𝑆. The conditions (a) and (b) of (III, 2.9), are satisfied because composition of
isomorphisms is associative, and the identity acts as a neutral element. We therefore
obtain a groupoid (𝐺,𝑚, 𝑒) over 𝑆. Moreover, because the objects pr∗1 𝑄 and pr∗2 𝑄 of
𝖦𝑆×𝑆 are locally isomorphic for the fpqc topology, 𝐺 is transitive (see the proof of 1.19).
We call 𝐺 the groupoid of 𝑘-automorphisms of 𝑄.

This construction is inverse to that in 1.15. If 𝐺 is a 𝑘-groupoid acting transitively
on 𝑆 ≠ ∅, then 𝖦(𝑆∶𝐺) is an affine gerbe with distinguished object 𝑄 = id𝑆 in 𝖦(𝑆∶𝐺)𝑆,
and 𝐺 ≃ 𝒜𝑢𝑡𝑘(𝑄). On the other hand, if 𝖦 is an affine gerbe over 𝑘 and 𝑄 is an object of
𝖦𝑆, some 𝑆 ≠ ∅, then 𝒜𝑢𝑡𝑘(𝑄) is represented by a 𝑘-groupoid 𝐺 acting transitively on 𝑆,
and the canonical functor 𝖦0(𝑆∶𝐺)→ 𝖦 induces an equivalence of gerbes

𝖦(𝑆∶𝐺) ∼,→ 𝖦. (90)

We describe this correspondence in more detail in 1.33.

Remark 1.22 Let (𝐺, 𝑆, (𝑡, 𝑠), ◦) be a groupoid in the category of schemes over 𝑘, not
necessarily affine. If 𝑆 is affine and the kernel 𝐺∆ is affine, then 𝐺 is affine. Indeed, the
condition implies that the gerbe 𝖦(𝑆∶ 𝐺) is affine, and 𝐺 is isomorphic to the groupoid
of 𝑘-automorphisms of the object id𝑆 of 𝖦(𝑆∶𝐺)𝑆.

Some applications of gerbes

The next result is an almost trivial consequence of the definition of a gerbe, but has
important applications.
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Proposition 1.23 Let 𝑢∶ 𝖦1 → 𝖦2 be a morphism of gerbes over 𝖠𝖿𝖿𝑘. If for some 𝑆 ≠ ∅
and 𝑄 ∈ ob𝖦1𝑆 , the map𝒜𝑢𝑡𝑆(𝑄)→ 𝒜𝑢𝑡𝑆(𝑢(𝑄)) defined by 𝑢 is an isomorphism, then 𝑢
is an equivalence of categories.

Proof If follows from 1.11 that if 𝒜𝑢𝑡𝑆(𝑄) → 𝒜𝑢𝑡𝑆(𝑢(𝑄)) is an isomorphism for one
nonempty 𝑆 and object 𝑄 of 𝖦1𝑆, then it is an isomorphism for every nonempty 𝑆 and
object 𝑄 of 𝖦1𝑆.

Let 𝑄,𝑄′ ∈ ob𝖦1𝑆. We shall show that the map Isom𝐺1𝑆 (𝑄,𝑄
′)→ Isom𝐺2𝑆 (𝑢𝑄, 𝑢𝑄

′)
defined by 𝑢 is a bijection. This will show that 𝑢 is fully faithful. After possibly passing
to a faithfully flat cover, we may suppose that 𝑄 and 𝑄′ are isomorphic in 𝖦1𝑆. Then
Isom𝐺1𝑆 (𝑄,𝑄

′) is a principal homogeneous space for the groupAut𝑆(𝑄)(𝑆), and similarly
Isom𝐺2𝑆 (𝑢𝑄, 𝑢𝑄

′) is a principal homogeneous space forAut𝑆(𝑢(𝑄))(𝑆). AsAut𝑆(𝑄)(𝑆) ≃
Aut𝑆(𝑢(𝑄))(𝑆), this implies that themap Isom𝐺1𝑆 (𝑄,𝑄

′)→ Isom𝐺2𝑆 (𝑢𝑄, 𝑢𝑄
′) is bijective.

It follows from 1.11 again that, because one object 𝑄 ∈ ob𝖦2𝑆 is in the image of 𝑢,
every 𝑄′ ∈ ob𝖦1𝑆′ is in the essential image.

Thus, 𝑢 is fully faithful and essentially surjective, and hence an equivalence of
categories. 2

Here are some applications of the proposition.

1.24 Let 𝐺 be a 𝑘-groupoid acting transitively on 𝑆, and let 𝐺𝑇 be the pullback of 𝐺 by
𝑢∶ 𝑇 → 𝑆, where 𝑇 ≠ ∅ (see p. 111). The morphism of prestacks over 𝖠𝖿𝖿𝑘,

𝑢∶ 𝖦0(𝑇∶𝐺)→ 𝖦0(𝑆∶𝐺),

induces an isomorphism of the sheaf of automorphisms of id𝑇 ∈ ob 𝖦0(𝑇∶𝐺𝑇) with
the sheaf of automorphisms of 𝑢 ∈ ob𝖦0(𝑆∶𝐺). The induced morphism of gerbes
𝑢∶ 𝖦(𝑇∶𝐺) → 𝖦(𝑆∶𝐺) has the same property, and therefore is an equivalence of cate-
gories by the proposition. Applying (89), we obtain an equivalence of categories

𝖱𝖾𝗉𝖿(𝑆∶𝐺) ∼,→ 𝖱𝖾𝗉𝖿(𝑇∶𝐺𝑇). (91)

1.25 A morphism of transitive groupoids is an isomorphism if its restriction to the
kernels is an isomorphism. Inmore detail, let 𝑢∶ 𝐺1 → 𝐺2 be amorphism of 𝑘-groupoids
acting transitively on 𝑆, and let 𝑢∆∶ 𝐺∆

1 → 𝐺∆
2 be its inverse image under the diagonal

morphism ∆∶ 𝑆 → 𝑆 × 𝑆 (so 𝑢∆ is a homomorphism of affine group schemes over 𝑆). If
𝑢∆ is an isomorphism, then 𝑢 induces an equivalence of gerbes𝖦(𝑆∶𝐺1)→ 𝖦(𝑆∶𝐺2), and
it follows from 1.21 that 𝑢 is an isomorphism. (See III, 11.16, for the similar statement
for Galois groupoids.)

1.26 Let 𝖦 be a gerbe with affine band. There exists a spectrum 𝑆 of a field such that 𝖦𝑆
is not empty. Let 𝑄 ∈ ob𝖦𝑆 and 𝐺 = 𝒜𝑢𝑡𝑘(𝑄) (so 𝐺 is a 𝑘-groupoid acting transitively
on 𝑆). The gerbe 𝖦 is equivalent to 𝖦(𝑆∶𝐺) (1.21), and every gerbe with affine band is
equivalent to a gerbe 𝖦(𝑆∶𝐺) with 𝑆 the spectrum of a field and 𝐺 a 𝑘-groupoid acting
transitively on 𝑆.

1.27 Let 𝐺 be a 𝑘-groupoid acting transitively on 𝑆. It follows from 1.26 that the subob-
jects of 𝐺 (in the sense of category theory B.5) are in one-to-one correspondence with
the affine subgroup schemes of 𝐺∆. Therefore, 𝐺 is artinian if 𝐺∆ is of finite type over 𝑘.

1.28 Here is amore precise form of 1.23: a morphism of gerbes is faithful (resp. covering,
resp. fully faithful) if and only if the morphism on bands is injective (resp. surjective, i.e.,
an epimorphism, resp. an isomorphism). See Giraud 1971, IV, 2.2.6, p. 216.
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Comparison of the 2-categories of groupoids and pointed gerbes

Let 𝑆 be a nonempty affine scheme over 𝑘. We show that the 2-category of 𝑘-groupoids
acting transitively on 𝑆 is biequivalent (not 2-equivalent) to the category of pointed
gerbes.

Definition 1.29 The 2-category 𝒢𝓇𝓅𝒹𝑆 has
⋄ objects the affine 𝑘-groupoids acting transitively on 𝑆;

⋄ a 1-morphism from 𝐺 to𝐻 is a morphism 𝑓∶ 𝐺 → 𝐻 of 𝑆 × 𝑆-schemes such that
the diagrams (63), p. 110, commute;

⋄ a 2-morphism 𝑓 → 𝑔 is a natural transformation from 𝑓 to 𝑔 (viewing 𝑓 and 𝑔 as
functors of affine 𝑆 × 𝑆-schemes).

Definition 1.30 The 2-category 𝒢ℯ𝓇𝒷∙𝑆 of 𝑆-pointed gerbes over 𝖠𝖿𝖿𝑘 has
⋄ objects the pairs (𝖦, 𝑄), where 𝖦 is an affine gerbe over 𝖠𝖿𝖿𝑘 and 𝑄 ∈ ob𝖦𝑆;

⋄ a morphism from (𝖦, 𝑄) to (𝖧, 𝑅) is a pair (𝐹, 𝜇), where 𝐹 is a cartesian functor
𝐹∶ 𝖦 → 𝖧 and 𝜇 is an isomorphism 𝐹𝑆𝑄 → 𝑅;

⋄ a 2-morphism 𝐹 → 𝐺 is a cartesian natural transformation.

1.31 We first define a 2-functor Φ∶ 𝒢𝓇𝓅𝒹𝑆 → 𝒢ℯ𝓇𝒷∙𝑆. Let 𝐺 be an affine 𝑘-groupoid
acting transitively on 𝑆. We let Φ(𝐺) = 𝖦(𝑆∶𝐺) (see 1.17 et seq.) and we take id𝑆 ∈ 𝑆(𝑆)
to be the distinguished object of 𝖦𝑆.

Let 𝑓∶ 𝐺 → 𝐻 be a morphism of affine 𝑘-groupoids acting transitively on 𝑆. For any
affine 𝑘-scheme 𝑇, 𝑓 defines a functor

𝖦0(𝑆∶𝐺)𝑇 = (𝑆(𝑇), 𝐺(𝑇), (𝑡, 𝑠), ◦)→ 𝖦0(𝑆∶ 𝐻)𝑇 = (𝑆(𝑇), 𝐻(𝑇), (𝑡, 𝑠), ◦).

These are compatible with base change, and so, for varying 𝑇 they define a cartesian
functor

𝐹0∶ 𝖦0(𝑆∶𝐺)→ 𝖦0(𝑆∶ 𝐻),

which, by the universality of the associated stacks, extends uniquely to a cartesian
functor 𝐹∶ 𝖦(𝑆∶𝐺) → 𝖦(𝑆∶ 𝐻). We set Φ(𝑓) = 𝐹. Then 𝐹𝑆(id𝑆) = id𝑆, and we set
𝜇∶ 𝐹𝑆(id𝑆)→ id𝑆 equal to the identity map.

1.32 We now define a 2-functor Ψ∶ 𝒢ℯ𝓇𝒷∙𝑆 → 𝒢𝓇𝓅𝒹𝑆. Let 𝖦 be an affine gerbe over
𝖠𝖿𝖿𝑘, and let 𝑄 ∈ ob(𝖦𝑆). We let Ψ𝖦 = 𝒜𝑢𝑡𝑘(𝑄), the groupoid of 𝑘-automorphisms of 𝑄
(see 1.21).

Let (𝐹, 𝜇) be a morphism from (𝖦, 𝑄) to (𝖧, 𝑅). Given an affine scheme (𝑎, 𝑏)∶ 𝑇 →
𝑆 × 𝑆 and a 𝜑 ∈ 𝒜𝑢𝑡𝑘(𝑄)(𝑇), we define �̃� by the following diagram

𝑎∗(𝐹𝑄) 𝑏∗(𝐹𝑄)

𝑎∗𝑅 𝑏∗𝑅

←→
𝐹𝜑

←→ 𝑎∗𝜇≃ ←→ 𝑏∗𝜇≃

← →
�̄�

Then 𝜑 ↦ �̄� is a natural transformation from 𝒜𝑢𝑡𝑘(𝑄) to 𝒜𝑢𝑡𝑘(𝑅). As it respects
the identity, source, target, and composition, it corresponds to a morphism 𝑓 of the
corresponding groupoids. We let Ψ(𝐹, 𝜇) = 𝑓.
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Theorem 1.33 There is an equivalence of 2-categories

𝒢𝓇𝓅𝒹𝑆 𝒢ℯ𝓇𝒷∙𝑆

←→Φ←→

Ψ
, id𝒢𝓇𝓅𝒹𝑆

→ Ψ◦Φ, Φ◦Ψ→ id𝒢ℯ𝓇𝒷∙𝑆 .

Proof We define Ψ◦Φ ≃ id. Let 𝐺 be an affine 𝑘-groupoid acting transitively on 𝑆, and
let 𝑄 = id𝑆 be the distinguished object of the affine gerbe Φ(𝐺). For any affine 𝑘-scheme
𝑇,

𝒜𝑢𝑡𝑘(𝑄)(𝑇) = {(𝑏, 𝑎, 𝜑) ∣ 𝑏, 𝑎∶ 𝑇 → 𝑆, 𝜑∶ 𝑎∗𝑄 ≃,→ 𝑏∗𝑄}
= {(𝑏, 𝑎, 𝑓) ∣ 𝑏, 𝑎 ∈ 𝑆(𝑇), 𝑓 ∈ 𝐺(𝑇) with 𝑠◦𝑓 = 𝑎, 𝑡◦𝑓 = 𝑏}

=
⨆

(𝑏,𝑎)∈(𝑆×𝑆)(𝑇)
Hom𝑆×𝑆(𝑇, 𝐺)

= Hom𝑘(𝑇, 𝐺).

Therefore, 𝐺 represents the functor 𝒜𝑢𝑡𝑘(𝑄).
From amorphism 𝑓∶ 𝐺 → 𝐻 of 𝑘-groupoids acting transitively on 𝑆, we get a natural

transformation

(𝑎∗𝑄
𝜑
,→ 𝑏∗𝑄)↦ (𝑎∗𝑅

𝑓◦𝜑
,→ 𝑏∗𝑅)∶ 𝒜𝑢𝑡𝑘(𝑄)→ 𝒜𝑢𝑡𝑘(𝑅),

which equals that induced by 𝑓. Hence, Ψ◦Φ ≃ id .
We define Φ◦Ψ ∼ id. Let (𝖦, 𝑄) ∈ ob(𝒢ℯ𝓇𝒷∙𝑆). The functor𝒜𝑢𝑡𝑘(𝑄) is represented

by an affine 𝑘-groupoid 𝐺 acting transitively on 𝑆 . From 𝐺 we get a prestack 𝖦0(𝑆∶𝐺)
with ob𝖦0(𝑆∶𝐺)𝑇 = 𝑆(𝑇) and ar𝖦0(𝑆∶ 𝐺)𝑇 = 𝐺(𝑇). We define a cartesian functor

𝜆0∶ 𝖦0(𝑆∶𝐺)→ 𝖦

by setting 𝜆0𝑇 ∶ 𝖦
0(𝑆∶𝐺)𝑇 → 𝖦𝑇 equal to

{
𝑎 ∈ 𝑆(𝑇)↦ 𝑎∗𝑄

𝑓 ∈ 𝐺(𝑇)↦ ((𝑠◦𝑓)∗𝑄
𝑓
,→ (𝑡◦𝑓)∗𝑄).

By construction, 𝜆0 is faithful. We have a stack 𝖦(𝑆∶𝐺), a faithful cartesian functor 𝑖,
and a cartesian functor 𝜆 such that the following diagram commutes up to isomorphism,

𝖦0(𝑆∶𝐺) 𝖦(𝑆∶𝐺)

𝖦.

←→𝑖

←

→𝜆0

←→ 𝜆

The functor 𝜆 is faithful on the subcategory 𝑖(𝖦0(𝑆∶ 𝐺)) of 𝖦(𝑆∶𝐺). Let 𝑋 ∈ ob𝖦𝑇, and
let pr1 and pr2 be the projections from 𝑇 × 𝑆 to 𝑇 and 𝑆 respectively. They are faithfully
flat because the structure morphisms 𝑇 → Spec 𝑘 and 𝑆 → Spec 𝑘 are. By definition,
there exists a faithfully flatmap 𝑓∶ 𝑇′ → 𝑇×𝑆 and an isomorphism 𝑓∗ pr∗2 𝑄 → 𝑓∗ pr∗1 𝑋.
This means that 𝑋 corresponds to a descent datum on (pr2 ◦𝑓)

∗𝑄. This comes from a
descent datum on an object in 𝖦(𝑆∶ 𝐺)𝑇′ , which because 𝖦(𝑆∶𝐺) is a stack, comes from
an object in 𝖦(𝑆∶𝐺)𝑇, that corresponds under 𝜆 to an object in the isomorphism class
of 𝑋. One shows similarly that 𝜆 is faithful on the whole of 𝖦(𝑆∶𝐺). Therefore 𝜆 is an
equivalence of categories. It is easy to check that 𝜆 is natural in 𝖦(𝑆∶𝐺). It follows that
Φ◦Ψ ∼ id. 2
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Let 𝐵 be a band over 𝑘. The cohomology set 𝐻2(𝑘, 𝐵) is defined to be the set of
𝐵-equivalence classes of gerbes over 𝖠𝖿𝖿𝑘 banded by 𝐵 (see Appendix C, §6). We define
the cohomology class of a 𝑘-groupoid 𝐺 acting transitively on 𝑆 to be the cohomology
class of the associated gerbe 𝖦(𝑆∶𝐺).

Proposition 1.34 Let 𝐺 and 𝐺′ be 𝑘-groupoids acting transitively on 𝑆. A morphism
𝜑∶ 𝐺∆ → 𝐺′∆ of bands over 𝑘 extends to a morphism of groupoid schemes if and only if it
maps the cohomology class of 𝐺 to that of 𝐺′.

Proof Almost by definition, 𝜑 extends to a morphism of gerbes if and only if it maps
the cohomology class of 𝐺 to that of 𝐺′. Now use the relation (1.33) between groupoids
and gerbes. 2

Proposition 1.35 A groupoid 𝐺 over 𝑆 is transitive if and only if it is faithfully flat over
𝑆 × 𝑆.

Proof That the condition is necessary is obvious – in the definition (III, 2.13) we can
take 𝑇 = 𝐺.

For the sufficiency, let 𝑇 be a closed point of 𝑆 (the spectrum of a field), 𝑎∶ 𝑇 → 𝑆
the embedding, and 𝑄 an object of 𝖦𝑆. Consider the presheaf 𝒜𝑢𝑡𝑇(𝑎∗𝑄) on 𝖠𝖿𝖿𝑇: if
𝑡∶ 𝑇′ → 𝑇 is a 𝑇-scheme, then

𝒜𝑢𝑡𝑇(𝑎∗𝑄) = Aut(𝑡∗𝑎∗𝑄).

Then

𝒜𝑢𝑡𝑇(𝑎∗𝑄)(𝑇′) = {𝑓∶ 𝑇′ → 𝐺 ∣ 𝑠◦𝑓 = 𝑡◦𝑓 = 𝑎◦𝑡}
= Hom𝑆×𝑆(𝑇′, 𝐺)
= Hom𝑇(𝑇′, 𝐺 ×𝑆×𝑆 𝑇).

Therefore, 𝒜𝑢𝑡𝑇(𝑎∗𝑄) is representable by an affine group scheme over 𝑇 (see also the
proof of 1.16). The presheaf ℐ𝑠𝑜𝑚(pr1 𝑄, pr2 𝑄) on 𝖠𝖿𝖿𝑆×𝑆 is represented by 𝐺:

Isom(𝑡∗ pr∗1 𝑄, 𝑡
∗ pr∗2 𝑄) = Hom𝑆×𝑆(𝑇′, 𝐺)

for all schemes 𝑡∶ 𝑇′ → 𝑆 × 𝑆 affine over 𝑆 × 𝑆. As any two objects of of 𝖦 are locally
isomorphic, ℐ𝑠𝑜𝑚(pr∗1 𝑄, pr

∗
2 𝑄) is a torsor under 𝒜𝑢𝑡(𝑎

∗𝑄), so the functors are locally
isomorphic and so are the representing objects. Because 𝒜𝑢𝑡(𝑎∗𝑄) is faithfully flat over
𝑇 and faithful flatness is a local property for the fpqc topology, 𝐺 is faithfully flat over
𝑆 × 𝑆. 2

Notes Lattermann 1989, 1.3.7, asserts that functors Φ and Ψ in 1.31 and 1.32 define an equiv-
alence of the underlying 1-categories of 𝒢𝓇𝓅𝒹𝑆 and 𝒢ℯ𝓇𝒷

∙
𝑆 . This is incorrect – the objects of

𝒢ℯ𝓇𝒷∙𝑆 are only equivalent (not isomorphic) to objects in the image of Φ.1 The correct statement,
as above, is that they define an equivalence of 2-categories. A similar remark applies to the
assertion (Lattermann 1989, 4.2.13) that the 1-categories of Galois groupoids and pointed gerbes
are equivalent and to the assertion (Langlands and Rapoport 1987, §4, p. 152) that the 1-categories
of “Galoisgerben” and pointed Giraud-gerbes are equivalent.

1Note that the gerbes in the image are split. While every gerbe is equivalent to a split gerbe, it need not
be isomorphic to one (as far as I know).
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2 The gerbe of fibre functors

Fix a field 𝑘.

Theorem 2.1 Let 𝖳 be an essentially small tannakian category over 𝑘.
(a) The fibre functors on 𝖳 form an affine gerbe Fib(𝖳) over 𝖠𝖿𝖿𝑘.

(b) The canonical functor 𝖳 → 𝖱𝖾𝗉𝖿(Fib(𝖳)) is an equivalence of tensor categories.
Conversely, if 𝖦 is an affine gerbe over 𝖠𝖿𝖿𝑘, then 𝖱𝖾𝗉𝖿(𝖦) is a tannakian category and the
canonical functor 𝖦 →Fib(𝖱𝖾𝗉𝖿(𝖦)) is an equivalence of gerbes.

Proof Statement (a) follows from III, 1.4.
In (b), the canonical functor 𝖳 → 𝖱𝖾𝗉𝖿(Fib(𝖳)) sends an object 𝑋 of 𝖳 to the repre-

sentation 𝜔 ⇝ 𝜔(𝑋) of Fib(𝖳). Choose a fibre functor 𝜔 over an affine 𝑘-scheme 𝑆 ≠ ∅,
and let 𝐺 be the groupoid 𝒜𝑢𝑡⊗𝑘 (𝜔). Then 𝖦(𝑆∶ 𝐺) ∼Fib(𝖳), and the composite of the
equivalences

𝖳 ∼,,,,,→
III, 1.1

𝖱𝖾𝗉𝖿(𝑆∶ 𝐺) ∼,,,→
1.20

𝖱𝖾𝗉𝖿(𝖦(𝑆∶ 𝐺)) ∼ 𝖱𝖾𝗉𝖿(Fib(𝖳))

is the required equivalence.
Let 𝖦 be an affine gerbe over 𝖠𝖿𝖿𝑘, and let 𝐺 be the groupoid of 𝑘-automorphisms

of some 𝑄 ∈ ob𝖦𝑆, 𝑆 ≠ ∅ (see 1.21). Then the final statement for 𝖦 follows from the
similar statement for 𝐺 (III, 1.1). 2

In the remainder of this section, we explain the original proof of Theorem 2.1 (Saave-
dra 1972, Chapter III, 3.2, pp. 192-204) in the case that 𝖳 has a fibre functor over an
algebraic extension of 𝑘.

Some linear algebra

2.2 Let 𝑅 be a ring (commutative with 1) and Alg𝑅 the category of 𝑅-algebras. An 𝑅-
module is defined to be a functor𝑀∶ Alg𝑅 → 𝖠𝖻 such that each𝑀(𝑅′) is equipped with
an 𝑅′-module structure and these structures are compatible with homomorphisms of 𝑅-
algebras. In particular, for each 𝑅-algebra 𝑅′, we have an 𝑅′-module𝑀(𝑅′), and, for each
homomorphism 𝜑∶ 𝑅′ → 𝑅′′ of 𝑅-algebras, we have a homomorphism𝑀(𝑅′)→ 𝑀(𝑅′′)
of 𝑅′-modules.

For example, an 𝑅-module𝑀 defines two 𝑅-modules,2

𝑊(𝑀)∶ 𝑅′ ⇝ 𝑀𝑅′
def= 𝑀 ⊗𝑅 𝑅′, and

�̌�∶ 𝑅′ ⇝ Hom𝑅-linear(𝑀,𝑅′) ≃ Hom𝑅′-linear(𝑀𝑅′ , 𝑅′).

The 𝑅-modules form a category𝖬𝗈𝖽(𝑅). An 𝑅-module is said to be represented by an
𝑅-module𝑀 if it is isomorphic to �̌�.

For 𝑅-modules𝑀, 𝑁, we define Hom(𝑀,𝑁) to be the 𝑅-module

𝑅′ ⇝ Hom𝑅′-linear(𝑀𝑅′ , 𝑁𝑅′).

If𝑁 is finitely generated and projective, thenHom(𝑀,𝑁) is represented by the 𝑅-module
𝑀 ⊗𝑅 𝑁∨.

2Do not confuse the 𝑅-module𝑀∨ def= Hom(𝑀,𝑅) with the 𝑅-module �̌�.
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2.3 Let 𝖢 be a category. When 𝐹∶ 𝖢 → 𝖬𝗈𝖽(𝑅) is a functor and 𝑅′ is an 𝑅-algebra, we
let 𝐹𝑅′ denote the functor obtained by composing 𝐹 with −⊗𝑅 𝑅′∶ 𝖬𝗈𝖽(𝑅)→ 𝖬𝗈𝖽(𝑅′),
so

𝐹𝑅′(𝑋) = 𝐹(𝑋)⊗𝑅 𝑅′.

When 𝐹 and 𝐺 are functors 𝖢 → 𝖬𝗈𝖽(𝑅), we let Hom(𝐹, 𝐺) denote the 𝑅-module such
that

Hom(𝐹, 𝐺)(𝑅′) = Hom(𝐹𝑅′ , 𝐺𝑅′).

2.4 Let 𝖢 be an essentially small category and 𝐹 and 𝐺 functors 𝖢 → Proj(𝑅). The 𝑅-
moduleHom(𝐹, 𝐺) is representable. Indeed, it is the projective limit of the representable
𝑅-modules Hom(𝐹(𝑋), 𝐺(𝑌)), where 𝑋 and 𝑌 run over a set of representatives for the
isomorphism classes of objects in 𝖢. Specifically, Hom(𝐹, 𝐺) is the equalizer of

∏

𝑋
Hom(𝐹(𝑋), 𝐺(𝑋))

∏

𝑓∶ 𝑋→𝑌
Hom(𝐹(𝑋), 𝐺(𝑌)).

←→←→

2.5 Let 𝖢1 and 𝖢2 be essentially small categories, and let

𝐹1, 𝐺1∶ 𝖢1 → Proj(𝑅)
𝐹2, 𝐺2∶ 𝖢2 → Proj(𝑅)

be functors. Let 𝖢 = 𝖢1 × 𝖢2, and let 𝐹, 𝐺 be the functors 𝖢 → Proj(𝑅) such that

𝐹(𝑋,𝑌) = 𝐹1(𝑋)⊗𝑅 𝐹2(𝑌)
𝐺(𝑋,𝑌) = 𝐺1(𝑋)⊗𝑅 𝐺2(𝑌).

Let 𝑀1, 𝑀2, and 𝑀 be the 𝑅-modules representing Hom(𝐹1, 𝐺1), Hom(𝐹2, 𝐺2), and
Hom(𝐹, 𝐺) (see 2.4). The morphism of 𝑅-modules

𝑀 → 𝑀1 ⊗𝑅 𝑀2

induced by the obvious morphism of 𝑅-modules

Hom(𝐹1, 𝐺1)⊗𝑅 Hom(𝐹2, 𝐺2)→ Hom(𝐹, 𝐺)

is an isomorphism. The proof is straightforward.

2.6 Let 𝖢 be an essentially small tensorial category over 𝑘 and 𝜔∶ 𝖢 → 𝖵𝖾𝖼𝖿(𝑘′) a
𝑘′-valued fibre functor, where 𝑘′ is a field containing 𝑘. The 𝑘′-module End(𝜔) is
represented by a 𝑘′-algebra𝐵, i.e.,End(𝜔) = �̌� (see 2.4). The obvious 𝑘′-algebra structure
on𝜔 defines a𝑘′-coalgebra structure∆∶ 𝐵 → 𝐵⊗𝐴𝐵 on𝐵, and the functor⊗∶ 𝖢×𝖢 → 𝖢
defines a 𝑘′-algebra structure 𝐵 ⊗𝑘′ 𝐵 → 𝐵 on 𝐵 such that ∆ is a morphism of algebras
(apply 2.5 with 𝖢1 = 𝖢2 = 𝖢 and 𝐹1 = 𝐹2 = 𝐺1 = 𝐺2 = 𝜔). Now 𝐺′ def= Spec𝐵 is an
affine monoid scheme over 𝑘′ such that

𝐺′ ≃ ℰ𝑛𝑑⊗(𝜔) = 𝒜𝑢𝑡⊗(𝜔),

and so 𝐺′ is, in fact, a group scheme over 𝑘′. Cf. Saavedra 1972, II, 1.3.3.3.

Notes This subsection summarizes part of Saavedra 1972, II, §1 (especially 1.3.2.1, 1.3.3.1).
Instead of 𝑅-modules, we could require 𝑅 to be a field and work with linearly compact 𝐾-vector
spaces (Saavedra 1972, II, 1.4, p. 101).
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Review of extension of scalars

2.7 Let 𝖢 be a 𝑘-linear abelian category, and let 𝑅 be a finite-dimensional 𝑘-algebra.
We define 𝖢(𝑅) to be the category whose objects are the pairs (𝑋, 𝛼), where 𝑋 is an
object of 𝖢 and 𝛼 is a 𝑘-linear 𝑅-module structure on 𝑋, i.e., a homomorphism of 𝑘-
algebras 𝑅 → End(𝑋). A morphism (𝑋, 𝛼)→ (𝑌, 𝛽) is a morphism 𝑓∶ 𝑋 → 𝑌 such that
𝑓◦𝛼(𝑟) = 𝛽(𝑟)◦𝑓 for all 𝑟 ∈ 𝑅. The category 𝖢(𝑅) is an 𝑅-linear abelian category, and
there is a canonical 𝑘-linear functor

𝑖𝑅∕𝑘 ∶ 𝖢 → 𝖢(𝑅), 𝑋 ⇝ 𝑅 ⊗𝑘 𝑋.

2.8 Let 𝖢 be a tensorial category over 𝑘 and 𝑘′ a finite extension of 𝑘. For objects 𝑋 and
𝑌 of 𝖢(𝑘′), let

𝑋 ⊗𝑘′ 𝑌 = Coker(𝑋 ⊗ 𝑘′ ⊗𝑌 ⇉ 𝑋 ⊗ 𝑌).

Then 𝖢(𝑘′) is a 𝑘′-linear tensor functor and 𝑖𝑘′∕𝑘 ∶ 𝖢 → 𝖢(𝑘′) is a tensor functor. It maps
unit objects to unit objects and duals to duals. The category 𝖢(𝑘′) admits internal homs:
if 𝑋′ = (𝑋, 𝛼) and 𝑌′ = (𝑌, 𝛽) are objects and 𝑌 are objects of 𝖢(𝑘′), thenℋ𝑜𝑚(𝑋′, 𝑌′)
is the intersection of the kernels of the morphisms

𝑓 ↦ 𝜆𝑓 − 𝑓𝜆∶ ℋ𝑜𝑚(𝑋,𝑌)→ℋ𝑜𝑚(𝑋,𝑌)

as 𝜆 runs over a basis for 𝑘′ over 𝑘. For any 𝑋 in 𝖢, 𝑋∨ def= ℋ𝑜𝑚(𝑋, 𝟙) is the dual of 𝑋 in
the sense of I, 4.4, and so 𝖢(𝑘′) is a tensorial category over 𝑘′ (I, 7.15).

Proof of the main theorem when there is a fibre functor over an algebraic extension

2.9 Let 𝖢 be a tensorial category over 𝑘 and 𝑘′ a finite extension of 𝑘. Let 𝜔∶ 𝖢 →
𝖬𝗈𝖽𝖿(𝑘′) be a 𝑘′-valued functor on 𝖢, and let 𝜔′ be its 𝑘′-linear tensor extension to 𝖢(𝑘′),

𝖢(𝑘′) 𝖬𝗈𝖽𝖿(𝑘′)

𝖢.

←→𝜔
′

← →𝑖𝑘′∕𝑘 ←

→
𝜔

If 𝑋 is an object of 𝖢, then 𝜔(𝑋) is a 𝑘′-vector space (by definition). When (𝑋, 𝛼) is an
object of 𝖢(𝑘′), it acquires an additional 𝑘′-structure from 𝛼, hence a 𝑘′ ⊗𝑘 𝑘′-module
structure, and

𝜔′(𝑋, 𝛼) def= 𝑘′ ⊗𝑘′⊗𝑘𝑘′ 𝜔(𝑋).

2.10 Let 𝐺′ be the affine group scheme over 𝑘′ representing the functor 𝒜𝑢𝑡⊗(𝜔′) (as
in 2.6). Obviously, 𝜔 takes values in the category of 𝐺′-modules. Thus, we have an
exact faithful 𝑘-linear tensor functor �̃�∶ 𝖢 → 𝖱𝖾𝗉𝖿(𝐺′) such that the following diagram
commutes

𝖢 𝖱𝖾𝗉𝖿(𝐺′)

𝖬𝗈𝖽𝖿(𝑘′).

←→�̃�←

→𝜔 ←→ 𝜔𝐺′=forget

Similarly, 𝜔′ takes values in 𝖱𝖾𝗉𝖿(𝐺′), and so defines a functor �̃�′∶ 𝖢(𝑘′) → 𝖱𝖾𝗉𝖿(𝐺′).
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2.11 We define a fibred category 𝖦 over 𝖠𝖿𝖿𝑘 as follows. For 𝑆 ∈ ob𝖠𝖿𝖿𝑘, we let 𝖦𝑆
denote the full subcategory of Fib(𝖢)𝑆 whose objects are the fibre functors 𝜈 that factor
locally through 𝜔. If 𝑆 = Spec(𝑅), this means that there exist diagrams

𝑘′ 𝑅′ 𝖬𝗈𝖽𝖿(𝑘′) 𝖬𝗈𝖽𝖿(𝑅′)

𝑘 𝑅 𝖢 𝖬𝗈𝖽𝖿(𝑅)

←→ ←→
−⊗𝑘′𝑅′

←→

← → ← →faithfully flat

← →𝜈

← →𝜔 ← →−⊗𝑅𝑅′

such that the first commutes and the second commutes up to an isomorphism, i.e.,

𝜔 ⊗𝑘′ 𝑅′ ≈ 𝜈 ⊗𝑅 𝑅′.

Clearly, 𝖦 is a fibred subcategory of Fib(𝖢) over 𝖠𝖿𝖿𝑘. The condition for 𝜈 to lie in
𝖦𝑆 is local for the fpqc topology on 𝖠𝖿𝖿𝑘, and so 𝖦 is a substack of Fib(𝖢). In fact, 𝖦 is
gerbe. Certainly, its fibres are groupoids, and the fibre 𝖦Spec 𝑘′ is nonempty because it
contains 𝜔. It remains to show that any two objects 𝜈1, 𝜈2 ∈ ob𝖦𝑆 become isomorphic
in 𝖦𝑆′ for some 𝑆′ faithfully flat over 𝑆. We are given diagrams

𝖬𝗈𝖽𝖿(𝑘′) 𝖬𝗈𝖽𝖿(𝑅1)

𝖢 𝖬𝗈𝖽𝖿(𝑅)

←→

← →
𝜈1

← →𝜔 ← →

𝖬𝗈𝖽𝖿(𝑘′) 𝖬𝗈𝖽𝖿(𝑅2)

𝖢 𝖬𝗈𝖽𝖿(𝑅)

←→

← →
𝜈2

← →𝜔 ← →

such that 𝑅𝑖 is faithfully flat over 𝑅 and 𝜔 ⊗𝑘′ 𝑅𝑖 ≈ 𝜈𝑖 ⊗𝑅 𝑅𝑖 for 𝑖 = 1, 2. Consider the
commutative diagram

𝑅1 ⊗𝑅 𝑅2

𝑅1 𝑅2

𝑅

← →
←

→

←

→
← →

and note that 𝑅1 ⊗𝑅 𝑅2 is faithfully flat over 𝑅. We have

𝜔 ⊗𝑘′ (𝑅1 ⊗𝑅 𝑅2) ≈ 𝜈1 ⊗𝑅 (𝑅1 ⊗𝑅 𝑅2)
𝜔 ⊗𝑘′ (𝑅1 ⊗𝑅 𝑅2) ≈ 𝜈2 ⊗𝑅 (𝑅1 ⊗𝑅 𝑅2).

This does not imply that the two fibre functors at right are isomorphic because the
two fibre functors at left need not be isomorphic (the homomorphisms 𝑘′ → 𝑅1 ⊗𝑅 𝑅2
defining themmay differ), but they are locally isomorphic for the fpqc topology (II, 8.2),3
which is all we need.

2.12 Let𝖦∕𝑘′ denote the restriction of𝖦 to a gerbe over𝖠𝖿𝖿𝑘′ . The exact faithful 𝑘-linear
tensor functor �̃�∶ 𝖢 → 𝖱𝖾𝗉𝖿(𝐺′) defines a morphism of gerbes over 𝖠𝖿𝖿𝑘′ ,

Fib(𝖱𝖾𝗉𝖿(𝐺′))→ 𝖦∕𝑘′ . (92)

3Here we use that End(𝟙) = 𝑘 without which the statement would be false.
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This is an equivalence. In fact, the forgetful functor 𝜔𝐺′ on 𝖱𝖾𝗉𝖿(𝐺′), which is an object
over Spec 𝑘′ of the first gerbe, is sent by this morphism to 𝜔, and so it suffices to prove
that the morphism of sheaves

𝒜𝑢𝑡⊗(𝜔𝐺′)→ 𝒜𝑢𝑡⊗(𝜔)

is an isomorphism (apply 1.23), but this morphism can be identified with the identity
automorphism of 𝐺′.

2.13 Let 𝑋 be an object of 𝖢. The functor sending an object 𝜈∶ 𝖢 → 𝖬𝗈𝖽𝖿(𝑅) of 𝖦Spec𝑅
to 𝜈(𝑋) is a representation of the gerbe 𝖦. We obtain in this way a 𝑘-linear tensor functor

𝖢 → 𝖱𝖾𝗉𝖿(𝖦). (93)

This is faithful: if 𝑋 ∈ ob𝖢 is sent to the zero object, then, in particular, 𝜔(𝑋) = 0, and
so 𝑋 = 0.

2.14 Consider the functors

𝖢(𝑘′)
𝑎
,→ 𝖱𝖾𝗉𝖿(𝖦)(𝑘′)

𝑏∼ 𝖱𝖾𝗉𝖿(𝖦∕𝑘′)
𝑐∼ 𝖱𝖾𝗉𝖿(Fib(𝖱𝖾𝗉𝖿(𝐺′))) 𝑑∼ 𝖱𝖾𝗉𝖿(𝐺′),

where 𝑎 is obtained from (93) by extension of scalars, 𝑏 is obvious, 𝑐 is obtained from
(92) by passing to the categories of representations, and 𝑑 is the equivalence in 1.9 with
𝖳 = 𝖱𝖾𝗉𝖿(𝐺′). The composite is faithful, and equals �̃�′. Therefore, 𝜔′ is a faithful
𝑘′-linear tensor functor of tensorial categories, and hence is exact by III, 10.9, and III,
10.15.

2.15 We now prove that the functor

𝖢
(93)
,→ 𝖱𝖾𝗉𝖿(𝖦)

is an equivalence of tensor categories.
It suffices to prove that �̃�′∶ 𝖢(𝑘′) → 𝖱𝖾𝗉(𝐺′) is an equivalence, but, as𝐺′ = 𝒜𝑢𝑡⊗(𝜔′),

we know from II, Theorem 3.1, that 𝜔′ defines such an equivalence.

2.16 We finally show that 𝖦 = Fib(𝖢), i.e., that every 𝑅-valued fibre functor 𝜈∶ 𝖢 →
𝖯𝗋𝗈𝗃(𝑅) factors locally through 𝜔. We assume that 𝑅 ≠ 0, otherwise there is nothing to
prove.

Let 𝑅′ = 𝑘′ ⊗𝑘 𝑅. There is a canonical isomorphism of 𝑘′-linear categories

𝖬𝗈𝖽𝖿(𝑅)(𝑘′) ≃ 𝖬𝗈𝖽𝖿(𝑅′).

Therefore we have a diagram, commutative up to a tensor isomorphism,

𝖢 𝖢(𝑘′)

𝖬𝗈𝖽𝖿(𝑅) 𝖬𝗈𝖽𝖿(𝑅′),

← →
𝑖𝑘′∕𝑘

←→ 𝜈 ←→ 𝜈′

←→

where 𝜈′ is an 𝑅′-valued fibre functor on 𝖢(𝑘′) ≃ 𝖱𝖾𝗉𝖿(𝐺′). This fibre functor is locally
isomorphic for the fpqc topology to the forgetful functor 𝜔𝐺 by II, Theorem 8.1, which
concludes the proof.
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We have shown that Fib(𝖢) is a gerbe, and that the functors

𝖢 → 𝖱𝖾𝗉𝖿(𝖦)→ 𝖱𝖾𝗉𝖿(Fib(𝖢))

are equivalences.

Remark 2.17 (a) In his definition of a tannakian category over 𝑘, Saavedra (1972, III,
3.2.1, p. 193) omits the condition 𝑘 ≃ End(𝟙). Without that condition, fibre functors
need not be locally isomorphic4 and Theorem 2.1 fails.

(b) Saavedra (1972, III, 3.2.2.2) claims to show that the functor 𝜔′ of 2.9 is faithful
and exact. In fact, his argument only shows that it is faithful. To deduce that it is exact,
we had to appeal to III, 10.9, and III, 10.15.

Except for (a) and (b), our proof of Theorem 2.1 follows Saavedra’s original proof.

Remark 2.18 Using ind-categories, as in Saavedra 1972, the same proof will work for
an arbitrary extension 𝑘′ of 𝑘 once one has shown that 𝖢(𝑘′) is tensorial (i.e., duals exist).

3 The classification of tannakian categories in terms of
gerbes

Let 𝑘 be a field. We show that the 2-category of tannakian categories over 𝑘 is equivalent
to the 2-category of affine gerbes over 𝖠𝖿𝖿𝑘. In particular, there is a dictionary between
tannakian categories over 𝑘 and affine gerbes over 𝖠𝖿𝖿𝑘.

Definition 3.1 The 2-category 𝒢ℯ𝓇𝒷𝑘 has
⋄ objects the affine gerbes over 𝖠𝖿𝖿𝑘;
⋄ 1-morphisms the cartesian functors of fibred categories;
⋄ 2-morphisms the natural transformations between 1-morphisms.

In particular, for any affine gerbes 𝖦 and 𝖧 over 𝖠𝖿𝖿𝑘, we have a category 𝖧𝗈𝗆(𝖦,𝖧)
whose objects are the cartesian functors from 𝖦 to 𝖧 and whose morphisms are the
natural transformations between cartesian functors.

Definition 3.2 The 2-category𝒯𝒶𝓃𝓃𝑘 of tannakian categories over 𝑘 has
⋄ objects the essentially small tannakian categories over 𝑘;
⋄ 1-morphisms the exact 𝑘-linear tensor functors;
⋄ 2-morphisms the morphism of tensor functors (I, 3.2).

In particular, for any tannakian categories 𝖢 and 𝖣 over 𝑘, we have a category 𝖧𝗈𝗆(𝖢,𝖣)
whose objects are the exact 𝑘-linear tensor functors from 𝖢 to 𝖣 and whose morphisms
are the morphisms of tensor functors.

There are canonical 2-functors

𝒢ℯ𝓇𝒷op → 𝒯𝒶𝓃𝓃, {
𝖦 ⇝ 𝖱𝖾𝗉𝖿𝑘(𝖦)(
𝖦

𝐹
,→ 𝖧

)
⇝ (𝑋 ↦ 𝑋◦𝐹)

𝒯𝒶𝓃𝓃op → 𝒢ℯ𝓇𝒷, {
𝖢 ⇝ Fib(𝖢)
(
𝖢

𝐹
,→ 𝖣

)
⇝ (𝜔 ↦ 𝜔◦𝐹) .

4For example, let 𝐾 be a finite Galois extension of 𝑘, and view 𝖵𝖾𝖼𝖿(𝐾) as a “tannakian category over
𝑘.” If 𝜎 is a nontrivial element of Gal(𝐾∕𝑘), then the fibre functors 𝑉 ⇝ 𝑉 and 𝑉 ⇝ 𝜎𝑉 def= 𝑉 ⊗𝐾,𝜎 𝐾 on
𝖵𝖾𝖼𝖿(𝐾) are not locally isomorphic.
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Theorem 3.3 The 2-functor

𝖢 ⇝ Fib(𝖢)∶ 𝒯𝒶𝓃𝓃op
𝑘 → 𝒢ℯ𝓇𝒷𝑘

is an equivalence of 2-categories. Explicitly, for any essentially small tannakian category 𝖢
over 𝑘, the canonical functor

𝖢 → 𝖱𝖾𝗉𝖿(Fib(𝖢))

is an equivalence of tensor categories over 𝑘, and for any affine gerbe 𝖦 over 𝖠𝖿𝖿𝑘, the
canonical functor

𝖦 → Fib(𝖱𝖾𝗉𝖿(𝖦))

is an equivalence of fibred categories over 𝖠𝖿𝖿𝑘.

Proof The explicit statements were proved in Theorem 2.1, and they imply that Fib is
an equivalence of 2-caegories (A.28). 2

Under the equivalence, neutral gerbes correspond to neutral tannakian categories.

Corollary 3.4 For any tannakian categories 𝖢 and 𝖣 over 𝑘, the functor

𝖧𝗈𝗆(𝖢,𝖣)→ 𝖧𝗈𝗆(Fib(𝖣),Fib(𝖢))

defined by Fib is an equivalence of categories.

Proof This is an immediate consequence of the theorem (see Proposition A.24). 2

Example 3.5 Let 𝖢 be a neutral tannakian category over 𝑘. Theorem II, 8.1 shows that
the choice of a fibre functor 𝜔 with values in 𝑘 determines an equivalence of fibred
categories Fib(𝖢)→Tors(𝐺), where 𝐺 represents𝒜𝑢𝑡⊗(𝜔). This shows that Fib(𝖢) is
an affine gerbe, and the commutative diagram of functors

𝖢 𝖱𝖾𝗉𝖿(Fib(𝖢))

𝖱𝖾𝗉𝖿(𝐺) 𝖱𝖾𝗉𝖿(Tors(𝐺))

← →

←→ 𝜔∼ ←→∼

←→∼

shows that 𝖢 → 𝖱𝖾𝗉𝖿(Fib(𝖢)) is an equivalence of categories.

Summary

Let 𝑘 be a field.

3.6 The tannakian categories over 𝑘 form a 2-category𝒯𝒶𝓃𝓃 with the 1-morphisms
being the exact 𝑘-linear tensor functors and the 2-morphisms the morphisms of ten-
sor functors. Similarly, the affine gerbes over 𝑘 form a 2-category 𝒢ℯ𝓇𝒷 with the 1-
morphisms being the cartesian functors of fibred categories and the 2-morphisms being
the equivalences between 1-morphisms. The 2-functor

𝒯𝒶𝓃𝓃op → 𝒢ℯ𝓇𝒷

sending a tannakian category to its gerbe of fibre functors is an equivalence of 2-categories.

Now let 𝑆 be a nonempty affine 𝑘-scheme.
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3.7 The tannakian categories over 𝑘 equipped with a fibre functor over 𝑆 form a 2-
category𝒯𝒶𝓃𝓃∙

𝑆 with the 1-morphisms being the exact 𝑘-linear tensor functors pre-
serving the distinguished fibre functors and the 2-morphisms the morphisms of such
tensor functors. Similarly, the affine 𝑘-groupoids acting transitively on 𝑆 form 2-category
𝒢𝓇𝓅𝒹𝑆 with the 1-morphisms being morphisms of 𝑘-groupoids acting on 𝑆 and the
2-morphisms the natural transformations between 1-morphisms. The 2-functor

(
𝒯𝒶𝓃𝓃∙

𝑆
)op

→ 𝒢𝓇𝓅𝒹𝑆

sending (𝖳, 𝜔) to 𝒜𝑢𝑡⊗𝑘 (𝜔) is an equivalence of 2-categories.

Now assume that 𝑘 has characteristic zero, and let 𝑆 = Spec �̄�, where �̄� is an algebraic
closure of 𝑘.

3.8 The tannakian categories over 𝑘 equipped with a �̄�-valued fibre functor form a
2-category 𝒯𝒶𝓃𝓃∙

𝑆 with the 1-morphisms being the exact 𝑘-linear tensor functors
preserving the distinguished fibre functors and the 2-morphisms the morphisms of
tensor functors. Similarly, the �̄�∕𝑘-Galois groupoids form a 2-category 𝒢𝒢𝓇𝓅𝒹�̄�∕𝑘 with
the 1-morphisms being the morphisms of �̄�∕𝑘-Galois groupoids and the 2-morphisms
the morphisms of such morphisms. The 2-functor

(
𝒯𝒶𝓃𝓃∙

𝑆
)op

→ 𝒢𝒢𝓇𝓅𝒹�̄�∕𝑘

sending (𝖳, 𝜔) to the Galois groupoid of conjugates of 𝜔 is an equivalence of 2-categories.

4 Algebraic geometry in a tannakian category

Throughout this section, 𝑘 is a field.

Affine 𝖳-schemes

Recall (I, 9.13) that, for a tensorial category 𝖳 over 𝑘, we have the notion of an affine
𝖳-scheme (affine scheme in Ind𝖳).

4.1 Let 𝖳 be a tannakian category over 𝑘, and let 𝜔1 and 𝜔2 be fibre functors on 𝖳 over
an affine 𝑘-scheme 𝑆. Recall that the functor sending an affine 𝑆-scheme 𝑢∶ 𝑆′ → 𝑆 to
the set of isomorphisms from 𝑢∗𝜔1 to 𝑢∗𝜔2 is represented by a scheme ℐ𝑠𝑜𝑚

⊗
𝑆 (𝜔1, 𝜔2),

affine over 𝑆. For a fibre functor 𝜔 over 𝑆, we let 𝒜𝑢𝑡⊗𝑆 (𝜔) denote ℐ𝑠𝑜𝑚
⊗
𝑆 (𝜔, 𝜔). The

main result of Chapter II says the following: if 𝜔 is a 𝑘-valued fibre functor on 𝖳, then 𝜔
induces an equivalence to tensor categories

𝖳 → 𝖱𝖾𝗉𝖿(𝒜𝑢𝑡⊗𝑆 (𝜔)).

The interpretation (I, 9.17) of 𝖳-schemes as equivariant affine 𝑘-schemes is then available.
Unfortunately, this is scarcely convenient and depends on the choice of the fibre functor
𝜔. Here we prefer to work with all fibre functors.

Example 4.2 (Deligne 1989, 5.10) Let 𝐺 be an affine group scheme over 𝑘, let 𝑋 be a
finite-dimensional representation of𝐺, and let𝑋 also denote the corresponding vectorial
group scheme Spec(Sym∗(𝑋∨)). An extension

0→ 𝑋 → 𝐸 → 𝟙→ 0
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of the trivial representation (𝑘 with the trivial action) by 𝑋 determines an equivariant
𝑋-torsor, namely, the inverse image of 1 ∈ 𝑘 in 𝐸. This construction is an equivalence of
categories.

We deduce a similar statement for a tannakian category 𝖳 over 𝑘: for any 𝑋 in 𝖳,
there is an equivalence from the category of extensions of 𝟙 by 𝑋 to that of 𝑋-torsors,

(extensions of 𝟙 by 𝑋) ∼,→ (𝑋-torsors).

We define a functor as follows. Let 𝐴 be the vectorial 𝖳-scheme defined by the identity
object. It is also the image (see I, 9.15) of the affine line Spec 𝑘[𝑇] over 𝑘, and the point
𝑇 = 1 defines a point 1∶ (pt) → 𝐴. An extension of 𝐸 of 𝟙 by 𝑋 defines a vectorial
scheme 𝐸 mapping onto 𝐴. The action by translation of 𝐸 on itself induces an action of
𝑋 on 𝐸 stabilizing the fibre 𝑃 def= 𝐸 ×𝐴 (pt) at 1 of 𝐸 → 𝐴. This fibre is the torsor sought.

This description is independent of the choice of a fibre functor, but once we choose a
fibre functor, the interpretation (I, 9.15) shows that it is an equivalence.

Interpretation in terms of gerbes; constructions

4.3 Let 𝖳 be a tannakian category over 𝑘. Recall that we have proved the following
statements.
(a) The fibre functors form a gerbe Fib(𝖳) over 𝖠𝖿𝖿𝑘 for the fpqc topology: they form

a stack (fibre functors given locally on 𝑆 patch to a fibre functor on 𝑆); over some
𝑆 ≠ ∅, there exists a fibre functor; any two fibre functors over 𝑆 become isomorphic
on a scheme 𝑇 faithfully flat and affine over 𝑆.

(b) Each object 𝑋 of 𝖳 defines a morphism of stacks 𝜔 ⇝ 𝜔(𝑋)

{fibre functors over 𝑆 (variable)}→ {vector bundles over 𝑆}.

This construction is an equivalence of 𝖳 with the category 𝖱𝖾𝗉𝖿(Fib𝖳) of these
functors. In other words, it is “the same” to give an object 𝑋 of 𝖳 or to give, for
each fibre functor 𝜔 over a 𝑘-scheme 𝑆, a vector bundle over 𝑆 functorial in 𝜔, and
compatible with base change 𝑆′ → 𝑆.

(c) By passage to ind-objects, a fibre functor 𝜔 on 𝑆 defines a tensor functor, again
denoted 𝜔, from Ind𝖳 to the category of quasi-coherent sheaves on 𝑆. Each object
𝑋 of Ind𝖳 defines a morphism of stacks

{fibre functors over 𝑆 (variable)}→ {quasi-coherent sheaves over 𝑆}.

This construction is an equivalence of Ind𝖳 with the category of these functors
(i.e., with the category of cartesian functors from the stack Fib(𝖳) over 𝖠𝖿𝖿𝑘 to the
stackMod),

(d) The passage from 𝖳 to Fib(𝖳) has an inverse. Let 𝖦 be an affine gerbe. Let 𝖱𝖾𝗉𝖿(𝖦)
be the category of morphisms of stacks

𝖦 → (vector bundles over 𝑆 variable).

Then 𝖱𝖾𝗉𝖿(𝖦) is a tannakian category, and

𝖦 ∼,→ Fib(𝖱𝖾𝗉𝖿(𝖦)).
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It follows from (c) that to give an affine 𝖳-scheme 𝑋 (resp. an affine group 𝖳-scheme
𝐺, resp. a 𝖳-torsor under 𝐺) is the same as giving, for each fibre functor 𝜔 over an affine
𝑘-scheme 𝑆, an affine scheme 𝑋𝜔 (resp. an affine group scheme 𝐺𝜔, resp. a torsor under
𝐺𝜔) over 𝑆, natural in 𝜔, and compatible with base changes 𝑆′ → 𝑆. For example,
𝑋 = Sp(𝐴) corresponds to the system 𝑋𝜔

def= Spec(𝜔(𝐴)).
To construct a morphism 𝐹∶ 𝑋 → 𝑌 between affine 𝖳-schemes, it suffices to con-

struct, for every fibre functor 𝜔, a morphism𝑋𝜔 → 𝑌𝜔 natural in 𝜔. If 𝜔 is a fibre functor
over 𝑆, it suffices, for every affine 𝑆-scheme 𝑇, to construct a map

𝑋𝜔(𝑇)→ 𝑌𝜔(𝑇),

natural in 𝑇. Here 𝑋(𝑇) = Hom𝑆(𝑇,𝑋).

4.4 For (𝑋𝜔) as above, each 𝑋𝜔∕𝑆 automatically has the following property (concerning
𝑋∕𝑆).

(*) There exists an extension 𝑘′ of 𝑘 and a scheme 𝑢∶ 𝑇 → 𝑆 faithfully flat over 𝑆,
such that the inverse image 𝑢∗𝑋 = 𝑇 ×𝑆 𝑋 of 𝑋 over 𝑇 is the inverse image over 𝑇
of a 𝑘′-scheme by a morphism of 𝑇 to 𝑘′.

Indeed, there exists a fibre functor 𝜔0 over an extension 𝑘′ of 𝑘 and, because Fib(𝖳) is a
gerbe, 𝜔 and 𝜔0 become isomorphic over some 𝑇 faithfully flat over 𝑆 × Spec(𝑘′), so the
inverse images of 𝑋𝜔 and 𝑋𝜔0 over 𝑇 are isomorphic,

𝑋𝜔 𝑋𝜔 ×𝑆 𝑇 𝑋𝜔0

𝑆 𝑇 Spec(𝑘′).

←→

←→ ← →

←→ ←→

←→ ← →

In other words, locally for the fpqc topology, 𝑋 comes from a scheme over an field
extension of 𝑘. A similar statement holds for schemes equipped with additional data.

4.5 Suppose that we have a construction Ξ taking an affine scheme (possibly with
additional data) over an affine 𝑘-scheme 𝑆 to another affine scheme over 𝑆 (possibly
with additional data). If the construction applies to all schemes (with additional data)
satisfying 4.4(*) and is compatiblewith base change, we can apply it to an affine𝖳-scheme.
Given such a 𝖳-scheme𝑋, apply Ξ to the schemes𝑋𝜔 to get a system𝑌𝜔

def= Ξ(𝑋𝜔), which
arises from a 𝖳-scheme, denoted Ξ(𝑋). Rather than trying to make this more precise, we
give some examples.

Example 4.6 For 𝐺 an affine group scheme over 𝑆, let Ξ(𝐺) be the 𝑁th term 𝑍𝑁(𝐺)
in the descending central series for 𝐺. This construction is not compatible with base
change for an arbitrary 𝐺∕𝑆, but it is for affine group schemes satisfying 4.4(*). Thus, for
any affine group 𝖳-scheme 𝐺, we have an affine 𝖳-scheme 𝑍𝑁(𝐺) such that 𝜔(𝑍𝑁(𝐺)) =
𝑍𝑁(𝜔(𝐺)) for all fibre functors 𝜔.

Example 4.7 Let𝐻 be a normal subgroup scheme of 𝐺, and let Ξ(𝐺,𝐻) = 𝐺∕𝐻. Even
when 𝐻 is not normal, we may consider 𝐺∕𝐻 provided it is affine. The same discussion
as in 4.6 applies.

Example 4.8 For affine group schemes over an affine 𝑘-scheme satisfying 4.4(*), the
property of being unipotent is stable under base change. Thus, it makes sense to say that
an affine group 𝖳-scheme is unipotent. Similarly, it is possible to define the unipotent
radical 𝑅𝑢𝐺 of an affine group 𝖳-scheme 𝐺, and even its semisimple quotient 𝐺∕𝑅𝑢𝐺.
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Application 4.9 Over an arbitrary base 𝑆, giving an extension ℰ of𝒪 by a vector bundle
𝒱 is equivalent to giving a torsor under the vectorial group scheme defined by 𝒱 . This
construction is compatible with base change. It follows that in any tannakian category,
giving an extension 𝐸 of 𝟙 by an object 𝑉 is equivalent to giving a torsor under the
𝖳-vectorial scheme 𝑉. We have already proved this in 4.2 for a neutral 𝖳.

Relation between the two points of view

4.10 Here is the relation between the points of view (I, 9.17) and (4.3) in the case
that 𝖳 = 𝖱𝖾𝗉𝖿(𝐺). Let 𝜔0 be the forgetful fibre functor. For 𝜔 a fibre functor over 𝑆,
ℐ𝑠𝑜𝑚⊗(𝜔0, 𝜔) is a 𝐺-torsor 𝑃 over 𝑆. Conversely, a 𝐺-torsor 𝑃 over 𝑆 defines a fibre
functor

𝜔𝑃 ∶ 𝑉 ⇝ 𝑉𝑃 def= 𝑉 ∧𝐺 𝑃 (𝑉 twisted by 𝑃)
over 𝑆.

If 𝑃(𝑆) ≠ ∅, then 𝑉𝑃 is a vector bundle over 𝑆 equipped, for each 𝑝 ∈ 𝑃(𝑆), with an
isomorphism

𝜌(𝑝)∶ 𝑉 ⊗𝒪𝑆
≃,→ 𝑉𝑃,

such that 𝜌(𝑝𝑔) = 𝜌(𝑝)𝜌(𝑔) for 𝑔 ∈ 𝐺(𝑆). The case 𝑃(𝑆) = ∅ can be treated by descent,
and so we have an equivalence

Fib(𝖱𝖾𝗉𝖿(𝐺)) ∼ (𝐺-torsors over 𝑆 variable).

If 𝑋 is a 𝖳-scheme, identified by I, 9.17, to a 𝐺-equivariant affine scheme, then for
every fibre functor 𝜔𝑃, 𝜔𝑃(𝑋) is the twist 𝑋𝑃 of 𝑋 by 𝑃.

4.11 For a torsor 𝑃 and corresponding fibre functor 𝜔𝑃, we have

𝒜𝑢𝑡⊗(𝜔𝑃) = 𝒜𝑢𝑡(𝑃) ≃ 𝐺𝑃

(twist of 𝐺 for the inner action of 𝐺 on itself).

Proof When 𝑃(𝑆) ≠ ∅, each 𝑝 ∈ 𝑃(𝑆) defines an isomorphism 𝜌(𝑝) of 𝑃 with the
trivial 𝐺-torsor 𝐺, therefore of Aut(𝑃) with 𝐺 (left translations of 𝐺). We have 𝜌(𝑝𝑔) =
𝜌(𝑝)◦ inn(𝑔): the automorphism of 𝑃 that sends 𝑝 ⋅ 𝑔 to 𝑝 ⋅ 𝑔ℎ sends 𝑝 to 𝑝 ⋅ 𝑔ℎ𝑔−1. This
satisfies 4.11 for 𝑃(𝑆) ≠ ∅, and the general case follows by descent. 2

Tensor products of tannakian categories

4.12 From 4.3 we get a dictionary between tannakian categories over 𝑘 and gerbes with
affine band. We define the tensor product of two tannakian categories by

Fib(𝖳1 × 𝖳2) ∼ Fib(𝖳1) × Fib(𝖳2).

Giving an object 𝑋 of 𝖳1 ⊗ 𝖳2 is equivalent to giving, for 𝜔1 and 𝜔2 fibre functors over 𝑆
of 𝖳1 and 𝖳2, a vector bundle 𝑋𝜔1,𝜔2on 𝑆, the formation of 𝑋𝜔1,𝜔2 being functorial in 𝜔1
and 𝜔2 and compatible with base change.

We have a tensor product

⊠∶ 𝖳1 × 𝖳2 → 𝖳1 ⊗ 𝖳2,

such that, for fibre functors 𝜔1 and 𝜔2 on 𝖳1 and 𝖳2, there is a fibre functor on 𝖳1 ⊗ 𝖳2
sending 𝑋1 ⊠𝑋2 to 𝜔1(𝑋1)⊗𝜔2(𝑋2). In Chapter II, §10, we showed that 𝖳1 ⊗ 𝖳2 is the
universal target of such a tensor product with suitable properties.

If 𝖳1, 𝖳2 are 𝖱𝖾𝗉(𝐺1), 𝖱𝖾𝗉(𝐺2), then 𝖳1 ⊗ 𝖳2 ∼ 𝖱𝖾𝗉(𝐺1 × 𝐺2).
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The fundamental group of a tannakian category

Let 𝖳 be a tannakian category over 𝑘. For each fibre functor 𝜔 over a 𝑘-scheme 𝑆,
𝒜𝑢𝑡⊗𝑆 (𝜔) is an affine group scheme over 𝑆 (see 4.1). Its formation is compatible with
base change, i.e., for any morphism 𝑇 → 𝑆,

𝒜𝑢𝑡⊗𝑇 (𝜔𝑇) ≃ 𝒜𝑢𝑡⊗𝑆 (𝜔)𝑇.

By 4.3(c), the system of affine group schemes 𝒜𝑢𝑡⊗𝑆 (𝜔) arises from an affine group
𝖳-scheme.

Definition 4.13 The fundamental group 𝜋(𝖳) of 𝖳 is the affine group 𝖳-scheme such
that

𝜔(𝜋(𝖳)) ≃ 𝒜𝑢𝑡⊗(𝜔). (94)

functorially in 𝜔.

Let 𝑋 ∈ ob𝖳. For each fibre functor 𝜔 over 𝑆, 𝜔(𝜋(𝖳)) = 𝒜𝑢𝑡⊗(𝜔) acts on 𝜔(𝑋).
We deduce an action (9.16) of 𝜋(𝖳) on 𝑋, functorial in 𝑋 and compatible with tensor
products. By passage to ind-objects, these actions furnish an action of 𝜋(𝖳) on all ind-
objects. We deduce an action of 𝜋(𝖳) on all affine 𝖳-schemes. The action of 𝜋(𝖳) on
the 𝖳-scheme 𝜋(𝖳) is the action of 𝜋(𝖳) on itself by inner automorphisms. Indeed, for
any fibre functor 𝜔, the action by functoriality of Aut⊗(𝜔) on itself is its action by inner
automorphisms.

Example 4.14 Let 𝐺 be an affine group scheme over 𝑘, and let 𝖳 = 𝖱𝖾𝗉(𝐺). After
4.11, the fundamental group 𝜋(𝖳), viewed as an equivariant affine group scheme, is 𝐺
equipped with the inner action on itself. The action of 𝜋(𝖳) on a representation 𝑉 of 𝐺
is the given action of 𝐺. It is 𝐺-equivariant,

ℎ(𝑔𝑣) = ℎ𝑔ℎ−1 ⋅ ℎ𝑣.

4.15 Let 𝑢∶ 𝖳1 → 𝖳 be an exact 𝑘-linear tensor functor between tannakian categories
over 𝑘. For any fibre functor 𝜔 on 𝖳 over a 𝑘-scheme, 𝜔◦𝑢 is a fibre functor on 𝖳1 over 𝑆,
and there is a canonical homomorphism

𝒜𝑢𝑡⊗(𝜔)→ 𝒜𝑢𝑡⊗(𝜔◦𝑢) (95)

On applying 𝑢 to the group 𝖳1-scheme 𝜋(𝖳1), we get a group 𝖳-scheme 𝑢(𝜋(𝖳)) and
(95) is a morphism, functorial in 𝜔, of 𝜔(𝜋(𝖳)) into 𝜔◦𝑢(𝜋(𝖳)) = 𝜔(𝑢(𝜋(𝖳1))). By 4.3, it
defines a morphism of 𝖳-schemes

𝑈∶ 𝜋(𝖳)→ 𝑢(𝜋(𝖳1)). (96)

For any object𝑋1 of 𝖳1, the action of 𝜋(𝖳1) on𝑋1 induces an action of 𝑢(𝜋(𝖳1)) on 𝑢(𝑋1).
The action of 𝜋(𝖳) on 𝑢(𝜋(𝖳1)) is the action by conjugation defined by 𝑈. It suffices to
check this after applying a fibre functor.

Theorem 4.16 With the preceding notation, 𝑢 induces an equivalence of 𝖳1 with the
category of objects of 𝖳 equipped with an action of 𝑢𝜋(𝖳1) extending the action of 𝜋(𝖳).
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Proof Suppose that 𝖳 is neutral, say, 𝖳 = 𝖱𝖾𝗉(𝐺), and let 𝜔 be the forgetful functor.
Let 𝐺1 = 𝒜𝑢𝑡⊗(𝜔◦𝑢). The morphisms (95) define

𝑓∶ 𝐺 → 𝐺1, (97)

which can also be obtained from (96) by applying 𝜔. Via the equivalences 𝖳 ∼ 𝖱𝖾𝗉(𝐺),
𝖳2 ∼ 𝖱𝖾𝗉(𝐺1), the functor 𝑢 is the restriction to 𝐺 (by 𝑓) of the action of 𝐺1, and 4.16
becomes to the following triviality: for a vector space 𝑉, to give an action of 𝐺1 on 𝑉 is
equivalent to giving an action of 𝐺 plus a 𝐺-equivariant action of 𝐺1 factoring through
the action of 𝐺.

For the general case, we refer the reader to Deligne 1990, 8.17. 2

4.17 Let 𝑢∶ 𝖳1 → 𝖳 be an exact 𝑘-linear tensor functor between tannakian categories
over 𝑘. If 𝑢 is fully faithful and identifies 𝖳1 to a full subcategory of 𝖳 stable under
subquotients, then the morphism 𝑈∶ 𝜋(𝖳)→ 𝑢𝜋(𝖳1) is an epimorphism (= faithfully
flat). Moreover, Proposition 4.16 shows that 𝑢 identifies 𝖳1 with the subcategory of 𝖳
formed of the objects on which the action of 𝜋(𝖳) induces the trivial action of 𝐻 def=
Ker(𝑈∶ 𝜋(𝖳)→ 𝑢𝜋(𝖳1)). See Saavedra 1972, II, 4.3.2(g).

Example 4.18 Let 𝖳1 = 𝖵𝖾𝖼𝖿(𝑘) and consider the functor 𝑉 ⇝ 𝑉 ⊗ 𝟙∶ 𝖳1 → 𝖳. Then
𝜋(𝖳1) = {𝑒} and the functor is an equivalence of 𝖵𝖾𝖼𝖿(𝑘) with the subcategory of objects
of 𝖳 on which 𝜋(𝖳) acts trivially (cf. 9.15).

Semisimplicity

In this subsection, 𝖳 is a tannakian category over a field 𝑘 of characteristic zero.

Example 4.19 Suppose that 𝖳 has a fibre functor 𝜔0 with values in 𝑘. The semisimple
objects of the abelian category category of representations of the affine group scheme
𝒜𝑢𝑡⊗(𝜔0) are those on which the unipotent radical 𝑅𝑢𝒜𝑢𝑡⊗(𝜔0) acts trivially. Therefore
the subcategory 𝖳1 ⊂ 𝖳 of semisimple objects is stable under tensor products, and is
again a tannakian category over 𝑘. The morphism (96) corresponding to the inclusion is

𝜋(𝖳)→ 𝜋(𝖳)∕𝑅𝑢𝜋(𝖳).

Example 4.20 Let 𝑇 be an object of dimension 1 of 𝖳. To give a representation 𝜌 of 𝔾𝑚
is the same as giving a graded vector space 𝑉 =

⨁
𝑉𝑗, with (𝜆)𝑣𝑗 = 𝜆𝑗𝑣𝑗 for 𝑣𝑗 ∈ 𝑉𝑗,

and we define
𝑢∶ 𝖱𝖾𝗉(𝔾𝑚)→ 𝖳

by 𝑉 ⇝
⨁
(𝑉𝑗 ⊗ 𝑇⊗𝑗). From there, we get a morphism

𝜋(𝖳)→ 𝔾𝑚 (98)

such that the action of 𝜋(𝖳) on 𝑇 factors through 𝔾𝑚, with 𝜆 acting as multiplication by
𝜆. In (98), 𝔾𝑚 is regarded as a group 𝖳-scheme as in I, 9.15.

If, for all 𝑛 > 0, we have Hom(𝟙, 𝑇⊗𝑛) = 0, we can apply 4.17 to deduce that (98) is
an epimorphism.

If the 𝑇⊗𝑛 (𝑛 ∈ ℤ) are the only simple objects of 𝖳, and no two are isomorphic,
we can conclude from (4.19) and (4.20) (in characteristic 0), that (98) realizes 𝜋(𝖳) an
extension of 𝔾𝑚 by a unipotent group.
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4.21 Again, let𝖳 be a tannakian category over a field 𝑘 of characteristic 0 and, to simplify,
suppose again that 𝖳 is neutral. Let 𝖳ss be the category of semisimple objects of 𝖳. The
group 𝖳-scheme 𝑅𝑢𝜋(𝖳) acts trivially on (𝑅𝑢𝜋(𝖳))

ab, which is a group 𝖳ss-scheme. It is
commutative and unipotent, and we can identify it with a pro-object in 𝖳ss, for example,
by writing it as a projective limit of vectorial group 𝖳-schemes.

Proposition 4.22 Let 𝖳 be a neutral tannakian category over a field 𝑘 of characteristic
zero. For any semisimple object 𝑋 of 𝖳,

Ext1(𝟙, 𝑋) ≃,→ Hom((𝑅𝑢𝜋(𝖳))ab, 𝑋). (99)

Proof We first explain the statement. In (99), on the left 𝑋 is an object of 𝖳 and on the
right it is the corresponding vectorial 𝖳-scheme. We have

Hom(𝑅𝑢𝜋(𝖳), 𝑋)
≃,→ Hom(𝑅𝑢𝜋(𝖳))ab, 𝑋)

≃,→ Hom(Lie(𝑅𝑢𝜋(𝖳))ab, 𝑋).

If a group 𝐺 acts on an extension 𝐸 of 𝐴 by 𝐵 and acts trivially on 𝐴 and 𝐵, then the
maps 𝜌(𝑔) − 1∶ 𝐸 → 𝐸 factor through morphisms from 𝐴 to 𝐵. The statements 4.3, 4.5
allow us to repeat this “in 𝖳”.

If 𝐸 is an extension of 𝟙 by 𝑋, the action 4.13 of 𝑅𝑢𝜋(𝖳) ⊂ 𝜋(𝖳) on 𝐸 is trivial on 𝟙
and 𝑋 (see 4.19). It defines a morphism

𝑅𝑢𝜋(𝖳)→ Hom(𝟙, 𝑋) = 𝑋.

This construction defines the arrow (99).
Injectivity of (99): if the class of an extension 𝐸 has trivial image under (99), the

action of 𝑅𝑢𝜋(𝖳) on 𝐸 is trivial: 𝐸 is semisimple and the extension is trivial.
Surjectivity of (99): we may suppose that 𝖳 = 𝖱𝖾𝗉𝖿(𝐺). Write 𝐺 as a semi-direct

product of a proreductive group scheme 𝐺ss by 𝑅𝑢𝐺 (Levi decomposition; here we use
characteristic 0). For (𝑋, 𝜌) a representation of 𝐺ss = 𝐺∕𝑅𝑢𝐺 and 𝑎 a 𝐺ss-morphism of
𝑅𝑢𝐺ab into𝑋, we define an extension 𝐸 of the trivial representation by the representation
𝑋 by making 𝑢 ⋅ 𝑔 (𝑔 ∈ 𝐺ss, 𝑢 ∈ 𝑅𝑢𝐺) act on 𝟙⊗ 𝑋 by

( 1 0
𝑎(𝑢) 𝜌(𝑔)

)
. Its image by (99) is

the morphism 𝑎. 2

Notation 4.23 For 𝑉 a vector space over 𝑘 and 𝑋 in 𝖳,ℋ𝑜𝑚(𝑉,𝑋) is the pro-object of
𝖳, projective limit of the𝑊∨ ⊗𝑋 for𝑊 a subspace of finite dimension of 𝑉.

Example 4.24 Let 𝖳 be the category 𝖱𝖾𝗉(𝔾𝑚). Let 𝑇(𝑛) be the 𝑘-vector space on which
𝜆 ∈ 𝔾𝑚 acts by multiplication by 𝜆𝑛. For any pro-object 𝑋 of 𝖳, if we put 𝑉(𝑛) =
Hom(𝑋, 𝑇(𝑛)), then we have

𝑋 =
∏

𝑛
ℋ𝑜𝑚(𝑉(𝑛), 𝑇(𝑛)). (100)

4.25 Let 𝖳 be a neutral tannakian category over 𝑘 of characteristic 0 and 𝑇 ∈ ob𝖳. We
assume that 𝑇 has dimension 1 and we put 𝑇(𝑛) = 𝑇⊗𝑛. We assume that the morphism
4.20 of 𝜋(𝖳) into 𝔾𝑚 is an epimorphism with unipotent kernel, i.e., that the conditions
of last paragraph of 4.20 are satisfied. Let𝑈 = Ker(𝜋(𝖳)→ 𝔾𝑚). Applying 4.22 and 4.23
and identifying 𝑈ab with its Lie algebra, we find that

𝑈ab =
∏

ℋ𝑜𝑚⊗(Ext1(𝟙, 𝑇(𝑛)). (101)
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The fundamental groupoid

4.26 To two fibre functors𝜔1, 𝜔2 of 𝖳 over 𝑆, we attach the affine scheme Isom
⊗
𝑆 (𝜔2, 𝜔1)

over 𝑆. This construction is compatible with change of base. By 4.3 and 4.12, it defines a
𝖳⊗ 𝖳-scheme 𝐺(𝖳) such that

(𝜔1 ⊗𝜔2)(𝐺(𝖳)) = ℐ𝑠𝑜𝑚⊗
𝑆 (𝜔2, 𝜔1).

It is the fundamental groupoid of 𝖳.
For any mapping between finite sets 𝜑∶ 𝐼 → 𝐽, we define 𝑇(𝜑)∶ 𝖳⊗𝐼 → 𝖳⊗𝐽 by

𝑇(𝜑)(⊠𝑋𝑖) =⊠𝑗

( ⨂

𝜑(𝑖)=𝑗
𝑋𝑖
)
,

where the tensor product over the 𝑖 ∈ 𝜑−1(𝑗) is taken in 𝖳, and is 𝟙 if 𝜑−1(𝑗) = ∅.
Put 𝑗𝑎,𝑏 = 𝑇(𝜑) for

𝜑∶ {1, 2}→ {1, 2, 3}, 1↦ 𝑎, 2↦ 𝑏.

Composition of isomorphisms defines

𝑗1,2(𝐺(𝖳)) × 𝑗2,3(𝐺(𝖳))→ 𝑗1,3(𝐺(𝖳)) (102)

in 𝖳⊗ 𝖳⊗ 𝖳. For 𝜑∶ {1, 2}→ {1}, 𝑇(𝜑) is

𝑇∶ 𝖳⊗ 𝖳 → 𝖳, 𝑋 ⊠𝑗 𝑌 ↦ 𝑋 ⊗𝖳 𝑌.

We have
𝑇(𝐺(𝖳)) = 𝜋(𝖳). (103)

For any fibre functor 𝜔 over 𝑆, (pr∗1 𝜔, pr
∗
2 𝜔) defines a fibre functor 𝜔⊠ 𝜔 on 𝖳⊗ 𝖳

over 𝑆×𝑆. The image of𝐺(𝖳) by𝜔⊠𝜔 is the groupoid𝒜𝑢𝑡⊗𝑘 (𝜔)
def= ℐ𝑠𝑜𝑚𝑆×𝑆(pr∗2 𝜔, pr

∗
2 𝜔)

over 𝑆, and the groupoid structure is deduced from (102).

4.27 In Chapter II, we gave the following description of the algebra Λ in Ind(𝖳⊗ 𝖳)
whose spectrum is 𝐺(𝖳). As as an ind-object, it is the target of the universal morphism

𝑋∨ ⊗𝑘 𝑋 → Λ (𝑋 in 𝖳) (104)

making, for all 𝑓∶ 𝑋 → 𝑌, the following diagram commutative

𝑌∨ ⊗𝑋 𝑋∨ ⊗𝑋

𝑌∨ ⊗𝑌 Λ

←→
𝑓𝑡⊗1

←→ 1⊗𝑓 ←→

← →

(105)

For any fibre functor 𝜔 over 𝑆, the groupoid 𝒜𝑢𝑡⊗𝑘 (𝜔)
def= ℐ𝑠𝑜𝑚⊗

𝑆×𝑆(pr
∗
2 𝜔, pr

∗
1 𝜔) is

therefore the spectrum of (𝜔⊠ 𝜔) (Λ), that is, the quasi-coherent sheaf of algebras 𝐿 on
𝑆 × 𝑆 which, as a quasi-coherent sheaf, is the universal target of morphisms

pr∗1 𝜔(𝑋)
∨ ⊗ pr∗2 𝜔(𝑋)→ 𝐿 (𝑋 in 𝖳)

satisfying a compatibility similar to (105) for all 𝑓∶ 𝑋 → 𝑌.

Notes This section closely follows the original source, Deligne 1989, 5.9–6.14.
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5 Morphisms from one tannakian category to a second

5.1 An exact 𝑘-linear tensor functor 𝑢∶ 𝖳1 → 𝖳2 of tannakian categories defines a
homomorphism 𝜋(𝑢)∶ 𝜋(𝖳2)→ 𝑢(𝜋(𝖳1)) (4.15). Moreover:
(a) 𝑢 induces an equivalence of 𝖳1 with the category of objects of 𝖳 equipped with an

action of 𝑢𝜋(𝖳1) extending the action of 𝜋(𝖳) (see 4.16);
(b) 𝜋(𝑢) is flat and surjective if and only if 𝑢 is fully faithful and every subobject of

𝑢(𝑋), for 𝑋 in 𝖳1, is isomorphic to the image of a subobject of 𝑋 (cf. 8.2);
(c) 𝜋(𝑢) is a closed immersion if and only if every object of 𝖳2 is a subquotient of an

object in the image of 𝑢 (cf. 8.2).

5.2 Let 𝖳 be a tannakian category over 𝑘. Recall that, by definition, an affine group
𝖳-scheme 𝐺 is a (commutative) Hopf algebra 𝐴 in Ind𝖳. We define a representation
of 𝐺 to be a right comodule over 𝐴, i.e., an object 𝑉 of 𝖳 together with a morphism
𝜌∶ 𝑉 → 𝑉 ⊗ 𝐴 such that certain diagrams commute (II, 1.12). With the obvious
notion of morphism, we obtain a category 𝖱𝖾𝗉𝖳(𝐺) of representations of 𝐺 (in 𝖳). For
example, if 𝖳 = 𝖵𝖾𝖼𝖿(𝑘), then 𝐺 is an affine group scheme over 𝑘 in the usual sense, and
𝖱𝖾𝗉𝖳(𝐺) = 𝖱𝖾𝗉𝖿(𝐺). Note that in this last case 𝖱𝖾𝗉𝖳(𝐺) contains 𝖳 as the subcategory
of objects on which 𝐺 acts trivially, and that there is a forgetful functor to 𝖳 with the
property that the the composite

𝖳 𝖱𝖾𝗉𝖳(𝐺) 𝖳←→ ←→
forget

is the identity functor. Similarly, in the general case, 𝖱𝖾𝗉𝖳(𝐺) contains 𝖳 as the subcate-
gory of objects on which 𝐺 acts trivially, and that there is a forgetful functor to 𝖳 with
the same property.

5.3 Let 𝑢∶ 𝖳1 → 𝖳2 be an exact 𝑘-linear tensor functor of tannakian categories over 𝑘.
When 𝖳2 = 𝖵𝖾𝖼𝖿(𝑘), 𝑢 induces an equivalence of 𝖳1 with 𝖱𝖾𝗉𝖳2(𝐺), where 𝐺 = 𝒜𝑢𝑡⊗(𝑢).
In the general case, we can ask whether there is an affine group 𝖳2-scheme 𝐺 such that
𝑢 induces an equivalence 𝖳1

∼,→ 𝖱𝖾𝗉𝖳2(𝐺). A quasi-inverse to such an equivalence will
restrict to a functor 𝑠∶ 𝖳2 → 𝖳1 such that 𝑢◦𝑠 ≈ id𝖳2 . Thus, a necessary condition is the
existence of such an section 𝑠. The condition is also sufficient.

Theorem 5.4 Let 𝑢∶ 𝖳1 → 𝖳2 be an exact 𝑘-linear tensor functor of tannakian categories
over 𝑘. Suppose that there exists an exact 𝑘-linear 𝑠∶ 𝖳2 → 𝖳1 and an isomorphism
𝛼∶ 𝑢◦𝑠 → id𝖳2 . Then there is an affine group 𝖳2-group 𝐺 such that 𝑢 factors into

𝖳1 𝖱𝖾𝗉𝖳2(𝐺) 𝖳2.

←→∼

← →
𝑢

←→
forget

Proof Let 𝑈∶ 𝜋(𝖳2)→ 𝑢(𝜋(𝖳1)) and 𝑆∶ 𝜋(𝖳1)→ 𝑠(𝜋(𝖳2)) be the morphisms defined
by 𝑢 and 𝑠. The morphism 𝜋(𝖳2)→ (𝑢◦𝑠)(𝜋(𝖳2)) defined by 𝑢◦𝑠 is equal 𝑢(𝑆)◦𝑈, and it
is an isomorphism because the composite

𝜋(𝖳2) (𝑢◦𝑠)(𝜋(𝖳2)) 𝜋(𝖳2)

←→𝑢(𝑆)◦𝑈 ←→𝛼≃

is the identity map. So, if we define the group 𝖳2-scheme 𝐺 to be the kernel of 𝑢(𝑆), then

𝑢(𝜋(𝖳1)) ≃ 𝐺 ⋊ 𝜋(𝖳2)
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and the action of 𝜋(𝖳2) on 𝐺 by conjugation is the restriction of its action by conjuga-
tion on 𝑢(𝜋(𝖳1)), which is the natural action. So this action is also the natural action.
According to Theorem 4.16, 𝑢 induces an equivalence of 𝖳1 with the category of objects
of 𝖳2 equipped with an action 𝜌 of 𝐺 ⋊ 𝜋(𝖳2) whose restriction to 𝜋(𝖳2) is the natural
action.

An arbitrary action 𝜌 of 𝐺 ⋊ 𝜋(𝖳2) on an object of 𝖳𝟤 is given by actions 𝜌1 and 𝜌2 of
𝐺 and 𝜋(𝖳2) with the property that

𝜌2(𝑔)𝜌1(𝑝) = 𝜌1(𝑔𝑝𝑔−1)𝜌2(𝑔), all 𝑔 ∈ 𝐺(𝑅), 𝑝 ∈ 𝜋(𝖳2), 𝑅 a 𝑘-algebra.

But in the case that 𝜌2 is the natural action, this condition is always satisfied, because
the action of 𝜋(𝖳2) on 𝐺 by conjugation is equal to the natural action and 𝜌1 respects
the natural action. This shows that 𝑢 induces an equivalence of 𝖳2 with 𝖱𝖾𝗉𝖳2(𝐺) as
required. 2

Theorem 5.4 is Corollary 5.3 of Jafari and Einollahzadeh 2018. The group 𝐺 depends on
the choice of 𝑠 (ibid., 5.5).

Example 5.5 For a smooth algebraic variety over ℂ, let 𝐸(𝑋) denote the category of
admissable variations of mixed Hodge structures on 𝑋. It is a tannakian category over
ℚ. Let 𝑥 ∈ 𝑋. We have an exact ℚ-linear tensor fibre functor 𝐹∶ 𝐸(𝑋) → 𝐸(𝑥). The
functor sending an object of 𝐸(𝑥) to the corresponding constant local system is a section
for 𝐹, and so there exists an affine group 𝐸(𝑥)-scheme 𝜋𝐸1 (𝑋, 𝑥) such that 𝐹 defines an
equivalence of tensor categories

𝐸(𝑋) ∼ 𝖱𝖾𝗉𝐸(𝑥)(𝜋
𝐸
1 (𝑋, 𝑥)).

See Arapura 2010 for more details and more examples.

5.6 Let 𝖢 and 𝖣 be tannakian categories over 𝑘, and let 𝛼∶ 𝐻 → 𝐺 be a morphism from
band of 𝖣 to that of 𝖢. Then the morphisms 𝖢 → 𝖣 banded by 𝛼 form a gerbe banded by
the centralizer of 𝛼. See Giraud 1971, IV, 2.3.2.

5.7 For a group𝐺, a right𝐺-object𝑋, and a left𝐺-object𝑌,𝑋∧𝐺𝑌 denotes the contracted
product of 𝑋 and 𝑌, i.e., the quotient of 𝑋 × 𝑌 by the diagonal action of 𝐺, (𝑥, 𝑦)𝑔 =
(𝑥𝑔, 𝑔−1𝑦). When𝐺 → 𝐻 is a homomorphism of groups,𝑋∧𝐺𝐻 is the𝐻-object obtained
from 𝑋 by extension of the structure group. In this last case, if 𝑋 is a 𝐺-torsor, then
𝑋 ∧𝐺 𝐻 is also an𝐻-torsor. See Giraud 1971, III 1.3, 1.4.

5.8 Let 𝖳 be a tannakian category over 𝑘, and assume that the fundamental group 𝜋 of 𝖳
is commutative. A torsor 𝑃 under𝜋 in 𝖳 defines a tensor equivalence 𝖳 → 𝖳,𝑋 ⇝ 𝑃∧𝜋𝑋,
bound by the identity map on Bd(𝖳), and every such equivalence arises in this way from
a torsor under 𝜋 (cf. Saavedra 1972, III 2.3). For any 𝑘-algebra 𝑅 and 𝑅-valued fibre
functor 𝜔 on 𝖳, 𝜔(𝑃) is an 𝑅-torsor under 𝜔(𝜋) and 𝜔(𝑃 ∧𝜋 𝑋) ≃ 𝜔(𝑃) ∧𝜔(𝜋) 𝜔(𝑋).

ToDo 8 This section will be expanded. Add examples with Galois groupoids.

6 Quotients of tannakian categories

Given a tannakian category 𝖳 and a tannakian subcategory 𝖲, we ask whether there
exists a quotient of 𝖳 by 𝖲, by which we mean an exact tensor functor 𝑞∶ 𝖳 → 𝖰 from 𝖳
to a tannakian category 𝖰 such that
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(a) the objects of 𝖳 that become trivial in 𝖰 (i.e., isomorphic to a direct sum of copies
of 𝟙 in 𝖰) are precisely those in 𝖲, and

(b) every object of 𝖰 is a subquotient of an object in the image of 𝑞.
When 𝖳 is the category 𝖱𝖾𝗉𝖿(𝐺) of finite-dimensional representations of an affine group
scheme 𝐺 the answer is obvious: there exists a unique normal subgroup 𝐻 of 𝐺 such
that the objects of 𝖲 are the representations on which 𝐻 acts trivially, and there exists
a canonical functor 𝑞 satisfying (a) and (b), namely, the restriction functor 𝖱𝖾𝗉𝖿(𝐺)→
𝖱𝖾𝗉𝖿(𝐻) corresponding to the inclusion𝐻 → 𝐺. By contrast, in the general case, there
need not exist a quotient, and when there does there will usually not be a canonical one.
In fact, we prove that there exists a 𝑞 satisfying (a) and (b) if and only if 𝖲 is neutral, in
which case the 𝑞 are classified by the 𝑘-valued fibre functors on 𝖲. Here 𝑘 def= End(𝟙) is
assumed to be a field.

From a different perspective, one can ask the following question: given a subgroup
𝐻 of the fundamental group 𝜋(𝖳) of 𝖳, does there exist an exact tensor functor 𝑞∶ 𝖳 → 𝖰
such that the resulting homomorphism 𝜋(𝖰)→ 𝑞(𝜋(𝖳))maps 𝜋(𝖰) isomorphically onto
𝑞(𝐻)? Again, there exists such a 𝑞 if and only if the subcategory 𝖳𝐻 of 𝖳, whose objects
are those on which𝐻 acts trivially, is neutral, in which case the functors 𝑞 correspond
to the 𝑘-valued fibre functors on 𝖳𝐻 .

The two questions are related by the “tannakian correspondence” between tannakian
subcategories of 𝖳 and subgroups of 𝜋(𝖳) (see 6.5).

Preliminaries

We fix a field 𝑘 and consider only tannakian categories over 𝑘.

Gerbes

6.1 Let 𝛼∶ 𝖦1 → 𝖦2 be a morphism of gerbes over 𝖠𝖿𝖿𝑘, and let 𝜔0 be an object of 𝖦2,𝑘.
Define (𝜔0 ↓ 𝖦1) to be the fibred category over 𝖠𝖿𝖿𝑘 whose fibre over 𝑠∶ 𝑆 → Spec 𝑘
has as objects the pairs (𝜔, 𝑎) consisting of an object 𝜔 of ob(𝖦1,𝑆) and an isomorphism
𝑎∶ 𝑠∗𝜔0 → 𝛼(𝜔) in𝖦2,𝑆; themorphisms (𝜔, 𝑎)→ (𝜈, 𝑏) are the isomorphisms 𝜑∶ 𝜔 → 𝜈
in 𝖦1,𝑆 giving rise to a commutative triangle,

𝜔 𝛼(𝜔)

𝑠∗(𝜔0)

𝜈 𝛼(𝜈)

𝖦1,𝑆 𝖦2,𝑆

←

→

𝜑

←

→ 𝛼(𝜑)

←→𝑎

←

→𝑏

If the morphism of bands defined by 𝛼 is epi, then (𝜔0 ↓ 𝖦1) is a gerbe, and the sequence
of bands

1→ Bd(𝜔0 ↓ 𝖦1)→ Bd(𝖦1)→ Bd(𝖦2)→ 1 (106)

is exact (Giraud 1971, IV 2.5.5(i)).

6.2 Recall that a gerbe is said to be affine if its band is locally defined by an affine group
scheme. It is clear from the exact sequence (106) that if 𝖦1 and 𝖦2 are affine, then so
also is (𝜔0 ↓ 𝖦1).
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6.3 Recall (III, 1.4) that the fibre functors on a tannakian category 𝖳 form a gerbe Fib(𝖳)
over 𝖠𝖿𝖿𝑘. Each object 𝑋 of 𝖳 defines a representation 𝜔 ⇝ 𝜔(𝑋) of Fib(𝖳), and in this
way we get an equivalence 𝖳 → 𝖱𝖾𝗉(Fib(𝖳)) of tensor categories (2.1). Every affine gerbe
arises in this way from a tannakian category (2.1).

Fundamental groups

6.4 Recall (4.13) that the fundamental group 𝜋(𝖳) of a tannakian category 𝖳 is an affine
group scheme in Ind𝖳 such that

𝜔(𝜋(𝖳)) ≃ 𝒜𝑢𝑡⊗(𝜔)

functorially in the fibre functor 𝜔 on 𝖳. The group 𝜋(𝖳) acts on each object 𝑋 of 𝖳,
and 𝜔 transforms this action into the natural action of𝒜𝑢𝑡⊗(𝜔) on 𝜔(𝑋). The various
realizations 𝜔(𝜋(𝖳)) of 𝜋(𝖳) determine the band of 𝖳.

6.5 For a subgroup5 𝐻 ⊂ 𝜋(𝖳), we let 𝖳𝐻 denote the full subcategory of 𝖳 whose
objects are those on which 𝐻 acts trivially. It is a tannakian subcategory of 𝖳 and
𝜋(𝖳𝐻) = 𝜋(𝖳)∕𝐻. It follows from 4.16, that every tannakian subcategory 𝑖∶ 𝖳1 → 𝖳 of 𝖳
is of the form 𝖳𝐻 with𝐻 = Ker(𝜋(𝑖)∶ 𝜋(𝖳)→ 𝑖(𝜋(𝖳𝟣))). In this way, we get a one-to-one
correspondence between the subgroups of 𝜋(𝖳) and the tannakian subcategories of 𝖳.

For example, the objects of 𝖳𝜋(𝖳) are exactly the trivial objects of 𝖳, and there exists
a unique (up to a unique isomorphism) fibre functor 𝛾𝖳∶ 𝖳𝜋(𝖳) → 𝖵𝖾𝖼𝖿(𝑘), namely,
𝛾𝖳(𝑋) = Hom(𝟙, 𝑋).

6.6 For a subgroup𝐻 of𝜋(𝖳) and an object𝑋 of𝖳, we let𝑋𝐻 denote the largest subobject
of 𝑋 on which the action of𝐻 is trivial. Thus 𝑋 = 𝑋𝐻 if and only if 𝑋 is in 𝖳𝐻 .

6.7 When𝐻 is contained in the centre of 𝜋(𝖳), it is an affine group scheme in 𝖳𝜋(𝖳), and
so 𝛾𝖳 identifies it with an affine group scheme over 𝑘 in the usual sense. For example,
𝛾𝖳 identifies the centre of 𝜋(𝖳) with 𝒜𝑢𝑡⊗(id𝖳) (cf. 9.2).

Quotients

For any exact tensor functor 𝑞∶ 𝖳 → 𝖳′, the full subcategory 𝖳𝑞 of 𝖳 whose objects
become trivial in 𝖳′ is a tannakian subcategory of 𝖳 (obviously).

We say that an exact tensor functor 𝑞∶ 𝖳 → 𝖰 of tannakian categories is a quotient
functor if every object of 𝖰 is a subquotient of an object in the image of 𝑞; equivalently,
if the homomorphism 𝜋(𝑞)∶ 𝜋(𝖰) → 𝑞(𝜋𝖳) is a closed immersion (see 5.1(c)). If, in
addition, the homomorphism 𝜋(𝑞) is normal (i.e., its image is a normal subgroup of
𝑞(𝖳)), then we say that 𝑞 is normal.

Example 6.8 Consider the exact tensor functor 𝜔𝑓 ∶ 𝖱𝖾𝗉𝖿(𝐺)→ 𝖱𝖾𝗉𝖿(𝐻) defined by a
homomorphism 𝑓∶ 𝐻 → 𝐺 of affine group schemes. The objects of 𝖱𝖾𝗉𝖿(𝐺)𝜔𝑓 are those
on which𝐻 (equivalently, the intersubsection of the normal subgroups of 𝐺 containing
𝑓(𝐻)) acts trivially. The functor 𝜔𝑓 is a quotient functor if and only if 𝑓 is a closed
immersion, in which case it is normal if and only if 𝑓(𝐻) is normal in 𝐺.

5Note that every subgroup 𝐻 of 𝜋(𝖳) is normal. For example, the fundamental group 𝜋 of the cat-
egory 𝖱𝖾𝗉𝖿(𝐺) of representations of the affine group scheme 𝐺 = Spec(𝐴) is 𝐴 regarded as an object of
Ind(𝖱𝖾𝗉𝖿(𝐺)). The action of 𝐺 on 𝐴 is that defined by inner automorphisms. A subgroup of 𝜋 is a quotient
𝐴 → 𝐵 of 𝐴 (as a bi-algebra) such that the action of 𝐺 on 𝐴 defines an action of 𝐺 on 𝐵. Such quotients
correspond to normal subgroups of 𝐺.



6. Quotients of tannakian categories 195

Proposition 6.9 An exact tensor functor 𝑞∶ 𝖳 → 𝖰 of tannakian categories is a normal
quotient functor if and only if there exists a subgroup𝐻 of 𝜋(𝖳) such that 𝜋(𝑞) induces an
isomorphism 𝜋(𝖰)→ 𝑞(𝐻).

Proof ⇐⇐: Because 𝑞 is exact, 𝑞(𝐻)→ 𝑞(𝜋𝖳) is a closed immersion. Therefore 𝜋(𝑞) is
a closed immersion, and its image is the normal subgroup 𝑞(𝐻) of 𝑞(𝜋𝖳).

⇐⇒: Because 𝑞 is a quotient functor, 𝜋(𝑞) is a closed immersion. Let𝐻 be the kernel of
the homomorphism 𝜋(𝖳)→ 𝜋(𝖳𝑞) defined by the inclusion 𝖳𝑞 → 𝖳. The image of 𝜋(𝑞)
is contained in 𝑞(𝐻), and equals it if and only if 𝑞 is normal. To see this, let 𝐺 = 𝑞𝜋(𝖳),
and identify 𝖳 with the category of objects of 𝖰 with an action of 𝐺 compatible with that
of 𝜋(𝖰) ⊂ 𝐺. Then 𝑞 becomes the forgetful functor, and 𝖳𝑞 = 𝖳𝜋(𝖰). Thus, 𝑞(𝐻) is the
subgroup of 𝐺 acting trivially on those objects on which 𝜋(𝖰) acts trivially. It follows
that 𝜋(𝖰) ⊂ 𝑞(𝐻), with equality if and only if 𝜋(𝖰) is normal in 𝐺. 2

In the situation of the proposition, we sometimes call 𝖰 a quotient of 𝖳 by𝐻.
Let 𝑞∶ 𝖳 → 𝖰 be an exact tensor functor of tannakian categories. By definition, 𝑞

maps 𝖳𝑞 into 𝖰𝜋(𝖰), and so we acquire a 𝑘-valued fibre functor 𝜔𝑞
def
= 𝛾𝖰◦(𝑞|𝖳𝑞) on 𝖳𝑞:

𝖳𝑞 𝖰𝜋(𝖰) 𝖵𝖾𝖼𝖿𝑘 𝜔𝑞(𝑋) = Hom𝖰(𝟙, 𝑞𝑋).

𝖳 𝖰.

←→
𝑞|𝖳𝑞

←


→

← →
𝜔𝑞

←→
𝛾𝖰

←


→

← →
𝑞

In particular, 𝖳𝑞 is neutral. A fibre functor 𝜔 on 𝖰, defines a fibre functor 𝜔◦𝑞 on 𝖳,
and the (unique) isomorphism 𝛾𝖰 → 𝜔|𝖰𝜋(𝖰) defines an isomorphism 𝑎(𝜔)∶ 𝜔𝑞 →
(𝜔◦𝑞)|𝖳𝑞.

Proposition 6.10 Let 𝑞∶ 𝖳 → 𝖰 be a normal quotient, and let𝐻 be the subgroup of 𝜋(𝖳)
such that 𝜋(𝖰) ≃ 𝑞(𝐻).
(a) For 𝑋,𝑌 in 𝖳, there is a canonical functorial isomorphism

Hom𝖰(𝑞𝑋, 𝑞𝑌) ≃ 𝜔𝑞(ℋ𝑜𝑚(𝑋,𝑌)𝐻).

(b) The map 𝜔 ↦ (𝜔◦𝑞, 𝑎(𝜔)) defines an equivalence of gerbes

𝑟(𝑞)∶ Fib(𝖰)→ (𝜔𝑞 ↓ Fib(𝖳)).

Proof (a) We have,

Hom𝖰(𝑞𝑋, 𝑞𝑌) ≃ Hom𝖰(𝟙,ℋ𝑜𝑚(𝑞𝑋, 𝑞𝑌)𝜋(𝖰)) (14), p. 21

≃ Hom𝖰(𝟙, (𝑞ℋ𝑜𝑚(𝑋,𝑌))𝑞(𝐻)) (I, 5.6)
≃ Hom𝖰(𝟙, 𝑞(ℋ𝑜𝑚(𝑋,𝑌)𝐻))
≃ 𝜔𝑞(ℋ𝑜𝑚(𝑋,𝑌)𝐻) (definition of 𝜔𝑞).

(b) The functor Fib(𝖳)→ Fib(𝖳𝐻) gives rise to an exact sequence

1→ Bd(𝜔𝑄 ↓ Fib(𝖳))→ Bd(𝖳)→ Bd(𝖳𝐻)→ 0

(see 6.1). On the other hand, we saw in the proof of (6.9) that 𝐻 = Ker(𝜋(𝖳)→ 𝜋(𝖳𝐻)).
On comparing these statements, we see that the morphism 𝑟(𝑞) of gerbes is bound by an
isomorphism of bands, which implies that it is an equivalence of gerbes (1.23). 2
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Proposition 6.11 Let (𝖰, 𝑞) be a normal quotient of 𝖳. An exact tensor functor 𝑞′∶ 𝖳 →
𝖳′ factors through 𝑞 if and only 𝖳𝑞′ ⊃ 𝖳𝑞 and 𝜔𝑞 ≈ 𝜔𝑞′|𝖳𝑞.

Proof The conditions are obviously necessary. For the sufficiency, choose an isomor-
phism 𝑏∶ 𝜔𝑞 → 𝜔𝑞′|𝖳𝑞. A fibre functor 𝜔 on 𝖳′ then defines a fibre functor 𝜔◦𝑞′ on 𝖳
and an isomorphism 𝑎(𝜔)|𝖳𝑞◦𝑏∶ 𝜔𝑞 → (𝜔◦𝑞′)|𝖳𝑞. In this way we get a homomorphism

Fib(𝖳′)→ (𝜔𝑞 ↓ Fib(𝖳)) ≃ Fib(𝖰)

and we can apply (6.3) to get a functor 𝖰 → 𝖳′ with the correct properties. 2

Theorem 6.12 Let 𝖳 be a tannakian category over 𝑘, and let𝜔0 be a 𝑘-valued fibre functor
on 𝖳𝐻 for some subgroup 𝐻 ⊂ 𝜋(𝖳). There exists a quotient (𝖰, 𝑞) of 𝖳 by 𝐻 such that
𝜔𝑞 ≃ 𝜔0.

Proof The gerbe (𝜔0 ↓ Fib(𝖳)) is affine (see 6.2). From the morphism of gerbes

(𝜔, 𝑎)↦ 𝜔∶ (𝜔0 ↓ Fib(𝖳))→ Fib(𝖳),

we obtain a morphism of tannakian categories

𝖱𝖾𝗉(Fib(𝖳))→ 𝖱𝖾𝗉(𝜔0 ↓ Fib(𝖳))

(see 6.3). We define 𝖰 to be 𝖱𝖾𝗉(𝜔0 ↓ Fib(𝖳)) and we define 𝑞 to be the composite of the
above morphism with the equivalence (see 6.3)

𝖳 → 𝖱𝖾𝗉(Fib(𝖳)).

Since a gerbe and its tannakian category of representations have the same band, an
argument as in the proof of Proposition 6.10 shows that 𝜋(𝑞)maps 𝜋(𝖰) isomorphically
onto 𝑞(𝐻). A direct calculation shows that 𝜔𝑞 is canonically isomorphic to 𝜔0. 2

We sometimes write 𝖳∕𝜔 for the quotient of 𝖳 defined by a 𝑘-valued fibre functor 𝜔
on a subcategory of 𝖳.

Example 6.13 Let (𝖳, 𝑤,𝕋) be a Tate triple (see Chapter V below), and let 𝖲 be the full
subcategory of 𝖳 of objects isomorphic to a direct sum of integer tensor powers of the
Tate object 𝕋. Define 𝜔0 to be the fibre functor on 𝖲,

𝑋 ⇝ lim,,→
𝑛
Hom(

⨁

−𝑛≤𝑟≤𝑛
𝟙(𝑟), 𝑋).

Then the quotient tannakian category 𝖳∕𝜔0 is that defined more explicitly in V, 11.9,
below.

Remark 6.14 Let 𝑞∶ 𝖳 → 𝖰 be a normal quotient functor. Then 𝖳 can be recovered
from 𝖰, the homomorphism 𝜋(𝖰)→ 𝑞(𝜋(𝖳)), and the actions of 𝑞(𝜋(𝖳)) on the objects
of 𝖰 (apply 5.1(a)).

Remark 6.15 A fixed 𝑘-valued fibre functor on a tannakian category 𝖳 determines a
Galois correspondence between the subgroups of 𝜋(𝖳) and the equivalence classes of
quotient functors 𝖳 → 𝖰.

Exercise 6.16 Use (5.7, 5.8) to express the correspondence between fibre functors on
tannakian subcategories of 𝖳 and normal quotients of 𝖳 in the language of 2-categories.
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Aside 6.17 Let 𝐺 be the fundamental group 𝜋(𝖳) of a tannakian category 𝖳, and let 𝐻 be a
subgroup of 𝐺. We use the same letter to denote an affine group scheme in 𝖳 and the band it
defines. Then, under certain hypotheses, for example, if all the groups are commutative, there
will be an exact sequence

⋯→ 𝐻1(𝑘, 𝐺)→ 𝐻1(𝑘, 𝐺∕𝐻)→ 𝐻2(𝑘,𝐻)→ 𝐻2(𝑘, 𝐺)→ 𝐻2(𝑘, 𝐺∕𝐻).

The category 𝖳 defines a class 𝑐(𝖳) in 𝐻2(𝑘, 𝐺), namely, the 𝐺-equivalence class of the gerbe of
fibre functors on 𝖳, and the image of 𝑐(𝖳) in𝐻2(𝑘, 𝐺∕𝐻) is the class of 𝖳𝐻 . Any quotient of 𝖳 by
𝐻 defines a class in 𝐻2(𝑘,𝐻)mapping to 𝑐(𝖳) in 𝐻2(𝑘, 𝐺). Thus, the exact sequence suggests
that a quotient of 𝖳 by 𝐻 will exist if and only if the cohomology class of 𝖳𝐻 is neutral, i.e., if
and only if 𝖳𝐻 is neutral as a tannakian category, in which case the quotients are classified by
the elements of𝐻1(𝑘, 𝐺∕𝐻) (modulo𝐻1(𝑘, 𝐺)). When 𝖳 is neutral and we fix a 𝑘-valued fibre
functor on it, then the elements of𝐻1(𝑘, 𝐺∕𝐻) classify the 𝑘-valued fibre functors on 𝖳𝐻 . Thus,
the cohomology theory suggests the above results, and in the next subsubsection we prove that a
little more of this heuristic picture is correct.

The cohomology class of the quotient

For an affine group scheme 𝐺 over a field 𝑘, 𝐻𝑟(𝑘, 𝐺) denotes the cohomology group
computed with respect to the flat topology. When 𝐺 is not commutative, this is defined
only for 𝑟 = 0, 1, 2 (Giraud 1971).

Proposition 6.18 Let (𝖰, 𝑞) be a quotient of 𝖳 by a subgroup 𝐻 of the centre of 𝜋(𝖳).
Suppose that 𝖳 is neutral, with 𝑘-valued fibre functor 𝜔. Let 𝐺 = 𝒜𝑢𝑡⊗(𝜔), and let℘(𝜔𝑞)
be the 𝐺∕𝜔(𝐻)-torsorℋ𝑜𝑚(𝜔|𝖳𝐻 , 𝜔𝑞). Under the connecting homomorphism

𝐻1(𝑘, 𝐺∕𝐻)→ 𝐻2(𝑘,𝐻)

the class of℘(𝜔𝑞) in𝐻1(𝑘, 𝐺∕𝐻)maps to the class of 𝖰 in𝐻2(𝑘,𝐻).

Proof Note that𝐻 = Bd(𝖰), and so the statement makes sense. According to Giraud
1971, IV, 4.2.2, the connecting homomorphism sends the class of℘(𝜔𝑞) to the class of the
gerbe of liftings of℘(𝜔𝑞), which can be identified with (𝜔𝑞 ↓ Fib(𝖳)). Now Proposition
6.10 shows that the 𝐻-equivalence class of (𝜔𝑞 ↓ Fib(𝖳)) equals that of Fib(𝖰) which
(by definition) is the cohomology class of 𝖰. 2

Semisimple normal quotients

Everything can be made more explicit when the categories are semisimple. Throughout
this subsection, 𝑘 has characteristic zero.

Proposition 6.19 Normal quotients of semisimple tannakian categories are semisimple.

Proof A tannakian category is semisimple if and only if the identity component of its
fundamental group is pro-reductive (cf. 6.18), and a connected normal subgroup of a
reductive group is reductive (because its unipotent radical is a characteristic subgroup).2

Let 𝖳 be a semisimple tannakian category over 𝑘, and let 𝜔0 be a 𝑘-valued fibre
functor on a tannakian subcategory 𝖲 of 𝖳.We can construct an explicit quotient 𝖳∕𝜔0
as follows. First, let (𝖳∕𝜔0)′ be the category with one object �̄� for each object 𝑋 of 𝖳,
and with

Hom(𝖳∕𝜔0)′(�̄�, �̄�) = 𝜔0(ℋ𝑜𝑚(�̄�, �̄�)𝐻),
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where 𝐻 is the subgroup of 𝜋(𝖳) defining 𝖲. There is a unique structure of a 𝑘-linear
tensor category on (𝖳∕𝜔0)′ for which 𝑞∶ 𝖳 → (𝖳∕𝜔0)′ is a tensor functor. With this
structure, (𝖳∕𝜔0)′ is rigid, and we define 𝖳∕𝜔0 to be its pseudo-abelian hull. Thus, 𝖳∕𝜔0
has

objects: pairs (�̄�, 𝑒) with 𝑋 ∈ ob(𝖳) and 𝑒 an idempotent in End(�̄�),
morphisms: Hom𝖳∕𝜔0((�̄�, 𝑒), (�̄�, 𝑓)) = 𝑓◦Hom(𝖳∕𝜔0)′(�̄�, �̄�)◦𝑒.

Then (𝖳∕𝜔0, 𝑞) is a quotient of 𝖳 by𝐻, and 𝜔𝑞 ≃ 𝜔0.
Let 𝜔 be a fibre functor on 𝖳, and let 𝑎 be an isomorphism 𝜔0 → 𝜔|𝖳𝐻 . The pair

(𝜔, 𝑎) defines a fibre functor 𝜔𝑎 on 𝖳∕𝜔0 whose action on objects is determined by

𝜔𝑎(�̄�) = 𝜔(𝑋)

and whose action on morphisms is determined by

Hom(�̄�, �̄� Hom(𝜔𝑎(�̄�), 𝜔𝑎(�̄�))

𝜔0(ℋ𝑜𝑚(𝑋,𝑌)𝐻) 𝜔(ℋ𝑜𝑚(𝑋,𝑌)𝐻) ℋ𝑜𝑚(𝜔(𝑋), 𝜔(𝑌))𝜔(𝐻)

← →
𝜔𝑎

⇐⇐ def

←→𝑎 ←→≃

←
→

The map (𝜔, 𝑎)↦ 𝜔𝑎 defines an equivalence (𝜔0 ↓ Fib(𝖳))→ Fib(𝖳∕𝜔0).
Let 𝐻1 ⊂ 𝐻0 ⊂ 𝜋(𝖳), and let 𝜔0 and 𝜔1 be 𝑘-valued fibre functors on 𝖳𝐻0 and 𝖳𝐻1

respectively. Amorphism𝛼∶ 𝜔0 → 𝜔1|𝖳𝐻0 defines an exact tensor functor𝖳∕𝜔0 → 𝖳∕𝜔1
whose action on objects is determined by

�̄� (in 𝖳𝐻0) ↦ �̄� (in 𝖳𝐻1),

and whose action on morphisms is determined by

Hom𝖳∕𝜔0(�̄�, �̄�) Hom𝖳∕𝜔1(�̄�, �̄�)

𝜔0(ℋ𝑜𝑚𝖳(𝑋,𝑌)𝐻0) 𝜔1(ℋ𝑜𝑚𝖳(𝑋,𝑌)𝐻0) 𝜔1(ℋ𝑜𝑚𝖳(𝑋,𝑌)𝐻1))

← →

⇐⇐ def ⇐⇐ def

←→𝛼 ← →

When𝐻1 = 𝐻0, this is an isomorphism (!) of tensor categories 𝖳∕𝜔0 → 𝖳∕𝜔1.
Let (𝖰1, 𝑞1) and (𝖰2, 𝑞2) be quotients of 𝖳 by𝐻. For simplicity, assume that 𝜋

def= 𝜋(𝖳)
is commutative. Then ℋ𝑜𝑚(𝜔𝑞1 , 𝜔𝑞2) is 𝜋∕𝐻-torsor, and we assume that it lifts to a
𝜋-torsor 𝑃 in 𝖳, so 𝑃 ∧𝜋 (𝜋∕𝐻) =ℋ𝑜𝑚(𝜔𝑞1 , 𝜔𝑞2). Then

𝖳
𝑋↦𝑃∧𝜋𝑋
,,,,,,,,→ 𝖳

𝑞2,,→ 𝖰2

realizes𝖰2 as a quotient of𝖳 by𝐻, and the corresponding fibre functor on𝖳𝐻 is𝑃∧𝜋𝜔𝑞2 ≃
𝜔𝑞1 . Therefore, there exists a commutative diagram of exact tensor functors

𝖳 𝖳

𝖰1 𝖰2,

← →𝑋↦𝑃∧𝜋𝑋

←→ 𝑞1 ←→ 𝑞2

← →

which depends on the choice of 𝑃 liftingℋ𝑜𝑚(𝜔𝑞1 , 𝜔𝑞2) in an obvious way.

Exercise 6.20 Re-express the theory of quotients in terms of (Galois) groupoids.

Notes This section adapted from Milne 2007a.



Chapter V

Polarizations; Tate triples

Consider an abelian variety 𝐴 over an algebraic closure 𝔽 of 𝔽𝑝. For a prime number
𝓁 ≠ 𝑝, we have a finite-dimensionalℚ𝓁-vector space𝑉𝓁𝐴, and, for any polarization of𝐴,
we have a pairing𝜑∶ 𝑉𝓁𝐴×𝑉𝓁𝐴 → ℚ𝓁. Asℚ𝓁 is not a subfield ofℝ, it makes no sense to
ask if 𝜑 is positive-definite. However, 𝜑 induces an involution of the finite-dimensional
ℚ-subalgebra End(𝐴)⊗ℚ of End(𝑉𝓁𝐴), and Weil proved that this involution is positive.
Indeed, this is the key to his proof of the Riemann hypothesis for abelian varieties over
finite fields. In this chapter, Weil’s ideas are extended to tannakian categories.

From another perspective, the category of motives (however defined) over a field
is a tannakian category overℚ equipped with, for each prime number 𝑙 (including 𝑝),
a canonical realization functor to a tannakian category overℚ𝑙. A polarization on the
category plays the role of the missing realization at the infinite place.

Throughout this chapter 𝖢 is a tannakian category over ℝ and 𝖢′ is its extension to
ℂ: 𝖢′ = 𝖢(ℂ). Complex conjugation on ℂ is denoted by 𝜄 or by 𝑧 ↦ �̄�.

1 Preliminaries

Terminology 1.1 An additive map 𝑓∶ 𝑉 → 𝑊 of ℂ-vector spaces is semilinear if
𝑓(𝑧𝑣) = �̄�𝑓(𝑣) for 𝑧 ∈ ℂ and 𝑣 ∈ 𝑉. An additive functor 𝐹∶ 𝖢1 → 𝖢2 of ℂ-linear
categories is semilinear if 𝐹(𝑧𝑋) = �̄�𝐹𝑋 , where 𝑧𝑋 denotes the action of 𝑧 ∈ ℂ on 𝑋. A
morphism of ℂ-schemes 𝛼∶ 𝑇 → 𝑆 is semilinear if 𝑓 ↦ 𝑓◦𝛼∶ Γ(𝑆,𝒪𝑆)→ Γ(𝑇,𝒪𝑇) is
semilinear as a map of ℂ-vector spaces.

Positive involutions

Let 𝐴 be a finite-dimensional ℝ-algebra (not necessarily commutative).

1.2 An involution of 𝐴 is an ℝ-linear map ∗∶ 𝐴 → 𝐴 such that

1∗ = 1, (𝑎𝑏)∗ = 𝑏∗𝑎∗, 𝑎∗∗ = 𝑎, for all 𝑎, 𝑏 ∈ 𝐴.

The involution is said to be positive if Tr𝐴∕ℝ(𝑎𝑎∗) > 0 for all nonzero 𝑎 ∈ 𝐴.

Proposition 1.3 If 𝐴 admits a positive involution, then it is semisimple.

Proof Let 𝐼 be a nilpotent ideal in 𝐴. We have to show that 𝐼 = 0. Suppose not, and let
𝑢 be a nonzero element of 𝐼. Then 𝑣 def= 𝑢𝑢∗ lies in 𝐼 and is nonzero because Tr𝐴∕ℝ(𝑣) > 0.
As 𝑣 = 𝑣∗, we have Tr𝐴∕ℝ(𝑣2) > 0, Tr𝐴∕ℝ(𝑣4) > 0, . . . contradicting the nilpotence of 𝐼.2
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Let ∗ be an involution on 𝐴, and let 𝑉 be an 𝐴-module. An ℝ-bilinear form 𝜓∶ 𝑉 ×
𝑉 → ℝ is said to be balanced if

𝜓(𝑎∗𝑢, 𝑣) = 𝜓(𝑢, 𝑎𝑣) for all 𝑎 ∈ 𝐴 and 𝑢, 𝑣 ∈ 𝑉.

A hermitian form on𝑉 is a balanced symmetricℝ-bilinear form. For example, if𝐴 = ℂ
and ∗ is complex conjugation, such a form can be written uniquely as Trℂ∕ℝ ◦𝜙 with
𝜙∶ 𝑉 × 𝑉 → ℂ a hermitian form in the usual sense. A hermitian form 𝜓 is positive-
definite if 𝜓(𝑣, 𝑣) > 0 for al nonzero 𝑣 ∈ 𝑉.

Proposition 1.4 Assume that𝐴 is semisimple. The following conditions on an involution
∗ of 𝐴 are equivalent:
(a) some faithful 𝐴-module admits a positive-definite hermitian form;

(b) every 𝐴-module admits a positive-definite hermitian form;

(c) the involution ∗ is positive.

Proof (a)⇒(b). Let𝑉 be a faithful𝐴-module. Every simple𝐴-module occurs as a direct
summand of 𝑉, and so every 𝐴-module occurs as a direct summand of a direct sum of
copies of 𝑉. Hence, if 𝑉 carries a positive-definite hermitian form, then so does every
𝐴-module.

(b)⇒(c). Let𝑉 be a𝐴-module with a positive-definite hermitian form ( | ), and choose
an orthonormal ℝ-basis 𝑒1,… , 𝑒𝑛 for 𝑉. Then

Trℝ(𝑎∗𝑎|𝑉) =
∑

𝑖
(𝑒𝑖|𝑎∗𝑎𝑒𝑖) =

∑
𝑖
(𝑎𝑒𝑖|𝑎𝑒𝑖),

which is > 0 unless 𝑎 acts as the zero map on 𝑉. On applying this remark with 𝑉 = 𝐴,
we obtain (c).

(c)⇒(a). Condition (c) says that the hermitian form (𝑎, 𝑏) ↦ Tr𝐴∕ℝ(𝑎∗𝑏) on the
(faithful) 𝐴-module 𝐴 is positive-definite. 2

An element of a finite-dimensional semisimple ℝ-algebra 𝐴 is said to be totally
positive if the roots of its characteristic polynomial 𝑃𝛼 are all > 0. This condition is
equivalent to 𝛼 being invertible in 𝐴 and a square in ℝ[𝛼].

Real algebraic groups

1.5 Let 𝐺 be an algebraic group over ℝ. Recall (II, 9.7) that 𝐺 is said to be compact if
𝐺(ℝ) is compact and every connected component of 𝐺 has a real point. Then 𝐺(ℝ) is
Zariski dense in 𝐺 and the functor

𝖱𝖾𝗉𝖿ℝ(𝐺)→ 𝖱𝖾𝗉𝖿ℝ(𝐺(ℝ))

sending a representation of 𝐺 to the corresponding continuous representation of 𝐺(ℝ)
is an equivalence.

1.6 (Deligne 1972, 2.5) Every algebraic subgroup 𝐻 of a compact algebraic group 𝐺
over ℝ is compact.

To prove this, we use that the map

(𝑔,𝓁)↦ 𝑔 ⋅ exp(𝑖𝓁)∶ 𝐺(ℝ) × Lie(𝐺)→ 𝐺(ℂ)
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is bijective. It suffices to prove that for all ℎ = 𝑔 ⋅ exp(𝑖𝓁) ∈ 𝐻(ℂ), we have 𝓁 ∈ Lie(𝐻).
Since ℎ̄ ∈ 𝐻(ℂ), we have exp(2𝑖𝓁) = ℎ̄−1ℎ ∈ 𝐻(ℂ). View 𝐺(ℂ) as the set of real points
of an algebraic group over ℝ, and let 𝐽 ⊂ 𝐻(ℂ) be the Zariski closure in this group of
𝐽 def= {exp(𝑛𝑖𝓁) ∣ 𝑛 ∈ 2ℤ}. The elements 𝑔 of 𝐽, therefore also those of 𝐽, satisfy 𝑔−1 = �̄�,
and so Lie(𝐽) ⊂ 𝑖 Lie(𝐺). The Lie algebra Lie(𝐽) is abelian, and exp(Lie(𝐽)) is a group,
necessarily of finite index in 𝐽, and so there exist an 𝑛 ∈ ℕ and 𝓁′ ∈ Lie(𝐽) such that

exp(𝑛𝑖𝓁) = exp(𝓁′).

We then have 𝑖𝓁 ∈ Lie(𝐽) ⊂ Lie(𝐻) and 𝓁 ∈ Lie(𝐻), which completes the proof.

1.7 Let 𝐺 be an algebraic group over ℝ. If 𝐺 is compact, then every finite-dimensional
real representation of 𝐺 → GL(𝑉) carries a 𝐺-invariant positive-definite symmetric
bilinear form. Conversely, if one faithful finite-dimensional real representation of 𝐺
carries such a form, then 𝐺 is compact. Indeed, 𝐺 is then an algebraic subgroup of an
orthogonal group (which is compact).

1.8 We can restate 1.7 for complex representations of the real algebraic group 𝐺. If 𝐺 is
compact, then every finite-dimensional complex representation of𝐺 carries a𝐺-invariant
positive-definite hermitian form.1 Conversely, if some faithful finite-dimensional com-
plex representation of 𝐺 carries a 𝐺-invariant positive-definite hermitian form, then 𝐺 is
compact. Indeed, 𝐺 is then an algebraic subgroup of a unitary group (which is compact).

Cartan involutions

1.9 Let 𝐺 be an algebraic group over ℝ, and let 𝑔 ↦ �̄� denote complex conjugation on
𝐺(ℂ). Let 𝜃 be an involution of 𝐺 (as an algebraic group over ℝ). There is a unique real
form 𝐺(𝜃) of 𝐺 such that complex conjugation on 𝐺(𝜃)(ℂ) is 𝑔 ↦ 𝜃(�̄�). An involution is
said to be Cartan if 𝐺(𝜃) is compact (in the sense of 1.5).

1.10 Let 𝐺 be an algebraic group over ℝ. There exists a Cartan involution of 𝐺 if and
only if 𝐺◦ is reductive, in which case, any two are conjugate by an element of 𝐺(ℝ).

1.11 Let 𝐺 = GL𝑉 with 𝑉 a finite-dimensional real vector space. The choice of a basis
for 𝑉 determines a transpose operator𝑀 ↦ 𝑀𝑡, and𝑀 ↦ (𝑀𝑡)−1 is obviously a Cartan
involution, and 1.10 implies that all Cartan involutions of 𝐺 arise in this way.

1.12 Let𝐺 be a connected algebraic group overℝ and𝐺 → GL𝑉 a faithful representation
of 𝐺. Then 𝐺 is reductive if and only if 𝐺 is stable under 𝑔 ↦ 𝑔𝑡 for some choice of a
basis for 𝑉, in which case 𝑔 ↦ (𝑔𝑡)−1 is a Cartan involution of 𝐺; all Cartan involutions
of 𝐺 arise in this way from the choice of a basis for 𝑉 (Satake 1980, I, 4.4).

1.13 Let 𝐺 be a real algebraic group, and let 𝐶 be an element of 𝐺(ℝ) whose square is
central (so that ad(𝐶) is an involution). A 𝐶-polarization on a real representation 𝑉 of
𝐺 is a 𝐺-invariant bilinear form 𝜑 such that the form 𝜑𝐶 ,

(𝑢, 𝑣)↦ 𝜑(𝑢, 𝐶𝑣),

is symmetric and positive-definite.
1For a sesquilinear form 𝜑 to be 𝐺-invariant means that 𝜑(𝑔𝑢, �̄�𝑣) = 𝜑(𝑢, 𝑣), 𝑔 ∈ 𝐺(ℂ), 𝑢, 𝑣 ∈ 𝑉, i.e., 𝜑

is 𝐺-invariant when viewed as a map 𝑉 ⊗ �̄� → ℂ.
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Proposition 1.14 If ad(𝐶) is a Cartan involution of 𝐺, then every finite-dimensional real
representation of 𝐺 carries a 𝐶-polarization; conversely, if one faithful finite-dimensional
real representation of 𝐺 carries a 𝐶-polarization, then ad(𝐶) is a Cartan involution.

Proof We first remark that an ℝ-bilinear form 𝜑 on a real vector space 𝑉 extends to a
sesquilinear form 𝜑′ on 𝑉(ℂ), namely,

𝜑′∶ 𝑉(ℂ) × 𝑉(ℂ)→ ℂ, where 𝜑′(𝑢, 𝑣) = 𝜑ℂ(𝑢, 𝑣).

Moreover, 𝜑′ is hermitian (and positive-definite) if and only if 𝜑 is symmetric (and
positive-definite).

Let 𝜌∶ 𝐺 → GL(𝑉) be a real representation of 𝐺. For any 𝐺-invariant bilinear form
𝜑 on 𝑉, 𝜑ℂ is 𝐺(ℂ)-invariant, and so

𝜑′(𝑔𝑢, �̄�𝑣) = 𝜑′(𝑢, 𝑣), all 𝑔 ∈ 𝐺(ℂ), 𝑢, 𝑣 ∈ 𝑉(ℂ). (107)

On replacing 𝑣 with 𝐶𝑣 in this equality, we find that

𝜑′(𝑔𝑢, 𝐶(𝐶−1�̄�𝐶)𝑣) = 𝜑′(𝑢, 𝐶𝑣), all 𝑔 ∈ 𝐺(ℂ), 𝑢, 𝑣 ∈ 𝑉(ℂ). (108)

This can be rewritten as

𝜑′𝐶(𝑔𝑢, ((ad𝐶)�̄�)𝑣) = 𝜑′𝐶(𝑢, 𝑣),

where 𝜑′𝐶 = (𝜑𝐶)′. This last equation says that 𝜑′𝐶 is invariant under 𝐺
(ad𝐶).

If 𝜌 is faithful and 𝜑 is a 𝐶-polarization, then 𝜑′𝐶 is a positive-definite hermitian form,
and so 𝐺(ad𝐶)(ℝ) is compact (1.8). Thus ad𝐶 is a Cartan involution.

Conversely, if 𝐺(ad𝐶)(ℝ) is compact, then every real representation 𝐺 → GL(𝑉)
carries a 𝐺(ad𝐶)(ℝ)-invariant positive-definite symmetric bilinear form 𝜑 (1.7). Similar
calculations to the above show that 𝜑𝐶−1 is a 𝐶-polarization on 𝑉. 2

Notes It is difficult to find references for Cartan involutions in the nonconnected case.

Maximal compact subgroups

1.15 Let 𝐺 be an algebraic group over ℂ.
(a) Any two maximal compact subgroups of 𝐺(ℂ) are conjugate (Hochschild 1965,

XV, 3.1).

(b) If 𝐺◦ is reductive, then every maximal compact subgroup 𝐾 of 𝐺(ℂ) is a compact
real form of 𝐺, i.e., 𝐾 = 𝐺0(ℝ) for some compact algebraic group 𝐺0 over ℝ such
that 𝐺0ℂ = 𝐺 (Springer 1979, 6.5).

2 Tannakian categories over ℝ

2.1 Let 𝖢 be a tannakian category overℝ, and let 𝖢′ = 𝖢(ℂ). Recall (I, §7) that an object
of 𝖢′ is an object of 𝖢 together with an action ofℂ. For such an object 𝑋, we let �̄� denote
the same object but with the complex conjugate action. In this way, we get a semilinear
tensor functor 𝑋 ⇝ �̄�∶ 𝖢′ → 𝖢′, and a canonical tensor isomorphism 𝜇𝑋 ∶ 𝑋 → ̄̄𝑋 such
that

𝜇�̄� = 𝜇𝑋 . (109)
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The category 𝖢 can be recovered from the triple (𝖢′, 𝑋 ⇝ �̄�, 𝜇𝑋) as the collection of pairs
(𝑋, 𝑎) with 𝑋 an object of 𝖢′ and 𝑎∶ 𝑋 → ̄̄𝑋 an isomorphism such that �̄�◦𝑎 = 𝜇𝑋 (i.e.,
a descent datum on 𝑋). Every triple (𝖢′, 𝑋 ⇝ �̄�, 𝜇𝑋) satisfying (109) arises in this way
from a tannakian category over ℝ.2 Recall (III, 10.1) that 𝖢′ is automatically neutral.

Example 2.2 Let 𝐺 be an affine group scheme overℂ. Given a semilinear isomorphism
𝜎∶ 𝐺(ℂ)→ 𝐺(ℂ) and a 𝑐 ∈ 𝐺(ℂ) such that

𝜎2 = ad(𝑐), 𝜎(𝑐) = 𝑐 (110)

we can construct a triple as in 2.1:
(a) let 𝖢′=𝖱𝖾𝗉𝖿ℂ(𝐺);

(b) given a representation of 𝐺 on 𝑉, define a representation of 𝐺 on �̄� by the rule
𝑔𝑣 = 𝜎(𝑔)𝑣;

(c) define 𝜇𝑉 to be the map 𝑐𝑣 ↦ ̄̄𝑣∶ 𝑉 ≃,→ ̄̄𝑉.
Let𝑚 ∈ 𝐺(ℂ). Then 𝜎′ = 𝜎◦ ad(𝑚) and 𝑐′ = 𝜎(𝑚)𝑐𝑚 again satisfiy (110). The element
𝑚 defines an isomorphism of the functor 𝑉 ⇝ �̄� (rel. to (𝜎, 𝑐)) with the functor 𝑉 ↦ �̄�
(rel. to (𝜎′, 𝑐′)) by

𝑚𝑣 ↦ 𝑣∶ �̄� (rel. to (𝜎, 𝑐))→ �̄� (rel. to (𝜎′, 𝑐′)).

This isomorphism carries 𝜇𝑉 (rel. to (𝜎, 𝑐)) to 𝜇𝑉 (rel. to (𝜎′, 𝑐′)), and hence defines an
equivalence of 𝖢 (rel. to (𝜎, 𝑐)) with 𝖢 (rel. to (𝜎′, 𝑐′)).

Proposition 2.3 Let 𝖢 be a tannakian category overℝ, and let 𝖢′ = 𝖢(ℂ). Choose a fibre
functor 𝜔 on 𝖢′ with values in ℂ, and let 𝐺 = 𝒜𝑢𝑡⊗ℂ (𝜔).

(a) There exists a pair (𝜎, 𝑐) satisfying (110) and, such that under the equivalence 𝖢′ →
𝖱𝖾𝗉𝖿ℂ(𝐺) defined by 𝜔, the functor 𝑋 ⇝ �̄� corresponds to 𝑉 ⇝ �̄� and 𝜔(𝜇𝑋) = 𝜇𝜔(𝑋).

(b) The pair (𝜎, 𝑐) in (a) is uniquely determined up to replacement by a pair (𝜎′, 𝑐′)
with 𝜎′ = 𝜎◦ ad(𝑚) and 𝑐′ = 𝜎(𝑚)𝑐𝑚, some𝑚 ∈ 𝐺(ℂ).

Proof (a) Let �̄� be the fibre functor 𝑋 ⇝ 𝜔(�̄�) and let 𝑇 = ℋ𝑜𝑚⊗(𝜔, �̄�). According
to (8.1), 𝑇 is a 𝐺-torsor, and Proposition 7.7 shows that it is trivial. The choice of a
trivialization provides us with a natural isomorphism 𝜔(𝑋)→ �̄�(𝑋) and therefore with
a semi-linear natural isomorphism 𝜆𝑋 ∶ 𝜔(𝑋)→ 𝜔(�̄�). Define 𝜎 by the condition that
𝜎(𝑔)�̄� = 𝜆𝑋◦𝑔𝑋◦𝜆−1𝑋 for all 𝑔 ∈ 𝐺(ℂ), and let 𝑐 be such that 𝑐𝑋 = 𝜔(𝜇𝑋)−1◦𝜆�̄�◦𝜆𝑋 .

(b) The choice of a different trivialization of 𝑇 replaces 𝜆𝑋 with 𝜆𝑋◦𝑚𝑋 for some
𝑚 ∈ 𝐺(ℂ), 𝜎 with 𝜎◦ ad(𝑚), and 𝑐 with 𝜎(𝑚)𝑐𝑚. 2

Summary 2.4 To pass from the top row to the bottom, choose a fibre functor 𝜔 over ℂ.

𝖢 (over ℝ) (𝖢′, 𝑋 ⇝ �̄�, 𝜇𝑋)

𝒢 = 𝒜𝑢𝑡⊗ℝ (𝜔) (𝐺 = 𝒜𝑢𝑡⊗ℂ (𝜔), 𝜎, 𝑐).

→ →2.1

→→ 11.33 →→ 2.2, 2.3

→→11.34

2For example, choose a fibre functor 𝜔 on 𝖢′ with values in ℂ, and let 𝐺 = 𝒜𝑢𝑡⊗(𝜔), so 𝖢′ ∼ 𝖱𝖾𝗉𝖿(𝐺).
From the structure on 𝖢′, we get a pair (𝜎, 𝑐) satifying (110), which can be used to extend 𝐺 to a ℂ∕ℝ-
groupoid (III, 11.34). Now take 𝖢 = 𝖱𝖾𝗉𝖿(𝒢).
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3 Bilinear and sesquilinear forms

We review some definitions and formulas concerning bilinear and sesquilinear forms
on tannakian categories. The formulas can be proved by applying a fibre functor. They
also hold in tensorial categories, but then the proofs may require drawing diagrams. See
Saavedra 1972, V, 2.1, 2.2, for more details.

Bilinear forms in tannakian categories.

Let 𝖢 be a tannakian category over a field 𝑘 (for example ℝ), and let 𝑇 be an invertible
object of 𝖢. A bilinear form with values in 𝑇 is a morphism

𝜙∶ 𝑋 ⊗ 𝑋 → 𝑇.

There are bijections3

Hom(𝑋 ⊗ 𝑋, 𝑇)⇉ Hom(𝑋,𝑋∨ ⊗ 𝑇)

𝜙 ↦ { 𝜙
∼ 𝜙∼(𝑥)(𝑦) = 𝜙(𝑥, 𝑦)

∼𝜙 ∼𝜙(𝑥)(𝑦) = 𝜙(𝑦, 𝑥).

The form 𝜙 is said to be nondegenerate if 𝜙∼ (equivalently ∼𝜙) is an isomorphism. The
parity of a nondegenerate bilinear form 𝜙 is the unique morphism 𝜀𝜙 ∶ 𝑋 → 𝑋 such
that

{ 𝜙
∼ = ∼𝜙◦𝜀𝜙
𝜙(𝑥, 𝑦) = 𝜙(𝑦, 𝜀𝜙𝑥).

Then
𝜙(𝜀𝜙𝑥, 𝜀𝜙𝑦) = 𝜙(𝑥, 𝑦).

The transpose 𝑢𝜙 of 𝑢 ∈ End(𝑋) relative to 𝜙 is determined by

{ 𝜙◦(𝑢 ⊗ id𝑋) = 𝜙◦(id𝑋⊗𝑢𝜙)
𝜙(𝑢𝑥, 𝑦) = 𝜙(𝑥, 𝑢𝜙𝑦).

There are the formulas

(𝑢𝑣)𝜙 = 𝑣𝜙𝑢𝜙, (id𝑋)𝜙 = id𝑋 , (𝑢𝜙)𝜙 = 𝜀𝜙𝑢𝜀−1𝜙 , (𝜀𝜙)𝜙 = 𝜀−1𝜙 ,

so 𝑢 ↦ 𝑢𝜙 is a bijective 𝑘-linear antihomomorphism End(𝑋)→ End(𝑋).
If 𝜙 is a nondegenerate bilinear form on 𝑋, then any other nondegenerate bilinear

form can be written

{ 𝜙𝛼 = 𝜙◦(𝛼 ⊗ id)
𝜙𝛼(𝑥, 𝑦) = 𝜙(𝛼𝑥, 𝑦)

for a uniquely determined automorphism 𝛼 of 𝑋. There are formulas

𝑢𝜙𝛼 = (𝛼𝑢𝛼−1)𝜙, 𝜀𝜙𝛼 = (𝛼𝜙)−1𝜀𝜙𝛼.

Therefore, when 𝜀𝜙 is in the centre of End(𝑋), 𝜙𝛼 has the same parity as 𝜙 if and only if
𝛼𝜙 = 𝛼.

3In more detail, 𝜙∼ is the image of 𝜙 under the canonical isomorphism

Hom(𝑋1 ⊗𝑋2, 𝑇) ≃ Hom(𝑋1, 𝑋∨
2 ⊗ 𝑇), 𝑋1 = 𝑋2 = 𝑋.

For a fibre functor𝜔 and 𝑥 ∈ 𝜔(𝑋), we have𝜔(𝜙∼)(𝑥) ∈ 𝜔(𝑋)∨⊗𝜔(𝑇) ≃ Hom(𝜔(𝑋), 𝜔(𝑇)), and we require
that

𝜔(𝜙∼)(𝑥)(𝑦) = 𝜔(𝜙)(𝑥, 𝑦),
all 𝑦 ∈ 𝜔(𝑋).
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Sesquilinear forms on vector spaces

A sesquilinear form on a complex vector space 𝑉 is a biadditive mapping

𝜙∶ 𝑉 × 𝑉 → ℂ

such that
𝜙(𝑎𝑥, 𝑏𝑦) = 𝑎�̄�𝜙(𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝑉, 𝑎, 𝑏 ∈ ℂ.

The form is nondegenerate if the mapping

𝑥 ↦ 𝜙(𝑥,−)∶ 𝑉 → �̄�∨

is an isomorphism. Then, the transpose 𝑢𝜙 of an endomorphism 𝑢 of 𝑉 relative to 𝜙 is
the unique endomorphism 𝑢𝜙 such that

𝜙(𝑢𝑥, 𝑦) = 𝜙(𝑥, 𝑢𝜙𝑦), all 𝑥, 𝑦 ∈ 𝑉.

We transfer these definitions to a tannakian category. Note that we can regard 𝜙 as a
ℂ-bilinear map 𝑉 × �̄� → ℂ, and hence as a ℂ-linear map 𝑉 ⊗ℂ �̄� → ℂ.

Sesquilinear forms in tannakian categories

Let 𝖢 be tannakian category over ℝ and (𝖢′, 𝑋 ↦ �̄�, 𝜇𝑋) the associated triple (2.1).
Let (𝟙, 𝑒), 𝑒∶ 𝟙⊗ 𝟙 ≃,→ 𝟙, be a unit object for 𝖢′. Then (𝟙, 𝑒) is again a unit object,

and the unique isomorphism of unit objects 𝑎∶ (𝟙, 𝑒)→ (𝟙, 𝑒) is a descent datum. We
use it to identify 𝟙 with 𝟙.

A sesquilinear form on an object 𝑋 of 𝖢′ is a morphism

𝜙∶ 𝑋 ⊗ �̄� → 𝟙.

On applying −, we obtain a morphism �̄� ⊗ ̄̄𝑋 → 𝟙, which can be identified (using 𝜇𝑋)
with a morphism

�̄�∶ �̄� ⊗ 𝑋 → 𝟙.

Let 𝜙∼ and ∼𝜙 be the morphisms 𝑋 → �̄�∨ such that4

{ 𝜙
∼(𝑥)(𝑦) = 𝜙(𝑥 ⊗ 𝑦)

∼𝜙(𝑥)(𝑦) = �̄�(𝑦 ⊗ 𝑥) (111)

The form 𝜙 is said to be nondegenerate if 𝜙∼ (equivalently ∼𝜙) is an isomorphism. The
parity of a nondegenerate sesquilinear form 𝜙 is the unique morphism 𝜀𝜙 ∶ 𝑋 → 𝑋 such
that

{ 𝜙∼ = ∼𝜙◦𝜀𝜙;
𝜙(𝑥, 𝑦) = �̄�(𝑦, 𝜀𝜙𝑥).

(112)

Note that
{ 𝜙◦(𝜀𝜙 ⊗ 𝜀𝜙) = 𝜙;
𝜙(𝜀𝜙𝑥, 𝜀𝜙𝑦) = 𝜙(𝑥, 𝑦) (113)

4Take 𝜙∼ to be the morphism corresponding to 𝜙 under the canonical isomorphisms

Hom(𝑋 ⊗ �̄�, 𝟙) ≃ Hom(𝑋,ℋ𝑜𝑚(�̄�, 𝟙)) = Hom(𝑋, �̄�∨).
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The transpose 𝑢𝜙 of 𝑢 ∈ End(𝑋) relative to 𝜙 is determined by

{ 𝜙◦(𝑢 ⊗ id�̄�) = 𝜙◦(id𝑋⊗𝑢𝜙);
𝜙(𝑢𝑥, 𝑦) = 𝜙(𝑥, 𝑢𝜙𝑦).

(114)

There are formulas

(𝑢𝑣)𝜙 = 𝑣𝜙𝑢𝜙, (id𝑋)𝜙 = id𝑋 , (𝑢𝜙)𝜙 = 𝜀𝜙𝑢𝜀−1𝜙 , (𝜀𝜙)𝜙 = 𝜀−1𝜙 (115)

and so 𝑢 ↦ 𝑢𝜙 is a semilinear bijective antihomomorphism End(𝑋)→ End(𝑋).
If 𝜙 is a nondegenerate sesquilinear form on 𝑋, then any other nondegenerate

sesquilinear form can be written

𝜙𝛼 = 𝜙◦(𝛼 ⊗ id), 𝜙𝛼(𝑥, 𝑦) = 𝜙(𝛼𝑥, 𝑦) = 𝜙(𝑥, 𝛼𝜙𝑦) (116)

for a uniquely determined automorphism 𝛼 of 𝑋. There are the formulas

𝑢𝜙𝛼 = (𝛼𝑢𝛼−1)𝜙, 𝜀𝜙𝛼 = (𝛼𝜙)−1𝜀𝜙𝛼. (117)

Therefore, when 𝜀𝜙 is in the centre of End(𝑋), 𝜙𝛼 has the same parity as 𝜙 if and only if
𝛼𝜙 = 𝛼.

Bilinear forms versus sesquilinear forms

Let 𝑉 be a vector space overℝ, and let 𝑉ℂ = 𝑉⊗ℂ. Anℝ-bilinear form 𝜑∶ 𝑉 ×𝑉 → ℝ
can be extended to a sesquilinear form 𝜓∶ 𝑉ℂ × 𝑉ℂ → ℂ by setting

𝜓(𝑢, 𝑣) = 𝜑ℂ(𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑉ℂ.

Moreoever, 𝜓 is hermitian (and positive-definite) if and only if 𝜑 is symmetric (and
positive-definite). In this way, we get a one-to-one correspondence between the bilinear
forms on 𝑉 and the sesquilinear forms on 𝑉ℂ.

Let𝖢 be a tannakian category overℝ and (𝖢′, 𝑋 ⇝ �̄�, 𝜇𝑋) its extension toℂ (as in 2.1).
Let (𝑋, 𝑎) be an object of 𝖢′ with a descent datum 𝑎. A sesquilinear form 𝜓∶ 𝑋⊗�̄� → 𝟙
on 𝑋 defines a bilinear form

𝑋 ⊗ 𝑋
id⊗𝑎
,→ 𝑋 ⊗ �̄�

𝜓
,→ 𝟙

on 𝑋 with values in 𝟙 that descends to the object in 𝖢.

4 Weil forms

Let 𝖢 be a tannakian category over ℝ and (𝖢′, 𝑋 ⇝ �̄�, 𝜇𝑋) its extension to ℂ (as in 2.1).
Let 𝑋 be an object of 𝖢′. Then End(𝑋) is a finite-dimensional ℂ-algebra.

Definition 4.1 A nondegenerate sesquilinear form 𝜙∶ 𝑋 ⊗ �̄� → 𝟙 is aWeil form if
(a) its parity 𝜀𝜙 is in the centre of End(𝑋) and

(b) Tr𝑋(𝑢◦𝑢𝜙) > 0 for all nonzero 𝑢 in End(𝑋).

Proposition 4.2 Let 𝜙 be a Weil form on 𝑋.
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(a) The map 𝑢 ↦ 𝑢𝜙 is an involution of End(𝑋) inducing complex conjugation on
ℂ = ℂ ⋅ id𝑋 , and (𝑢, 𝑣) ↦ Tr𝑋(𝑢◦𝑣𝜙) is a positive-definite hermitian form on
End(𝑋).

(b) End(𝑋) is a semisimple ℂ-algebra.
(c) Any commutative sub-ℝ-algebra 𝐴 of End(𝑋) composed of symmetric elements (i.e.,

elements such that 𝑢𝜙 = 𝑢) is a product of copies ofℝ.

Proof (a) Condition (a) says that 𝑢 ↦ 𝑢𝜙 is an involution (see (115)) and condition (b)
says that the hermitian form is positive-definite..

(b) Let 𝐼 be a nilpotent ideal in End(𝑋). We have to show that 𝐼 = 0. Suppose on the
contrary that there is a 𝑢 ≠ 0 in 𝐼. Then 𝑣 = 𝑢𝑢𝜙 ∈ 𝐼 and is nonzero because Tr𝑋(𝑣) > 0.
As 𝑣 = 𝑣𝜙, we have that Tr𝑋(𝑣2) > 0, Tr𝑋(𝑣4) > 0,. . . contradicting the nilpotence of 𝐼.
See also 1.3.

(c) The argument used in (b) shows that 𝐴 is semisimple and is therefore a product
of fields. Moreover, for any 𝑢 ∈ 𝐴, Tr𝑋(𝑢2) = Tr𝑋(𝑢𝑢𝜙) > 0. If ℂ occurs as a factor of 𝐴,
then Tr𝑋 |ℂ is a multiple of the identity map, which contradicts Tr𝑋(𝑢2) > 0 . 2

Two Weil forms, 𝜙 on 𝑋 and 𝜓 on 𝑌, are said to be compatible if the sesquilinear
form 𝜙 ⊕ 𝜓 on 𝑋 ⊕ 𝑌 is again a Weil form.

Let 𝜙 and 𝜓 be Weil forms on 𝑋 and 𝑌 respectively. Then 𝜙 and 𝜓 define isomor-
phisms

Hom(𝑋,𝑌)→ Hom(𝑋 ⊗ 𝑌, 𝟙)← Hom(𝑌,𝑋).

Let 𝑢 ∈ Hom(𝑋,𝑌), and let 𝑢′ be the corresponding element in Hom(𝑌,𝑋). Then
𝜙 and 𝜓 are compatible if and only if, for all 𝑢 ≠ 0, Tr𝑌(𝑢◦𝑢′) > 0. In particular, if
Hom(𝑋,𝑌) = 0, then 𝜙 and 𝜓 are automatically compatible.

Proposition 4.3 Let 𝜙 be a Weil form on 𝑋, and let 𝜙𝛼 = 𝜙◦(𝛼 ⊗ id𝑋) for some 𝛼 ∈
Aut(𝑋).
(a) The form sesquilinear form 𝜙𝛼 has the same parity as 𝜙 if and only if 𝛼 is symmetric,

i.e., 𝛼𝜙 = 𝛼.
(b) Assume 𝛼 is symmetric. Then 𝜙𝛼 is a Weil form if and only if 𝛼 is a square in

ℝ[𝛼] ⊂ End(𝑋).
(c) If 𝜙𝛼 is a Weil form with the same parity as 𝜙, then 𝜙𝛼 is compatible with 𝜙.
(d) For any Weil form 𝜙 on 𝑋, the map 𝛼 ↦ 𝜙𝛼 defines a one-to-one correspondence

between the set of totally positive symmetric endomorphisms of 𝑋 and the set of Weil
forms on 𝑋 that have the same parity as 𝜙 and are compatible with 𝜙.

Proof (a) According to (117), the parity of 𝜙𝛼 is (𝛼𝜙)−1𝜖𝜙𝛼. As 𝜖𝜙 is in the centre of
End(𝑋), this equals 𝜖𝜙 if and only if 𝛼𝜙 = 𝛼.

(b) As 𝛼 = 𝛼𝜙, (117) and (115) show that 𝑢𝜙𝛼 = 𝛼−1 ⋅ 𝑢𝜙 ⋅ 𝛼. Thus, 𝜙𝛼 is a Weil form
if and only if

Tr𝑋(𝑢 ⋅ 𝛼−1 ⋅ 𝑢𝜙 ⋅ 𝛼) > 0, all 𝑢 ≠ 0, 𝑢 ∈ End(𝑋).

If 𝛼 = 𝛽2 with 𝛽 ∈ ℝ[𝛼], then

Tr𝑋(𝑢𝛼−1𝑢𝜙𝛼) = Tr𝑋((𝑢𝛽−1)𝛽−1𝑢𝜙𝛼−1)
= Tr𝑋(𝛽−1𝑢𝜙𝛼−1(𝑢𝛽−1)) (Tr𝑋(𝑣𝑤) = Tr𝑋(𝑤𝑣))
= Tr𝑋((𝛽𝑢𝛽−1)𝜙(𝛽−1𝑢𝛽)) > 0
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for 𝑢 ≠ 0. Conversely, if 𝜙𝛼 is a Weil form, then Tr𝑋(𝑢2𝛼) > 0 for all 𝑢 ≠ 0 in ℝ[𝛼],
which implies that 𝛼 is a square in ℝ[𝛼].

(c) Let 𝑢 be a nonzero endomorphism of 𝑋. Then 𝑢′ = 𝑢𝜙𝛼 , and so 𝜙 and 𝜙𝛼 are
compatible if and only if Tr𝑋(𝑢 ⋅ 𝑢𝜙𝛼 ) > 0 for all 𝑢 ≠ 0, but this is implied by 𝜙𝛼’s being
a Weil form.

(d) According to (116), every nondegenerate sesquilinear form on 𝑋 is of the form 𝜙𝛼
for a unique automorphism 𝛼 of 𝑋. Thus, the proposition is an immediate consequence
of the preceding statements. 2

The relation of compatibility on the set of Weil forms on 𝑋 is obviously reflexive
and symmetric, and the next corollary implies that it is also transitive on any set of Weil
forms on 𝑋 having a fixed parity.

Corollary 4.4 Let 𝜙 and 𝜙′ be compatible Weil forms on 𝑋 with the same parity, and let
𝜓 be a Weil form on 𝑌. If 𝜙 is compatible with 𝜓, then so also is 𝜙′.

Proof This follows easily from writing 𝜙′ = 𝜙𝛼. 2

Example 4.5 Let 𝑋 be a simple object in 𝖢′, so that End(𝑋) = ℂ, and let 𝜀 ∈ End(𝑋).
If �̄� is isomorphic to 𝑋∨, so that there exists a nondegenerate sesquilinear form on 𝑋,
then (116) shows that the sesquilinear forms on 𝑋 are parametrized by ℂ; moreover,
(117) shows that if there is a nonzero such form with parity 𝜀, then the set of sesquilinear
forms on 𝑋 with parity 𝜀 is parametrized by ℝ; finally, (4.3) shows that if there is a Weil
form with parity 𝜀, then the set of such forms falls into two compatibility classes, each
parametrized by ℝ>0.

Variant 4.6 Let 𝑋0 be an object in 𝖢 and let 𝜙0 be a nondegenerate bilinear form
𝜙0∶ 𝑋0 ⊗𝑋0 → 𝟙. The form 𝜙0 is said to be aWeil form on 𝑋0 if
(a) its parity 𝜀𝜙0 is in the centre of End(𝑋0) and

(b) Tr𝑋0(𝑢◦𝑢
𝜙0) > 0 for all nonzero 𝑢 ∈ End(𝑋0).

Two Weil forms 𝜙0 and 𝜓0 are said to be compatible if 𝜙0 ⊕𝜓0 is also a Weil form.
Let 𝑋0 correspond to the pair (𝑋, 𝑎) with 𝑋 ∈ ob(𝖢′). Then 𝜙0 defines a bilinear

form 𝜙 on 𝑋, and

𝜓 def= (𝑋 ⊗ �̄�
1⊗𝑎−1
,,,,,,→ 𝑋 ⊗ 𝑋

𝜙
,→ 𝟙)

is a nondegenerate sesquilinear form on 𝑋. If 𝜙0 is a Weil form, then 𝜓 is a Weil form on
𝑋 that is compatible with its conjugate �̄�, and every such 𝜓 arises from a 𝜙0; moreover,
𝜀𝜓 = 𝜀𝜙0 .

5 Polarizations

Let 𝖢 be a tannakian category over ℝ and (𝖢′, 𝑋 ⇝ �̄�, 𝜇𝑋) its extension to ℂ (as in 2.1).
Let 𝑍 be the centre of the band attached to 𝖢. Thus 𝑍 is a commutative affine group

scheme over ℝ such that
𝑍(ℂ) ≃ Centre(Aut⊗(𝜔))

for any ℂ-valued fibre functor 𝜔 on 𝖢′. Moreover, 𝑍 represents 𝒜𝑢𝑡⊗(id𝖢).

Definition 5.1 Let 𝜀 ∈ 𝑍(ℝ) and, for each 𝑋 ∈ ob(𝖢′), let Π(𝑋) be an equivalence
class (for the relation of compatibility) of Weil forms on 𝑋 with parity 𝜀. Then Π is a
(homogeneous) polarization on 𝖢 if
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(a) for all 𝑋, �̄� ∈ Π(𝑋) whenever 𝜙 ∈ Π(�̄�), and
(b) for all 𝑋 and 𝑌, 𝜙 ⊕ 𝜓 ∈ Π(𝑋 ⊕ 𝑌) and 𝜙 ⊗ 𝜓 ∈ Π(𝑋 ⊗ 𝑌) whenever 𝜙 ∈ Π(𝑋)

and 𝜓 ∈ Π(𝑌).

We call 𝜀 the parity of Π and say that 𝜙 is positive for Π if 𝜙 ∈ Π(𝑋). Thus the
conditions require that �̄�, 𝜙 ⊕ 𝜓, and 𝜙 ⊗ 𝜓 are positive for Π whenever 𝜙 and 𝜓 are.

Proposition 5.2 LetΠ be a polarization on 𝖢.
(a) The categories 𝖢 and 𝖢′ are semisimple.
(b) If 𝜙 ∈ Π(𝑋) and 𝑌 ⊂ 𝑋, then 𝑋 = 𝑌 ⊕ 𝑌⟂ and the restriction 𝜙𝑌 of 𝜙 to 𝑌 is in

Π(𝑌).

Proof (a) Let 𝑋 be an object of 𝖢′and let 𝑢∶ 𝑌 → 𝑋 be a nonzero simple subobject of
𝑋. Choose 𝜙 ∈ Π(𝑌) and 𝜓 ∈ Π(𝑋). Consider

𝑣 = (0 𝑢
0 0) ∶ 𝑋 ⊕ 𝑌 → 𝑋 ⊕ 𝑌

and let 𝑢′∶ 𝑋 → 𝑌 be such that

𝑣𝜓⊕𝜙 = ( 0 0
𝑢′ 0) .

Then Tr𝑌(𝑢′𝑢) = Tr𝑌⊕𝑋(𝑣𝜓⊕𝜙◦𝑣) > 0, and so 𝑢′𝑢 is an automorphism 𝑤 of 𝑌. The map
𝑝 = 𝑤−1◦𝑢′ projects 𝑋 onto 𝑌, which shows that 𝑌 is a direct summand of 𝑋. We have
shown that 𝑋 is semisimple. Thus 𝖢′ is semisimple, and the same argument, using the
bilinear forms (4.6) shows that 𝖢 is semisimple.5

(b) Let 𝑌′ = 𝑌 ∩ 𝑌⟂, where 𝑌⟂ is the largest subobject of 𝑋 such that 𝜙 is zero on
𝑌 ⊗ �̄�⟂, and let 𝑝∶ 𝑋 → 𝑋 be the projection of 𝑋 onto 𝑌′ (by which we mean that
𝑝(𝑋) ⊂ 𝑌′ and 𝑝|𝑌′ = id𝑌′). As 𝜙 is zero on 𝑌′ ⊗𝑌′,

0 = 𝜙◦(𝑝 ⊗ �̄�) = 𝜙◦(id⊗𝑝𝜙𝑝),

and so 𝑝𝜙𝑝 = 0. Therefore, Tr𝑋(𝑝𝜙𝑝) = 0, and so 𝑝, and 𝑌′, are zero. Thus 𝑋 = 𝑌⊕𝑌⟂

and 𝜙 = 𝜙𝑌 ⊕ 𝜙⟂𝑌 . Let 𝜙1 ∈ Π(𝑌) and 𝜙2 ∈ Π(𝑌⟂). Then 𝜙1 ⊕ 𝜙2 is compatible with 𝜙,
and this implies that 𝜙1 is compatible with 𝜙𝑌 . 2

Example 5.3 Suppose that 𝖢 is defined by a triple (𝐺, 𝜎, 𝑐), as in (2.1), so that 𝖢′ =
𝖱𝖾𝗉𝖿ℂ(𝐺). A sesquilinear form 𝜙∶ 𝑋 ⊗ �̄� → 𝟙 defines a sesquilinear form 𝜙′ on 𝑋 in
the usual, vector space, sense by the formula

𝜙′(𝑥, 𝑦) = 𝜙(𝑥 ⊗ �̄�), 𝑥, 𝑦 ∈ 𝑋. (118)

The conditions that 𝜙 be a 𝐺-morphism and have parity 𝜀 ∈ 𝑍(ℝ) become respectively

𝜙′(𝑥, 𝑦) = 𝜙′(𝑔𝑥, 𝜎−1(𝑔)𝑦), 𝑔 ∈ 𝐺(ℂ),
𝜙′(𝑦, 𝑥) = 𝜙′(𝑥, 𝜀𝑐−1𝑦).

(119)

When 𝐺 acts trivially on 𝑋, the last equation becomes

𝜙′(𝑦, 𝑥) = 𝜙′(𝑥, 𝑦),
5Alternatively, use that End(𝑋) is semisimple for all 𝑋; see VI, 6.4.
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and so 𝜙′ is a hermitian form in the usual sense on 𝑋. When 𝑋 is one-dimensional, 𝜙′
is positive-definite (for otherwise 𝜙 ⊗ 𝜙 ∉ Π(𝑋)). Now (5.2b) shows that the same is
true for any 𝑋 on which 𝐺 acts trivially, and (4.3) shows that {𝜙′ ∣ 𝜙 ∈ Π(𝑋)} is the
complete set of positive-definite hermitian forms on𝑋. In particular, 𝖵𝖾𝖼𝖿ℝ has a unique
polarization.

Remark 5.4 LetΠ be a polarization on 𝖢with parity 𝜀. ThenΠ defines, for each simple
object 𝑋 of 𝖢′, an orientation of the real line of sesquilinear forms on 𝑋 with parity 𝜀
(see 4.5), and Π is obviously determined by this family of orientations.

Choose a ℂ-valued fibre functor 𝜔 on 𝖢′, and choose for each simple object 𝑋𝑖 a
𝜙𝑖 ∈ Π(𝑋𝑖). Then

Π(𝑋𝑖) = {𝑟𝜙𝑖 ∣ 𝑟 ∈ ℝ>0}.

If 𝑋 is isotypic of type 𝑋𝑖, then 𝜔(𝑋) =𝑊⊗𝜔(𝑋𝑖) for some finite-dimensional vector
space𝑊 on which 𝒜𝑢𝑡⊗(𝜔) acts trivially, and

{𝜔(𝜙)′ ∣ 𝜙 ∈ Π(𝑋)} = {𝜓 ⊗ 𝜔(𝜙𝑖)′ ∣ 𝜓 hermitian 𝜓 > 0}.

If 𝑋 =
⨁

𝑋(𝑖), where the 𝑋(𝑖) are the isotypic components of 𝑋, then

Π(𝑋) =
⨁

Π(𝑋(𝑖)).

Variant 5.5 Let 𝜀 ∈ 𝑍(ℝ) and, for each 𝑋0 ∈ ob(𝖢), let Π(𝑋0) be a nonempty compati-
bility class of bilinearWeil forms on𝑋0 with parity 𝜀 (see 4.6). ThenΠ is a homogeneous
polarization on 𝖢 if
(a) for all𝑋 and𝑌, 𝜙0⊕𝜓0 ∈ Π(𝑋⊕𝑌) and 𝜙0⊗𝜓0 ∈ Π(𝑋⊗𝑌)whenever 𝜙0 ∈ Π(𝑋)

and 𝜓0 ∈ Π(𝑌).
As {𝑋 ∣ (𝑋, 𝑎) ∈ ob(𝖢)} generates 𝖢′, the relation between bilinear and sesquilinear
forms noted in (4.6) establishes a one-to-one correspondence between polarizations in
this bilinear sense and in the sesquilinear sense of (5.1).

In the situation of (5.3), a bilinear form 𝜙0 on 𝑋0 defines a sesquilinear form 𝜓′ on
𝑋 = 𝑋0 ⊗ ℂ (in the usual vector space sense) by the formula:

𝜓′(𝑧1𝑣1, 𝑧2𝑣2) = 𝑧1�̄�2𝜙0(𝑣1, 𝑣2), 𝑣1, 𝑣2 ∈ 𝑋0, 𝑧1, 𝑧2 ∈ ℂ.

ToDo 9 Discuss polarizations on tannakian categories over subfields of ℝ.

6 Description of the polarizations

Let 𝖢 be an algebraic tannakian category overℝ, and let (𝐺, 𝜎, 𝑐) be the triple attached to
a fibre functor, as in 2.3. Let 𝐾 be a maximal compact subgroup of 𝐺(ℂ). As all maximal
compact subgroups of 𝐺(ℂ) are conjugate (1.15), there exists an 𝑚 ∈ 𝐺(ℂ) such that
𝜎−1(𝐾) = 𝑚𝐾𝑚−1. After replacing 𝜎 with 𝜎◦ ad(𝑚), we may suppose that 𝜎(𝐾) = 𝐾.
Subject to this constraint, (𝜎, 𝑐) is determined up to modification by an element𝑚 in
the normalizer of 𝐾.

Assume that 𝖢 is polarizable. Then 𝖢′ is semisimple (5.2(a)), and so 𝐺◦ is reductive
(II, 6.18). It follows that𝐾 is a compact real form of𝐺 (1.15). Let 𝜎𝐾 denote the semilinear
automorphism of 𝐺 that sends a 𝑔 ∈ 𝐺(ℂ) to its conjugate relative to the real structure
on 𝐺 defined by 𝐾. Note that 𝜎𝐾 determines 𝐾. The normalizer of 𝐾 is 𝐾 ⋅ 𝑍(ℂ), and so
𝑐 ∈ 𝐾 ⋅ 𝑍(ℂ).

Fix a polarization Π on 𝖢, and let 𝜀 be its parity.
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Let 𝑋 be a simple representation of 𝐺, and let 𝜓 be a positive-definite 𝐾-invariant
hermitian form on 𝑋. For any 𝜙 ∈ Π(𝑋), the associated form 𝜙′(𝑥, 𝑦) def= 𝜙(𝑥 ⊗ �̄�) can
be expressed

𝜙′(𝑥, 𝑦) = 𝜓(𝑥, 𝛽𝑦)

for some 𝛽 ∈ Aut(𝑋). The equations (119) can be re-written as

𝛽 ⋅ 𝑔𝑋 = 𝜎(𝑔)𝑋 ⋅ 𝛽 all 𝑔 ∈ 𝐾(ℝ)
𝛽∗ = 𝛽 ⋅ 𝜀𝑋 ⋅ 𝑐−1𝑋

(120)

where 𝛽∗ is the adjoint of 𝛽 relative to 𝜓,

𝜓(𝛽𝑥, 𝑦) = 𝜓(𝑥, 𝛽∗𝑦).

As 𝐾(ℝ) is Zariski dense in 𝐾(ℂ), 𝑋 is also simple as a representation of 𝐾(ℝ), and so
the set 𝑐(𝑋,Π) of such 𝛽 is parametrized by ℝ>0 (see 4.5).

An arbitrary finite-dimensional representation 𝑋 of 𝐺 can be written

𝑋 =
⨁

𝑖
𝑊𝑖 ⊗𝑋𝑖,

where the sum is over the distinct simple representations 𝑋𝑖 of 𝐺 and 𝐺 acts trivially on
each𝑊𝑖. Let 𝜓′𝑖 and 𝜓𝑖 be 𝐾-invariant positive-definite hermitian forms on𝑊𝑖 and 𝑋𝑖
respectively, and let 𝜓 =

⨁
𝜓′𝑖 ⊗𝜓𝑖. Then for any 𝜙 ∈ Π(𝑋),

𝜙′(𝑥, 𝑦) = 𝜓(𝑥, 𝛽𝑦), 𝛽 ∈ Aut(𝑋),

where 𝛽 = ⊕𝛽′𝑖 ⊗ 𝛽𝑖 with 𝛽𝑖 ∈ 𝑐(𝑋𝑖,Π) and 𝛽′𝑖 positive-definite and hermitian relative
to 𝜓′𝑖 . We again let 𝑐(𝑋,Π) denote the set of 𝛽 as 𝜙 runs through Π(𝑋). The condition
(5.1(b)) that

Π(𝑋1)⊗Π(𝑋2) ⊂ Π(𝑋1 ⊗𝑋2)

becomes
𝑐(𝑋1,Π)⊗ 𝑐(𝑋2,Π) ⊂ 𝑐(𝑋1 ⊗𝑋2,Π).

Lemma 6.1 There exists a 𝑏 ∈ 𝐾 with the following properties:
(a) 𝑏𝑋 ∈ 𝑐(𝑋,Π) for all simple 𝑋;
(b) 𝜎 = 𝜎𝐾◦ ad(𝑏), where 𝜎𝐾 denotes complex conjugation on 𝐺 relative to 𝐾;
(c) 𝜀−1𝑐 = 𝜎𝑏 ⋅ 𝑏 = 𝑏2.

Proof Let 𝑎 = 𝜀𝑐−1 ∈ 𝐺(ℂ). When 𝑋 is simple, the first equality in (120) applied twice
shows that

𝛽2 ⋅ 𝑔 ⋅ 𝑥 = 𝜎2(𝑔) ⋅ 𝛽2 ⋅ 𝑥 = 𝑐 ⋅ 𝑔 ⋅ 𝑐−1 ⋅ 𝛽2 ⋅ 𝑥

for 𝛽 ∈ 𝑐(𝑋,Π), 𝑔 ∈ 𝐾, and 𝑥 ∈ 𝑋; therefore

(𝑐−1𝛽2)𝑔𝑥 = 𝑔(𝑐−1𝛽2)𝑥,

and so 𝑐−1𝛽2 acts as a scalar on 𝑋. Hence 𝑎𝛽2 = 𝜀𝑐−1𝛽2 also acts as a scalar. Moreover,
𝛽2𝑎 = 𝛽𝛽∗ (by the second equation in (120)) and so

Tr𝑋(𝑎𝛽2) = Tr𝑋(𝛽2𝑎) > 0;

we conclude that 𝑎𝑋𝛽2 ∈ ℝ>0. It follows that there is a unique 𝛽 ∈ 𝑐(𝑋,Π) such that

𝑎𝑋 = 𝛽−2, 𝛽𝑔𝑋 = 𝜎(𝑔)𝑋𝛽, (𝑔 ∈ 𝐾), 𝛽∗ = 𝛽−1 (i.e., 𝛽 is unitary).
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For an arbitrary 𝑋, we let 𝑋 =
⨁

𝑊𝑖 ⊗𝑋𝑖 as before, and set 𝛽 =
⨁

id⊗𝛽𝑖, where
𝛽𝑖 is the canonical element of 𝑐(𝑋𝑖,Π) just defined. We still have

𝑎𝑋 = 𝛽−2, 𝛽𝑔𝑋 = 𝜎(𝑔)𝑋𝛽 (𝑔 ∈ 𝐾), 𝛽 ∈ 𝑐(𝑋,Π).

Moreover, these conditions characterize 𝛽: if 𝛽′ ∈ 𝑐(𝑋,Π) has the same properties, then
𝛽′ =

∑
𝛾𝑖 ⊗ 𝛽𝑖 (this expresses that 𝛽′𝑔𝑋 = 𝜎(𝑔)𝑋𝛽′, 𝑔 ∈ 𝐾) with 𝛾2𝑖 = 1 (as 𝛽′2 = 𝑎−1𝑋 )

and 𝛾𝑖 positive-definite and hermitian. Hence 𝛾𝑖 = 1.
These conditions are compatible with tensor products, and so the canonical 𝛽 are

compatible with tensor products: they therefore define an element 𝑏 ∈ 𝐺(ℂ). As 𝑏 is
unitary on all irreducible representations, it lies in 𝐾. The equations 𝛽2 = 𝑎−1𝑋 show
that 𝑏2 = 𝑎−1 = 𝜀−1𝑐. Finally, 𝛽𝑔𝑋 = 𝜎 (𝑔)𝑋 𝛽 implies that 𝜎(𝑔) = ad(𝑏(𝑔)) for all 𝑔 ∈ 𝐾;
therefore 𝜎◦ ad(𝑏)−1 fixes 𝐾, and as it has order 2, it must equal 𝜎𝐾 . 2

Theorem 6.2 Let 𝖢 be a tannakian category over ℝ, let 𝜔 be a ℂ-valued fibre functor
on 𝖢, and let Π be a polarization on 𝖢 with parity 𝜀. For any compact real form 𝐾 of
𝐺 def= 𝒜𝑢𝑡⊗(𝜔), the pair (𝜎𝐾 , 𝜀) satisfies (110), and the equivalence 𝖢′ → 𝖱𝖾𝗉𝖿ℂ(𝐺) defined
by 𝜔 carries the descent datum on 𝖢′ defined by 𝖢 into that on 𝖱𝖾𝗉𝖿ℂ(𝐺) defined by (𝜎𝐾 , 𝜀):

𝜔(�̄�) = 𝜔(𝑋), 𝜔(𝜇𝑋) = 𝜇𝜔(𝑋).

For any simple 𝑋 in 𝖢′,
{𝜔(𝜙)′ ∣ 𝜙 ∈ Π(𝑋)}

is the set of 𝐾-invariant positive-definite hermitian forms on 𝜔(𝑋).

Proof Let (𝖢, 𝜔) correspond to the triple (𝐺, 𝜎1, 𝑐1) (see 2.3a), and let 𝑏 ∈ 𝐾 be the
element constructed in the lemma. Then 𝜎1 = 𝜎𝐾◦ ad(𝑏) and 𝑐 = 𝜀 ⋅ 𝜎𝑏 ⋅ 𝑏 = 𝜎𝑏 ⋅ 𝜀 ⋅ 𝑏.
Therefore, (𝜎𝐾 , 𝜀) has the same property as (𝜎1, 𝑐1) (see 2.3b), which proves the first
assertion. The second assertion follows from the fact that 𝑏 ∈ 𝑐(𝜔(𝑋),Π) for any simple
𝑋. 2

7 Classification of polarized tannakian categories

Theorem 7.1 (a) An algebraic tannakian category 𝖢 overℝ is polarizable if and only if
its band is defined by a compact real algebraic group 𝐾.

(b) For any compact real algebraic group 𝐾 and 𝜀 ∈ 𝑍(ℝ), where 𝑍 is the centre of 𝐾,
there exists a tannakian category 𝖢 overℝ whose gerbe is banded by the band 𝐵(𝐾) of 𝐾
and a polarizationΠ on 𝖢 with parity 𝜀.

(c) Let (𝖢1,Π1) and (𝖢2,Π2) be polarized algebraic tannakian categories overℝ with
isomorphic bands 𝐵1 and 𝐵2. If there exists an isomorphism 𝐵2 → 𝐵1 sending 𝜀(Π1) to
𝜀(Π2) (as elements of 𝑍(𝐵𝑖)(ℝ)), then there is a tensor equivalence 𝖢1 → 𝖢2 respecting the
polarizations and the actions of 𝐵1 and 𝐵2 (i.e., such that Fib(𝖢2)→ Fib(𝖢1) is a banded
by 𝐵2 → 𝐵1), and this equivalence is unique up to isomorphism.

Proof We have already seen (5.2)that if 𝖢 is polarizable, then 𝖢′ is semisimple, and
so, for any fibre functor 𝜔 with values in ℂ, the identity component of 𝐺 def= 𝒜𝑢𝑡⊗(𝜔) is
reductive, and so has a compact real form 𝐾. This proves the necessity in (a). Statement
(b) is proved in the first lemma below, and the sufficiency in (a) follows from (b) and the
second lemma below. Statement (c) follows from Theorem 6.2. 2
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Lemma 7.2 Let 𝐾 and 𝜀 be as in (b) of the theorem, and let 𝐺 = 𝐾ℂ. For 𝑔 ∈ 𝐺(ℂ), let
𝜎(𝑔) = 𝜎′(�̄�), where 𝜎′ is the Cartan involution corresponding to 𝐾. The pair (𝜎, 𝜀) then
satisfies (110) and the tannakian category 𝖢 defined by (𝐺, 𝜎, 𝜀) has a polarization with
parity 𝜀.

Proof Since 𝜎2 = id and 𝜎 fixes all elements of 𝐾, it is obvious that (𝜎, 𝜀) satisfies (110).
There exists a polarization Π on 𝖢 such that, for all simple 𝑋, {𝜙′ ∣ 𝜙 ∈ Π(𝑋)} is the set
of positive-definite 𝐾-invariant hermitian forms on 𝑋.6 This polarization has parity 𝜀.2

Let 𝖢 be an algebraic tannakian category over ℝ, and let (𝖢′, 𝑋 ↦ �̄�, 𝜇) be the
corresponding triple, as in 2.1. Let 𝑍 be the centre of the band 𝐵 of 𝖢. For any 𝑧 ∈ 𝑍(ℝ),
the triple (𝖢′, 𝑋 ↦ �̄�, 𝜇◦𝑧) defines a new tannakian category 𝑧𝖢 over ℝ.

Lemma 7.3 Every tannakian category over ℝ whose gerbe is banded by 𝐵 is of the form
𝑧𝖢 for some 𝑧 ∈ 𝑍(ℝ). There is a tensor equivalence 𝑧𝖢 → 𝑧′𝖢 respecting the action of 𝐵 if
and only if 𝑧′𝑧−1 ∈ 𝑍(ℝ)2.

Proof Let 𝜔 be a ℂ-valued fibre functor on 𝖢, and let (𝐺, 𝜎, 𝑐) be the corresponding
triple, as in 2.3. We may suppose that the second category 𝖢1 corresponds to a triple
(𝐺, 𝜎1, 𝑐1). Let 𝛾 and 𝛾1 be the functors 𝑉 ↦ �̄� defined by (𝜎, 𝑐) and (𝜎1, 𝑐1) respectively.
Then 𝛾−11 ◦𝛾 defines a tensor automorphism of 𝜔, and so corresponds to an element
𝑚 ∈ 𝐺(ℂ). We have 𝜎 = 𝜎1◦ ad(𝑚), and so we can modify (𝜎1, 𝑐1) in order to get
𝜎1 = 𝜎. Let 𝜇 and 𝜇1 be the natural isomorphisms 𝑉 → ̄̄𝑉 defined by (𝜎, 𝑐) and (𝜎, 𝑐1)
respectively. Then 𝜇−11 ◦𝜇 defines a tensor automorphism of id𝖢, and so 𝜇−11 ◦𝜇 = 𝑧−1,
𝑧 ∈ 𝑍(ℝ). We have 𝜇1 = 𝜇◦𝑧.

The second part of the lemma is obvious. 2

Remark 7.4 In Saavedra 1972, V, 1, there is a table of tannakian categories whose bands
are simple, from which it is possible to read off those that are polarizable (loc. cit. V,
2.8.3).

Cohomological interpretation

Let 𝖢 be a tannakian category with band 𝐵. Assume that 𝐵 is defined by a compact real
algebraic group 𝐾, and let 𝑍 denote the centre of 𝐵.

7.5 As 𝑍 is an algebraic subgroup of a compact real algebraic group, it is also compact
(1.6). It is easy to compute its cohomology. One finds that

𝐻1(ℝ, 𝑍) = 2𝑍(ℝ)
def= Ker(2∶ 𝑍(ℝ)→ 𝑍(ℝ))

𝐻2(ℝ, 𝑍) = 𝑍(ℝ)∕𝑍(ℝ)2.

7.6 The general theory (Saavedra 1972, III 2.3.4.2, p. 184) shows that there is an iso-
morphism𝐻1(ℝ, 𝑍)→ Aut𝐵(𝖢), which can be described explicitly as the map sending
𝑧 ∈ 2𝑍(ℝ) to the automorphism 𝑤𝑧

{ (𝑋, 𝑎𝑋) ↦ (𝑋, 𝑎𝑋𝑧𝑋)
𝑓 ↦ 𝑓.

6In the notation of 6.1, 𝑏 = 1.
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7.7 The tannakian categories banded by𝐵 are classified up to𝐵-equivalence by𝐻2(ℝ, 𝐵),
and𝐻2(ℝ, 𝐵), if nonempty, is an𝐻2(ℝ, 𝑍)-torsor. The action of𝐻2(ℝ, 𝑍) = 𝑍(ℝ)∕𝑍(ℝ)2
on the set of 𝐵-equivalence classes is made explicit in (7.3).

7.8 Let Pol(𝖢) denote the set of polarizations on 𝖢. For Π ∈ Pol(𝖢) and 𝑧 ∈ 𝑍(ℝ) we
define 𝑧Π to be the polarization such that

𝜙(𝑥, 𝑦) ∈ 𝑧Π(𝑋) ⇐⇒ 𝜙(𝑥, 𝑧𝑦) ∈ Π(𝑋).

It has parity 𝜀(𝑧Π) = 𝑧2𝜀(Π). The pairing

(𝑧,Π)↦ 𝑧Π∶ 𝑍(ℝ) × Pol(𝖢)→Pol(𝖢)

makes Pol(𝖢) into a 𝑍(ℝ)-torsor.

7.9 Let Π ∈ Pol(𝖢) have parity 𝜀 = 𝜀(Π), and let 𝜀′ ∈ 𝑍(ℝ). There is a polarization on
𝖢 with parity 𝜀′ if and only if 𝜀′ = 𝜀𝑧2 for some 𝑧 ∈ 𝑍(ℝ).

8 Neutral polarized categories

The results in the last section can be made more explicit when the tannakian category is
neutral.

Let 𝐺 be an algebraic group over ℝ, and let 𝐶 ∈ 𝐺(ℝ). A 𝐺-invariant sesquilinear
form 𝜓∶ 𝑉 × 𝑉 → ℂ on 𝑉 ∈ ob(𝖱𝖾𝗉𝖿ℂ(𝐺)) is said to be a 𝐶-polarization if

𝜓𝐶(𝑥, 𝑦) def= 𝜓(𝑥, 𝐶𝑦)

is a positive-definite hermitian formon𝑉. If every object of𝖱𝖾𝗉𝖿ℂ(𝐺)has a𝐶-polarization,
then 𝐶 is called aHodge element.

As usual, we let 𝑍 denote the centre of 𝐺.

Proposition 8.1 Assume that 𝐺(ℝ) contains a Hodge element 𝐶.
(a) There is a polarizationΠ𝐶 on 𝖱𝖾𝗉𝖿ℝ(𝐺) for which the positive forms are exactly the

𝐶-polarizations. It has parity 𝐶2.
(b) For any 𝑔 ∈ 𝐺(ℝ) and 𝑧 ∈ 𝑍(ℝ), 𝐶′ = 𝑧𝑔𝐶𝑔−1is also a Hodge element andΠ𝐶′ =

𝑧Π𝐶 .
(c) Every polarization on 𝖱𝖾𝗉𝖿ℝ(𝐺) is of the formΠ𝐶′ for some Hodge element 𝐶′.

Proof Let 𝜓 be a 𝐶-polarization on 𝑉 ∈ ob(𝖱𝖾𝗉𝖿ℂ(𝐶)); then

𝜓(𝑥, 𝑦) = 𝜓(𝐶𝑥, 𝐶𝑦)

because 𝜓 is 𝐺-invariant, and

𝜓(𝐶𝑥, 𝐶𝑦) = 𝜓𝐶(𝐶𝑥, 𝑦) = 𝜓𝐶(𝑦, 𝐶𝑥) = 𝜓(𝑦, 𝐶2𝑥).

This shows that 𝜓 has parity 𝐶2. For any 𝑉 and 𝑔 ∈ 𝐺(ℝ),

𝜓(𝑦, 𝐶2𝑥) = 𝜓(𝑥, 𝑦)
= 𝜓(𝑔𝑥, 𝑔𝑦)

= 𝜓(𝑔𝑦, 𝐶2𝑔𝑥)

= 𝜓(𝑦, 𝑔−1𝐶2𝑔𝑥).
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This shows that 𝐶2 ∈ 𝑍(ℝ). For any 𝑢 ∈ End(𝑉), 𝑢𝜓 = 𝑢𝜓𝐶 , and so Tr(𝑢𝑢𝜓) > 0 if 𝑢 ≠ 0.
This shows that 𝜓 is a Weil form with parity 𝐶2. Statement (a) is now easy to check.
Statement (b) is straightforward to prove, and statement (c) follows from it and (7.3).2

Proposition 8.2 The following conditions on 𝐺 are equivalent:
(a) there exists a Hodge element in 𝐺(ℝ);
(b) the category 𝖱𝖾𝗉𝖿ℝ(𝐺) is polarizable;
(c) 𝐺 is an inner form of a compact real algebraic group 𝐾.

Proof (a)⇒(b). This is proved in (8.1).
(b)⇒(c). To say that 𝐺 is an inner form of 𝐾 is the same as to say that 𝐺 and 𝐾 define

the same band; this implication therefore follows from (7.1a).
(c)⇒(a). Let 𝑍 be the centre of 𝐾 (and therefore also of 𝐺) and let 𝐾ad = 𝐾∕𝑍. That

𝐺 is an inner form of 𝐾 means that its cohomology class is in the image of

𝐻1(ℝ, 𝐾ad)→ 𝐻1(ℝ,𝒜𝑢𝑡(𝐾)).

More explicitly, this means that there is an isomorphism 𝛾∶ 𝐾ℂ → 𝐺ℂ such that

�̄� = 𝛾◦𝑐, some 𝑐 ∈ 𝐾ad(ℂ).

According to Serre 1964, III, Thm 6, 𝐻1(ℝ, 𝐾ad) ≃ 𝐻1(Gal(ℂ∕ℝ), 𝐾ad(ℝ)), which is
equal to the set of conjugacy classes in 𝐾ad(ℝ) consisting of elements of order 2. Thus,
we can assume that 𝑐 ∈ 𝐾(ℝ) and 𝑐2 = 1. Consider the cohomology sequence

𝐾(ℝ) → 𝐾ad(ℝ) → 𝐻1(ℝ, 𝑍) → 𝐻1(ℝ, 𝐾).

The last map is injective, and so 𝐾(ℝ)→ 𝐾ad(ℝ) is surjective. Thus 𝑐 = ad(𝐶′) for some
𝐶′ ∈ 𝐾(ℝ) whose square is in 𝑍(ℝ). Let 𝐶 = 𝛾(𝐶′); then �̄� = �̄�(𝐶′) = 𝛾(𝐶′) = 𝐶 and
�̄�−1◦ ad(𝐶) = 𝛾−1. This shows that 𝐶 ∈ 𝐺(ℝ) and that 𝐾 is the form of 𝐺 defined by 𝐶;
the next lemma completes the proof. 2

Lemma 8.3 An element 𝐶 ∈ 𝐺(ℝ) such that 𝐶2 ∈ 𝑍(ℝ) is a Hodge element if and only if
the real form 𝐾 of 𝐺 defined by 𝐶 is a compact real group.

Proof Identify 𝐾ℂ with 𝐺ℂ and let �̄� and 𝑔∗ be the complex conjugates of 𝑔 ∈ 𝐺(ℂ)
relative to the real forms 𝐾 and 𝐺. Then

𝑔∗ = ad(𝐶−1)(�̄�) = 𝐶−1�̄�𝐶.

Let 𝜓 be a sesquilinear form on 𝑉 ∈ ob(𝖱𝖾𝗉𝖿ℂ(𝐺)). Then 𝜓 is 𝐺-invariant if and only if

𝜓(𝑔𝑥, �̄�𝑦) = 𝜓(𝑥, 𝑦), 𝑔 ∈ 𝐺(ℂ).

On the other hand, 𝜓𝐶 is 𝐾-invariant if and only if

𝜓𝐶(𝑔𝑥, 𝑔∗𝑦) = 𝜓𝐶(𝑥, 𝑦), 𝑔 ∈ 𝐺(ℂ).

These conditions are equivalent. Therefore, 𝑉 has a 𝐶-polarization if and only if 𝑉 has
a 𝐾-invariant positive-definite hermitian form. Thus 𝐶 is a Hodge element if and only
if, for every complex representation 𝑉 of 𝐾, the image of 𝐾 in Aut(𝑉) is contained in
the unitary group of a positive-definite hermitian form; this last condition is implied
by 𝐾 being compact and implies that 𝐾 is contained in a compact real group, and so is
compact (1.13). 2
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Remark 8.4 (a) The centralizer of a Hodge element 𝐶 of 𝐺 is a maximal compact sub-
group of 𝐺, and is the only maximal compact subgroup of 𝐺 containing 𝐶; in particular,
if 𝐺 is compact, then 𝐶 is a Hodge element if and only if it is in the centre of 𝐺 (Saavedra
1972, V, 2.7.3.5).

(b) If 𝐶 and 𝐶′ are Hodge elements of 𝐺, then there exists a 𝑔 ∈ 𝐺(ℝ) and a unique
𝑧 ∈ 𝑍(ℝ) such that 𝐶′ = 𝑧𝑔𝐶𝑔−1 (Saavedra 1972, V, 2.7.4). As Π𝐶′ = 𝑧Π𝐶 , this shows
that Π𝐶′ = Π𝐶 if and only if 𝐶 and 𝐶′ are conjugate in 𝐺(ℝ).

Variant 8.5 It is possible state the above results in terms of bilinear forms. A 𝐺-
invariant bilinear form 𝜙∶ 𝑉0 × 𝑉0 → ℝ on 𝑉0 ∈ ob(𝖱𝖾𝗉𝖿ℝ(𝐺)) is a 𝐶-polarization
if

𝜙𝐶(𝑥, 𝑦) def= 𝜙(𝑥, 𝐶𝑦)

is a positive-definite symmetric form on 𝑉0. If every object of 𝖱𝖾𝗉𝖿ℝ(𝐺) admits a 𝐶-
polarization, then 𝐶 is called aHodge element. If 𝐺(ℝ) contains a Hodge element 𝐶,
then there is a polarization Π𝐶 on 𝖱𝖾𝗉𝖿ℝ(𝐺) (in the sense of 5.5) for which the positive
forms are exactly the 𝐶-polarizations. Every polarization on 𝖱𝖾𝗉𝖿ℝ(𝐺) is of the formΠ𝐶′

for some Hodge element 𝐶′.

9 Symmetric polarizations

A polarization is said to be symmetric if its parity is 1.
Let 𝐾 be a compact real algebraic group. As 1 is a Hodge element (8.3), 𝖱𝖾𝗉𝖿ℝ(𝐾)

has a symmetric polarization Π for which (𝑋0 ∈ 𝖱𝖾𝗉𝖿ℝ(𝐾)),

Π(𝑋0) = {𝐾-invariant positive-definite symmetric bilinear forms on 𝑋0},

and 𝖱𝖾𝗉ℂ(𝐾) has a symmetric polarization Π for which (𝑋 ∈ 𝖱𝖾𝗉𝖿ℂ(𝐾)),

Π(𝑋) = {𝐾-invariant positive-definite hermitian forms on 𝑋}.

See 8.1(a) and 8.5.

Theorem 9.1 Let 𝖢 be an algebraic tannakian category overℝ, and letΠ be a symmetric
polarization on 𝖢. Then 𝖢 has a unique (up to isomorphism) fibre functor 𝜔 with values
in ℝ transforming positive bilinear forms for Π into positive-definite symmetric bilinear
forms. Moreover, 𝜔 defines a tensor equivalence 𝖢 → 𝖱𝖾𝗉𝖿ℝ(𝐾), where 𝐾

def= 𝒜𝑢𝑡⊗ℝ (𝜔) is a
compact real algebraic group.

Proof Let 𝜔1 be a fibre functor with values in ℂ, and let 𝐺 = 𝒜𝑢𝑡⊗(𝜔1). Because 𝖢
is polarizable, 𝐺 has a compact real form 𝐾. According to (6.2), 𝜔′1∶ 𝖢

′ → 𝖱𝖾𝗉𝖿ℂ(𝐺)
carries the descent datum on 𝖢′ defined by 𝖢 into that on 𝖱𝖾𝗉𝖿ℂ(𝐺) defined by (𝜎𝐾 , 1).
It therefore defines a tensor equivalence 𝜔∶ 𝖢→𝖱𝖾𝗉𝖿ℝ(𝐾) transforming Π into the
polarization on 𝖱𝖾𝗉𝖿ℝ(𝐾) defined by the Hodge element 1. The rest of the proof is now
obvious. Briefly, let 𝜔1 and 𝜔2 be two such fibre functors. 2

Remark 9.2 Suppose that 𝖢 has a polarization Π. Then it follows from (7.8) that 𝖢 has
a symmetric polarization if and only if 𝜀(Π) ∈ 𝑍(ℝ)2.



10. Polarizations with parity 𝜀 of order 2 217

10 Polarizations with parity 𝜀 of order 2

10.1 For 𝑢 = ±1, define a real 𝑢-space to be a complex vector space 𝑉 together with
a semilinear automorphism 𝜎 such that 𝜎2 = 𝑢. A bilinear form 𝜙 on a real 𝑢-space is
𝑢-symmetric if 𝜙(𝑥, 𝑦) = 𝑢𝜙(𝑦, 𝑥)— thus a 1-symmetric form is a symmetric form, and
a −1-symmetric form is a skew-symmetric form. A 𝑢-symmetric form on a real 𝑢-space
is positive-definite if 𝜙(𝑥, 𝜎𝑥) > 0 for all 𝑥 ≠ 0.

10.2 Let𝖵0 be the categorywhose objects are pairs (𝑉, 𝑎), where𝑉 = 𝑉0⊕𝑉1 is aℤ∕2ℤ-
graded vector space over ℂ and 𝑎∶ 𝑉 → 𝑉 is a semilinear automorphism such that
𝑎2𝑥 = (−1)deg(𝑥)𝑥. With the obvious tensor structure, 𝖵0 becomes a tannakian category
over ℝ with ℂ-valued fibre functor 𝜔0∶ (𝑉, 𝑎)⇝ 𝑉. Note that 𝒜𝑢𝑡⊗ℂ (𝜔0) = 𝜇2 = {1, 𝜀}.

There is a polarization Π = Πcan on 𝖵0 such that, if 𝑉 is homogeneous of degree𝑚,
then Π(𝑉, 𝑎) consists of the (−1)𝑚-symmetric positive-definite forms on 𝑉.

Theorem 10.3 Let 𝖢 be an algebraic tannakian category overℝ, and letΠ be a polariza-
tion on 𝖢 with parity 𝜀, where 𝜀2 = 1, 𝜀 ≠ 1. There exists a unique (up to isomorphism)
exact 𝑘-linear tensor functor 𝜔∶ 𝖢 → 𝖵0 such that
(a) 𝜔 carries the gradation on 𝖢 defined by 𝜀 into the gradation on 𝖵0, i.e., 𝜔(𝜀) acts as

(−1)𝑚 on 𝜔(𝑉)𝑚;

(b) 𝜔 carriesΠ intoΠcan, i.e., 𝜙 ∈ Π(𝑋) if and only if 𝜔(𝜙) ∈ Πcan(𝜔(𝑋)).

Proof Note that 𝖵0 is defined by the triple (𝜇2, 𝜎0, 𝜀0), where 𝜎0 is the unique semilinear
automorphism of 𝜇2 and 𝜀0 is the unique element of 𝜇2(ℝ) of order 2. We can assume
(by 2.3) that 𝖢 corresponds to a triple (𝐺, 𝜎, 𝜀). Let 𝐺0 be the subgroup of 𝐺 generated by
𝜀; then (𝐺0, 𝜎|𝐺0, 𝜀) ≈ (𝜇2, 𝜎0, 𝜀0), and so the inclusion (𝐺0, 𝜎|𝐺0, 𝜀) → (𝐺, 𝜎, 𝜀) induces
a functor 𝖢→𝖵0 having the required properties.

Let 𝜔 and 𝜔′ be two functors 𝖢 → 𝖵0 satisfying (a) and (b). There exists an iso-
morphism 𝜆∶ 𝜔 → 𝜔′ from 𝜔 to 𝜔′ viewed as ℂ-valued fibre functors (II, 8.3). As
𝜆𝑋 ∶ 𝜔(𝑋) → 𝜔′(𝑋) commutes with action of 𝜀, it preserves the gradations; as 𝜆 com-
mutes with 𝜔(𝜙), all 𝜙 ∈ Π(𝑋), it also commutes with 𝜎; it follows that 𝜆 is an isomor-
phism from 𝜔 to 𝜔′ as functors to 𝖵0. 2

Remark 10.4 By definition, 𝖵0 = 𝖱𝖾𝗉𝖿(𝒢0), where 𝒢0 is the (unique) nonsplit ℂ∕ℝ-
Galois groupoid

1→ 𝜇2 → 𝒢0 → Gal(ℂ∕ℝ)→ 1

with kernel 𝜇2. Let 𝖢 be an algebraic tannakian category over ℝ with a polarization Π.
Choose a ℂ-valued fibre functor 𝜔 for 𝖢, and let 𝒢 = 𝒜𝑢𝑡⊗ℝ (𝜔) regarded as a ℂ∕ℝ-Galois
groupoid,

1→ 𝐺 → 𝒢→ Gal(ℂ∕ℝ)→ 1.

If the parity 𝜀 ofΠ is such that 𝜀2 = 1, 𝜀 ≠ 1, then there is a unique isomorphism from 𝜇2
to the subgroup of 𝐺 generated by 𝜀, and the homomorphism 𝜇2 → 𝐺 extends uniquely
to a homomorphism 𝒢0 → 𝒢 of ℂ∕ℝ-groupoids. From this, we get exact tensor functors

𝖢 𝖱𝖾𝗉𝖿(𝒢) 𝖱𝖾𝗉𝖿(𝒢0)
def= 𝖵0.

←→𝜔∼

←→

The exact tensor functor 𝖢 → 𝖵0 sends Π to the canonical polarization on 𝖵0, and is
uniquely determined up to isomorphism by this property.
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11 Tate triples

Definition and examples

11.1 A Tate triple 𝖳 over 𝑘 is a triple (𝖢, 𝑤, 𝑇) consisting of
⋄ a tannakian category 𝖢 over 𝑘,

⋄ a ℤ-gradation 𝑤∶ 𝔾𝑚 → 𝒜𝑢𝑡⊗(id𝖢) on 𝖢 (called theweight gradation),

⋄ an invertible object 𝑇 (called the Tate object) of weight −2.
For any 𝑋 ∈ ob(𝖢) and 𝑛 ∈ ℤ, we set 𝑋(𝑛) = 𝑋 ⊗ 𝑇⊗𝑛. A fibre functor on 𝖳 with
values in a 𝑘-algebra 𝑅 is a fibre functor 𝜔∶ 𝖢 → 𝖬𝗈𝖽(𝑅) together with an isomorphism
𝜔(𝑇⊗2)→ 𝜔(𝑇), i.e., the structure of a unit object on 𝜔(𝑇). If 𝖳 has a fibre functor with
values in 𝑘, then 𝖳 is said to be neutral. A morphism of Tate triples (𝖢1, 𝑤1, 𝑇1) →
(𝖢2, 𝑤2, 𝑇2) is an exact 𝑘-linear tensor functor 𝜂∶ 𝖢1 → 𝖢2 preserving the gradations
together with an isomorphism 𝜂(𝑇1)→ 𝑇2.

Example 11.2 The triple (𝖧𝗈𝖽ℝ, 𝑤,ℝ(1)) in which
⋄ 𝖧𝗈𝖽ℝ is the category of real Hodge structures (II, 9.14),

⋄ 𝑤 is the weight gradation on 𝖧𝗈𝖽ℝ, and

⋄ ℝ(1) is the unique real Hodge structure with weight −2 and underlying vector
space 2𝜋𝑖ℝ,

is a neutral Tate triple over ℝ.

Example 11.3 (a) The category of ℤ-graded vector spaces over ℚ with the Tate object

ℚ𝐵(1)
def= 2𝜋𝑖ℚ

is a neutral Tate triple 𝖳𝐵 over ℚ.
(b) For 𝑙 a prime number, the category of ℤ-graded vector spaces over ℚ𝑙 with the

Tate object
ℚ𝑙(1)

def= (lim←,,
𝑟
𝜇𝑟)⊗ℤ ℚ𝑙, 𝜇𝑟 = {𝜁 ∈ ℚal

𝑙 ∣ 𝜁𝑟 = 1},

is a neutral Tate triple 𝖳𝑙 over ℚ𝑙.
(c) The category of ℤ-graded vector spaces over a field 𝑘 with the Tate object

𝑘dR(1) = 𝑘

is a neutral Tate triple 𝖳dR over 𝑘.
See Deligne 1982, §1, for the significance of these examples (they are the natural

targets of the Betti, 𝑙-adic étale, and de Rham cohomologies).

Example 11.4 Let 𝖵 be the category whose objects are pairs (𝑉, 𝑎)with𝑉 aℤ-gradedℂ-
vector spaces and a semilinear automorphism 𝑎 such that 𝑎2𝑣 = (−1)𝑛𝑣 if 𝑣 ∈ 𝑉𝑛. With
the obvious tensor structure, 𝖵 becomes a tannakian category overℝ, and𝜔∶ (𝑉, 𝑎)↦ 𝑉
is a fibre functor with values in ℂ. We have 𝔾𝑚 = 𝒜𝑢𝑡⊗ℂ (𝜔), and 𝖵 corresponds (as in
2.3a) to the triple (𝔾𝑚, 𝑔 ↦ �̄�,−1).

Let 𝑤∶ 𝔾𝑚 → 𝔾𝑚 be the identity map, and let 𝑇 = (ℂ, 𝑧 ↦ �̄�), where ℂ is viewed as
a homogeneous vector space of weight −2. Then (𝖵, 𝑤, 𝑇) is a non-neutral Tate triple
over ℝ.



11. Tate triples 219

Neutral Tate triples

Giving a Tate triple and a fibre functor over 𝑘 is essentially the same as giving an affine
group scheme over 𝑘 and additional data, as we now explain.

11.5 Consider a triple (𝐺,𝑤, 𝑡), where
⋄ 𝐺 is an algebraic group over a field 𝑘,
⋄ 𝑤∶ 𝔾𝑚 → 𝐺 is a central homomorphism,
⋄ 𝑡∶ 𝐺 → 𝔾𝑚 is a homomorphism such that 𝑡◦𝑤 = −2, i.e., such that 𝑡(𝑤(𝑠)) = 𝑠−2,

𝑠 ∈ 𝔾𝑚(𝑘).
Let 𝑇 be the representation of 𝐺 on 𝑘 such that 𝑔 acts as multiplication by 𝑡(𝑔). Then
(𝖱𝖾𝗉𝖿(𝐺), 𝑤, 𝑇) is a Tate triple over 𝑘with the forgetful functor as a 𝑘-valued fibre functor.

11.6 Let 𝖳 = (𝖢, 𝑤, 𝑇) be a Tate triple over 𝑘, and let 𝜔 be a 𝑘-valued fibre functor on
𝖳. Let 𝐺 = 𝒜𝑢𝑡⊗𝑘 (𝜔). Then 𝑤 is a homomorphism 𝔾𝑚 → 𝑍(𝐺) ⊂ 𝐺, and the action of
𝐺 on 𝑇 defines a homomorphism 𝑡∶ 𝐺 → 𝔾𝑚 such that 𝑤◦𝑡 = −2. The equivalence
𝖢 → 𝖱𝖾𝗉𝖿(𝐺) of tannakian categories over 𝑘 defined by 𝜔 extends to an equivalence of
Tate triples.

Thus, to give a Tate triple over 𝑘 and a 𝑘-valued fibre functor is essentially the same
as giving a triple (𝐺,𝑤, 𝑡) with 𝑡◦𝑤 = −2.

In general, a Tate triple 𝖳 determines a band 𝐵, a homomorphism 𝑤∶ 𝔾𝑚 → 𝑍 into
the centre 𝑍 of 𝐵, and a homomorphism 𝑡∶ 𝐵 → 𝔾𝑚 such that 𝑡◦𝑤 = −2. We say that 𝖳
is banded by (𝐵,𝑤, 𝑡).

The quotient of a Tate triple by its Tate object

Let (𝖢, 𝑤, 𝑇) be a Tate triple. On setting 𝑇 = 𝟙, we obtain a quotient tannakian category
𝖢0 equipped with a ℤ∕2ℤ-gradation defined by an element 𝜀 ∈ 𝒜𝑢𝑡(id𝖢0), 𝜀

2 = −1. It is
possible to recover (𝖢, 𝑤, 𝑇) from (𝖢0, 𝜀). We first consider the neutral case.

11.7 Let (𝐺,𝑤, 𝑡) be a triple with 𝑡◦𝑤 = −2, and let 𝐺 = 𝖱𝖾𝗉𝖿(𝐺) – it has the structure
of a Tate triple (11.5). Let 𝐺0 = Ker(𝑡∶ 𝐺 → 𝔾𝑚), and let 𝖢0 = 𝖱𝖾𝗉𝖿(𝐺0). The restriction
of 𝑤 to a homomorphism 𝜀∶ 𝜇2 → 𝐺0 defines a ℤ∕2ℤ-gradation on 𝖢0. The tensor
functor 𝑄∶ 𝖢 → 𝖢0 defined by the inclusion 𝐺0 → 𝐺 has the following properties:
(a) if 𝑋 is homogeneous of weight 𝑛, then 𝑄(𝑋) is homogeneous of weight 𝑛 (mod 2);
(b) 𝑄(𝑇) = 𝟙;
(c) if 𝑋 and 𝑌 are homogeneous of the same weight, then

Hom(𝑋,𝑌) ≃→ Hom(𝑄(𝑋), 𝑄(𝑌));

(d) if 𝑋 and 𝑌 are homogeneous with weights𝑚 and 𝑛 respectively and 𝑄(𝑋) ≈ 𝑄(𝑌),
then𝑚 − 𝑛 is an even integer 2𝑘 and 𝑋(𝑘) ≈ 𝑌;

(e) 𝑄 is essentially surjective.

The first four of these statements are obvious. For the last, note that

𝐺 = (𝐺0 × 𝔾𝑚)∕𝜇2,

and so we only have to show that every representation of 𝜇2 extends to a representation
of 𝔾𝑚, but this is obvious.
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Remark 11.8 (a) The identity component of 𝐺0 is reductive if and only if the identity
component of 𝐺 is reductive. If 𝐺0 is connected, then so also is 𝐺, but the converse is
false (e.g., 𝐺0 = 𝜇2, 𝐺 = 𝔾𝑚).

(b) It is possible to reconstruct (𝖢, 𝑤, 𝑇) from (𝖢0, 𝜀): an object of 𝖢 is an object of 𝖢0
together with a ℤ-gradation compatible with its ℤ∕2ℤ-gradation (see 6.14).

(c) The following pushout diagram makes it clear how to reconstruct (𝐺,𝑤, 𝑡) from
(𝐺0, 𝜀):

1 𝜇2 𝔾𝑚 𝔾𝑚 1

1 𝐺0 𝐺 𝔾𝑚 1.

←→ ←→

←→ 𝜀

←→−2

←→ 𝑤

←→

⇐⇐

←→ ←→ ←→𝑡 ←→

Note that to give a homomorphism 𝜀∶ 𝜇2 → 𝐺 of algebraic groups is the same as
giving an element 𝜀 ∈ 𝐺(𝑘) such that 𝜀2 = 1.

Proposition 11.9 Let 𝖳 = (𝖢, 𝑤, 𝑇) be a Tate triple over 𝑘 with 𝖢 algebraic. There exists
a tannakian category 𝖢0 over 𝑘, an element 𝜀 in 𝒜𝑢𝑡⊗(id𝖢0) with 𝜀

2 = 1, and a functor
𝑄∶ 𝖢 → 𝖢0 having the properties 11.7.

Proof Indeed, the quotient of 𝖢 by the tannakian subcategory generated by 𝑇 has these
properties (IV, 6.13). We make the construction explicit. For any fibre functor 𝜔 on 𝖢
with values in a 𝑘-algebra 𝑅, ℐ𝑠𝑜𝑚(𝑅, 𝜔(𝑇)), viewed as a sheaf on Spec𝑅, is a torsor for
𝔾𝑚. This association gives rise to a morphism of gerbes

Fib(𝖢)
𝑡
→ Tors(𝔾𝑚),

and we define 𝖦0 to be the gerbe of liftings of the canonical section of Tors(𝔾𝑚), i.e.,
𝖦0 is the gerbe of pairs (𝜔, 𝜉), where 𝜔 is a fibre functor on 𝖢 and 𝜉 is an isomorphism
𝑡(𝜔)→ 𝔾𝑚 (Giraud 1971, IV, 3.2.1). The category𝖢0

def= 𝖱𝖾𝗉𝖿(𝖦0) of representations of𝖦0
is tannakian (IV, 2.1). If 𝑍 = 𝒜𝑢𝑡⊗(id𝖢) and 𝑍0 = 𝒜𝑢𝑡⊗(id𝖢0), then the homomorphism

𝛼 ↦ 𝛼𝑇 ∶ 𝑍 → 𝒜𝑢𝑡(𝑇) = 𝔾𝑚,

determined by 𝑡 has kernel 𝑍0, and the composite 𝑡◦𝑤 = −2. We let 𝜀 = 𝑤(−1) ∈ 𝑍0.
There is an obvious (restriction) functor 𝑄∶ 𝖢 → 𝖢0. In showing that 𝑄 has the

properties 11.7, we can make a finite field extension 𝑘 → 𝑘′. We can therefore assume
that 𝖳 is neutral, but this case is covered by (11.6) and (11.7). 2

Example 11.10 If (𝖵, 𝑤, 𝑇) is the Tate triple defined in 11.4, then (𝖵0, 𝜀) is the pair
defined in 10.2.

Remark 11.11 The functor 𝜔 ⇝ 𝜔|𝖢0 defines an equivalence from the gerbe of fibre
functors on the Tate triple 𝖳 to the gerbe of fibre functors on 𝖢0.

As in the neutral case, 𝖳 can be reconstructed from (𝖢0, 𝜀), but there is a stronger
result.

Theorem 11.12 The functor 𝖳 ⇝ (𝖢0, 𝜀) is an equivalence from the 2-category of Tate
triples to the 2-category of ℤ∕2ℤ-graded tannakian categories.

Proof See Saavedra V, 3.1.4. 2
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Tate triples overℝ

11.13 Let 𝖳 = (𝖢, 𝑤, 𝑇) be a Tate triple over ℝ, and let 𝜔 be a fibre functor on 𝖳 with
values in ℂ. On combining 2.3 with 11.6 we find that (𝖳, 𝜔) corresponds to a quintuple
(𝐺, 𝜎, 𝑐, 𝑤, 𝑡) in which
(a) 𝐺 is an algebraic group over ℂ;

(b) (𝜎, 𝑐) satisfies (110), i.e., 𝜎2 = ad(𝑐), 𝜎(𝑐) = 𝑐;

(c) 𝑤∶ 𝔾𝑚 → 𝐺 is a central homomorphism; that the gradation is defined over ℝ
means that 𝑤 is defined over ℝ, i.e., 𝜎(𝑤(𝑔)) = 𝑤(�̄�);

(d) 𝑡∶ 𝐺 → 𝔾𝑚 is such that 𝑡◦𝑤 = −2; that 𝑇 is defined over ℝmeans that 𝑡(𝜎(𝑔)) =
𝑡(𝑔) and there exists an 𝑎 ∈ 𝔾𝑚(ℂ) such that 𝑡(𝑐) = 𝜎(𝑎) ⋅ 𝑎.

Let 𝐺0 = Ker(𝑡), and let𝑚 ∈ 𝐺(ℂ) be such that 𝑡(𝑚) = 𝑎−1. After replacing (𝜎, 𝑐) with
(𝜎◦ ad(𝑚), 𝜎(𝑚) ⋅ 𝑐 ⋅𝑚) we find that the new 𝑐 is in 𝐺0. The pair (𝖢0, 𝜔|𝖢0) corresponds
to (𝐺0, 𝜎|𝐺0, 𝑐).

12 Polarizations on Tate triples

In this section, 𝖳 = (𝖢, 𝑤, 𝑇) is a Tate triple over ℝ with 𝖢 algebraic. We use the earlier
notation; in particular 𝖢′ = 𝖢(ℂ). Let 𝑈 be an invertible object of 𝖢′ that is defined over
ℝ, i.e., 𝑈 is endowed with an identification 𝑈 ≃ �̄�. Then in the definitions and results
of §4 concerning sesquilinear forms and Weil forms, it is possible to replace 𝟙 with 𝑈.

Definition 12.1 Suppose that for each 𝑋 ∈ ob(𝖢′) homogeneous of degree 𝑛, some
𝑛 ∈ ℤ, we have an equivalence classΠ(𝑋) of Weil forms 𝑋⊗�̄� → 𝟙(−𝑛) of parity (−1)𝑛.
Then Π is a (graded) polarization on 𝖳 if
(a) for all 𝑋, �̄� ∈ Π(𝑋) whenever 𝜙 ∈ Π(�̄�);

(b) for all 𝑋 and 𝑌 homogeneous of the same degree, 𝜙 ⊕ 𝜓 ∈ Π(𝑋 ⊕ 𝑌) whenever
𝜙 ∈ Π(𝑋) and 𝜓 ∈ Π(𝑌);

(c) for all homogeneous 𝑋 and 𝑌, 𝜙 ⊗ 𝜓 ∈ Π(𝑋 ⊗ 𝑌) whenever 𝜙 ∈ Π(𝑋) and
𝜓 ∈ Π(𝑌);

(d) the map 𝑇 ⊗ �̄� → 𝑇⊗2 = 𝟙(2), defined by 𝑇 ≃ �̄�, is in Π(𝑇).

Proposition 12.2 Let (𝖢0, 𝜀) be the quotient of 𝖳 by its Tate object (11.9). There is a
canonical bijection

𝑄∶ Pol(𝖳)→ Pol𝜀(𝖢0)

from the set of polarizations on 𝖳 to the set of polarizations on 𝖢0 of parity 𝜀.

Proof For any 𝑋 ∈ ob(𝖢′) that is homogeneous of degree 𝑛, 11.7(b) and 11.7(c) give
an isomorphism

𝑄∶ Hom(𝑋 ⊗ �̄�, 𝟙(−𝑛))→ Hom(𝑄(𝑋)⊗𝑄(𝑋), 𝟙).

We define 𝑄Π to be the polarization such that, for any homogeneous 𝑋,

𝑄Π(𝑄𝑋) = {𝑄𝜙 ∣ 𝜙 ∈ Π(𝑋)}.

It is clear that Π↦ 𝑄Π is a bijection. 2
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Corollary 12.3 The Tate triple 𝖳 is polarizable if and only if 𝖢0 has a polarization Π
with parity 𝜀(Π) ≡ 𝜀 (mod 𝑍0(ℝ)2).

Proof Apply 7.9. 2

Corollary 12.4 For each 𝑧 ∈ 2𝑍0(ℝ) and polarization Π on 𝖳, there is a polarization
𝑧Π on 𝖳 defined by the condition

𝜙(𝑥, 𝑦) ∈ 𝑧Π(𝑋) ⇐⇒ 𝜙(𝑥, 𝑧𝑦) ∈ Π(𝑋).

The map
(𝑧,Π)↦ 𝑧Π∶ 2𝑍0(ℝ) × Pol(𝖳)→ Pol(𝖳)

makes Pol(𝖳) into a pseudo-torsor for 2𝑍0(ℝ).

Proof Apply 7.8. 2

Theorem 12.5 LetΠ be a polarization on 𝖳, and let 𝜔 be a fibre functor on 𝖢′ with values
in ℂ. Let (𝐺,𝑤, 𝑡) correspond to (𝖳(ℂ), 𝜔) (11.5, 11.6). For any real form 𝐾 of 𝐺 such that
𝐾0

def= Ker(𝑡) is compact, the pair (𝜎𝐾 , 𝜀), where 𝜀 = 𝑤(−1), satisfies (110), and 𝜔 defines
an equivalence between 𝖳 and the Tate triple defined by (𝐺, 𝜎𝐾 , 𝜀, 𝑤, 𝑡). For any simple 𝑋
in 𝖢′,

{𝜔(𝜙)′ ∣ 𝜙 ∈ Π(𝑋)}

is the set of 𝐾0-invariant positive-definite hermitian forms on 𝜔(𝑋).

Proof Apply 6.2. 2

Remark 12.6 Theorem 7.1 implies the following: a triple (𝐵,𝑤, 𝑡), where 𝐵 is an affine
algebraic band over ℝ and 𝑡◦𝑤 = −2, bounds a polarizable Tate triple if and only if
𝐵0

def= Ker(𝑡∶ 𝐵 → 𝔾𝑚) is the band defined by a compact real algebraic group; when
this condition holds, the polarizable Tate triple banded by (𝐵,𝑤, 𝑡) is unique up to a
tensor equivalence preserving the action of 𝐵 and the polarization, and the equivalence is
unique up to isomorphism. The Tate triple is neutral if and only if 𝜀 def= 𝑤(−1) ∈ 𝑍0(ℝ)2.

The neutral case

Let (𝐺,𝑤, 𝑡) be a triple as in (11.5) defined over ℝ, and let 𝐺0 = Ker(𝑡) and 𝜀 = 𝑤(−1).
A Hodge element 𝐶 ∈ 𝐺0(ℝ) is said to be a Hodge element for (𝐺,𝑤, 𝑡) if 𝐶2 = 𝜀. A
𝐺-invariant sesquilinear form 𝜓∶ 𝑉 × 𝑉 → 𝟙(−𝑛) on a homogeneous complex repre-
sentation 𝑉 of 𝐺 of degree 𝑛 is said to be a 𝐶-polarization if

𝜓𝐶(𝑥, 𝑦) def= 𝜓(𝑥, 𝐶𝑦)

is a positive-definite hermitian form on𝑉. When 𝐶 is a Hodge element for (𝐺,𝑤, 𝑡) there
is a polarization Π𝐶 on the Tate triple defined by (𝐺,𝑤, 𝑡) for which the positive forms
are exactly the 𝐶-polarizations.

Proposition 12.7 Every polarization on the Tate triple defined by (𝐺,𝑤, 𝑡) is of the form
Π𝐶 for some Hodge element 𝐶.

Proof See 8.1 and 8.2. 2
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Fibre functors on polarized Tate triples

Proposition 12.8 Let 𝖳 be a Tate triple overℝ andΠ a polarization on 𝖳. If 𝑤(−1) = 1,
then there is a unique (up to isomorphism)fibre functor𝜔 on𝖳with values inℝ transforming
the positive bilinear forms forΠ into positive-definite symmetric bilinear forms.

Proof With the notation of 12.2, 𝑄Π is a symmetric polarization on 𝐶0, and so we can
apply 9.1. 2

In the next proposition, 𝖵 is the Tate triple defined in 11.4. There is a polarization
Πcan on 𝖵 such that, for any homogeneous (𝑉, 𝑎),

Πcan(𝑉, 𝑎) = {(−1)deg𝑉-symmetric positive-definite forms on 𝑉}.

Theorem 12.9 Let 𝖳 be a Tate triple over ℝ and Π a polarization on 𝖳. If 𝑤(−1) ≠ 1,
then there exists a unique (up to isomorphism) exact ℝ-linear tensor functor 𝜔∶ 𝖢 → 𝖵
such that
(a) 𝜔 is a morphism of Tate-triples, and

(b) 𝜔 carriesΠ intoΠcan.

Proof Briefly, the polarization 𝑄Π on 𝖢𝟢 has parity 𝜀 = 𝑤(−1) ≠ 1, and so we can
apply 10.3.

In more detail, the functor

𝖵 def= 𝖱𝖾𝗉𝖿(𝒢)
𝑄
,→ 𝖵0

def= 𝖱𝖾𝗉𝖿(𝒢0)

is defined by a homomorphism of ℂ∕ℝ Galois groupoids,

1 𝜇2(ℂ) 𝒢0 Gal(ℂ∕ℝ) 1

1 𝔾𝑚(ℂ) 𝒢 Gal(ℂ∕ℝ) 1.

←→ ←→

←→

←→

←→ ⇐⇐

←→

←→ ←→ ←→ ←→

The top row is the unique nontrivial extension of Gal(ℂ∕ℝ) by {±1}, and the second row
is obtained from the first by pushout.

Let 𝖳 = (𝖢, 𝑤, 𝑇) and Π be as in the statement. Let 𝜔 be a ℂ-valued fibre functor of
𝖢 and let 𝒢(𝜔) be the ℂ∕ℝ-Galois groupoid 𝒜𝑢𝑡⊗ℝ (ℂ). Its kernel is 𝐺

def= 𝒜𝑢𝑡⊗ℝ (𝜔), and
𝑤 is a homomorphism 𝔾𝑚 → 𝑍(𝐺) ⊂ 𝐺. As in the proof of 10.3, the map 𝜇2(𝜔)→ 𝐺(ℂ)
sending −1 to 𝑤(−1) extends to a homomorphism of groupoids,

1 𝜇2(ℂ) 𝒢0 Gal(ℂ∕ℝ) 1

1 𝐺(ℂ) 𝒢(𝜔) Gal(ℂ∕ℝ) 1.

←→ ←→

←→

←→

←→ ⇐⇐
←→

←→ ←→ ←→ ←→

The homomorphism 𝑤∶ 𝔾𝑚 → 𝐺 extends the inclusion 𝜇2 → 𝐺, and so the homomor-
phism 𝒢0 → 𝒢(𝜔) extends to the pushout,

1 𝔾𝑚(ℂ) 𝒢 Gal(ℂ∕ℝ) 1

1 𝐺(ℂ) 𝒢(𝜔) Gal(ℂ∕ℝ) 1.

←→ ←→

←→ 𝑤

←→

←→ ⇐⇐

←→

←→ ←→ ←→ ←→
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The exact 𝑘-linear tensor functor

𝖢 𝖱𝖾𝗉𝖿(𝒢(𝜔)) 𝖱𝖾𝗉𝖿(𝒢) def= 𝖵.←→𝜔∼

←→

satisfies (a) and (b).
If 𝜔 and 𝜔′ are two functors 𝖢 → 𝖵 satisfying (a) and (b), then exists an isomorphism

𝜆∶ 𝜔 → 𝜔′ from 𝜔 to 𝜔′ viewed as ℂ-valued fibre functors (II, 8.3), and the conditions
(a) and (b) imply that 𝜆 is an isomorphism from 𝜔 to 𝜔′ as functors to 𝖵. 2

Example 12.10 Let 𝖳 be the Tate triple (𝖧𝗈𝖽ℝ, 𝑤,ℝ(1)) defined in 11.2. A polarization
on a real Hodge structure 𝑉 of weight 𝑛 is a bilinear form 𝜙∶ 𝑉 ×𝑉 → ℝ(−𝑛) such that
the real-valued form (𝑥, 𝑦)↦ (2𝜋𝑖)𝑛𝜙(𝑥, 𝐶𝑦), where 𝐶 denotes the element 𝑖 ∈ 𝕊(ℝ) =
ℂ×, is positive-definite and symmetric. These polarizations are the positive (bilinear)
forms for a polarization Π on the Tate triple 𝖳. The functor 𝜔∶ 𝖧𝗈𝖽ℝ → 𝖵 provided
by the last theorem is 𝑉 ↦ (𝑉 ⊗ ℂ, 𝑣 ↦ 𝐶𝑣). (Note that (𝖧𝗈𝖽ℝ, 𝑤,ℝ(1)) is not quite
the Tate triple associated, as in (11.5), with (𝕊, 𝑤, 𝑡) because we have chosen a different
Tate object; this difference explains the occurrence of (2𝜋𝑖)𝑛 in the above formula; Π is
essentially the polarization defined by the canonical Hodge element 𝐶.)

13 Polarizations on quotient categories

Wewrite𝖵 for the category ofℤ-graded complex vector spaces endowedwith a semilinear
automorphism 𝑎 such that 𝑎2𝑣 = (−1)𝑛𝑣 if 𝑣 ∈ 𝑉𝑛. It has a natural structure of a Tate
triple (11.4). The canonical polarization on 𝖵 is denoted Π𝖵.

A morphism 𝐹∶ (𝖳1, 𝑤1,𝕋1)→ (𝖳2, 𝑤2,𝕋2) of Tate triples is an exact tensor functor
𝐹∶ 𝖳1 → 𝖳2 preserving the gradations together with an isomorphism 𝐹(𝕋1) ≃ 𝕋2. We
say that such a morphism is compatiblewith graded polarizationsΠ1 andΠ2 on 𝖳1 and
𝖳2 (denoted 𝐹∶ Π1 ↦ Π2) if

𝜓 ∈ Π1(𝑋) ⇒ 𝐹𝜓 ∈ Π2(𝐹𝑋),

in which case, for any 𝑋 homogeneous of weight 𝑛, Π1(𝑋) consists of the sesquilinear
forms 𝜓∶ 𝑋 ⊗ �̄� → 𝟙(−𝑛) such that 𝐹𝜓 ∈ Π2(𝐹𝑋). In particular, given 𝐹 andΠ2, there
exists at most one graded polarization Π1 on 𝖳1 such that 𝐹∶ Π1 ↦ Π2.

Let 𝖳 = (𝖳, 𝑤,𝕋) be an algebraic Tate triple over ℝ such that 𝑤(−1) ≠ 1. Given a
graded polarization Π on 𝖳, there exists a morphism of Tate triples 𝜉Π∶ 𝖳 → 𝖵, unique
up to isomorphism) such that 𝜉Π∶ Π↦ Π𝖵 (Theorem 12.9). Let 𝜔Π be the composite

𝖳𝑤(𝔾𝑚)
𝜉Π→ 𝖵𝑤(𝔾𝑚)

𝛾𝖵
→ 𝖵𝖾𝖼𝖿(ℝ),

where 𝖳𝑤(𝔾𝑚) is the full subcategory of objects on which𝑤(𝔾𝑚) acts trivially (see IV, 6.5).
Then 𝜔Π is a fibre functor on 𝖳𝑤(𝔾𝑚).

A criterion for the existence of a polarization

Proposition 13.1 Let 𝖳 = (𝖳, 𝑤,𝕋) be an algebraic Tate triple overℝ such that𝑤(−1) ≠
1, and let 𝜉 ∶ 𝖳 → 𝖵 be a morphism of Tate triples. There exists a graded polarizationΠ
on 𝖳 (necessarily unique) such that 𝜉 ∶ Π ↦ Π𝖵 if and only if the real algebraic group
𝒜𝑢𝑡⊗ℝ (𝛾

𝖵◦𝜉|𝖳𝑤(𝔾𝑚)) is compact.
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Proof Let𝐺 = 𝒜𝑢𝑡⊗ℝ (𝛾
𝖵◦𝜉|𝖳𝑤(𝔾𝑚)). AssumeΠ exists. The restriction ofΠ to 𝖳𝑤(𝔾𝑚) is a

symmetric polarization, which the fibre functor 𝛾𝖵◦𝜉 maps to the canonical polarization
on 𝖵𝖾𝖼𝖿ℝ. This implies that 𝐺 is compact (1.7).

For the converse, let𝑋 be an object ofweight𝑛 in𝖳(ℂ). A sesquilinear form𝜓∶ 𝜉(𝑋)⊗
𝜉(𝑋)→ 𝟙(−𝑛) arises from a sesquilinear form on𝑋 if and only if it is fixed by𝐺. Because
𝐺 is compact, there exists a 𝜓 ∈ Π𝖵(𝜉(𝑋)) fixed by 𝐺 (1.7), and we defineΠ(𝑋) to consist
of all sesquilinear forms 𝜙 on 𝑋 such that 𝜉(𝜙) ∈ Π𝖵(𝜉(𝑋)). It is now straightforward to
check that 𝑋 ↦ Π(𝑋) is a polarization on 𝖳. 2

Corollary 13.2 Let 𝐹∶ (𝖳1, 𝑤1,𝕋1)→ (𝖳2, 𝑤2,𝕋2) be a morphism of Tate triples, and
letΠ2 be a graded polarization on 𝖳2. There exists a graded polarizationΠ1 on 𝖳1 such that
𝐹∶ Π1 ↦ Π2 if and only if the real algebraic group𝒜𝑢𝑡

⊗
ℝ (𝛾

𝖵◦𝜉Π2◦𝐹|𝖳
𝑤(𝔾𝑚)
1 ) is compact.

Polarizations on quotients

The next proposition gives a criterion for a polarization on a Tate triple to pass to a
quotient Tate triple.

Proposition 13.3 Let 𝖳= (𝖳, 𝑤,𝕋) be an algebraic Tate triple overℝ such that𝑤(−1) ≠
1. Let (𝖰,𝑞) be a quotient of 𝖳 by𝐻 ⊂ 𝜋(𝖳), and let 𝜔𝑞 be the corresponding fibre functor
on 𝖳𝐻 (IV, 6.10). Assume𝐻 ⊃ 𝑤(𝔾𝑚), so that 𝖰 inherits a Tate triple structure from that
on 𝖳, and that 𝖰 is semisimple. Given a graded polarizationΠ on 𝖳, there exists a graded
polarizationΠ′ on 𝖰 such that 𝑞∶ Π↦ Π′ if and only if 𝜔𝑞 ≈ 𝜔Π|𝖳𝐻 .

Proof ⇒: Let Π′ be such a polarization on 𝖰, and consider the functors

𝖳
𝑞
,→ 𝖰

𝜉Π′,→ 𝖵, 𝜉Π′ ∶ Π′ ↦ Π𝖵.

Both 𝜉Π′◦𝑞 and 𝜉Π are compatible with Π and Π𝖵 and with the Tate triple structures
on 𝖳 and 𝖵, and so 𝜉Π′◦𝑞 ≈ 𝜉Π (Theorem 12.9). On restricting everything to 𝖳𝑤(𝔾𝑚) and
composing with 𝛾𝑉 , we get an isomorphism 𝜔Π′◦(𝑞|𝖳𝑤(𝔾𝑚)) ≈ 𝜔Π. Now restrict this to
𝖳𝐻 , and note that

(
𝜔Π′◦(𝑞|𝖳𝑤(𝔾𝑚))

)
|𝖳𝐻 = (𝜔Π′|𝖰𝜋(𝖰))◦(𝑞|𝖳𝐻) ≃ 𝜔𝑞

because 𝜔Π′|𝖰𝜋(𝖰) ≃ 𝛾𝑄.
⇐: The choice of an isomorphism 𝜔𝑞 → 𝜔Π|𝖳𝐻 determines an exact tensor functor

𝖳∕𝜔𝑞 → 𝖳∕𝜔Π.

As the quotients 𝖳∕𝜔𝑞 and 𝖳∕𝜔Π are tensor equivalent respectively to 𝖰 and 𝖵, this
shows that there is an exact tensor functor 𝜉 ∶ 𝖰 → 𝖵 such that 𝜉◦𝑞 ≈ 𝜉Π. Evidently
𝒜𝑢𝑡⊗ℝ (𝛾

𝖵◦𝜉|𝖰𝑤(𝔾𝑚)) is isomorphic to a subgroup of𝒜𝑢𝑡⊗ℝ (𝛾
𝖵◦𝜉Π|𝖳𝑤(𝔾𝑚)). Since the latter

is compact, so also is the former (1.6). Hence 𝜉 defines a graded polarization Π′ on 𝖰
(Proposition 13.1), and clearly 𝑞∶ Π↦ Π′. 2

Notes This section has been extracted from Milne 2002.
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14 The Doplicher–Roberts theorem

Let 𝖢 be a tensorial category over ℝ. As noted in §3, the theory there of bilinear and
sesquilinear forms extends to tensorial categories. In particular, we have the notion of a
Weil form on an object of 𝖢 or 𝖢′ def= 𝖢(ℂ) and the notion of a polarization on 𝖢.

Theorem 14.1 (?) Let 𝖢 be a tensorial category over ℝ and Π a polarization on 𝖢 with
parity 1. Assume that𝖢 admits a tensor generator. Then𝖢has a unique (up to isomorphism)
ℝ-valued fibre functor 𝜔 transforming positive forms forΠ into positive-definite symmetric
bilinear forms; 𝜔 defines a tensor equivalence 𝖢 → 𝖱𝖾𝗉𝖿ℝ(𝐾), where 𝐾

def= 𝒜𝑢𝑡ℝ(𝜔) is a
compact real algebraic group.

Proof The first step (Doplicher and Roberts 1989a,b) is to show that the dimension
of each object is an integer ≥ 0 and that if 𝑉1,… , 𝑉𝑘 have dimension 𝑛1,… , 𝑛𝑛, there
exists a⊗-functor from the category of representations of

∏
GL𝑛𝑖 into 𝖳. Now Deligne’s

theorem (I, 10.1) shows that 𝖢 is a tannakian category, and Theorem 9.1 completes the
proof. 2

Notes I’ll complete this section when I understand the Doplicher–Roberts theorem. It would
be good to include the following.

(a) A precise statement of the Doplicher-Roberts theorem in the language of this work.

(b) The proof of the first step in the above proof.

(c) Explain why the theorem is important to physicists (and our knowledge of the real world).

Aside 14.2 From Deligne 1990. June 1990: A very different approach to results close to those in
paragraph 7 has been developped by Doplicher and Roberts. In a language a little different from
theirs: they consider a tensorial category 𝖳 over ℝ, polarized in the sense of Saavedra, and prove
that it is the category of representations of a compact group equipped with its natural polarization.
The start of their proof, parallel to the start of paragraph 7, observes that the dimension of each
object is an integer ≥ 0 and that if 𝑉1,… , 𝑉𝑘 have dimension 𝑛1,… , 𝑛𝑛, there exists a⊗-functor
from the category of representations of

∏
GL𝑛𝑖 into 𝖳 sending the standard representation of

GL𝑛𝑖 to 𝑉𝑖 . The first point acquired, their results can be deduced from those of paragraph 7 and
Saavedra (Chap. VI). Their proof is very different.

Notes This chapter largely follows Saavedra 1972, Chapt. V, and Deligne and Milne 1982, §§4,5.



Chapter VI

Motives

As noted in the introduction, Grothendieck introduced tannakian categories to provide a
framework for the study of motives. The theory of motives has become a very large topic.
Here we include only a small fragment. In particular, we discuss only pure motives. For
more comprehensive introductions to motives, see André 2004 or Murre et al. 2013.

1 Algebraic cycles and correspondences

Throughout this section, we fix a field 𝑘. All algebraic varieties are smooth and projective
over 𝑘. We let 𝖵(𝑘) denote the category of smooth projective varieties over 𝑘, and 𝖵′(𝑘)
the category of connected smooth projective varieties over 𝑘.1 Note that 𝖵(𝑘) becomes a
tensor category with
⋄ 𝑋 ⊗ 𝑌 = 𝑋 × 𝑌,
⋄ the associativity constraint 𝑋 × (𝑌 × 𝑍)→ (𝑋 × 𝑌) × 𝑍, (𝑥, (𝑦, 𝑧))↦ ((𝑥, 𝑦), 𝑧),
⋄ the commutativity constraint 𝑋 × 𝑌 → 𝑌 × 𝑋, (𝑥, 𝑦)↦ (𝑦, 𝑥).

Algebraic cycles

1.1 Let 𝑋 be an algebraic variety. The group of algebraic cycles 𝑍(𝑋) on 𝑋 is the
free abelian group generated by the closed integral subschemes 𝑌 of 𝑋. It is graded by
codimension,

𝑍(𝑋) =
⨁

𝑟
𝑍𝑟(𝑋), 0 ≤ 𝑟 ≤ 𝑛.

If 𝑋 =
⨆
𝑋𝑖 is the decomposition of 𝑋 into its connected components, then

𝑍(𝑋) ≃
⨁

𝑖
𝑍(𝑋𝑖). (121)

The closed integral subschemes of 𝑋 are in canonical one-to-one correspondence
with the points of 𝑋: to a closed integral subscheme, attach its generic point; to a point
of 𝑋, attach its closure. We sometimes regard the points of 𝑋 as forming a basis for 𝑍(𝑋).
Then dim(𝑥) def= dim {𝑥}.

1.2 When 𝑌 is a closed irreducible subscheme (not necessarily reduced) of 𝑋, the local
ring 𝒪𝑌,𝜂 at the generic point of 𝑌 is artinian, and the class of 𝑌 in 𝑍(𝑋) is defined to be

[𝑌] = length(𝒪𝑌,𝜂)𝑌red.
1Recall that an algebraic variety over 𝑘 is a geometrically reduced separated scheme of finite type over

𝑘. A map of algebraic varieties, we mean a morphism (over 𝑘), sometimes called a regular map.
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1.3 When 𝑋 is connected of dimension 𝑛, the degree map ⟨ ⟩∶ 𝑍(𝑋)→ ℤ is defined by

⟨𝑥⟩ = { [𝑘(𝑥)∶ 𝑘] if codim(𝑥) = 𝑛 (i.e., 𝑥 a closed point),
0 if codim(𝑥) < 𝑛.

1.4 When 𝑓∶ 𝑋 → 𝑌 is a map of algebraic varieties, we define 𝑓∗∶ 𝑍(𝑋)→ 𝑍(𝑌) to be
the ℤ-linear map such that, for a basis element 𝑥 of 𝑍(𝑋),

𝑓∗(𝑥) = { [𝑘(𝑥)∶ 𝑘(𝑓(𝑥)] ⋅ 𝑓(𝑥) if dim((𝑓(𝑥)) = dim(𝑥),
0 if dim(𝑓(𝑥)) < dim(𝑥).

1.5 When 𝑌 and 𝑍 are closed integral subschemes of 𝑋 and𝑊 is an irreducible compo-
nent of 𝑌 ∩ 𝑍 such that

codim(𝑊) = codim(𝑌) + codim(𝑍), (122)

we define
𝑖(𝑌, 𝑍;𝑊) =

∑
(−1)𝑖length Tor𝑅𝑖 (𝑅∕𝔞, 𝑅∕𝔟),

where 𝑅 = 𝒪𝑊,𝜂 and 𝔞 and 𝔟 are the ideals of𝑌 and 𝑍 in 𝑅. We say that𝑌 and 𝑍 intersect
properly if (122) holds for all irreducible components𝑊 of 𝑌 ∩ 𝑍, and we then set

𝑌 ⋅ 𝑍 =
∑

𝑖(𝑌, 𝑍;𝑊)𝑊.

In this way, we obtain a partially defined intersection product

𝑎, 𝑏 ↦ 𝑎 ⋅ 𝑏∶ 𝑍(𝑋) × 𝑍(𝑋)⤏ 𝑍(𝑋).

If 𝑎 and 𝑏 are homogeneous of degrees 𝑖 and 𝑗, then 𝑎 ⋅ 𝑏 is homogeneous of degree 𝑖 + 𝑗.

1.6 Let 𝑓∶ 𝑋 → 𝑌 be a map of algebraic varieties. By the graph of 𝑓, we mean either
the closed immersion

𝑥 ↦ (𝑥, 𝑓(𝑥))∶ 𝑋 → 𝑋 × 𝑌

or its image Γ𝑓. If 𝑍 is a closed integral subscheme of 𝑌, we let

𝑓∗(𝑍) = 𝑝𝑋∗(𝑋 × 𝑍 ⋅ Γ𝑓)

when this is defined. In this way, we get a partially defined ℤ-linear map

𝑓∗∶ 𝑍(𝑌)⤏ 𝑍(𝑋).

When 𝑓 is flat, we can extend 𝑓∗ to the whole of 𝑍(𝑌) by setting

𝑓∗(𝑍) = [𝑓−1(𝑍)],

where 𝑓−1(𝑍) is the closed subscheme 𝑋 ×𝑌 𝑍 of 𝑋.

1.7 Let 𝑓∶ 𝑋 → 𝑌 be a map of algebraic varieties. The operations 𝑓∗ and 𝑓∗ are related
by the projection formula

𝑓∗(𝑓∗(𝑏) ⋅ 𝑎) = 𝑏 ⋅ 𝑓∗(𝑎), 𝑎 ∈ 𝑍(𝑋), 𝑏 ∈ 𝑍(𝑌), (123)

whenever both sides are defined.
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1.8 An adequate equivalence relation is a family of equivalence relations ∼𝑋 on the
graded groups 𝑍(𝑋) that is respected by both 𝑓∗ and 𝑓∗ and by intersections, and that
satisfies the following condition: for all 𝑎, 𝑏 ∈ 𝑍(𝑋), there exist 𝑎′ ∼𝑋 𝑎 and 𝑏′ ∼𝑋 𝑏
such that 𝑎′ ⋅ 𝑏′ is defined.

Let ∼ be an admissible equivalence relation. There is a unique multiplication on
𝑍∼(𝑋)

def= 𝑍(𝑋)∕∼ such that

𝑍(𝑋) × 𝑍(𝑋) 𝑍(𝑋)

𝑍∼(𝑋) × 𝑍∼(𝑋) 𝑍∼(𝑋)

⋅

commutes. It makes 𝑍∼(𝑋) into a graded ring.
Let 𝑓∶ 𝑋 → 𝑌 be a map of algebraic varieties. Then 𝑓∗∶ 𝑍∼(𝑌) → 𝑍∼(𝑋) is a

homomorphism of graded rings and 𝑓∗∶ 𝑍∼(𝑋)→ 𝑍∼(𝑌) is a homomorphism of abelian
groups.

If 𝑋
𝑓
,→ 𝑋′ 𝑓′

,→ 𝑋′′ are maps of algebraic varieties, then

𝑓′∗◦𝑓∗ = (𝑓′◦𝑓)∗, 𝑓∗◦𝑓′∗ = (𝑓′◦𝑓)∗.

Thus, 𝑍∼ is a contravariant functor of graded rings and a covariant functor of abelian
groups, with the two structures being related by the projection formula (123).

1.9 Two algebraic cycles 𝑍 and 𝑍′ on 𝑋 are said to be rationally equivalent (denoted
𝑍 ∼rat 𝑍′) if one can be transformed into the other by a series of rational deformations.2
They arealgebraically equivalent (denoted𝑍 ∼alg 𝑍′) if one can be transformed into the
other by algebraic deformations. They are homologically equivalent relative to some
Weil cohomology theory𝐻 (denoted 𝑍 ∼𝐻 𝑍′) if they have the same cohomology class
for𝐻, and they are homology equivalent (denoted 𝑍 ∼hom 𝑍′) if they are homologically
equivalent relative to every Weil cohomology satisfying weak Lefschetz (see below for
this terminology). They are numerically equivalent (denoted 𝑍 ∼num 𝑍′) if their
intersection numbers with any subvariety of complementary dimension coincide. We
have

∼rat≻∼alg≻∼hom≻∼num .

Rational equivalence is the finest adequate equivalence relation and numerical equiva-
lence is the coarsest.

ToDo 10 Add references.

2 Motives

We fix an admissible equivalence relation ∼ and write 𝐶(𝑋) for 𝐶∼(𝑋)
def= 𝑍∼(𝑋)⊗ℚ.

2.1 For algebraic varieties X and 𝑌 with 𝑋 connected, we let

𝐶𝑟(𝑋,𝑌) = 𝐶dim𝑋+𝑟(𝑋 × 𝑌)
2In more detail, 𝑍 ∼rat 0 if there is a cycle 𝑊 on 𝑋 × ℙ1 and two points 𝑎, 𝑏 ∈ ℙ1(𝑘) such that

𝑊(𝑎) def= pr∗2(𝑎) and𝑊(𝑏) are defined and 𝑍 =𝑊(𝑎) −𝑊(𝑏).
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(correspondences of degree 𝑟 from 𝑋 to 𝑌). When 𝑋 =
⨆

𝑖∈𝐼 𝑋𝑖 is the decomposition of
𝑋 into its connected components, we let

𝐶𝑟(𝑋,𝑌) =
⨁

𝑖∈𝐼
𝐶𝑟(𝑋𝑖, 𝑌).

For algebraic varieties 𝑋,𝑌, 𝑍, there is a bilinear pairing

𝑓, 𝑔 ↦ 𝑔◦𝑓∶ 𝐶𝑟(𝑋,𝑌) × 𝐶𝑠(𝑌, 𝑍)→ 𝐶𝑟+𝑠(𝑋, 𝑍)

with
𝑔◦𝑓 def= (𝑝𝑋𝑍)∗(𝑝∗𝑋𝑌𝑓 ⋅ 𝑝

∗
𝑌𝑍𝑔).

Here, the 𝑝 are the projection maps from 𝑋 × 𝑌 × 𝑍,

𝑋 × 𝑌 𝑋 × 𝑌 × 𝑍 𝑌 × 𝑍

𝑋 × 𝑍.

←→

𝑝𝑋𝑌 ←→
𝑝𝑌𝑍

←→ 𝑝𝑋𝑍

These pairing are associative, and so we get a category 𝖢𝖵(𝑘) of correspondences, which
has one object ℎ𝑋 for each variety over 𝑘, and whose Homs are defined by

Hom(ℎ𝑋, ℎ𝑌) = 𝐶0(𝑋,𝑌) = 𝐶dim𝑋(𝑋 × 𝑌).

Let 𝑓∶ 𝑋 → 𝑌 be amap algebraic varieties. The transpose of the graph of 𝑓 is an element
of 𝐶0(𝑌,𝑋), and 𝑋 ⇝ ℎ𝑋 is a contravariant functor.

2.2 The category 𝖢𝖵(𝑘) is ℚ-linear with direct sums,

ℎ𝑋 ⊕ ℎ𝑌 = ℎ(𝑋 × 𝑌).

There is a ℚ-linear tensor structure on 𝖢𝖵(𝑘) for which
⋄ ℎ𝑋 ⊗ ℎ𝑌 = ℎ(𝑋 × 𝑌),
⋄ the associativity constraint is induced by 𝑋 × (𝑌 × 𝑍)→ (𝑋 × 𝑌) × 𝑍,
⋄ the commutativity constraint is induced by 𝑋 × 𝑌 → 𝑌 × 𝑋,
⋄ the unit object is ℎ(point).

2.3 The category𝖢𝖵(𝑘) is not pseudo-abelian (much less abelian). Recall that a category
is pseudo-abelian if it is additive and if, for every idempotent endomorphism 𝑒 of an
object𝑀, there is a decomposition

𝑀 = 𝑀1 ⊕𝑀2

with 𝑒|𝑀1 = id𝑀1 and 𝑒|𝑀2 = 0. Then𝑀1 is the image 𝑒𝐴 of𝐴. To construct the category
𝖬+(𝑘) of effective motives, we enlarge 𝖢𝖵(𝑘) by adding images of idempotents. More
precisely, we define𝖬+(𝑘) to be the category with one object ℎ(𝑋, 𝑝) for each algebraic
variety 𝑋 and idempotent 𝑝 in the ring End(ℎ𝑋) def= 𝐶dim𝑋(𝑋 × 𝑋), and with

Hom(ℎ(𝑋, 𝑝), ℎ(𝑌, 𝑞)) = 𝑞◦Hom(ℎ𝑋, ℎ𝑌)◦𝑝 = 𝑞◦𝐶0(𝑋,𝑌)◦𝑝.

When we identify ℎ𝑋 with ℎ(𝑋,∆), 𝖢𝖵(𝑘) becomes a subcategory of𝖬+(𝑘), and ℎ(𝑋, 𝑝)
becomes the image of 𝑝∶ ℎ𝑋 → ℎ𝑋. The rule

ℎ(𝑋, 𝑝)⊗ ℎ(𝑌, 𝑞) = (ℎ𝑋 ⊗ ℎ𝑌, 𝑝 ⊗ 𝑞) def= ℎ(𝑋 × 𝑌, 𝑝 × 𝑞).

makes𝖬+(𝑘) into a ℚ-linear pseudo-abelian tensor category.



2. Motives 231

2.4 The category𝖬+(𝑘) is not rigid. In𝖬+(𝑘), the motive ℎℙ1 decomposes as ℎℙ1 =
ℎ0ℙ1 ⊕ ℎ2ℙ1, and it turns out that to obtain duals for all objects, it suffices to “invert”
ℎ2ℙ1. This is most conveniently done by defining the category𝖬(𝑘) of motives to have
one object ℎ(𝑋, 𝑝,𝑚) for each pair (𝑋, 𝑝) as before and integer𝑚, and whose Homs are
defined by

Hom((𝑋, 𝑝,𝑚), (𝑌, 𝑞, 𝑛)) = 𝑞◦𝐶𝑚−𝑛(𝑋,𝑌)◦𝑝
= 𝑞◦𝐶dim(𝑋)+𝑚−𝑛(𝑋 × 𝑌)◦𝑝.

The tensor product on𝖬+(𝑘) extends to𝖬(𝑘),

ℎ(𝑋, 𝑝,𝑚)⊗ ℎ(𝑌, 𝑞, 𝑛) = ℎ(𝑋 × 𝑌, 𝑝 × 𝑞,𝑚 + 𝑛).

When 𝑋 is connected of dimension 𝑛, there is a canonical decomposition

ℎ𝑋 = ℎ0𝑋 ⊕ ℎ′𝑋 ⊕ ℎ𝑛𝑋

(Saavedra 1972, VI, 4.1.2). For example,

ℎℙ1 = ℎ0ℙ1 ⊕ ℎ2ℙ1.

We define the Lefschetz motive 𝐿 to be ℎ2ℙ1, and note that in passing from𝖬+(𝑘) to
𝖬(𝑘), we have inverted 𝐿 to get the Tate motive 𝑇. For 𝑋 connected of dimension 𝑛,
ℎ0𝑋 ≃ 𝟙 and ℎ𝑛𝑋 ≃ 𝐿⊗𝑛.

When we identify ℎ(𝑋, 𝑝)with ℎ(𝑋, 𝑝, 0),𝖬+(𝑘) becomes a subcategory of𝖬(𝑘). We
set𝑀(𝑛) = 𝑀 ⊗𝑇⊗𝑛, so (ℎ𝑛𝑋)(𝑛) ≃ 𝟙 when 𝑋 is connected of dimension 𝑛.

Theorem 2.5 The category of motives 𝖬(𝑘) is a ℚ-linear rigid pseudo-abelian tensor
category.

Proof Let 𝑋 be a connected algebraic variety over 𝑘. Let

ℎ(𝑋)∨ = ℎ(𝑋)(𝑛)

and define
ev𝑋 ∶ ℎ(𝑋)∨ ⊗ ℎ(𝑋)→ 𝟙

to be the composite

ℎ(𝑋)∨ ⊗ ℎ(𝑋) ≃ ℎ(𝑋 × 𝑋)(𝑛)
ℎ(∆)
,→ ℎ(𝑋)(𝑛)→ ℎ𝑛(𝑋)(𝑛) ≃ 𝟙.

There exists a coevaluation map 𝛿∶ 𝟙→ ℎ(𝑋)⊗ ℎ(𝑋)∨ satisfying (21), p. 22. This con-
struction extends to𝖬(𝑘) because of the universal properties of the functors𝖵′(𝑘)→ 𝖵(𝑘)
(for direct sums), 𝖢𝖵(𝑘)→ 𝖬+(𝑘), and𝖬+(𝑘)→ 𝖬(𝑘) (Saavedra 1972., VI, 4.1.3.5). 2

Alas, as we shall see, it is not abelian except when ∼= num, in which case it is
semisimple.

An ideal ℐ in an 𝐹-linear category 𝖳 is a family of 𝐹-subspaces ℐ(𝐴, 𝐵) ⊂ Hom(𝐴, 𝐵),
𝐴, 𝐵 ∈ ob𝖳, stable under left and right composition by morphisms in 𝖳. The quotient
category 𝖳∕ℐ has the same objects as 𝖳 but with

Hom𝖳∕ℐ(𝐴, 𝐵) = Hom𝖳(𝐴, 𝐵)∕ℐ(𝐴, 𝐵).

When 𝖳 is a tensor category, we say that ℐ is a tensor ideal if it stable under tensor
products with morphisms of the form id𝐶⊗𝑓 and 𝑓 ⊗ id𝐶 , 𝐶 ∈ ob𝖳. It is then stable
under tensor products with any morphism, and 𝖳∕ℐ acquires a tensor structure from 𝖳.
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Proposition 2.6 Every tensor ideal ℐ in𝖬rat(𝑘) is of the form ℐ∼ for some adequate equiv-
alence relation ∼. The category𝖬∼(𝑘) is then the pseudo-abelian envelope of𝖬rat(𝑘)∕ℐ∼.

Proof See, for example, André 2004, 4.4.1.1. 2

Notation 2.7 Let 𝐹 be a field of characteristic zero, and replaceℚ with 𝐹 in the above;
for example, set 𝐶(𝑋) = 𝑍∼(𝑋)⊗ℤ 𝐹. We then get a category of motives𝖬∼(𝑘)𝐹 that is
a 𝐹-linear rigid pseudo-abelian tensor category. The following notation is common,

𝖢𝖧𝖬(𝑘) = 𝖬rat(𝑘) (Chow motives)
𝖭𝖬(𝑘) = 𝖬num(𝑘) (numerical motives).

ToDo 11 Add proofs and references.

3 Weil cohomology theories

Definition, and relation to fibre functors

3.1 We fix a field 𝑘 and a field 𝑄 of characteristic zero. A contravariant functor 𝑋 ⇝
𝐻∗(𝑋) from the category of smooth projective varieties over 𝑘 to the category of finite-
dimensional, graded, anti-commutative 𝑄-algebras is said to be aWeil cohomology
theory if it carries disjoint unions to direct sums and admits a Poincaré duality, a Künneth
formula, and a cycle map.
Poincaré duality Let𝑋 be a connected smooth projective variety over 𝑘 of dimension 𝑑.

(a) The vector spaces 𝐻𝑠(𝑋) are zero except for 0 ≤ 𝑠 ≤ 2𝑑, and 𝐻2𝑑(𝑋) has
dimension 1.

(b) Let 𝑄(−1) = 𝐻2(ℙ1). For any 𝑄-vector space 𝑉 and integer 𝑚, let 𝑉(𝑚) =
𝑉 ⊗𝑄 𝑄(−1)⊗−𝑚 or 𝑉 ⊗𝑄 𝑄(−1)∨⊗𝑚 according as𝑚 is positive or negative.
Then, for each 𝑋, there is given a natural isomorphism 𝜂𝑋 ∶ 𝐻2𝑑(𝑋)(𝑑)→ 𝑄.

(c) The pairings
𝐻𝑟(𝑋) ×𝐻2𝑑−𝑟(𝑋)(𝑑)→ 𝐻2𝑑(𝑋)(𝑑) ≃ 𝑄

induced by the product structure on𝐻∗(𝑋) are non-degenerate.
Let 𝜙∶ 𝑋 → 𝑌 be a morphism of smooth projective varieties over 𝑘, and let 𝜙∗ =

𝐻∗(𝜙) ∶ 𝐻∗(𝑌)→ 𝐻∗(𝑋). Because the pairing in (c) is nondegenerate, there is a unique
linear map

𝜙∗∶ 𝐻∗(𝑋)→ 𝐻∗+2𝑐(𝑌)(𝑐), 𝑐 = dim𝑌 − dim𝑋

such that the projection formula

𝜂𝑌(𝜙∗(𝑥) ∪ 𝑦) = 𝜂𝑋(𝑥 ∪ 𝜙∗𝑦)

holds for all 𝑥 ∈ 𝐻2 dim𝑋−2𝑠(𝑋)(dim𝑋 − 𝑠), 𝑦 ∈ 𝐻2𝑠(𝑌)(𝑠).
Künneth formula Let 𝑝, 𝑞∶ 𝑋 × 𝑌 → 𝑋,𝑌 be the projection maps. Then the map

𝑥 ⊗ 𝑦 ↦ 𝑝∗𝑥 ∪ 𝑞∗𝑦∶ 𝐻∗(𝑋)⊗𝐻∗(𝑌)→ 𝐻∗(𝑋 × 𝑌)

is an isomorphism of graded 𝑘-algebras.
Cycle map There are given homomorphisms

𝑐𝑙𝑋 ∶ 𝐶𝑟rat(𝑋)→ 𝐻2𝑟(𝑋)(𝑟)

satisfying the following conditions:
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(a) (functoriality) For any regular map 𝜙∶ 𝑋 → 𝑌,

𝜙∗◦𝑐𝑙𝑌 = 𝑐𝑙𝑋◦𝜙∗, 𝜙∗◦𝑐𝑙𝑋 = 𝑐𝑙𝑌◦𝜙∗.

(b) (multiplicativity) For any 𝑋,𝑌

𝑐𝑙𝑋×𝑌(𝑍 ×𝑊) = 𝑐𝑙𝑋(𝑍)⊗ 𝑐𝑙𝑌(𝑊).

(c) (non-triviality) If 𝑃 is a point, so 𝐶∗rat(𝑃) = ℚ and𝐻∗(𝑃) = 𝑄, then 𝑐𝑙𝑃 is the
natural inclusion map ℚ → 𝑄.

In the functoriality statement, the 𝜙∗ and 𝜙∗ on the right of the equality signs refer to
the standard operations on theℚ-algebras of algebraic cyclesmodulo rational equivalence
(see 1.8).

An element of𝐻2𝑟(𝑋)(𝑟) is said to be algebraic (resp. integrally algebraic) if it is
in the image of 𝑐𝑙𝑋 ∶ 𝐶𝑟rat(𝑋)→ 𝐻2𝑟(𝑋)(𝑟) (resp. the image of 𝑍𝑟rat(𝑋)→ 𝐻2𝑟(𝑋)(𝑟)).

3.2 AWeil cohomology theory is said to satisfy weak Lefschetz if for every 𝑋, there
exists an integer 𝑑0(𝑋) such that if 𝑓∶ 𝑌 → 𝑋 is a smooth hypersurface section of 𝑋 of
degree 𝑑 ≥ 𝑑0(𝑋), then 𝑓∗∶ 𝐻𝑖(𝑋) → 𝐻𝑖(𝑌) is an isomorphism for 𝑖 ≤ dim𝑋 − 2 and
an injection for 𝑖 = 𝑛 − 1.

Proposition 3.3 Let 𝑖∶ 𝑍 → 𝑋 be a smooth closed subvariety of𝑋. Then 𝑐𝑙𝑋(𝑍) = 𝑖∗(1𝑍),
where 1𝑍 is the identity element of the algebra𝐻∗(𝑋).

Proof Let 𝑃 = Spec 𝑘 and let 𝜙 ∶ 𝑍 → 𝑃 be the structure map. Then

1𝑍 = 𝜙∗(1𝑃) = 𝜙∗(𝑐𝑙𝑃(𝑃)) = 𝑐𝑙𝑍(𝜙∗𝑃) = 𝑐𝑙𝑍(𝑍).

Therefore
𝑖∗(1𝑍) = 𝑖∗(𝑐𝑙𝑍(𝑍)) = 𝑐𝑙𝑋(𝑖∗(𝑍)) = 𝑐𝑙𝑋(𝑍). 2

Proposition 3.4 Let 𝐴 be an abelian variety of dimension 𝑔 over 𝑘.
(a) The dimension of 𝐻1(𝐴) is 2𝑔, and the inclusion 𝐻1(𝐴) → 𝐻∗(𝐴) extends to an

isomorphism of 𝑘-algebras
⋀
𝐻1(𝐴)→ 𝐻∗(𝐴).

(b) For any endomorphism 𝛼 of 𝐴, the characteristic polynomial 𝑃𝐴,𝛼(𝑇) of 𝛼 on 𝐴 is
equal to the characteristic polynomial of 𝛼 acting on 𝑉(𝐴) def= 𝐻1(𝐴)∨.

Proof Statement (a) is proved in Kleiman 1968, 2A8.
For (b), it follows from the axioms that an isogeny 𝛾∶ 𝐴 → 𝐴 acts on 𝐻2𝑔(𝐴) as

multiplication by deg 𝛾. Let

𝑃(𝑇) def= det(𝐻1(𝛼) − 𝑇|𝐻1(𝐴))

be the characteristic polynomial of 𝛼 acting on 𝐻1(𝐴). Then 𝑃(𝑛) = det(𝛼 − 𝑛) for all
integers 𝑛. But 𝛼 − 𝑛 acts on

⋀2𝑔𝐻1(𝐴) = 𝐻2𝑔(𝐴) as multiplication by det(𝛼 − 𝑛).
Therefore, 𝑃(𝑛) = deg(𝛼 − 𝑛) for all integers. But this is the condition characterizing
𝑃𝐴,𝛼(𝑇), and so 𝑃(𝑇) = 𝑃𝐴,𝛼(𝑇). Since 𝛼 has the same characteristic polynomial on𝑉(𝐴)
as on𝐻1(𝐴) (End(𝐴) acts on𝑉(𝐴) on the left and on𝐻1(𝐴) on the right), this completes
the proof. 2

The field 𝑄 is called the coefficient field for the Weil cohomology theory. Note that
if 𝑋 ⇝ 𝐻∗(𝑋) is a Weil cohomology theory with coefficient field 𝑄, and 𝑄′ ⊃ 𝑄, then
𝑋 ⇝ 𝐻∗(𝑋)⊗𝑄 𝑄′ is a Weil cohomology theory with coefficient field 𝑄′.
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The Lefschetz trace formula

We fix a Weil cohomology theory𝐻. Let 𝑋 and 𝑌 be varieties of dimension 𝑛 and𝑚. For
𝑢 ∈ 𝐻∗(𝑋 × 𝑋) of degree 0, we let Tr𝑖(𝑢) denote the trace of 𝑢 acting on𝐻𝑖(𝑋).

Proposition 3.5 Let 𝑣 ∈ 𝐻∗(𝑋 ×𝑌), and𝑤 ∈ 𝐻∗(𝑌 ×𝑋) be correspondences of degrees
𝑑, −𝑑 respectively. Then

⟨𝑣 ⋅ 𝑤𝑡⟩ =
2𝑛∑

𝑖=0
(−1)𝑖 Tr𝑖(𝑤◦𝑣).

Proof We may regard 𝑣 and 𝑤 as elements of 𝐻∗(𝑋) ⊗ 𝐻∗(𝑌) and 𝐻∗(𝑌) ⊗ 𝐻∗(𝑋)
respectively, and we may suppose that

𝑣 ∈ 𝐻2𝑛−𝑖(𝑋)⊗𝐻𝑗(𝑌) ≃ 𝐻𝑖(𝑋)⊗𝐻𝑗(𝑌) ≃ Hom(𝐻𝑖(𝑋), 𝐻𝑗(𝑌))
𝑤 ∈ 𝐻2𝑚−𝑗(𝑌)⊗𝐻𝑖(𝑋) ≃ 𝐻𝑗(𝑌)⊗𝐻𝑖(𝑋) ≃ Hom(𝐻𝑗(𝑌), 𝐻𝑖(𝑋).

where 𝑗 = 𝑖 + 𝑑. Choose a basis 𝑒1, 𝑒2,… for𝐻𝑖(𝑋), and let 𝑓1, 𝑓2,… be the dual basis for
𝐻2𝑛−𝑖(𝑋), so ⟨𝑓𝓁 ⋅𝑒𝑘⟩ = 𝛿𝓁𝑘 and ⟨𝑒𝓁 ⋅𝑓𝑘⟩ = (−1)𝑖𝛿𝓁𝑘 (the algebras are anti-commutative).
Write

𝑣 =
∑

𝓁
𝑓𝓁 ⊗ 𝑦𝓁 ∈ 𝐻2𝑛−𝑖(𝑋)⊗𝐻𝑗(𝑌)

𝑤 =
∑

𝑘
𝑥𝑘 ⊗ 𝑒𝑘 ∈ 𝐻2𝑚−𝑗(𝑌)⊗𝐻𝑖(𝑋), so

𝑤𝑡 =
∑

𝑘
(−1)𝑖𝑗𝑒𝑘 ⊗ 𝑥𝑘.

Then

⟨𝑣 ⋅ 𝑤𝑡⟩ =
∑

𝑘,𝓁
(−1)𝑖𝑗⟨𝑓𝓁 ⊗ 𝑦𝓁 ⋅ 𝑒𝑘 ⊗ 𝑥𝑘⟩

=
∑

𝑘,𝓁
⟨𝑓𝓁 ⋅ 𝑒𝑘⟩⟨𝑦𝓁 ⋅ 𝑥𝑘⟩

=
∑

𝓁
⟨𝑦𝓁 ⋅ 𝑥𝓁⟩

On the other hand

𝑣(𝑒𝑘) =
(∑

𝓁
𝑓𝓁 ⊗ 𝑦𝓁

)
(𝑒𝑘) =

∑
𝓁
⟨𝑒𝑘 ⋅ 𝑓𝓁⟩𝑦𝓁 = (−1)𝑖𝑦𝑘

(𝑤◦𝑣)(𝑒𝑘) = (−1)𝑖𝑤(𝑦𝑘) = (−1)𝑖(
∑

𝓁
𝑥𝓁 ⊗ 𝑒𝓁)(𝑦𝑘) = (−1)𝑖⟨𝑦𝑘 ⋅ 𝑥𝑘⟩𝑒𝑘 +⋯ ,

and so
Tr𝑖(𝑤◦𝑣) = (−1)𝑖

∑
𝑘
⟨𝑦𝑘 ⋅ 𝑥𝑘⟩ = (−1)𝑖⟨𝑣 ⋅ 𝑤𝑡⟩.

2

Proposition 3.6 Let 𝑢 ∈ 𝐻∗(𝑋 × 𝑋) be a correspondence of degree zero.
(a) (Trace formula)

Tr𝑖(𝑢) = (−1)𝑖⟨𝑢 ⋅ 𝜋2𝑛−𝑖⟩.

(b) (Lefschetz fixed-point formula)

⟨𝑢 ⋅ ∆⟩ =
2𝑛∑

𝑖=0
(−1)𝑖 Tr𝑖(𝑢).

Proof Both statements are special cases of 3.5. 2
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Corollary 3.7 Let𝑋 be a smooth projective geometrically irreducible variety of dimension
𝑛 over 𝔽𝑞, and let𝐻 be a Weil cohomology theory. Then

𝑍(𝑋∕𝔽1, 𝑇) =
∏2𝑛

𝑖=0
𝑃𝑖(𝑋∕𝔽𝑞, 𝑇)(−1)

𝑖+1 ,

where 𝑃𝑖(𝑋∕𝔽𝑞, 𝑇) = det(1 − 𝑇𝐹 ∣ 𝐻𝑖(𝑋).

Proof Apply Proposition 3.6 to graph of the Frobenius map. 2

Weil cohomologies over finite fields

Following Katz and Messing 1974), we explain some consequences of Deligne’s proof of
the Weil conjectures.

3.8 Let 𝑋 be a smooth projective geometrically irreducible variety of dimension 𝑛 over
𝔽𝑞. Let 𝓁 be a prime number≠ char(𝔽𝑞), and let 𝐹 denote the Frobenius element relative
to 𝔽𝑞 acting on 𝐻𝑖

𝓁(𝑋)
def= 𝐻𝑖

et(�̄�,ℚ𝓁). For a polynomial 𝑔(𝑇) =
∏

𝑖(1 − 𝛼𝑖𝑇) and 𝑟 ≥ 1,
we let 𝑔(𝑇)(𝑟) =

∏
𝑖(1 − 𝛼𝑟𝑖 𝑇). Deligne (1980) proved the following statements.

(a) For every integer 𝑖 ≥ 0, the polynomial

𝑃𝑖𝓁(𝑋∕𝔽𝑞, 𝑇)
def= det(1 − 𝑇𝐹 ∣ 𝐻𝑖

𝓁(𝑋))

lies in ℤ[𝑇], and its reciprocal roots have complex absolute value 𝑞𝑖∕2.

(b) For every integer 𝑑 ≥ 2 and Lefschetz pencil (𝑋𝑡)𝑡∈ℙ1 of hypersurface sections of
degree 𝑑 of 𝑋, the polynomial 𝑃𝑛−1𝓁 (𝑋∕𝔽𝑞, 𝑇) is the least common multiple of the
complex polynomials 𝑓(𝑇) with the property that, whenever 𝑡 ∈ 𝔽𝑞𝑟 is such that
𝑋𝑡 is smooth, 𝑓(𝑇)(𝑟) divides 𝑃𝑛−1𝓁 (𝑋𝑡∕𝔽𝑞𝑟 , 𝑇).

(c) (strong Lefschetz) For all hyperplane sections 𝐿 ∈ 𝐻2
𝓁(𝑋), the map

𝐿𝑖 ∶ 𝐻𝑛−𝑖
𝓁 (𝑋)→ 𝐻𝑛+𝑖

𝓁 (𝑋)

is an isomorphism.

Theorem 3.9 Let𝐻 be a Weil cohomology theory satisfying weak Lefschetz, and let 𝑋∕𝔽𝑞
be as above. Then, for all 𝑖 ≥ 0,

det(1 − 𝑇𝐹 ∣ 𝐻𝑖(𝑋)) = det(1 − 𝑇𝐹 ∣ 𝐻𝑖
𝓁(𝑋)),

i.e., 𝑃𝑖(𝑋∕𝔽𝑞, 𝑇) = 𝑃𝑖𝓁(𝑋∕𝔽𝑞, 𝑇). In particular, det(1 − 𝑇𝐹 ∣ 𝐻𝑖(𝑋)) is independent of𝐻
and

dim𝑄𝐻𝑖(𝑋) = dimℚ𝓁 𝐻
𝑖
𝓁(𝑋).

Proof Katz and Messing 1974, Theorem 1. 2

Corollary 3.10 Statements 3.8(a),(b),(c) hold with𝐻𝑖
𝓁 and 𝑃

𝑖
𝓁 replaced by𝐻

𝑖 and 𝑃𝑖 .

Proof Ibid., Corollary 1. 2



236 Chapter VI. Motives

4 The standard (classical) Weil cohomology theories
ToDo 12 I plan to expand section this to show how each of the standard Weil cohomology
theories defines a tensor functor to a standard local Tate triple. See [SVp].

Let 𝑋 be a (smooth projective) algebraic variety over an algebraically closed field 𝑘.

𝑘 𝑄 𝐻𝑠(𝑋)
Betti cohomology 𝑘 ⊂ ℂ ℚ 𝐻𝑠(𝑋(ℂ),ℚ)
étale cohomology arbitrary ℚ𝓁, 𝓁 ≠ char(𝑘) 𝐻𝑠

et(𝑋 ⊗𝑘 𝑘al,ℚ𝓁)
de Rham cohomology char = 0 𝑘 ℍ𝑠

Zar(𝑋,Ω
∙
𝑋∕Ω)

crystalline cohomology char ≠ 0 ff(𝑊)) 𝐻𝑠
crys(𝑋∕𝑊)⊗𝑊 𝑘

The standard Weil cohomology theories satisfy weak Lefschetz.
Let 𝑄(1) = 𝐻2(ℙ1)∨. For example, for the Betti cohomology theory ℚ(1) = 2𝜋𝑖ℚ,

and for the étale cohomology theoryℚ𝓁(1) = (lim←,,𝜇𝓁𝑛(Ω))⊗ℤ𝓁 ℚ𝓁. In every case, 𝑄(1)
is a one-dimensional vector space over 𝑘.

The Betti cohomology group𝐻𝑟
𝐵(𝑋)(𝑚)

def= 𝐻𝑟(𝑋(ℂ),ℚ(𝑚)) has a canonical structure
of polarizable rational Hodge structure.

The deRhamcohomology groups𝐻𝑟
dR(𝑋)(𝑚)

def= ℍ𝑟(𝑋Zar,Ω∙
𝑋∕𝑘)(𝑚) are finite-dimensional

𝑘-vector spaces. For any homomorphism 𝜎∶ 𝑘 → 𝑘′ of fields, there is a canonical base
change isomorphism

𝑘′ ⊗𝑘 𝐻𝑟
dR(𝑋)(𝑚)

𝜎
,→ 𝐻𝑟

dR(𝜎𝑋)(𝑚). (124)

When 𝑘 = ℂ, there is a canonical comparison isomorphism

ℂ⊗ℚ 𝐻𝑟
𝐵(𝑋)(𝑚)→ 𝐻𝑟

dR(𝑋)(𝑚). (125)

For each prime number 𝓁 ≠ char(𝑘), the étale cohomology groups 𝐻𝑟
𝓁(𝑋)(𝑚)

def=
𝐻𝑟
𝓁(𝑋et,ℚ𝓁(𝑚)) are finite-dimensionalℚ𝓁-vector spaces. For anyhomomorphism𝜎∶ 𝑘 →

𝑘′ of algebraically closed fields, there is a canonical base change isomorphism

𝐻𝑟
𝓁(𝑋)(𝑚)

𝜎
,→ 𝐻𝑟

𝓁(𝜎𝑋)(𝑚), 𝜎𝑋 def= 𝑋 ⊗𝑘,𝜎 𝑘′. (126)

When 𝑘 = ℂ, there is a canonical comparison isomorphism

ℚ𝓁 ⊗ℚ 𝐻𝑟
𝐵(𝑋)(𝑚)→ 𝐻𝑟

𝓁(𝑋)(𝑚). (127)

Here𝐻𝑟
𝐵(𝑋) denotes the Betti cohomology group𝐻

𝑟(𝑋an,ℚ).

Aside 4.1 Take the equivalence relation to be rational equivalence. Let𝐻 be a Weil cohomology.
There is the notion of a motive being finite-dimensional, and, if𝑀 is finite-dimensional, then
all of the elements of the kernel of

End(𝑀)→ End(𝐻(𝑀))

are nilpotent. Discuss the nilpotence conjecture.

Proposition 4.2 To give a Weil cohomology theory with coefficients in 𝑄 containing 𝐹 is
the same as giving a tensor functor

𝐻∗∶ 𝖢𝖧𝖬(𝑘)𝐹 → ℤ-𝖵𝖾𝖼𝖿(𝑄)

such that𝐻𝑖(𝟙(−1)) = 0 for 𝑖 ≠ 2.

Proof TBA. 2

Theorem 4.3 Let𝑀 ∈ 𝖢𝖧𝖬(𝑘)𝐹 and 𝑖 ∈ ℕ. Then the dimension of the 𝑄-vector space
𝐻𝑖(𝑀) is independent of the standard Weil cohomology𝐻∗.



5. Artin motives 237

5 Artin motives

Let 𝖵0(𝑘) be the category of zero-dimensional varieties over 𝑘. Define 𝖢𝖵0(𝑘) and𝖬0(𝑘)
as for 𝖢𝖵(𝑘) and 𝖬(𝑘), but with 𝖵0(𝑘) for 𝖵(𝑘). The objects of 𝖬0(𝑘) are called Artin
motives.3

Let �̄� be a separable closure of 𝑘, and let Γ = Gal(�̄�∕𝑘). The zero-dimensional
varieties are the spectra of finite products of finite separable extensions of 𝑘, and the
functor 𝑋 ⇝ 𝑋(�̄�) is an equivalence of 𝖵0(𝑘) with the category of finite sets equipped
with a continuous action of Γ (Grothendieck’s version of Galois theory).

For an 𝑋 in 𝖵0(𝑘), ℚ𝑋(�̄�) def= Hom(𝑋(�̄�),ℚ) is a finite-dimensional continuous repre-
sentation of Γ. When we regard Γ as a (constant, pro-finite) affine group scheme over 𝑘,
ℚ𝑋(�̄�) ∈ 𝖱𝖾𝗉𝖿ℚ(Γ). For 𝑋,𝑌 ∈ ob(𝖵0(𝑘)),

Hom(ℎ(𝑋), ℎ(𝑌)) def= 𝐶0(𝑋 × 𝑌)

= (ℚ𝑋(�̄�)×𝑌(�̄�))Γ

= HomΓ

(
ℚ𝑋(�̄�),ℚ𝑌(�̄�)

)
.

Thus,
ℎ(𝑋)⇝ ℚ𝑋(�̄�)∶ 𝖢𝖵0(𝑘)→ 𝖱𝖾𝗉𝖿ℚ(Γ)

is fully faithful, and Grothendieck’s version of Galois theory shows that it is essentially
surjective. Therefore, 𝖢𝖵0(𝑘) is abelian and𝖬0(𝑘) = 𝖢𝖵0(𝑘). We have shown:

Proposition 5.1 The category of Artinmotives𝖬0(𝑘) equals𝖢𝖵0(𝑘). The functorℎ(𝑋)⇝
ℚ𝑋(�̄�) defines an equivalence of tensor categories𝖬0(𝑘) ∼→ 𝖱𝖾𝗉𝖿ℚ(Γ).

Remark 5.2 Let𝑀 be an Artin motive, and regard𝑀 as an object of 𝖱𝖾𝗉𝖿ℚ(Γ). Then

𝐻𝐵(𝑀) = 𝑀 (underlying vector space) if 𝑘 = ℂ;
𝐻𝓁(𝑀) = 𝑀 ⊗ℚ ℚ𝓁, as a Γ-module;
𝐻dR(𝑀) = (𝑀 ⊗ℚ �̄�)Γ.

Note that, if𝑀 = ℎ(𝑋), where 𝑋 = Spec(𝐴), then

𝐻dR(𝑀) = (ℚ𝑋(�̄�) ⊗ℚ �̄�)Γ = (𝐴⊗𝑘 �̄�)Γ = 𝐴.

Remark 5.3 The proposition shows that the category of Artin motives over 𝑘 is equiva-
lent to the category of sheaves of finite-dimensionalℚ-vector spaceswithfinite-dimensional
stalk on the étale site Spec(𝑘)et.

6 Motives for numerical equivalence.

Throughout this section, 𝐻 is a Weil cohomology theory with coefficient field 𝑄, and
𝐴𝑟
𝐻(𝑋) denotes the ℚ-subspace of 𝐻

2𝑟(𝑋)(𝑟) spanned by the algebraic classes. We let
𝐻even(𝑋) =

⨁
𝑖≥0𝐻

2𝑖(𝑋) and𝐻odd(𝑋) =
⨁

𝑖≥0𝐻
2𝑖+1(𝑋).

3Because they correspond to representations of the Galois group of 𝑘, which were studied by Emil
Artin.
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Semisimple categories

6.1 Let 𝐴 be a ring (not necessarily commutative). An ideal in 𝐴 is nil if its elements
are all nilpotent. A finitely generated nil ideal is nilpotent.

The Jacobson radical 𝑅(𝐴) of 𝐴 is the intersection of the maximal left ideals in
𝐴. Equivalently it is the intersection of the annihilators of simple 𝐴-modules. It is a
two-sided ideal in 𝐴. Every left (or right) nil ideal is contained in 𝑅(𝐴). For any ideal 𝔞
of𝐴 contained in 𝑅(𝐴), 𝑅(𝐴∕𝔞) = 𝑅(𝐴)∕𝔞. The radical of an artinian ring𝐴 is nilpotent,
and it is the largest nilpotent two-sided ideal in 𝐴. A ring is said to be semisimple if its
Jacobson radical is zero. See Bourbaki A, VIII, §6.

Definition 6.2 A category is said to be semisimple if it is abelian and every object is a
direct sum of simple objects.

Lemma 6.3 Let 𝛼∶ 𝑀 → 𝑁 be a nonzero morphism in an additive category, and let
𝐴 = End(𝑀 ⊕𝑁). If 𝐴 is semisimple, then there exists a 𝛽∶ 𝑁 → 𝑀 such that 𝛽◦𝛼 ≠ 0.

Proof Otherwise the nonzero left ideal 𝐴
( 0 0
𝛼 0

)
⊂
( 0 0
∗ 0
)
, and so is nil. 2

Proposition 6.4 Let 𝖠 be a pseudo-abelian category whose objects are artinian. Then 𝖠
is semisimple if and only if the ring End(𝑋) is semisimple for all 𝑋.

Proof If 𝖠 is semisimple, then every object 𝑋 is a finite direct sum 𝑋 =
⨁

𝑖𝑚𝑖𝑆𝑖
of its isotypic subobjects 𝑚𝑖𝑆𝑖: this means that each object 𝑆𝑖 is simple, and 𝑆𝑖 is not
isomorphic to 𝑆𝑗 if 𝑖 ≠ 𝑗. Because 𝑆𝑖 is simple, End(𝑆𝑖) is a division algebra, and because
End(𝑋) =

∏
𝑖𝑀𝑚𝑖 (𝑆𝑖), it is semisimple.

Conversely, suppose that the endomorphism rings are semisimple, and let 𝑁 be a
nonzero object of 𝖠. If 𝑁 is not simple, then it properly contains a nonzero subobject 𝑆,
which we may suppose to be minimal, hence simple. Let 𝛼 be the inclusion 𝑆 → 𝑁. As
End(𝑆 ⊕ 𝑁) is semisimple, there exists a 𝛽∶ 𝑁 → 𝑆 such that 𝛽◦𝛼 ≠ 0. As 𝑆 is simple,
𝛽◦𝛼 is an isomorphism, and wemay suppose that 𝛽◦𝛼 = id𝑆. Now 𝛼◦𝛽 is an idempotent
endomorphism of 𝑁, which decomposes it into a direct sum 𝑁 = 𝑆 ⊕ 𝑁′. If 𝑁′ is not
simple, we continue. 2

Notes Proposition 6.4 is extracted from Harada 1970. Some finiteness condition is needed in
the proposition: in the category of vector spaces modulo finite-dimensional vector spaces, every
monomorphism splits, but there are no simple objects.

Semisimplicity

For a smooth projective variety 𝑋 and admissible equivalence relation ∼, we let 𝐴𝑖
∼(𝑋)

denote the ℚ-vector space 𝑍𝑖∼(𝑋)⊗ℚ.

6.5 The space 𝐴𝑟
num(𝑋) is finite-dimensional over ℚ. More precisely, if 𝑓1,… , 𝑓𝑠 ∈

𝐴𝑑−𝑟
hom(𝑋) span the subspace 𝑄 ⋅ 𝐴𝑑−𝑟

𝐻 (𝑋) of𝐻2𝑑−2𝑟(𝑋)(𝑑 − 𝑟), then the map

𝑥 ↦ (𝑥 ⋅ 𝑓1,… , 𝑥 ⋅ 𝑓𝑠)∶ 𝐴𝑟
𝐻(𝑋)→ ℚ𝑠

has image 𝐴𝑑−𝑟
num(𝑋).

6.6 Let 𝐴𝑟
𝐻(𝑋,𝑄) = 𝑄 ⋅ 𝐴𝐻 . Define 𝐴𝑟

num(𝑋,𝑄) to be the quotient of 𝐴𝑟
𝐻(𝑋,𝑄) by the

left kernel of the pairing

𝐴𝑟
𝐻(𝑋,𝑄) × 𝐴

𝑑−𝑟
𝐻 (𝑋,𝑄)→ 𝐴𝑑

𝐻(𝑋,𝑄) ≃ 𝑄
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induced by cup product. Then 𝐴𝑟
𝐻(𝑋)→ 𝐴𝑟

num(𝑋,𝑄) factors through 𝐴𝑟
num(𝑋),

𝐴𝑟
𝐻(𝑋) 𝐴𝑟

num(𝑋)

𝐴𝑟
𝐻(𝑋,𝑄) 𝐴𝑟

num(𝑋,𝑄),

← →

←→ ←→

←→

and I claim that
𝑄⊗𝐴𝑟

num(𝑋)→ 𝐴𝑟
num(𝑋,𝑄)

is an isomorphism. As 𝐴𝑟
num(𝑋,𝑄) is spanned by the image of 𝐴𝑟

𝐻(𝑋), the map is obvi-
ously surjective. Let 𝑒1,… , 𝑒𝑚 be a ℚ-basis for 𝐴𝑟

num(𝑋), and let 𝑓1,… , 𝑓𝑚 be the dual
basis in 𝐴𝑑−𝑟

num(𝑋). If
∑𝑚

𝑖=1 𝑎𝑖𝑒𝑖, 𝑎𝑖 ∈ 𝑄, is zero in 𝐴𝑟
num(𝑋,𝑄), then 𝑎𝑗 = (

∑
𝑎𝑖𝑒𝑖) ⋅ 𝑓𝑗 = 0

for all 𝑗.

Theorem 6.7 (Jannsen 1992) For any smooth projective variety 𝑋 over a field 𝑘, the
ℚ-algebra 𝐴∗

num(𝑋 × 𝑋) is semisimple.

Proof Let 𝐵 = 𝐴∗
num(𝑋 × 𝑋). Recall (6.5) that 𝐵 has finite dimension overℚ, and (2.1)

that multiplication in 𝐵 is composition ◦ of correspondences. By definition of numerical
equivalence, the pairing

𝑓, 𝑔 ↦ ⟨𝑓 ⋅ 𝑔⟩∶ 𝐵 × 𝐵 → ℚ

is nondegenerate. Let 𝑓 be an element of the Jacobson radical 𝑅(𝐵) of 𝐵. We have to
show that ⟨𝑓 ⋅ 𝑔⟩ = 0 for all 𝑔 ∈ 𝐵.

Let 𝐻 be a Weil cohomology with coefficient field 𝑄. Let 𝐴 = 𝐴∗
𝐻(𝑋 × 𝑋,𝑄); then 𝐴

is a finite-dimensional 𝑄-algebra, and there is a surjective homomorphism

𝐴 def= 𝐴𝑑
𝐻(𝑋 × 𝑋,𝑄)→ 𝐴𝑑

num(𝑋 × 𝑋,𝑄) ≃ 𝑄⊗ 𝐵

(see 6.6). This maps the radical of 𝐴 onto that of 𝑄⊗ 𝐵 (see 6.1). Therefore, there exists
an 𝑓′ ∈ 𝑅(𝐴)mapping to 1⊗ 𝑓. For all 𝑔 ∈ 𝐴,

⟨𝑓′ ⋅ 𝑔𝑡⟩ =
∑

𝑖
(−1)𝑖 Tr(𝑓′◦𝑔 ∣ 𝐻𝑖(𝑋)) (128)

by Proposition 3.5. As 𝑓′◦𝑔 lies in 𝑅(𝐴), it is nilpotent (see 6.1), and so (128) shows that
⟨𝑓′ ⋅ 𝑔𝑡⟩ = 0. 2

Corollary 6.8 The category 𝖬∼(𝑘) of motives over 𝑘 is semisimple if and only if ∼ is
numerical equivalence.

Proof The sufficiency follows from 6.4 and 6.7. For the necessity, let𝒩 be the ideal in
𝖬∼(𝑘) corresponding to numerical equivalence. If 𝛼∶ 𝑀 → 𝑁 is nonzero, then there
exists a 𝛽∶ 𝑁 → 𝑀 such 𝛽◦𝛼 ≠ 0 (by 6.3) and so 𝛼 ∉𝒩(𝑀,𝑁). Hence𝒩 = 0. 2

Aside 6.9 In fact,𝖬∼(𝑘) is abelian if and only if ∼ is numerical equivalence (see André 1996).

6.10 Let 𝑋 be a smooth projective variety over a field 𝑘. We say that 𝑋 satisfies the sign
conjecture for𝐻 if there exists an algebraic cycle 𝑒 on𝑋×𝑋 such that 𝑒𝐻∗(𝑋) = 𝐻even(𝑋).
Smooth projective varieties over a finite field satisfy the sign conjecture for the standard
Weil cohomology theories, as do abelian varieties over any field.
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Theorem 6.11 Assume the sign conjecture. The kernel of theℚ-algebra homomorphism

𝐴 def= 𝐴∗
𝐻(𝑋 × 𝑋)

𝑆
,→ 𝐴∗

num(𝑋 × 𝑋)

is the radical of 𝐴, and it is a nilpotent ideal.

Proof As 𝐴∗
num(𝑋 × 𝑋) is semisimple, 𝑅(𝐴) ⊂ Ker(𝑆). For the converse, it suffices to

show that Ker(𝑆) is a nil ideal (see 6.1). Let 𝑓 ∈ Ker(𝑆)—we want to show that 𝑓 is
nilpotent. Clearly, we may suppose that 𝑓 is homogeneous. If deg(𝑓) ≠ 0, then it is
obviously nilpotent, and so we may suppose that deg(𝑓) = 0. By assumption, 𝑓 ⋅ 𝑒𝑡 = 0
for all 𝑗 (here is where we use that 𝑒 is algebraic), and so

0 = ⟨𝑓 ⋅ 𝑒𝑡⟩ =
∑

𝑖
(−1)𝑖 Tr(𝑓◦𝑒|𝐻𝑖(𝑋)) = Tr(𝑓|𝐻even(𝑋)).

Therefore Tr(𝑓|𝐻even(𝑋)) = 0 and, similarly, Tr(𝑓|𝐻odd(𝑋)) = 0. Since this is true for
all powers of 𝑓, we see that the image 𝑓𝐻 of 𝑓 in𝐻2𝑑(𝑋 × 𝑋)(𝑑) is nilpotent.

Let 𝑄𝐴𝐻 be the 𝑄-subspace spanned by the image of 𝐴 in 𝐻∗(𝑋 × 𝑋)(𝑑). This is a
finite-dimensional 𝑄-algebra, and the 𝑄-span of {𝑓𝐻 ∣ 𝑓 ∈ Ker(𝑆)} is a nil ideal in 𝑄𝐴𝐻 ,
and so it is contained in 𝑅(𝑄𝐴𝐻) (see 6.1). Now 𝑅(𝑄𝐴𝐻)𝑟 = 0 for some 𝑟. As Ker(𝑆)
maps into 𝑅(𝑄𝐴𝐻), it follows that Ker(𝑆)𝑟 maps into 𝑅(𝑄𝐴𝐻)𝑟 = 0. As 𝐴 → 𝑄𝐴𝐻 is
injective, this shows that Ker(𝑆)𝑟 = 0. 2

When the sign conjecture holds, we can modify the commutativity constraint in
𝖬∼(𝑘) so that, for any 𝛼 ∈ End(𝑀) and Weil cohomology theory𝐻, we have

Tr(𝛼|𝑀) = Tr(𝐻even) + Tr(𝐻odd)

instead of Tr(𝐻even) − Tr(𝐻odd).

Theorem 6.12 Let𝖬num(𝑘) denote the category of numerical motives over 𝑘 generated by
the algebraic varieties over 𝑘 satisfying the sign conjecture. With themodified commutativity
constraint,𝖬num(𝑘) is a semisimple tannakian category overℚ.

Proof From 1.16 and 6.8, we know that 𝖬num(𝑘) is a semisimple tensorial category
over ℚ. With the modified commutativity constraint, dim(𝑀) is an integer ≥ 0 for all
𝑀, and so we can apply Theorem 10.1 of Chapter I. 2

Note that the characteristic polynomial of an endomorphism of an object of 𝖭𝖬𝗈𝗍(𝑘)
is well defined, and equals its characteristic polynomial under any Weil cohomology
theory.

7 The Hodge and Tate conjectures

The Betti, 𝓁-adic étale, and 𝑝-adic crystalline Weil cohomology theories all define tensor
functors from 𝖢𝖧𝖬(𝑘) to a tannakian category. The Hodge conjecture says that, for
𝑘 = ℂ, the first functor is full, and the Tate conjecture says that when 𝑘 is finitely
generated over the prime field, then the last two are full. When we apply the functor
Hom(𝟙,−) to these statements, we arrive at the following conjectures.

Conjecture 7.1 (Hodge𝑟(𝑋)) Let𝑋 be a smooth projective variety overℂ, and let 𝑟 ∈ ℕ.
Theℚ-subspace of𝐻2𝑟

𝐵 (𝑋) generated by the classes of algebraic cycles is

𝐻2𝑟
𝐵 (𝑋) ∩𝐻

𝑟,𝑟(𝑋).
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Conjecture 7.2 (Tate𝑟(𝑋,𝓁)) Let𝑋 be a smooth projective variety over a field 𝑘, finitely
generated over the prime field, and let 𝑟 ∈ ℕ. For all 𝓁 ≠ char(𝑘), the ℚ𝓁-subspace of
𝐻2𝑟
et (𝑋𝑘al ,ℚ𝓁(𝑟)) generated by the classes of algebraic cycles is

𝐻2𝑟
et (𝑋𝑘al ,ℚ𝓁(𝑟))Gal(𝑘

al∕𝑘).

Conjecture 7.3 (Tate𝑟(𝑋, 𝑝)) Let 𝑋 be a smooth projective variety over a finite field
𝑘 of characteristic 𝑝 ≠ 0, and let 𝐻𝑟

crys(𝑋∕𝐵) be the crystalline cohomology group with
coefficients in the field of fractions of𝑊(𝑘). Theℚ𝑝-subspace of𝐻𝑟

crys(𝑋∕𝐵) generated by
the classes of algebraic cycles is

𝐻𝑟
crys(𝑋∕𝐵)𝐹=1.

8 The standard conjectures
Grothendieck gave a series of lectures on motives
at the IHES. One part was about the standard
conjectures. He asked John Coates to write down
notes. Coates did it, but the same thing happened:
they were returned to him with many corrections.
Coates was discouraged and quit. Eventually, it
was Kleiman who wrote down the notes in Dix
Exposes. . .

Illusie, NAMS, 2010, p. 1110.

ToDo 13 I plan to rewrite this section.

For𝑚 ∈ ℤ, we let (𝑚)+ = max(0, 𝑚). In other words, (𝑚)+ equals𝑚 if𝑚 ≥ 0 and 0
otherwise.

For a smooth projective variety 𝑋 over 𝑘 and a Weil cohomology theory 𝐻, we let
𝐴𝑖(𝑋) denote theℚ-subspace of𝐻𝑖(𝑋) generated by the classes of algebraic cycles. Note
that 𝐴𝑖

𝐻(𝑋) ≃ 𝐴𝑖(𝑋). When 𝑋 has dimension 𝑛, we let 𝒜∗(𝑋) denote the graded ring
with 𝒜𝑖(𝑋) = 𝐴𝑛+𝑖(𝑋 × 𝑋) (self-correspondences of degree 𝑖).

The Künneth standard conjecture

Let 𝑋 be a smooth projective variety over 𝑘 and 𝐻 a Weil cohomology theory. The
Künneth projector 𝜋𝑖𝑋 is the projection of𝐻

∗(𝑋) onto𝐻𝑖(𝑋),

𝐻∗(𝑋)→ 𝐻𝑖(𝑋)→ 𝐻∗(𝑋).

Conjecture 8.1 (𝐶(𝑋)) The Künneth projectors 𝜋𝑖𝑋 are algebraic.

Conjecture 8.2 (𝐶+(𝑋)) The even Künneth projector 𝜋+𝑋
def=
∑

𝑖 𝜋
2𝑖
𝑋 is algebraic.

These are called the Künneth standard conjecture and the sign conjecture respec-
tively.
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Consequences of 𝐶(𝑋)

8.3 If 𝑋 satisfies 𝐶(𝑋), then 𝐴(𝑋 × 𝑋) is stable under the Künneth decomposition.
Indeed,

𝒜𝑖(𝑋) =
𝑛−𝑖∑

𝑗=0
𝜋𝑗+𝑖𝐴(𝑋 × 𝑋)𝜋𝑗.

The converse is also true.

Proposition 8.4 Let 𝑢 be the endomorphism of𝐻𝑖(𝑋) defined by an integral algebraic
cycle on 𝑋 × 𝑋 (i.e., an element of 𝑍𝑛(𝑋 × 𝑋)). If 𝜋2𝑛−𝑖 is algebraic, then the characteristic
polynomial 𝑃(𝑇) def= det(1 − 𝑢𝑇 ∣ 𝐻𝑖(𝑋)) has coefficients in ℤ; moreover, these coefficients
are given by universal polynomials in the rational numbers

⟨𝑢𝑚 ⋅ 𝜋2𝑛−𝑖⟩, 𝑚 = 1,… , dim𝐻𝑖(𝑋).

.

Proof The Newton identities (see below) express the coefficients of 𝑃(𝑡) as polynomials
with rational coefficients in the power sums

𝑆𝑚 = 𝑎𝑚1 + 𝑎𝑚2 +⋯

of the eigenvalues 𝑎𝑖 of 𝑢 on𝐻𝑖(𝑋). By the trace formula (3.6(a)),

𝑆𝑚 = Tr(𝑢𝑚|𝐻𝑖(𝑋)) = (−1)𝑖⟨𝑢𝑚 ⋅ 𝜋2𝑛−𝑖⟩ ∈ ℚ.
2

8.5 (The Newton identities (Wikipedia)) Consider the polynomial,

𝑛∏

𝑖=1
(𝑇 − 𝑎𝑖) =

𝑛∑

𝑗=0
(−1)𝑗𝑒𝑗𝑇𝑛−𝑗,

where the coefficients 𝑒𝑗 are the symmetric polynomials in the 𝑎𝑖. Let

𝑝𝑗 = 𝑎𝑗1 +⋯ + 𝑎𝑗𝑛,

Then the coefficients of the polynomial can be expressed recursively in terms of the
power sums as

𝑒0 = 1,
−𝑒1 = −𝑝1,

𝑒2 =
1
2(𝑒1𝑝1 − 𝑝2),

−𝑒3 = −13(𝑒2𝑝1 − 𝑒1𝑝2 + 𝑝3),

𝑒4 =
1
4(𝑒3𝑝1 − 𝑒2𝑝2 + 𝑒1𝑝3 − 𝑝4),

⋮
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It follows that

𝑒1 = 𝑝1,

𝑒2 =
1
2
𝑝21 −

1
2
𝑝2 = 1

2
(𝑝21 − 𝑝2),

𝑒3 =
1
6
𝑝31 −

1
2
𝑝1𝑝2 +

1
3
𝑝3 = 1

6
(𝑝31 − 3𝑝1𝑝2 + 2𝑝3),

𝑒4 =
1
24
𝑝41 −

1
4
𝑝21𝑝2 +

1
8
𝑝22 +

1
3
𝑝1𝑝3 −

1
4
𝑝4 = 1

24
(𝑝41 − 6𝑝21𝑝2 + 3𝑝22 + 8𝑝1𝑝3 − 6𝑝4),

⋮

𝑒𝑛 = (−1)𝑛
∑

𝑚1+2𝑚2+⋯+𝑛𝑚𝑛=𝑛
𝑚1≥0,…,𝑚𝑛≥0

𝑛∏

𝑖=1

(−𝑝𝑖)𝑚𝑖

𝑚𝑖!𝑖𝑚𝑖

Case of a finite base field

Theorem 8.6 Let 𝑋 be a smooth projective variety over 𝔽𝑞 of dimension 𝑛. There are
unique projectors 𝜋𝑖𝑋 in 𝐶𝑛hom(𝑋 × 𝑋) such that 𝐻(𝜋𝑖𝑋) projects 𝐻

∗(𝑋) onto 𝐻𝑖(𝑋) for
every Weil cohomology theory satisfying weak Lefschetz. Moreover, the 𝜋𝑖𝑋 are ℚ-linear
combinations of the graphs of the Frobenius endomorphism and its iterates.

Proof According to Theorem3.9, there are polynomials𝑃𝑖(𝑇) ∈ ℚ[𝑇] such that𝑃𝑖(𝑇) =
det(𝑇−𝐹 ∣ 𝐻𝑖(𝑋)) for everyWeil cohomology theory𝐻 satisfying weak Lefschetz. These
polynomials are relatively prime because their roots have different values, and so there
are polynomials 𝑃𝑖(𝑇) ∈ ℚ[𝑇] such that

𝑃𝑖(𝑇) ≡ { 1mod 𝑃𝑖(𝑇)0mod 𝑃𝑗(𝑇) for 𝑗 ≠ 𝑖.

For any𝐻, 𝑃𝑖(𝐹) acts on𝐻𝑖(𝑋) as 1 and on𝐻𝑗(𝑋), 𝑗 ≠ 𝑖, as 0. We can take 𝜋𝑖𝑋 to be the
graph of 𝑃𝑖(𝐹). The 𝑃𝑖 are uniquely determined up to a polynomial 𝑄 such that 𝑄(𝐹)
acts trivially on all𝐻 satisfying weak Lefschetz. 2

Corollary 8.7 Let 𝑋 be a smooth projective geometrically irreducible variety over 𝔽𝑞 of
dimension 𝑛, and let 𝐻 be a Weil cohomology theory satisfying weak Lefschetz. For any
integrally algebraic cycle 𝑍 on 𝑋 ×𝑋 of codimension 𝑛, the characteristic polynomial of the
induced endomorphism of𝐻𝑖(𝑋) lies in ℤ[𝑇] and is independent of𝐻.

Proof Apply Theorem 8.4. 2

Summary 8.8 Conjecture 𝐶 is known over finite fields for any Weil cohomology theory
satisfying weak Lefschetz, for example, a standard Weil cohomology theory. It follows
that the Künneth projectors are almost-algebraic (see 11.1 for this terminology). In
characteristic zero, if Conjecture 𝐶(𝑋) holds for one standard Weil cohomology theory,
then it holds for all (by the comparison theorems).

The strong Lefschetz theorem and its consequences

Let 𝑋 be an absolutely irreducible smooth projective variety of dimension 𝑛 over 𝑘. Fix
a Weil cohomology. Let𝐻 be a hyperplane section, let 𝜉 = 𝑐𝑙𝑋(𝐻) ∈ 𝐻2(𝑋)(1), and let 𝐿
the operator of degree 2

𝑎 ↦ 𝑎 ⋅ 𝜉 ∶ 𝐻∗(𝑋)→ 𝐻∗+2(𝑋).
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Theorem 8.9 (Strong Lefschetz) For all 𝑖 ≤ 𝑛 = dim𝑋, the map

𝐿𝑛−𝑖 ∶ 𝐻𝑖(𝑋)→ 𝐻2𝑛−𝑖(𝑋)(𝑛 − 𝑖)

is an isomorphism.

8.10 The strong Lefschetz theorem has been proved for the standard Weil cohomology
theories. When 𝑘 has characteristic zero, it suffices (by the comparison theorems) to
prove it for 𝑘 = ℂ and Betti cohomology, where it was proved by transcendental means
by Hodge. In arbitrary characteristics, it suffices (by specialization) to prove it for 𝑘 the
algebraic closure of a finite field, and then it suffices to prove it for étale cohomology
(see 3.10). In this case, it was proved by Deligne (1980).

In the remainder of this section (8.11–8.42), we assume that the strong Lefschetz theorem
holds for𝐻.

8.11 For 𝑗 ≤ 𝑛 − 1, we have a diagram

𝐻𝑖(𝑋) 𝐻𝑖+2𝑗(𝑋) 𝐻2𝑛−𝑖(𝑋),←→𝐿
𝑗

← →
𝐿𝑛−𝑖
≃

←→𝐿𝑛−𝑖−𝑗

and so 𝐿𝑗 ∶ 𝐻𝑖(𝑋)→ 𝐻𝑖+2𝑗(𝑋) is injective and 𝐿𝑛−𝑖−𝑗 ∶ 𝐻𝑖+2𝑗(𝑋)→ 𝐻2𝑛−𝑖(𝑋) is surjec-
tive. Therefore,

1 =𝛽0 ≤ 𝛽2 ≤⋯ ≤ 𝛽2𝑖 for 2𝑖 ≤ 𝑛
𝛽1 ≤ 𝛽3 ≤⋯ ≤ 𝛽2𝑗+1 for 2𝑗 + 1 ≤ 𝑛.

Lemma 8.12 Consider homomorphisms 𝐴
𝛼
,→ 𝐵

𝛽
,→ 𝐶 of vector spaces. If 𝛽◦𝛼 is an

isomorphism, then 𝐵 = 𝛼𝐴 ⊕ Ker(𝛽).

Proof Let 𝑏 ∈ 𝛼𝐴 ∩ Ker(𝛽). Then 𝑏 = 𝛼(𝑎) for some 𝑎 ∈ 𝐴 and 0 = 𝛽(𝑏) = 𝛽𝛼(𝑎), so
𝑎 = 0. Therefore 𝑏 = 0. Let 𝑏 ∈ 𝐵. Then there exists an 𝑎 ∈ 𝐴 such that 𝛽(𝑏) = 𝛽𝛼(𝑎).
Now 𝑏 = 𝛼(𝑎) + (𝑏 − 𝛼(𝑎)) and 𝑏 − 𝛼(𝑎) ∈ Ker(𝛽). 2

For 𝑖 ≤ 𝑛, define

𝑃𝑖(𝑋) = {𝑎 ∈ 𝐻𝑖(𝑋) ∣ 𝐿𝑛−𝑖+1(𝑎) = 0}.

The elements of 𝑃𝑖(𝑋) are said to be primitive. On applying the lemma to

𝐻𝑖−2(𝑋) 𝐻𝑖(𝑋) 𝐻2𝑛−𝑖+2(𝑋),←→𝐿← →𝐿𝑛−𝑖+2
≃

←→𝐿𝑛−𝑖+1

we find that
𝐻𝑖(𝑋) ≃ 𝑃𝑖(𝑋)⊕ 𝐿𝐻𝑖−2(𝑋).

On repeating the argument with𝐻𝑖−2(𝑋) . . .we obtain a decomposition

𝐻𝑖(𝑋) = 𝑃𝑖(𝑋)⊕ 𝐿𝑃𝑖−2(𝑋)⊕ 𝐿2𝑃𝑖−4(𝑋)⊕⋯ .
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More precisely, if 𝑖 ≤ 𝑛, then

𝐻𝑖(𝑋) =
⨁

𝑗≥0
𝐿𝑗𝑃𝑖−2𝑗(𝑋).

In other words, every 𝑎 ∈ 𝐻𝑖(𝑋) can be written uniquely in the form

𝑎 = 𝑎0 + 𝐿𝑎1 + 𝐿2𝑎2 +⋯ =
∑

𝑗≥0
𝐿𝑗𝑎𝑗

(
𝑎𝑗 ∈ 𝑃𝑖−2𝑗(𝑋)

)
.

If 𝑖 ≥ 𝑛, then

𝐻𝑖(𝑋) = 𝐿𝑖−𝑛𝑃2𝑛−𝑖 + 𝐿𝑖−𝑛+1𝑃2𝑛−𝑖−2 +⋯ =
⨁

𝑗≥𝑖−𝑛
𝐿𝑗𝑃𝑖−2𝑗(𝑋).

In other words, every 𝑎 ∈ 𝐻𝑖(𝑋) can be written uniquely in the form

𝑎 = 𝐿𝑖−𝑛𝑎𝑖−𝑛 + 𝐿𝑖−𝑛+1𝑎𝑖−𝑛+1 +⋯ =
∑

𝑗≥(𝑖−𝑛)+
𝐿𝑗𝑎𝑗

(
𝑎𝑗 ∈ 𝑃𝑖−2𝑗(𝑋)

)
.

The operator Λ∶ 𝐻𝑖(𝑋)→ 𝐻𝑖−2(𝑋) is defined by

Λ𝑥 =
∑

𝑗≥1, 𝑖−𝑛
𝐿𝑗−1𝑥𝑗,

where 𝑥 =
∑
𝐿𝑗𝑥𝑗 is the primitive decomposition of 𝑥 ∈ 𝐻𝑖(𝑋). For 0 ≤ 𝑖 ≤ 𝑛, Λ is

determined on𝐻𝑖 by the diagram

𝐻𝑖(𝑋) 𝐻2𝑛−𝑖(𝑋)

𝐻𝑖−2(𝑋) 𝐻2𝑛−𝑖+2(𝑋),
← →𝐿𝑛−𝑖

≃

←→ Λ ←→ 𝐿

←→𝐿𝑛−𝑖+2
≃

and on𝐻2𝑛−𝑖+2 by the diagram

𝐻𝑖(𝑋) 𝐻2𝑛−𝑖(𝑋)

𝐻𝑖−2(𝑋) 𝐻2𝑛−𝑖+2(𝑋),

← →𝐿𝑛−𝑖
≃

←→𝐿𝑛−𝑖+2
≃

← →𝐿 ← →Λ

Clearly, Λ is surjective on𝐻𝑖(𝑋) and injective on𝐻2𝑛−𝑖+2.
Similarly, there are operators (here 𝑥 =

∑
𝐿𝑗𝑥𝑗 ∈ 𝐻𝑖(𝑋))

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑐Λ∶ 𝐻𝑖(𝑋)→ 𝐻𝑖−2(𝑋), 𝑐Λ𝑥 =
∑

𝑗≥1, 𝑖−𝑛
𝑗(𝑛 − 𝑖 + 𝑗 + 1)𝐿𝑗−1𝑥𝑗

∗∶ 𝐻𝑖(𝑋)→ 𝐻2𝑛−𝑖(𝑋), ∗ 𝑥 =
∑

𝑗≥(𝑖−𝑛)+
(−1)(𝑖−2𝑗)(𝑖−2𝑗+1)∕2𝐿𝑛−𝑖+𝑗𝑥𝑗

𝑝𝑗 ∶ 𝐻𝑖(𝑋)→ 𝑃𝑗(𝑋), 𝑝𝑗𝑥 = 𝛿𝑖𝑗𝑥(𝑖−𝑛)+ for 𝑗 = 0,…2𝑛.

Remark 8.13 (a) In the definition of ∗, the sign (−1)(𝑖−2𝑗)(𝑖−2𝑗+1)∕2 = −1 if 𝑖−2𝑗 is even
but not divisible by 4, and is +1 otherwise.

(b) Let 𝑎 ∈ 𝐻𝑖(𝑋), and write 𝑎 =
∑

𝑗≥(𝑖−𝑛)+ 𝐿
𝑗𝑎𝑗. Then

𝑎𝑗 = 𝑝2𝑛−𝑖+2𝑗𝐿𝑛−𝑖+𝑗𝑎 (129)

(straightforward calculation).
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Proposition 8.14 (a) For 𝑖 ≤ 𝑛, Λ𝑛−𝑖 ∶ 𝐻2𝑛−𝑖(𝑋) → 𝐻𝑖(𝑋) is inverse to 𝐿𝑛−𝑖 and
𝑐Λ𝑛−1∶ 𝐿𝑛−𝑖𝑃𝑖(𝑋)→ 𝑃𝑖(𝑋) is inverse to a multiple of 𝐿𝑛−𝑖 .

(b) For all 𝑖, ∗2= id and Λ =∗ 𝐿 ∗.
(c) For 𝑗 = 0,…𝑛, the operator 𝑝𝑗 is a projector onto 𝑃𝑗(𝑋); for 𝑗 = 𝑛,… , 2𝑛, 𝑝𝑗 =

𝑝2𝑛−𝑗Λ𝑛−𝑗.
(d) Λ, 𝑐Λ, ∗, 𝜋0,… , 𝜋2𝑛, 𝑝0,… , 𝑝𝑛−1 ∈ ℤ[𝐿, 𝑝𝑛,… , 𝑝2𝑛] (ring of noncommutative poly-

nomials).

Proof Straightforward from the definitions and (129). 2

Proposition 8.15 We have

ℚ[𝐿,Λ] = ℚ[𝐿, 𝑐Λ] = ℚ[𝐿, ∗] = ℚ[𝐿, 𝑝𝑛,… , 𝑝2𝑛],

and thisℚ-algebra contains 𝑝0,… , 𝑝𝑛−1 and 𝜋0,… , 𝜋2𝑛.

Proof The ℚ-algebra generated by 𝐿 and 𝑝𝑛,… , 𝑝2𝑛 contains Λ, 𝑐Λ, ∗, 𝜋0,⋯ , 𝜋2𝑛, and
𝑝0,… , 𝑝𝑛−1 by 8.14(d). As it contains 𝐿 and ∗, it also contains Λ =∗ 𝐿 ∗. Finally, as it
contains 𝐿 and Λ (resp. 𝑐Λ), it contains 𝑝𝑛,… , 𝑝2𝑛 by 8.14(a) and the next lemma. 2

Lemma 8.16 For 𝑖 ≤ 𝑛, let 𝜃𝑖 ∶ 𝐻∗(𝑋) → 𝐻∗(𝑋) be a map of degree −2(𝑛 − 1) that
induces the map 𝐿𝑛−𝑖𝑃𝑖(𝑋) → 𝑃𝑖(𝑋) inverse to 𝐿𝑛−𝑖 . Then 𝑝2𝑛−𝑖 is given by a universal
noncommutative polynomial with integer coefficients in 𝐿 and 𝜃0,… , 𝜃𝑖 .

Proof The statement follows by induction on 𝑖 from the following easily verified for-
mulas:

𝜑𝑖 =
2𝑛−𝑖∑

𝑗=1
𝜋𝑗 = id−

∑

𝓁∉[𝑖,2𝑛−𝑖]

∑

𝑗≥(𝓁−𝑛)+
𝐿𝑗𝑝2𝑛−𝓁+2𝑗𝐿𝑛−𝑖+𝑗,

𝑝2𝑛−𝑖 = 𝜑𝑖𝜃𝑖 =
(
id−

∑

𝑗≥1+𝑛−𝑖
𝐿𝑗𝑝𝑖+2𝑗𝐿𝑖−𝑛+𝑗

)
𝜑𝑖, or maybe

𝑝2𝑛−𝑖 = 𝜑𝑖𝜃𝑖
(
id−

∑

𝑗≥1+𝑛−𝑖
𝐿𝑗𝑝𝑖+2𝑗𝐿𝑖−𝑛+𝑗

)
𝜑𝑖. 2

Proposition 8.17 (a) 𝑐Λ is the unique operator of degree −2 such that

[𝑐Λ, 𝐿] =
2𝑛∑

𝑖=0
(𝑛 − 𝑖)𝜋𝑖. (130)

(b) Let 𝑋, 𝑌, and 𝑋 × 𝑌 satisfy the strong Lefschetz theorem, and polarize 𝑋 × 𝑌 with
the Segre immersion 𝐿𝑋×𝑌 = 𝐿𝑋 ⊗ id+ id⊗𝐿𝑌 . Then

𝑐Λ𝑋×𝑌 = 𝑐Λ𝑋 ⊗ id+ id⊗ 𝑐Λ𝑌 .

Proof (a) It follows easily from the definition that 𝑐Λ satisfies (122). On the other hand,
any operator 𝜆 satisfying (122) is easily seen by induction to satisfy

[𝜆, 𝐿𝑗] = 𝐿𝑗−1
𝑗−1∑

𝓁=0

2𝑛∑

𝑖=0
(𝑛 − 𝑖)𝜋𝑖−2𝓁. (131)
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Assume that 𝜆 has degree −2, and let 𝑎 ∈ 𝑃𝑖(𝑋). Then 𝐿𝑛−𝑖+2𝜆𝑎 = 𝜆𝐿𝑛−𝑖+2𝑎 −
𝑟𝐿𝑛−𝑖+1𝑎 = 0, where 𝑟 is the integer given by (131); hence 𝜆𝑎 = 0. Then, for any
𝑗 ≥ 1,

𝜆𝐿𝑗𝑎 = [𝜆, 𝐿𝑗]𝑎 + 𝐿𝑗𝜆𝑎 = 𝑐Λ𝐿𝑗𝑎.

Thus, 𝜆 = 𝑐Λ.
(b) This follows formally from (a). 2

Definition 8.18 Let 𝑘 be a field. An 𝔰𝔩2-triple in a 𝑘-algebra 𝐴 is a nonzero triple
(𝑥, ℎ, 𝑦) of elements such that

[𝑥, 𝑦] = ℎ, [ℎ, 𝑥] = 2𝑥, [ℎ, 𝑦] = −2𝑦.

In particular the span of {𝑥, ℎ, 𝑦} is a Lie algebra isomorphic to 𝔰𝔩2.

Corollary 8.19 Let 𝐿 ∈ 𝒜2(𝑋) be the Lefschetz operator defined by a smooth hyperplane
section of 𝑋, and let ℎ =

∑2𝑛
𝑗=0(𝑗 − 𝑛)𝜋𝑗 . Then [ℎ, 𝑥] = 𝑖𝑥 for 𝑥 ∈ 𝒜𝑖(𝑋), and there is a

unique operator 𝑐Λ of degree −2 in𝒜 such (𝐿, ℎ, 𝑐Λ) is an 𝔰𝔩2-triple in𝒜(𝑋).

Proof Restatement of (a) of Proposition 8.17. 2

The standard conjecture of Lefschetz type

Fix a Weil cohomology theory 𝐻 with coefficient field 𝑄, and write 𝐴𝑖(𝑋) for the image
of 𝑐𝑙𝑋 ∶ 𝐶𝑖rat(𝑋)→ 𝐻2𝑖(𝑋)(𝑖).

Statement of the conjecture

Let 𝑋 be a smooth projective variety of dimension 𝑛 and 𝐿 a Lefschetz operator. The
main variants of the standard conjecture of Lefschetz type are the following:
𝐴(𝑋, 𝐿): The map 𝐿𝑛−2𝑖 ∶ 𝐴𝑖(𝑋)→ 𝐴𝑛−𝑖(𝑋) is an isomorphism for all 𝑖 ≤ 𝑛∕2.
𝐵(𝑋): The operator Λ is algebraic.
As we shall see, the two conjectures are essentially equivalent. The Conjecture 𝐵(𝑋)
implies conjecture 𝐶(𝑋) (see 8.25), which is sometimes regarded as a weak version of
the standard conjecture of Lefschetz type.

Consequences of 𝐴(𝑋, 𝐿)

When 𝑛 = 3, we get the following picture

𝐴0 𝐴1 𝐴2 𝐴3

𝐻0 𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6

← →

≃

← →
≃

← →

≃

← →
≃

← →≃

Define
𝐴𝑖
prim(𝑋) = 𝐴𝑖(𝑋) ∩ 𝑃2𝑖(𝑋) = {𝑎 ∈ 𝐴𝑖(𝑋) ∣ 𝐿𝑛−2𝑖+1𝑎 = 0}.
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Applying Lemma 8.12, we get a decomposition

𝐴𝑖(𝑋) = 𝐴𝑖
prim(𝑋)⊕ 𝐿𝐴𝑖

prim(𝑋)⊕⋯

In other words, every 𝑎 ∈ 𝐴𝑖(𝑋) can be written uniquely in the form

𝑎 = 𝑎0 + 𝐿𝑎1 +⋯ =
∑

𝐿𝑗𝑎𝑗 (a𝑗 ∈ 𝐴𝑖−𝑗(𝑋)).

Variants of 𝐴(𝑋, 𝐿)

Proposition 8.20 Let 𝑋 be a smooth projective variety and 𝐿 a Lefschetz operator. The
following conditions are equivalent:
(a) 𝐴(𝑋, 𝐿);

(b) 𝐴∗(𝑋) is stable under the primitive projections 𝑝𝑛,… , 𝑝2𝑛;

(c) 𝐴∗(𝑋) is stable under the operator ∗;

(d) 𝐴∗(𝑋) is stable under the operator Λ;

(e) 𝐴∗(𝑋) is stable under the operator 𝑐Λ.

Proof As 𝐴∗(𝑋) is stable under the action of 𝐿, the equivalence of (b), (c), (d), and (e)
follows from Proposition 8.15. The implication (d) ⇐⇒ (a) follows from 8.14(a). Finally,
if (a) holds, then𝐴∗(𝑋) is stable under 𝜃𝑖 = Λ𝑛−1𝜋2𝑛−𝑖 for 𝑖 ≤ 𝑛, and so it is stable under
𝑝𝑛,… , 𝑝2𝑛 by 8.16. 2

Variants of 𝐵(𝑋)

Theorem 8.21 Let 𝑋 be a smooth projective variety and 𝐿 a Lefschetz operator. Then the
following statements are equivalent:
𝐵(𝑋, 𝐿): The operator Λ is algebraic.
𝑐𝐵(𝑋, 𝐿): The operator 𝑐Λ is algebraic.

𝜃(𝑋, 𝐿): For each 𝑖 ≤ 𝑛, there exists an algebraic correspondence 𝜃𝑖 inducing the isomor-
phism𝐻2𝑛−𝑖(𝑋)→ 𝐻𝑖(𝑋) inverse to 𝐿𝑛−𝑖 .

𝜈(𝑋): For each 𝑖 ≤ 𝑛, there exists an algebraic correspondence 𝜃𝑖 inducing an isomorphism
𝐻2𝑛−𝑖(𝑋)→ 𝐻𝑖(𝑋).

𝑝𝐶(𝑋, 𝐿): The operator 𝑝𝑖 is algebraic for 0 ≤ 𝑖 ≤ 2𝑛.

∗ (𝑋, 𝐿): The operator ∗ is algebraic.
As the statement 𝜈(𝑋) does not involve 𝐿, we see that if any one of the remaining statements
holds for one 𝐿, then they all hold for all 𝐿.

Proof We proceed according to the diagram

𝐵 𝜃 𝜈

∗ 𝑝𝐶 𝑐𝐵

⇒⇒ ⇒ ⇒

←→⇐ ⇒

⇐⇒ ⇐⇒

⇐ ⇒

𝐵(𝑋) ⇐⇒ 𝜃(𝑋). Assume 𝐵(𝑋), and set 𝜃𝑖 = Λ𝑛−𝑖. Then 𝜃𝑖 is algebraic and it induces
the inverse to 𝐿𝑛−𝑖.
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𝜃(𝑋) ⇐⇒ 𝐵(𝑋). This follows from the equality

Λ =
∑

𝑖≤𝑟
(𝜋𝑖−1𝜃𝑖+2𝐿𝑟−𝑖+1𝜋𝑖 + 𝜋2𝑟−1𝐿𝑟−𝑖+1𝜃𝑖+2𝜋2𝑟−𝑖+2).

𝜃(𝑋) ⇐⇒ 𝜈(𝑋). That 𝜃(𝑋) implies 𝜈(𝑋) is trivial, and so assume 𝜈(𝑋) and set
𝑢 = 𝜈𝑖◦𝐿𝑛−𝑖. Then 𝑢 is algebraic, and so by Theorem 8.4 its characteristic polynomial
𝑃(𝑡) has rational coefficients. By the Cayley-Hamilton theorem, 𝑃(𝑢) = 0. Hence 𝑢−1
is a linear combination of the powers 𝑢𝑗 for 𝑗 ≥ 0, and the combining coefficents are
rational numbers. So 𝑢−1is algebraic, and it is the inverse of 𝐿𝑛−𝑖 on𝐻2𝑛−𝑖(𝑋); thus 𝜃(𝑋)
holds.

𝑐𝐵(𝑋) ⇐⇒ 𝜈(𝑋) is obvious.
𝜃(𝑋) ⇐⇒ 𝑝𝐶(𝑋). In fact, the𝑝𝑖 are given by universal (noncommutative) polynomials

with integer coefficients in 𝐿 and the 𝜃𝑖 (8.16).
𝑝𝐶(𝑋) ⇐⇒ 𝑐𝐵(𝑋) and ∗ (𝑋). This is obvious.
∗ (𝑋) ⇐⇒ 𝐵(𝑋) because Λ =∗ ◦𝐿◦ ∗. 2

Relations between the conjectures 𝐴, 𝐵, and 𝐶

8.22 Let 𝑢 ∈ 𝐻∗(𝑋 × 𝑌), and briefly write 𝑢∗ for the map𝐻∗(𝑋)→ 𝐻∗(𝑌) defined by
𝑢, so that, for 𝑐 ∈ 𝐻∗(𝑋),

{ 𝑢
∗(𝑐) = 𝑞∗(𝑝∗(𝑐) ⋅ 𝑢),
𝑢∗(𝑐) = ⟨𝑐 ⋅ 𝑎⟩𝑏 if 𝑢 = 𝑎 ⊗ 𝑏.

Now define 𝑢∗∶ 𝐻∗(𝑋)→ 𝐻∗(𝑌) by

𝑢∗(𝑑) = 𝑞∗(𝑣 ⋅ 𝑝∗(𝑑)), 𝑑 ∈ 𝐻𝛿(𝑋) = 𝐻2𝑛−𝛿(𝑋)
𝑢∗(𝑑) = (−1)𝛼𝛿⟨𝑏 ⋅ 𝑑⟩𝑎 if 𝑢 = 𝑏 ⊗ 𝑎 ∈ 𝐻𝛽(𝑋)⊗𝐻𝛼(𝑌).

If 𝑢 ∈ 𝐻2∗(𝑋 × 𝑌), then
𝑢∗ = 𝑢∗,

but not in general otherwise.
Let 𝑢 ∈ 𝐻∗(𝑋 × 𝑌), so 𝑢𝑡 ∈ 𝐻∗(𝑌 × 𝑋). Then

⟨𝑢∗(𝑐) ⋅ 𝑑⟩ = ⟨𝑐 ⋅
(
𝑢𝑡
)
∗ (𝑑)⟩

⟨
(
(𝑢𝑡)∗(𝑑)

)
⋅ 𝑐⟩ = ⟨𝑑 ⋅ 𝑢∗(𝑐)⟩ } 𝑐 ∈ 𝐻∗(𝑋), 𝑑 ∈ 𝐻∗(𝑌),

It suffices to prove this for 𝑢 = 𝑎 ⊗ 𝑏 ∈ 𝐻𝛼(𝑋)⊗𝐻𝛽(𝑌), 𝑐 ∈ 𝐻𝛾(𝑋), and 𝑑 ∈ 𝐻𝛿(𝑌) =
𝐻2 dim(𝑌)−𝛿(𝑌). Then 𝑢𝑡 = (−1)𝛼𝛽𝑏 ⊗ 𝑎. We have

𝑢∗(𝑐) = ⟨𝑐 ⋅ 𝑎⟩𝑏
⟨𝑢∗(𝑐) ⋅ 𝑑⟩ = ⟨𝑐 ⋅ 𝑎⟩⟨𝑏 ⋅ 𝑑⟩

and
(
𝑢𝑡
)
∗ (𝑑) = (−1)𝛼𝛽(−1)𝛼𝛿⟨𝑏 ⋅ 𝑑⟩𝑎

⟨𝑐 ⋅
(
𝑢𝑡
)
∗ (𝑑)⟩ = (−1)𝛼𝛽⟨𝑐 ⋅ 𝑎⟩⟨𝑏 ⋅ 𝑑⟩

which equals ⟨𝑏 ⋅ 𝑑⟩𝑎 because ⟨𝑏 ⋅ 𝑑⟩ = 0 unless 𝛽 = 𝛿. Hence

⟨𝑐 ⋅
(
𝑢𝑡
)
∗ (𝑑)⟩ = ⟨𝑐 ⋅ 𝑎⟩⟨𝑏 ⋅ 𝑑⟩ = ⟨𝑢∗(𝑐) ⋅ 𝑑⟩.
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Proposition 8.23 Let 𝑢 ∈ 𝐻∗(𝑋 × 𝑌) and 𝑣 ∈ 𝐻∗(𝑍 ×𝑊). Then the tensor product
of 𝑢∶ 𝐻∗(𝑋) → 𝐻∗(𝑌) and 𝑣∶ 𝐻∗(𝑍) → 𝐻∗(𝑊) corresponds to the map𝐻∗(𝑋 × 𝑍) →
𝐻∗(𝑌 ×𝑊) defined by the cycle

𝑢 ⊗ 𝑣 = 𝑝∗𝑢 ⋅ 𝑞∗𝑣 ∈ 𝐻∗(𝑋 × 𝑍 × 𝑌 ×𝑊).

Proof This follows easily from the definition,

(𝑢 ⊗ 𝑣)(𝑎 ⊗ 𝑏) = (−1)deg(𝑣) deg(𝑎)𝑢(𝑎)⊗ 𝑣(𝑏) (132)

for 𝑢 ∈ 𝐻𝑖(𝑋 × 𝑌) and 𝑣 ∈ 𝐻𝑗(𝑍 ×𝑊). 2

Proposition 8.24 Let 𝑥 ∈
⨁

𝐻2𝑖(𝑋 ×𝑊), and 𝑦 ∈ 𝐻∗(𝑌 × 𝑍). Regard 𝑥 as a map
𝐻∗(𝑋)→ 𝐻∗(𝑊) and 𝑦 as a map𝐻∗(𝑌)→ 𝐻∗(𝑍), so 𝑥 ⊗ 𝑦 is a map

𝐻∗(𝑋 × 𝑌) ≃ 𝐻∗(𝑋)⊗𝐻∗(𝑌)
𝑥⊗𝑦
,→ 𝐻∗(𝑊)⊗𝐻∗(𝑍) = 𝐻∗(𝑊 × 𝑍).

Let 𝑢 ∈ 𝐻∗(𝑋 × 𝑌). Then 𝑣 def= (𝑥 ⊗ 𝑦)(𝑢) equals 𝑦◦𝑢◦𝑥𝑡 as a map𝐻∗(𝑊)→ 𝐻∗(𝑍),

𝐻∗(𝑋) 𝐻∗(𝑌)

𝐻∗(𝑊) 𝐻∗(𝑍).

←→𝑢

←→ 𝑦

←→𝑣
← →𝑥𝑡

Proof By linearity, we may suppose that 𝑢 = 𝑎 ⊗ 𝑏 ∈ 𝐻∗(𝑋)⊗𝐻∗(𝑌), so

𝑣 = 𝑥(𝑎)⊗ 𝑦(𝑏) ∈ 𝐻∗(𝑊)⊗𝐻∗(𝑍) = 𝐻∗(𝑊 × 𝑍).

Then, for 𝑐 ∈ 𝐻∗(𝑊),

𝑣(𝑐) = (𝑥(𝑎)⊗ 𝑦(𝑏))(𝑐) definition (123)
= (𝑐⋅𝑥(𝑎))𝑦(𝑏) definition (123)
= ⟨𝑥𝑡(𝑐) ⋅ 𝑎⟩𝑦(𝑏) 8.22.

On the other hand,

(𝑦◦𝑢◦𝑥𝑡)(𝑐) = 𝑦(𝑎 ⊗ 𝑏)(𝑥𝑡(𝑐)) definition (123)
= 𝑦(⟨𝑥𝑡(𝑐) ⋅ 𝑎⟩𝑏) definition (123)
= ⟨𝑥𝑡(𝑐) ⋅ 𝑎⟩𝑦(𝑏) definition (123). 2

Proposition 8.25 For a given 𝑋 and 𝐿,

𝐵(𝑋) ⇐⇒ 𝐴(𝑋, 𝐿) and 𝐶(𝑋),
𝐴(𝑋 × 𝑋, 𝐿 ⊗ 1 + 1⊗ 𝐿) ⇐⇒ 𝐵(𝑋).

Proof Recall that 𝐵(𝑋) is equivalent to 𝜃(𝑋).
𝜃(𝑋) ⇐⇒ 𝐴(𝑋, 𝐿). The map 𝐿𝑛−2𝑖 ∶ 𝐴𝑖(𝑋) → 𝐴𝑛−𝑖(𝑋) is injective. As algebraic

correspondences map 𝐴∗(𝑋) into itself, 𝜃(𝑋) implies it is also surjective, hence 𝐴(𝑋, 𝐿).
𝜃(𝑋) ⇐⇒ 𝐶(𝑋).There is an equality

𝜋𝑖 = 𝜃𝑖(1 −
∑

𝑗>2𝑛−1
𝜋𝑗)𝐿𝑛−𝑖(1 −

∑
𝑗<𝑖

𝜋𝑖).

Now 𝜃(𝑋) implies that 𝜋𝑖 is algebraic by induction on 𝑖.
𝐴(𝑋 × 𝑋, 𝐿 ⊗ 1 + 1⊗ 𝑋) ⇐⇒ 𝐵(𝑋). The correspondence 𝑐Λ⊗ 1 + 1⊗ 𝑐Λ carries

𝐴∗(𝑋 × 𝑋) into itself by 8.17(b) and 8.20. However, 𝑐Λ⊗ 1 + 1⊗ 𝑐Λ carries the class of
the diagonal subvariety ∆ into 2 𝑐Λ by 8.24. Thus 𝑐𝐵(𝑋) holds, and so 𝐵(𝑋) holds. 2
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Corollary 8.26 Let 𝑋 be a smooth projective variety. If Conjecture 𝐴(𝑋, 𝐿 ⊗ 1 + 1⊗ 𝐿)
holds for one Lefschetz operator 𝐿 on 𝑋, then 𝐴(𝑋𝑚, 𝐿) holds for all𝑚 and all Lefschetz
operators 𝐿 on 𝑋𝑚.

Proof We have

𝐴(𝑋, 𝐿 ⊗ 1 + 1⊗ 𝐿) ⇐⇒ 𝐵(𝑋)
⇐⇒ 𝐵(𝑋𝑚) for all𝑚 ≥ 0
⇐⇒ 𝐴(𝑋𝑚, 𝐿′) for all𝑚 ≥ 0 and all 𝐿′. 2

Corollary 8.27 Conjecture 𝐴(𝑋, 𝐿) holds for all 𝑋 and 𝐿 if and only if conjecture 𝐵(𝑋)
holds for all 𝑋.

In particular, 𝐴(𝑋, 𝐿) does not depend on 𝐿, and so we can denote it by 𝐴(𝑋).

Corollary 8.28 Conjecture 𝐴(𝑋) holds for all 𝑋 over 𝑘 if and only if 𝐵(𝑋) holds for all
𝑋 over 𝑘, in which case 𝐶(𝑋) holds for all 𝑋 over 𝑘.

Known cases

8.29 The Lefschetz standard conjecture is known for curves, surfaces 𝑋 such that
dim𝐻1(𝑋) = 2 dimPic0(𝑋), and generalized flag manifolds. It is known for a product if
it known for the factors, and it is known for any smooth hyperplane section of a variety
for which it is known.

For abelian varieties, the Lefschetz standard conjecture was proved by Grothen-
dieck. That all the relevant classes, including the graphs of homomorphisms, are in
fact Lefschetz, was proved in Milne 1999 (see the next section). In O’Sullivan 2011, it
is shown that with every 𝛼 ∈ 𝐶num(𝐴)ℚ lifts canonically to an �̃� ∈ 𝐶rat(𝐴)ℚ; moreover,
the assignment 𝛼 ↦ �̃� respects the algebraic operations and pullback and push forward
along homomorphisms of abelian varieties.

The standard conjecture of Hodge type

As before, all varieties are projective and smooth over 𝑘. We fix a Weil cohomology
theory𝐻 satisfying the strong Lefschetz conjecture and let 𝐴𝑖(𝑋) = 𝐶𝑖𝐻(𝑋).

Statements

For 2𝑖 ≤ 𝑛 = dim(𝑋), let

𝐴𝑖
prim(𝑋) = {𝑎 ∈ 𝐴𝑖(𝑋) ∣ 𝐿𝑛−2𝑖+1𝑎 = 0}

The standard conjecture of Hodge type says the following:
𝐼𝑖(𝑋, 𝐿): The bilinear form

𝑎, 𝑏 ↦ (−1)𝑖⟨𝐿𝑛−2𝑖𝑎 ⋅ 𝑏⟩∶ 𝐴𝑖
prim(𝑋) × 𝐴

𝑖
prim(𝑋)→ ℚ

is positive definite.

𝐼(𝑋, 𝐿): 𝐼𝑖(𝑋, 𝐿) holds for all 𝑖 ≤ 𝑛∕2.
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Proposition 8.30 Assume that𝐻 satisfies weak Lefschetz. Fix 𝑖, and suppose that, for all
varieties of dimension 2𝑖, the quadratic form

𝑎, 𝑏 ↦ (−1)𝑖𝑎 ⋅ 𝑏∶ 𝐴𝑖
prim(𝑋) × 𝐴

𝑖
prim(𝑋)→ ℚ

is positive definite. Then 𝐼𝑖(𝑋, 𝐿) holds for all 𝑋 and 𝐿.

Proof Apply the hypotheses to a smooth 𝑖-dimensional section of 𝑋 by a linear space.2

Proposition 8.31 Let 𝑋 be a smooth projective variety of dimension 𝑛, and let 𝑝 be such
that 2𝑝 ≤ 𝑛. Assume 𝐴(𝑋, 𝐿). Then the following statements are equivalent:
(a) 𝐼𝑞(𝑋, 𝐿) holds for all 𝑞 ≤ 𝑝;
(b) the quadratic form

𝑎, 𝑏 ↦ ⟨𝑎⋅ ∗ 𝑏⟩∶ 𝐴𝑝(𝑋) × 𝐴𝑝(𝑋)→ ℚ

is positive definite (hence the canonical pairing 𝐴𝑝(𝑋) ×𝐴𝑛−𝑝(𝑋)→ ℚ is nondegen-
erate).

Proof Recall that 𝐴(𝑋, 𝐿) gives a decomposition

𝐴𝑝(𝑋) = 𝐴𝑝
prim(𝑋)⊕ 𝐿𝐴𝑝−1

prim(𝑋)⊕⋯⊕ 𝐿𝐴𝑝−𝑖
prim(𝑋)⊕⋯ .

Let

𝑎 =
∑

𝑖
𝐿𝑖𝑎𝑖 with 𝑎𝑖 ∈ 𝐴𝑝−𝑖

prim,

𝑏 =
∑

𝑗
𝐿𝑗𝑏𝑗 with 𝑏𝑗 ∈ 𝐴𝑝−𝑗

prim.

Note that

∗ 𝑏 def=
∑

𝑗
(−1)(2𝑝−2𝑗)(2𝑝−2𝑗+1)∕2𝐿𝑛−2𝑝+𝑗𝑏𝑗 =

∑
𝑗
(−1)(𝑝−𝑗)𝐿𝑛−2𝑝+𝑗𝑏𝑗,

Therefore,
𝑎 ∗ 𝑏 =

∑
𝑖,𝑗
(−1)𝑝−𝑗𝐿𝑛−2𝑝+𝑖+𝑗𝑎𝑖 ⋅ 𝑏𝑗.

If 𝑖 ≠ 𝑗, then
𝐿𝑛−2𝑝𝐿𝑖𝑎𝑖 ⋅ 𝐿𝑗𝑏𝑗 = 0; (133)

for example, if 𝑖 < 𝑗, then it equals𝐿𝑛−(2𝑝−2𝑖)+𝑗−𝑖𝑎𝑖⋅𝑏𝑗, which is zero because𝐿𝑛−(2𝑝−2𝑖)+1𝑎𝑖 =
0.

Thus
⟨𝑎 ∗ 𝑏⟩ =

∑

𝑖≥0
(−1)𝑝−𝑖⟨𝐿𝑛−(2𝑝−2𝑖)𝑎𝑖 ⋅ 𝑏𝑖⟩,

from which the statement is obvious. 2

There is another conjecture, which is sometimes considered part of the standard
conjectures and sometimes part of the Tate conjectures.

Conjecture 8.32 (𝐷(𝑋)) Let𝐻 be a Weil cohomology theory. Homological equivalence
with respect to𝐻 coincides with numerical equivalence,

∼𝐻=∼num .

Corollary 8.33 If 𝑋 satisfies 𝐼(𝑋, 𝐿), then the conjectures 𝐴(𝑋, 𝐿) and 𝐷(𝑋) are equiva-
lent.
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The Hodge standard conjecture and positivity

Let 𝑋,𝑌 be polarized varieties. The bilinear forms

(𝑥, 𝑥′)↦ Tr𝑋(𝑥⋅ ∗ 𝑥′)∶ 𝐻(𝑋)⊗𝐻(𝑋)→ 𝑄
(𝑦, 𝑦′)↦ Tr𝑌(𝑦⋅ ∗ 𝑦′)∶ 𝐻(𝑌)⊗𝐻(𝑌)→ 𝑄

are nondegenerate (by Poincaré duality and the fact that ∗ is an isomorphism (8.14(b)).

Theorem 8.34 Let 𝑋 and 𝑌 satisfy 𝐵(𝑋) and 𝐵(𝑌). Let 𝑢∶ 𝐻∗(𝑋)→ 𝐻∗(𝑌) be a corre-
spondence, and let 𝑢′∶ 𝐻∗(𝑌)→ 𝐻∗(𝑋) be its transpose with respect to the above pairings,
so 𝑢′ =∗𝑋 ◦𝑢𝑡◦ ∗𝑌 . If 𝑢 is algebraic, then 𝑢′ is algebraic, and

Tr(𝑢◦𝑢′) = Tr(𝑢′◦𝑢) ∈ ℚ;

if, moreover, 𝐼(𝑋 × 𝑌, 𝐿𝑋 ⊗ 1 + 1⊗ 𝐿𝑌) holds, then

𝑢 ≠ 0 ⇐⇒ Tr(𝑢′◦𝑢) > 0.

Proof Recall (8.21) that 𝐵(𝑋) and 𝐵(𝑌) imply that ∗𝑋 and ∗𝑌 are algebraic, and so 𝑢′
is algebraic if 𝑢 is. Now Tr(𝑢′◦𝑢) ∈ ℚ because of the trace formula 3.6(a).

We prove the second statement. From the strong Lefschetz theorem, we obtain
decompositions

𝐻𝑖(𝑋) = 𝑃𝑖(𝑋)⊕⋯⊕ 𝐿𝑗𝑃𝑖−2𝑗(𝑋)⊕⋯
𝐻𝑟(𝑌) = 𝑃𝑟(𝑌)⊕⋯⊕ 𝐿𝑠𝑃𝑟−2𝑠(𝑌)⊕⋯ .

𝐵(𝑋) implies that the projection operators

𝑞𝑖𝑗𝑋 ∶ 𝐻
∗(𝑋)→ 𝐿𝑗𝑃𝑖−2𝑗(𝑋),

where 𝑗 = max(0, 𝑖 − 𝑛) and 𝑛 = dim(𝑋) are algebraic by 8.14(c), 8.21; moreover,

(𝑞𝑟𝑠𝑌 ◦𝑢◦𝑞
𝑖𝑗
𝑋 )

′ = 𝑞𝑖𝑗𝑋◦𝑢
′◦𝑞𝑟𝑠𝑌

i.e.,

(
𝐻∗(𝑋)

𝑞𝑖𝑗𝑋,→ 𝐿𝑗𝑃𝑖−2𝑗(𝑋) ⊂ 𝐻∗(𝑋)
𝑢
,→ 𝐻∗(𝑌)

𝑞𝑟𝑠𝑌,→ 𝐿𝑠𝑃𝑟−2𝑠(𝑌) ⊂ 𝐻∗(𝑌)
)′

= 𝐻∗(𝑌)
𝑞𝑟𝑠𝑌,→ 𝐿𝑠𝑃𝑟−2𝑠(𝑌) ⊂ 𝐻∗(𝑌)

𝑢′
,→ 𝐻∗(𝑋)

𝑞𝑖𝑗𝑋,→ 𝐿𝑗𝑃𝑖−2𝑗(𝑋) ⊂ 𝐻∗(𝑋).

by the orthogonality of primitive elements (133). Therefore

Tr(𝑢′◦𝑢) =
∑

Tr
(
(𝑞𝑟1𝑠1𝑌 ◦𝑢◦𝑞𝑖1𝑗1𝑋 )′◦(𝑞𝑟𝑠𝑌 ◦𝑢◦𝑞

𝑖𝑗
𝑋 )
)

=
∑

Tr
(
(𝑞𝑟𝑠𝑌 ◦𝑢◦𝑞

𝑖𝑗
𝑋 )

′◦(𝑞𝑟𝑠𝑌 ◦𝑢◦𝑞
𝑖𝑗
𝑋 )
)
,

and so we may assume that 𝑢 = 𝑞𝑟𝑠𝑌 ◦𝑢◦𝑞
𝑖𝑗
𝑋 .

Let 𝑣 = Λ𝑠𝑌◦𝑢◦Λ
𝑛−𝑖+𝑗
𝑋 . Then 𝑣′ = 𝐿𝑛−𝑖+𝑗𝑋 ◦𝑢′◦𝐿𝑠𝑌 ; so Tr(𝑣

′◦𝑣) = Tr(𝑢′◦𝑢). Replacing
𝑢 with 𝑣, 𝑖 − 2𝑗 with 𝑖, and 𝑟 − 2𝑠 with 𝑗, we may assume that 𝑢 ∈ 𝑃𝑖(𝑋)⊗ 𝑃𝑗(𝑌).

By 3.5 we now have

Tr(𝑢′◦𝑢) = (−1)𝑖⟨𝑢⋅ ∗𝑋 ◦𝑢◦ ∗𝑌⟩; (134)
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by 8.24,
∗𝑋 ◦𝑢◦ ∗𝑌= (∗𝑋 ⊗ ∗𝑌)𝑢. (135)

Furthermore, it is easily seen that, if

𝐿𝑋×𝑌 = 𝐿𝑋 ⊗ 1 + 1⊗ 𝐿𝑌 ,

then 𝑢 ∈ 𝑃𝑖+𝑗(𝑋 × 𝑌) and

( 𝑛 − 𝑖 +𝑚 − 𝑗
𝑛 − 𝑖 ) ((∗𝑋 ⊗ ∗𝑌)𝑢) = (−1)𝑖(𝑖+1)∕2(−1)𝑗(𝑗+1)∕2𝐿𝑛−𝑖+𝑚−𝑗𝑋×𝑌 𝑢

= (−1)𝑖𝑗 ∗𝑋×𝑌 𝑢.

Since 𝑢 is algebraic, 𝑖 + 𝑗 is even and (−1)𝑖𝑗 = (−1)𝑖. Therefore, 𝐼(𝑋 × 𝑌, 𝐿𝑋×𝑌) implies
that

(−1)𝑖⟨𝑢⋅ ∗𝑋 ◦𝑢◦ ∗𝑌⟩ > 0

when 𝑢 ≠ 0, which completes the proof.
To recap:

Tr(𝑢′◦𝑢) = (−1)𝑖⟨𝑢⋅ ∗𝑋 ◦𝑢◦ ∗𝑌⟩ by (67)
= (−1)𝑖⟨𝑢 ⋅ (∗𝑋 ⊗ ∗𝑌)𝑢⟩ by (28)
= 𝑐(−1)𝑖⟨𝑢⋅ ∗𝑋×𝑌 𝑢⟩, 𝑐 > 0

Indeed, 𝐼(𝑋 × 𝑌, 𝐿𝑋×𝑌) says that

(−1)(𝑖+𝑗)∕2⟨𝑢⋅ ∗𝑋×𝑌 𝑢⟩ > 0.
2

Corollary 8.35 Assume that 𝑋 satisfies 𝐵(𝑋), and that 𝑋 × 𝑋 satisfies 𝐼(𝑋 × 𝑋, 𝐿 ⊗
1 + 1⊗ 𝐿). Then 𝐶(𝑋 × 𝑋) holds, and theℚ-algebra𝒜∗ def= 𝐶dim𝑋+∗

𝐻 (𝑋 × 𝑋) of algebraic
correspondences is semisimple. In fact, every subalgebra of𝒜∗(𝑋) that is closed under the
involution 𝑢 ↦ 𝑢′ def=∗ ◦𝑢𝑡◦ ∗ is semisimple.

Proof Indeed, the involution 𝑢 ↦ 𝑢′ on 𝒜∗ is positive, and so this follows from the
next lemma. 2

Lemma 8.36 Let𝐴 be a finite-dimensional algebra overℚ and 𝑢 ↦ 𝑢′ an involution onℚ.
If there exists aℚ-linear (trace) map 𝜎∶ 𝐴 → ℚ such that 𝜎(𝑢𝑣) = 𝜎(𝑣𝑢) and 𝜎(𝑢′𝑢) ≠ 0
when 𝑢 ≠ 0, then 𝐴 is semisimple.

Proof Let 𝑢 be a nonzero element of the radical of𝐴. Then 𝑣 def= 𝑢𝑢′ is nonzero, because
𝜎(𝑢𝑢′) ≠ 0, and nilpotent, because it also belongs to the radical. But 𝑣′ = 𝑣, and so
𝑣2 = 𝑣𝑣′ ≠ 0; similarly, (𝑣2)2 ≠ 0, 𝑣8 ≠ 0,and so on, constradicting the nilpotence of 𝑣.2

ToDo 14 Remove duplication.

Corollary 8.37 Let 𝑋 and 𝑌 be varieties satisfying the strong Lefschetz theorem and
𝐵(𝑋), 𝐵(𝑌). Let

𝑢∶ 𝐻𝑖(𝑋)→ 𝐻𝑗(𝑌)

be an algebraic correspondence.
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(a) If 𝐼(𝑋×𝑌, 𝐿𝑋⊗1+1⊗𝐿𝑌) holds and 𝑢 is injective, then 𝑢 has an algebraic left inverse
𝑣∶ 𝐻𝑗(𝑌)→ 𝐻𝑖(𝑋). Consequently, if 𝑎 ∈ 𝐻𝑖(𝑋) is such that 𝑢(𝑎) is algebraic, then
𝑎 is algebraic.

(b) If 𝐼(𝑋 × 𝑌, 𝐿𝑋 ⊗ 1 + 1⊗ 𝐿𝑌) holds and 𝑢 is surjective, then 𝑢 has an algebraic right
inverse 𝑣∶ 𝐻𝑗(𝑌) → 𝐻𝑖(𝑋). Consequently, if 𝑏 ∈ 𝐻𝑗(𝑌) is algebraic, then there
exists an algebraic 𝑎 ∈ 𝐻𝑖(𝑋) such that 𝑏 = 𝑢(𝑎).

Proof (a) Let 𝑦 = 𝑢′◦𝑢 and 𝑥 = 𝑢◦𝑢′. Then 𝑥′ = 𝑥; hence, 𝑠 is semisimple by 3.12,
and so Ker(𝑥) = Ker(𝑥2) = Ker(𝑢◦𝑦◦𝑢′). Since 𝑢 is injective, 𝑢′ is surjective; it follows
that 𝑦∶ 𝐻𝑖(𝑋) → 𝐻𝑖(𝑋) is injective, and is an automorphism. Hence, by 8.4 and the
Cayley-Hamilton theorem, 𝑦−1 is algebraic. Therefore, 𝑣 = 𝑦−1𝑢′ is a left inverse 𝑢, and
it is algebraic. The proof of (b) is similar. 2

Lemma 8.38 Let 𝐸 =
⨁𝑛

𝜈=−𝑛 𝐸
𝜈 be a graded noncommutative ring (with 1). There is at

most one complete set of orthogonal idempotents {𝜋0,… , 𝜋2𝑛} in 𝐸 satisfying the following
conditions:
(a) 𝐸𝜈 =

⨁
𝑖 𝜋

𝑖+𝜈𝐸𝜋𝑖 , and

(b) for 𝑖 = 0,… , 𝑛, there exist 𝑣𝑖 ∈ 𝐸2𝑛−2𝑖 and 𝑤𝑖 ∈ 𝐸−(2𝑛−2𝑖) such that

(𝑤𝑖𝑣𝑖 − 1)𝜋𝑖 = 0 = (𝑣𝑖𝑤𝑖 − 1)𝜋2𝑛−𝑖.

Proof The condition on the 𝜋𝑖 means that

𝜋𝑖𝜋𝑗 = { 𝜋
𝑖 if 𝑖 = 𝑗,

0 otherwise

and 𝜋0 +⋯ + 𝜋2𝑛 = 1. By (a), 𝑢 ∈ 𝐸0 if and only if 𝑢 =
∑
𝜋𝑖𝑢𝜋𝑖, hence if and only if

𝜋𝑖𝑢 = 𝜋𝑖𝑢𝜋𝑖 = 𝑢𝜋𝑖 for all 𝑖. In particular, the 𝜋𝑖 lie in the centre 𝑍(𝐸0) of 𝐸0.
We prove the uniqueness by induction on 𝑖 ≤ 𝑛. Suppose that 𝜋0,… , 𝜋𝑖−1 and

𝜋2𝑛−𝑖+1,… , 𝜋2𝑛 are uniquely determined by the conditions. Let

𝜑𝑖 = 1 −
∑

𝛼∉[𝑖,2𝑛−𝑖]
𝜋𝛼 =

∑

𝛼∈[𝑖,2𝑛−𝑖]
𝜋𝛼.

By (a), 𝜑𝑖𝐸2𝑛−2𝑖𝜑𝑖 = 𝐸2𝑛−2𝑖𝜋𝑖. If 𝐸2𝑛−2𝑖𝜋𝑖𝑢 = 0, then 𝑤𝑖𝑣𝑖𝜋𝑖 = 0, so, by (b), 𝜋𝑖𝑢 = 0.
Therefore, the right annihilator of 𝜋𝑖 is uniquely determined. However, 𝜋𝑖 ∈ 𝑍(𝐸0),
and an idempotent in a commutative ring is uniquely determined by its annihilator.
Similarly, 𝜋2𝑛−1 is uniquely determined. 2

Theorem 8.39 Assume that𝐻 satisfies weak Lefschetz. Then the following two conditions
are equivalent:
(i) the standard conjectures hold, i.e., 𝐵(𝑋) and 𝐼(𝑋, 𝐿) hold for all varieties 𝑋 over 𝑘;
(ii) for all varieties 𝑋 over 𝑘 and all integers 𝑝 such that 2𝑝 ≤ 𝑛 = dim(𝑋), 𝐷(𝑋) holds

and the quadratic form
𝑎, 𝑏 ↦ (−1)𝑝⟨𝐿𝑛−2𝑝𝑎 ⋅ 𝑏⟩

is positive definite on the set of 𝑎 ∈ 𝐴𝑝(𝑋) = 𝐶𝑝num(𝑋) such that 𝐿𝑛−2𝑝+1𝑎 = 0.
Moreover, if these conditions hold for several Weil cohomology theories satisfying weak
Lefschetz, then
(a) the operators Λ, 𝑐Λ, ∗, 𝑝0,… , 𝑝2𝑛, 𝜋0,… , 𝜋2𝑛 are the classes of algebraic cycles that

do not depend on the theory.
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(b) The Betti numbers 𝑏𝑖 = dim𝐻𝑖(𝑋) do not depend on the theory.
(c) The characteristic polynomial of an endomorphism induced by a rationally (resp.

integrally) algebraic cycle has rational (resp. integer) coefficients that do not depend
on the theory.

(d) If the map𝐻𝑖(𝑋)→ 𝐻𝑗(𝑌) induced by an algebraic cycle is bijective (resp. injective,
resp. surjective) in one theory, then it bijective (resp. injective, resp. surjective) in every
theory. In fact, the inverse (resp. one left inverse, resp. one right inverse) may be
induced by an algebraic cycle that does not depend on the theory.

Proof The equivalence of (i) and (ii) results immediately from 8.33 (and 8.28). If
these conditions hold, then 𝜋0,… , 𝜋2𝑛 are the classes of algebraic cycles by 8.25. By 8.38
applied to the ring of algebraic correspondences, these cycles are uniquely determined
modulo homological or, what is the same, numerical equivalence. By 8.21, 𝑐Λ is the
class of an algebraic cycle, which, therefore is uniquely determined modulo numerical
equivalence by (130). Finally, 𝑝𝑛,… , 𝑝2𝑛 (resp. Λ, ∗, 𝑝0,… , 𝑝𝑛−1) are given by universal
(noncommutative) polynomials with rational coefficients in 𝐿 and 𝑐Λ by 8.14 and 8.16
(resp. in 𝐿 and 𝑝𝑛,… , 𝑝2𝑛 by 8.14). Thus (a) holds.

By (a), the 𝜋𝑖 are intrinsically determined. Therefore, (b) results from the formula
𝑏𝑖 = (−1)𝑖⟨∆ ⋅ 𝜋2𝑛−𝑖⟩, and (c) results from the proof of 8.4. Further, a correspondence
𝑢∶ 𝐻∗(𝑋) → 𝐻∗(𝑌) induces a map 𝑢′∶ 𝐻𝑖(𝑋) → 𝐻𝑗(𝑌) if and only if 𝜋𝓁𝑌𝑢𝜋

𝑖
𝑋 = 0 for

𝓁 ≠ 𝑗, and 𝑢′ is injective (resp. surjective, resp. bijective) if and only if there exists a
correspondence 𝑣∶ 𝐻∗(𝑌)→ 𝐻∗(𝑋) such that 𝑣𝑢𝜋𝑖𝑋 = 𝜋𝑖𝑋 (resp. . . . ); hence, (d) results
from 8.35. 2

Algebras with positive involution

Let 𝐵 be a 𝑘-algebra with involution ∗ and 𝑉 a left 𝐵-module. A 𝑘-bilinear form 𝜓∶ 𝑉 ×
𝑉 → 𝑘 satisfying is said to be balanced if

𝜓(𝑏∗𝑢, 𝑣) = 𝜓(𝑢, 𝑏𝑣) for all 𝑏 ∈ 𝐵, and 𝑢, 𝑣 ∈ 𝑉. (136)

In general,
A hermitian (resp. skew-hermitian) form on a (left) 𝐴-module is 𝑉 is a bi-additive

map 𝜙∶ 𝑉 × 𝑉 → 𝐴 such that 𝜙(𝑎𝑢, 𝑏𝑣) = 𝑎𝜙(𝑢, 𝑣)𝑏∗ and 𝜙(𝑣, 𝑢) = 𝜙(𝑢, 𝑣)∗ (resp.
𝜙(𝑣, 𝑢) = −𝜙(𝑢, 𝑣)∗) for all 𝑎, 𝑏 ∈ 𝐴 and 𝑢, 𝑣 ∈ 𝑉. As in the bilinear case, a (nondegen-
erate) hermitian or skew-hermitian form 𝜙 on 𝑉 defines an adjoint involution ∗𝜙 on
𝐵 def= End𝐴(𝑉) by 𝜙(𝛼∗𝜙𝑢, 𝑣) = 𝜙(𝑢, 𝛼𝑣).
(a) When ∗ is of the first kind, this gives a one-to-one correspondence between the in-

volutions of the first kind on 𝐵 and the forms 𝜙 on𝑉, hermitian or skew-hermitian,
up to a factor in 𝐹×. If 𝜙 is hermitian, then ∗ and ∗𝜙 have the same type, and if 𝜙
is skew-hermitian then they have the opposite type (e.g., if ∗ on 𝐴 is of type (C)
then ∗𝜙 on 𝐵 is of type (BD)).

(b) When ∗ is of the second kind, this gives a one-to-one correspondence between the
extensions of ∗ |𝐹 to 𝐵 and the hermitian forms on 𝑉 up to a factor in 𝐹× fixed by
∗.

Suppose that ∗ is of the second kind. Then 𝐹 is of degree 2 over the fixed field 𝐹0 of ∗.
Choose an element 𝑓 of 𝐹 ∖ 𝐹0 whose square is in 𝐹0. Then 𝑓∗ = −𝑓, and a pairing 𝜙 is
hermitian (resp. skew-hermitian) if and only if 𝑓𝜙 is skew-hermitian (resp. hermitian).
Thus (b) also holds with “skew-hermitian” for “hermitian”.
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Let (𝐶, ∗) be a semisimple ℝ-algebra with involution, and let 𝑉 be a 𝐶-module. In
the next proposition, by a hermitian form on 𝑉 we mean a 𝐶-balanced symmetric ℝ-
bilinear form 𝜓∶ 𝑉 ×𝑉 → ℝ. For example, if 𝐶 = ℂ and ∗ is complex conjugation, then
such a form can be written uniquely as 𝜓 = Trℂ∕ℝ ◦𝜙 with 𝜙∶ 𝑉 × 𝑉 → ℂ a hermitian
form in the usual sense. Such a form 𝜓 is said to be positive-definite if 𝜓(𝑣, 𝑣) > 0 for
all nonzero 𝑣 ∈ 𝑉.

Proposition 8.40 Let 𝐶 be a semisimple algebra overℝ. The following conditions on an
involution ∗ of 𝐶 are equivalent:
(a) some faithful 𝐶-module admits a positive-definite hermitian form;

(b) every 𝐶-module admits a positive-definite hermitian form;

(c) Tr𝐶∕ℝ(𝑐∗𝑐) > 0 for all nonzero 𝑐 ∈ 𝐶.

Proof See V, 1.3. 2

Definition 8.41 An involution satisfying the equivalent conditions of (8.40) is said to
be positive.

Applications to motives

Recall that decompositions of rings, 𝑅 =
⨁

𝑖 𝑅𝑖, correspond to decompositions, 1 =
∑

𝑖 𝑒𝑖,
of 1 into a sum of orthogonal central idempotents; then 𝑅𝑖 = 𝑒𝑖𝑅𝑒𝑖 = 𝑅𝑒𝑖. Let 𝑅 be a
semisimple algebra.

Let 𝐻 be a Weil cohomology theory satisfying the strong Lefschetz theorem and
Conjecture 𝐶, and let 𝐴(𝑋) = 𝐶dim(𝑋)𝐻 (𝑋 × 𝑋) (algebraic correspondences of degree 0).
For idempotents 𝑒 in 𝐴(𝑋) and 𝑓 in 𝐴(𝑌), we let

Hom((𝑋, 𝑒), (𝑌, 𝑓)) = 𝑓◦𝐶dim(𝑋)(𝑋 × 𝑌)◦𝑒.

We write ℎ𝑖(𝑋) for the motive (𝑋, 𝜋𝑖); thus

End(ℎ𝑖(𝑋)) = 𝜋𝑖◦𝒜0(𝑋)◦𝜋𝑖.

Let 𝑋 be a smooth projective variety. Assume 𝐵(𝑋), and fix a Lefschetz operator 𝐿.
Then ∗ is a morphism of motives (8.21)

∗∶ ℎ𝑖(𝑋)→ ℎ2𝑛−𝑖(𝑋)(𝑛 − 𝑖),

and we define
𝜙𝐿 ∶ ℎ𝑖(𝑋)⊗ ℎ𝑖(𝑋)→ 𝑇(−𝑖)

to be the composite of

ℎ𝑖(𝑋)⊗ ℎ𝑖(𝑋)
id⊗∗𝐿,→ ℎ𝑖(𝑋)⊗ ℎ2𝑛−𝑖(𝑋)(𝑛 − 𝑖)→ ℎ2𝑛(𝑋)(𝑛 − 𝑖)

Tr
,→ 𝑇(−𝑖).

Polarizations

Proposition 8.42 Assume 𝐵(𝑋), and let 𝐿 be a Lefschetz operator. The map 𝑢 ↦ 𝑢′ =∗
◦𝑢𝑡◦ ∗ is an involution on End(ℎ𝑖(𝑋)) def= 𝜋𝑖◦𝐶dim(𝑋)𝐻 (𝑋 × 𝑋)◦𝜋𝑖 . It is positive if and only
if 𝐼(𝑋 × 𝑋, 𝐿 ⊗ 1 + 1⊗ 𝐿) holds.
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Proof Only have to prove necessity. Let 𝑢 = 𝑢1⊗𝑢2 ∈ 𝑃𝑖(𝑋)⊗𝑃𝑗(𝑋). ThenTr(𝑢′◦𝑢) =
(−1)𝑖(𝑢⋅ ∗𝑋 𝑢 ∗𝑋). Now

∗𝑋 𝑢 ∗𝑋= (∗𝑋 ⊗ ∗𝑋)(𝑢) = ± ∗𝑋×𝑋 𝑢.

Now 𝐼(𝑋 × 𝑋, 𝐿 ⊗ 1 + 1⊗ 𝐿) says that

(−1)𝑖⟨𝑢⋅ ∗𝑋×𝑋 𝑢⟩ > 0.

So
(−1)𝑖⟨𝑢⋅ ∗𝑋×𝑋 𝑢⟩ = Tr(𝑢′◦𝑢).

2

The Weil forms one gets in this way are all compatible.

Known cases

8.43 Conjecture 𝐼(𝑋) is known over ℂ for Betti cohomology by Hodge theory. Hence,
by the comparison theorem, it is known in characteristic zero for all the standard Weil
cohomology theories.

In arbitrary characteristic, 𝐼(𝑋) holds for surfaces. A purely algebraic proof, which
works in arbitrary characteristic, was given in 1937 by B. Segre. Independently, in 1958,
Grothendieck gave a similar proof.

For an abelian variety 𝐴, 𝐼1(𝐴, 𝐿) was proved by Weil (1948). It is known that the
pairing 𝑎, 𝑏 ↦ 𝑎⋅ ∗ 𝑏∶ 𝐴𝑖(𝑋) ×𝐴𝑖(𝑋)→ ℚ is positive on Lefschetz classes, and that the
Hodge conjecture for CM abelian varieties implies the Hodge standard conjecture for
abelian varieties over finite fields (Milne 2002).

The standard conjecture of Hodge type follows from known results for abelian
varieties of dimension ≤ 3. For an abelian variety of dimension 4 in characteristic
𝑝, Ancona (2021) proves that the intersection product

𝑍2num(𝐴)ℚ × 𝑍2num(𝐴)ℚ → ℚ

has signature (𝜌2 − 𝜌1 + 1,𝜌1 − 1) with 𝜌𝑖 = dim𝑍𝑖num(𝐴)ℚ. Hence the Hodge standard
conjecture for cycles modulo numerical equivalence.

For an abelian variety 𝐴 over 𝔽, there is a set 𝑆(𝐴) of prime numbers with density
> 0 such that Conjecture 𝐷 holds for all powers of 𝐴 and all 𝓁-adic étale cohomology
theories with 𝓁 ∈ 𝑆(𝐴) (Clozel 1999).

Notes The unattributed results in this section go back to the lectures of Grothendieck. The
exposition follows Kleiman 1968 and Kleiman 1994.

9 Motives of abelian type

In this section, we study the motives defined by abelian varieties.

The Lefschetz standard conjecture holds for abelian varieties

9.1 Let 𝐴 be an abelian variety of dimension 𝑔, and let 𝐶rat(𝐴) be the Chow ring (ℚ-
coefficients). Let 𝐷rat(𝐴) be the ℚ-subalgebra generated by the divisor classes – we call
its elements Lefschetz classes. The Lefschetz classes are stable under products and
pullbacks, but not necessarily pushforwards. We shall construct Lefschetz classes in
𝐶rat(𝐴) such that, when we apply any Weil cohomology theory, we get the standard
classes 𝜋𝑖, Λ, 𝑐Λ, ∗ etc.
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9.2 Choose a symmetric ample divisor 𝐷 on 𝐴, and let𝑀 = 𝑚∗𝐷 − 𝑝∗𝐷 − 𝑞∗𝐷. Let 𝜆𝐷
be the polarization defined by 𝐷. For 0 ≤ 𝑖 ≤ 2𝑔, define

𝑝𝑖 =
(−1)𝑖

√
deg(𝜆𝐷)

∑

max(0,𝑖−𝑔)≤𝑗≤ 𝑖
2

1
𝑗!(𝑔 − 1 + 𝑗)!(𝑖 − 2𝑗)!

𝑝∗([𝐷𝑔−𝑖+𝑗]) ⋅ 𝑞∗([𝐷𝑗]) ⋅ [𝑀]𝑖−2𝑗

Here [∗] denotes the class of ∗ in 𝐶1rat(⋅) = Pic(⋅)⊗ ℚ, so that 𝑝𝑖 ∈ 𝐶𝑔rat(𝐴 × 𝐴). Then
(Scholl 1994, §5),

𝑝0 + 𝑝1 +⋯ + 𝑝2𝑔 = ∆𝐴 (137)

(identity in 𝐶𝑔rat(𝐴 × 𝐴)). Each 𝑝𝑖 is Lefschetz, and, for any Weil cohomology theory, the
cycle class map takes (137) to the Künneth decomposition of the diagonal,

𝜋0 + 𝜋1 +⋯ + 𝜋2𝑔 = ∆.

In particular, ∆𝐴 is Lefschetz. If 𝜙∶ 𝐴 → 𝐵 is a morphism of abelian varieties (not
necessarily a homomorphism), then ∆𝐵 is Lefschetz, and so the formula

(𝜙 × id)∗(∆𝐵) = ∆𝐵◦Γ𝜙 = Γ𝜙

(Fulton 1984, 16.1.1) shows that Γ𝜙 is also Lefschetz.

9.3 Following Scholl 1994, 5.9, we define for 0 ≤ 𝑖 ≤ 2𝑔,

𝑓𝑖 =
∑

(𝑖−𝑔)+≤𝑗≤ 𝑖
2

1
𝑗!(𝑔 − 𝑖 + 𝑗)!(𝑖 − 2𝑗)!

𝑝∗([𝐷𝑗]) ⋅ 𝑞∗([𝐷𝑗]) ⋅ [𝑀]𝑖−2𝑗.

Then 𝑓𝑖 is Lefschetz, and
(−1)𝑖

√
deg(𝜆𝐷)

𝑓𝑖 is the inverse of the strong Lefschetz isomorphism

“cup with [𝐷]𝑔−𝑖” (cf. ibid. 5.9.1). Thus

Λ = 1
√
deg(𝜆𝐷)

⎛
⎜
⎝

∑

2≤𝑖≤𝑔
(−1)𝑖𝑓𝑖−2 ⋅ 𝑝∗[𝐷𝑔+1−𝑖] +

∑

𝑔<𝑖≤2𝑔
(−1)𝑖𝑓2𝑔−𝑖 ⋅ 𝑞∗[𝐷𝑖−𝑔−1]

⎞
⎟
⎠
,

which is Lefschetz. Also, the Fourier transform correspondence (Künneman 1994, p193),

𝐹 = exp[𝑐1(𝑃)] ∈ 𝐶rat(𝐴 × 𝐴∨), 𝑃 = Poincaré line bundle,

is Lefschetz.

Lefschetz classes on abelian varieties

9.4 Let𝐻 be a Weil cohomology theory with coefficient field 𝑄. A Lefschetz class on
𝑋 (relative to𝐻) is an element of 𝑄-algebra generated by the divisor classes. Products
and pull-backs of Lefschetz classes are Lefschetz, but not necessarily pushforwards.

9.5 Let 𝐴 be an abelian variety over 𝑘 and𝐻 a Weil cohomology theory with coefficient
field 𝑄. Let 𝑉(𝐴) = 𝐻1(𝐴)∨. From the canonical isomorphisms (of 𝑄-vector spaces),

𝐻1(𝐴) ≃ Hom(𝑉(𝐴), 𝑄), 𝐻1(𝐴𝑟) ≃ 𝑟𝐻1(𝐴), 𝐻∗(𝐴𝑟) ≃
⋀

𝐻1(𝐴𝑟),

we see that there is a natural left action of GL(𝑉(𝐴)) on 𝐻𝑠(𝐴𝑟) for all 𝑟, 𝑠. Using
the identification 𝔾𝑚 = GL(𝑄(1)), we extend this to an action of GL(𝑉(𝐴)) × 𝔾𝑚 on
𝐻𝑠(𝐴𝑟)(𝑚).
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9.6 The Lefschetz group 𝐿(𝐴) of an abelian variety 𝐴 over 𝑘 is defined to be the largest
algebraic subgroup of GL(𝑉(𝐴)) × 𝔾𝑚 fixing4 the elements of 𝐷𝑠

𝐻(𝐴
𝑟) ⊂ 𝐻2𝑠(𝐴𝑟)(𝑠) for

all 𝑟, 𝑠.

9.7 Let𝐶(𝐴) denote the centralizer of End0(𝐴) in End(𝑉(𝐴)). Then𝐶(𝐴) is a𝑄-algebra,
stable under the involution † defined by an ample divisor 𝐷, and the restriction of † to
𝐶(𝐴) is independent of the choice of 𝐷. Let 𝐺(𝐴) be the algebraic subgroup of GL𝑉(𝐴)
such that

𝐺(𝐴)(𝑅) = {𝛾 ∈ 𝐶(𝐴)⊗ 𝑅 ∣ 𝛾†𝛾 ∈ 𝑅×}

for all 𝑄-algebras 𝑅. Then

𝐻2∗(𝐴𝑟)(∗)𝐺(𝐴) = 𝐷∗
𝐻(𝐴

𝑟)⊗𝑄. (138)

The proof is a case by case argument (Milne 1999).

9.8 The map 𝛾 ↦ (𝛾, 𝛾†𝛾)∶ 𝐺(𝐴) → GL𝑉(𝐴) ×𝔾𝑚 sends 𝐺(𝐴) isomorphically onto
𝐿(𝐴),

𝐺(𝐴) ≃ 𝐿(𝐴).

Clearly 𝐺(𝐴)maps into 𝐿(𝐴), but, because 𝐺(𝐴)◦ is reductive, (138) shows that 𝐺(𝐴) is
the group fixing the Lefschetz classes.

9.9 On combining the last two statements, we find that

𝐻2∗(𝐴𝑟)(∗)𝐿(𝐴) = 𝐷∗
𝐻(𝐴

𝑟)𝑄.

Theorem 9.10 Let 𝐴 be an abelian variety of dimension 𝑛. The classes 𝐿, Λ,𝑐 Λ, ∗,
𝑝0,… , 𝑝2𝑛, and 𝜋0,… , 𝜋2𝑛 are all Lefschetz.

Proof The class 𝐿 is Lefschetz by definition. As it is Lefschetz, it is fixed by 𝐿(𝐴). Hence,
its “inverse” Λ is also fixed by 𝐿(𝐴), and so is Lefschetz. It follows from Proposition 8.15
that the remaining classes are also Lefschetz. 2

9.11 Let𝐴 be an abelian variety overℂ. ThenMT(𝐴) ⊂ 𝐿(𝐴), and if equality holds then
all Hodge classes on the powers of 𝐴 are Lefschetz. In particular, the Hodge conjecture
holds for 𝐴 and its powers. For example, if 𝐴 is an elliptic curve, then

MT(𝐴) = { GL2 if End0(𝐴) = ℚ
(𝔾𝑚)𝐸∕ℚ if End0(𝐴) = 𝐸 ≠ ℚ

} = 𝐺(𝐴),

and so the Hodge conjecture holds for all powers of 𝐴.

The category of Lefschetz motives.

9.12 We get a canonically polarized Tate triple 𝖫𝖬𝗈𝗍(𝑘).

ToDo 15 To be explained.

4In the sense of group schemes.
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Weil classes

9.13 Let𝐴 be a complex abelian variety and 𝜈 a homomorphism from a CM-field 𝐸 into
End0(𝐴). The pair (𝐴, 𝜈) is said to be of Weil type if 𝐻1,0(𝐴) is a free 𝐸 ⊗ℚ ℂ-module.
In this case, 𝑑 def= dim𝐸 𝐻1(𝐴,ℚ) is even and the subspace𝑊𝐸(𝐴)

def=
⋀𝑑

𝐸 𝐻
1(𝐴,ℚ) of

𝐻𝑑(𝐴,ℚ) consists of Hodge classes (Deligne 1982, 4.4). When 𝐸 has degree 2 over ℚ,
these Hodge classes were studied by Weil (1977), and for this reason are calledWeil
classes. A polarization of (𝐴, 𝜈) is a polarization 𝜆 of𝐴whose Rosati involution stabilizes
𝜈(𝐸) and acts on it as complex conjugation. The Riemann form of such a polarization
can be written

(𝑥, 𝑦)↦ Tr𝐸∕ℚ(𝑓𝜙(𝑥, 𝑦))

for some totally imaginary element 𝑓 of 𝐸 and 𝐸-hermitian form 𝜙 on𝐻1(𝐴,ℚ). If 𝜆 can
be chosen so that 𝜙 is split (i.e., admits a totally isotropic subspace of dimension 𝑑∕2),
then (𝐴, 𝜈) is said to be of split Weil type. A pair (𝐴, 𝜈) of Weil type is split if and only if

disc(𝜙) ≡ (−1)dim(𝐴)∕[𝐸∶ ℚ] modulo Nm(𝐸×).

9.14 (Deligne 1982, §5.) Let 𝐸 be a CM-field, let 𝜙1,… , 𝜙2𝑝 be CM-types on 𝐸, and let
𝐴 =

∏
𝑖 𝐴𝑖, where 𝐴𝑖 is an abelian variety of CM-type (𝐸, 𝜙𝑖). If

∑
𝑖 𝜙𝑖(𝑠) = 𝑝 for all

𝑠 ∈ 𝑇 def= Hom(𝐸,ℚal), then 𝐴, equipped with the diagonal action of 𝐸, is of split Weil
type. Let 𝐼 = {1,… , 2𝑝} and𝐻𝑟(𝐴) = 𝐻𝑟(𝐴,ℚal). In this case, there is a diagram

𝑊𝐸(𝐴)⊗ℚal
(⋀2𝑝

𝐸
𝐻1(𝐴,ℚ)

)
⊗ℚ ℚal

(⋀2𝑝

ℚ
𝐻1(𝐴,ℚ)

)
⊗ℚ ℚal 𝐻2𝑝(𝐴)

⨁

𝑡∈𝑇

(⨂

𝑖∈𝐼
𝐻1(𝐴𝑖)𝑡

) ⨁

𝐽⊂𝐼×𝑇
|𝐽|=2𝑝

( ⨂

(𝑖,𝑡)∈𝐽
𝐻1(𝐴𝑖)𝑡

)
⇐⇐def

⇐⇐

←→

⇐⇐

⇐⇐

← →

Hodge classes on CM abelian varieties

Following Deligne (1982) and André (1992), we prove that all Hodge classes on CM
abelian varieties can be expressed in terms of Weil classes.

9.15 Let 𝐴 be a CM abelian variety over ℂ. By definition, this means that End0(𝐴)
contains a product of CM-fields 𝐸 such that𝐻1(𝐴,ℚ) is free of rank 1 as an 𝐸-module.
For example, after possible replacing 𝐴 with an isogenous variety, we may suppose
that it is a product of simple abelian varieties 𝐴𝑖 (not necessarily distinct), and take
𝐸 =

∏
𝑖 End

0(𝐴𝑖).
Let 𝑆 = Hom(𝐸,ℂ) and let𝐻1(𝐴) = 𝐻1(𝐴,ℂ). Then

𝐻1(𝐴) ≃ 𝐻1(𝐴,ℚ)⊗ ℂ ≃
⨁

𝑠∈𝑆
𝐻1(𝐴)𝑠, 𝐻1(𝐴)𝑠

def= 𝐻1(𝐴)⊗𝐸,𝑠 ℂ.

Here 𝐻1(𝐴)𝑠 can be identified with the (one-dimensional) ℂ-subspace of 𝐻1(𝐴) on
which 𝐸 acts through 𝑠.

We have
𝐻1,0(𝐴) =

⨁

𝑠∈Φ
𝐻1(𝐴)𝑠, 𝐻0,1(𝐴) =

⨁

𝑠∈Φ̄
𝐻1(𝐴)𝑠,

whereΦ is a CM-type on𝐸, i.e., a subset of 𝑆 such that 𝑆 = Φ⊔Φ̄. The abelian variety𝐴 is
said to be of CM-type (𝐸,Φ). Every such pair (𝐸,Φ) arises in this way from a CM abelian
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variety, unique up to isogeny. We sometimes identify a CM type with its characteristic
function 𝜙∶ 𝑆 → {0, 1}.

9.16 With 𝐴 and 𝐸 ⊂ End0(𝐴) as above, we fix a finite Galois extension 𝐹 of ℚ in ℂ
containing all conjugates of 𝐸, and we now let𝐻1(𝐴) = 𝐻1(𝐴, 𝐹) and 𝑆 = Hom(𝐸, 𝐹) =
Hom(𝐸,ℂ). Then

𝐻1(𝐴) ≃ 𝐻1(𝐴,ℚ)⊗𝐹 =
⨁

𝑠∈𝑆
𝐻1(𝐴)𝑠, 𝐻1(𝐴)𝑠

def= 𝐻1(𝐴,ℚ)⊗𝐸,𝑠 𝐹.

Here𝐻1(𝐴)𝑠 can be identifiedwith the (one-dimensional)𝐹-subspace of𝐻1(𝐴) onwhich
𝐸 acts through 𝑠.

We have isomorphisms of 𝐹-vector spaces

𝐻𝑟(𝐴) ≃
⋀𝑟

𝐹
𝐻1(𝐴) ≃

⨁
∆
𝐻𝑟(𝐴)∆, 𝐻𝑟(𝐴)∆

def=
⨂

𝑠∈∆
𝐻1(𝐴)𝑠, (139)

where ∆ runs over the subsets of 𝑆 of size |∆| = 𝑟. Here𝐻𝑟(𝐴)∆ can be identified with
the (one-dimensional) subspace on which 𝑎 ∈ 𝐸 acts as

∏
𝑠∈∆ 𝑠(𝑎).

Let𝐻1,0 =
⨁

𝑠∈Φ𝐻
1(𝐴)𝑠 and𝐻0,1 =

⨁
𝑠∈Φ̄𝐻

1(𝐴)𝑠, and let

𝐻𝑝,𝑞 =
⋀𝑝

𝐻1,0 ⊗
⋀𝑞

𝐻0,1.

Then
𝐻𝑟(𝐴) =

⨁
𝑝+𝑞=𝑟

𝐻𝑝,𝑞,

and this becomes the usual Hodge decomposition when tensored with ℂ (over 𝐹). More-
over,

𝐻𝑝,𝑞 ≃
⨁

∆
𝐻𝑟(𝐴)∆

where ∆ runs over the subsets of 𝑆 such that

|∆ ∩ Φ| = 𝑝 and |∆ ∩ Φ̄| = 𝑞.

Let 𝐵𝑝 = 𝐻2𝑝(𝐴,ℚ) ∩𝐻𝑝,𝑝. It is the ℚ-vector space of Hodge classes of degree 𝑝 on
𝐴. In the decomposition (139),

𝐵𝑝 ⊗𝐹 =
⨁

∆
𝐻2𝑝(𝐴)∆,

where ∆ runs over the subsets of 𝑆 such that

|(𝑡◦∆) ∩ Φ| = 𝑝 = |(𝑡◦∆) ∩ Φ̄| for all 𝑡 ∈ Gal(𝐾∕ℚ). (*)

Let ∆ be a subset of 𝑆 satisfying (*). For 𝑠 ∈ ∆, let 𝐴𝑠 = 𝐴 ⊗𝐸,𝑠 𝐹. Then 𝐴𝑠 is
an abelian variety of CM-type (𝐹,Φ𝑠), where 𝜙𝑠(𝑡) = 𝜙(𝑡◦𝑠) for 𝑡 ∈ 𝑇 def= Hom(𝐹, 𝐹).
Because ∆ satisfies (*),

∑

𝑠∈∆
𝜙𝑠(𝑡) =

∑

𝑠∈∆
𝜙(𝑠◦𝑡) = 𝑝, all 𝑡 ∈ 𝑇,

and so 𝐴∆
def=
∏

𝑠∈∆𝐴𝑠 equipped with the diagonal action of 𝐹 is of split Weil type. The
canonical homomorphisms 𝑓𝑠 ∶ 𝐴 → 𝐴𝑠 define a homomorphism 𝑓∆∶ 𝐴 → 𝐴∆.

The map 𝑓∗∆∶ 𝐻
1(𝐴∆,ℚ)→ 𝐻1(𝐴,ℚ) is the 𝐸-linear dual of 𝑓∆∗. Direct calculation

shows that 𝑓∗∆(𝑊𝐾(𝐴∆))⊗𝐹 is contained in 𝐵𝑝(𝐴)⊗𝐹 and contains𝐻2𝑝(𝐴)∆. As the
subspaces𝐻2𝑝(𝐴)∆ span 𝐵𝑝 ⊗𝐹, we have proved the following statement.

Theorem 9.17 Let 𝐴 be a CM abelian variety over ℂ. There exist abelian varieties 𝐴∆ of
split Weil type and homomorphisms 𝑓∆∶ 𝐴 → 𝐴∆ such that every Hodge class 𝑡 on 𝐴 can
be written as a sum 𝑡 =

∑
𝑓∗∆(𝑡∆) with 𝑡∆ a Weil class on 𝐴∆.
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Deligne’s theorem on absolute Hodge classes

Theorem 9.18 (Deligne 1982) Suppose that for each abelian variety𝐴 overℂand 𝑟 ∈ ℕ
we have aℚ-subspace 𝐶𝑟(𝐴) of the Hodge classes of codimension 𝑟 on 𝐴. Assume:
(a) 𝐶𝑟(𝐴) contains all algebraic classes of codimension 𝑟 on 𝐴;
(b) pull-back by a homomorphism 𝛼∶ 𝐴 → 𝐵 of abelian varieties maps 𝐶𝑟(𝐵) into

𝐶𝑟(𝐴);
(c) let 𝜋∶ 𝒜 → 𝑆 be an abelian scheme over a connected smooth complex algebraic

variety 𝑆, and let 𝑡 ∈ Γ(𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟)); if 𝑡𝑠 lies in 𝐶𝑟(𝐴𝑠) for one 𝑠 ∈ 𝑆(ℂ), then it
lies in 𝐶𝑟(𝐴𝑠) for all 𝑠.

Then 𝐶𝑟(𝐴) contains all the Hodge classes of codimension 𝑟 on 𝐴.

Corollary 9.19 If hypothesis (c) of the theorem holds for algebraic classes on abelian
varieties, then the Hodge conjecture holds for abelian varieties. (In other words, for abelian
varieties, the variational Hodge conjecture implies the Hodge conjecture.)

Proof Immediate consequence of the theorem, because the algebraic classes satisfy (a)
and (b). 2

The proof of Theorem 9.18 requires three steps.

Step 1: Split Weil classes of codimenion 𝑟 on 𝐴 lie in 𝐶𝑟(𝐴)

Let (𝐴, 𝜈, 𝜆) be a polarized abelian variety of split Weil type. Let 𝑉 = 𝐻1(𝐴,ℚ), and let
𝜓 be the Riemann form of 𝜆. The Hodge structures on 𝑉 for which the elements of 𝐸 act
as morphisms and 𝜓 is a polarization are parametrized by a period subdomain, which is
hermitian symmetric domain (Milne 2013, 7.9). On dividing by a suitable arithmetic
subgroup, we get a smooth proper map 𝜋∶ 𝒜→ 𝑆 of smooth algebraic varieties whose
fibres are abelian varieties with an action of 𝐸 (ibid., 7.13). There is a ℚ-subspace𝑊 of
Γ(𝑆, 𝑅𝑑𝜋∗ℚ(

𝑑
2
)) whose fibre at every point 𝑠 is the space of Weil classes on 𝐴𝑠. One fibre

of 𝜋 is (𝐴, 𝜈) and another is a power of an elliptic curve. Therefore the lemma follows
from 9.11 and hypotheses (a) and (c). (See Deligne 1982, 4.8, for the original proof of
this step.)

Step 2: The theorem holds for abelian varieties of CM-type

Let 𝑡 be a Hodge class on 𝐴. According to 9.17, we can write 𝑡 =
∑
𝑓∗∆(𝑡∆) with 𝑡∆ a

Weil class on 𝐴∆. Therefore 𝑡 ∈ 𝐶𝑟(𝐴) by hypothesis (b). (See Deligne 1982, §5, for the
original proof of this step.)

Step 3: Completion of the proof of the theorem

Let 𝑡 be a Hodge class on a complex abelian variety 𝐴. Choose a polarization 𝜆 for 𝐴.
Let 𝑉 = 𝐻1(𝐴,ℚ) and let ℎ𝐴 be the homomorphism defining the Hodge structure on
𝐻1(𝐴,ℚ). Both 𝑡 and the Riemann form 𝑡0 of 𝜆 can be regarded as Hodge tensors for 𝑉.
The period subdomain 𝐷 = 𝐷(𝑉, ℎ𝐴, {𝑡, 𝑡0}) is a hermitian symmetric domain (Milne
2013, 7.9). On dividing by a suitable arithmetic subgroup, we get a smooth proper map
𝜋∶ 𝒜→ 𝑆 of smooth algebraic varieties whose fibres are abelian varieties (Milne 2013,
7.13) and a section 𝑡 of 𝑅2𝑟𝜋∗ℚ(𝑟). For one 𝑠 ∈ 𝑆, the fibre (𝒜, 𝑡)𝑠 = (𝐴, 𝑡), and another
fibre is an abelian variety of CM-type (Milne 2013, 8.1), and so the theorem follows from
Step 3 and hypothesis (c). (See Deligne 1982, §6, for the original proof of this step.)
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Relations between the conjectures

9.20 The standard conjecture of Lefschetz type for abelian schemes over smooth projective
curves over ℂ implies the Hodge conjecture for abelian varieties (Abdulali 1994, André
1996).

9.21 The Hodge conjecture for CM abelian varieties (over ℂ) implies the Hodge standard
conjecture for abelian varieties (Milne 2002).

9.22 If the standard conjecture of Lefschetz type holds for all smooth projective varieties
over finite fields, then
(a) all Hodge classes on complex abelian varieties are almost-algebraic;

(b) the standard conjecture of Hodge type holds for abelian varieties;

(c) the Tate conjecture holds for abelian varieties over finite fields;
(Milne 2020c).

The category of motives of abelian type

To be denoted 𝖠𝖬(𝑘).

ToDo 16 This section is not yet written.

10 Motives for absolute Hodge classes
Given the lack of progress on these conjectures, one looks for alternatives to al-
gebraic cycles.5 We describe the category of motives based on absolute Hodge
classes.

Throughout this section, 𝑘 is a field of characteristic zero with algebraic closure �̄�
and Galois group Γ = Gal(�̄�∕𝑘). All varieties are complete and smooth, and, for 𝑋 a
variety (or motive) over 𝑘, �̄� denotes 𝑋 ⊗𝑘 �̄�.

Absolute Hodge classes

We let 𝐻𝑟
𝑘×𝔸𝑓

(𝑋)(𝑚) denote the product of 𝐻𝑟
dR(𝑋)(𝑚) with the restricted product of

the topological spaces 𝐻𝑟
𝓁(𝑋)(𝑚) relative to their subspaces 𝐻

𝑟(𝑋et,ℤ𝓁)(𝑚). This is a
finitely generated free module over the ring 𝑘 ×𝔸𝑓. For any homomorphism 𝜎∶ 𝑘 →
𝑘′ of algebraically closed fields, the maps (126) and (124) of §3 give a base change
homomorphism

𝐻𝑟
𝑘×𝔸𝑓

(𝑋)(𝑚)
𝜎
,→ 𝐻𝑟

𝑘′×𝔸𝑓
(𝜎𝑋)(𝑚). (140)

When 𝑘 = ℂ, the maps (127) and (125) of §3 give a comparison isomorphism

(ℂ ×𝔸𝑓)⊗ℚ 𝐻𝑟
𝐵(𝑋)(𝑚)→ 𝐻𝑟

ℂ×𝔸𝑓
(𝑋)(𝑚). (141)

5For me . . . it is not crucial whether [the Hodge conjecture] is true or false. If it is true, that’s very good,
and it solves a large part of the problem of constructing motives in a reasonable way. If one can find another
purely algebraic notion of cycles for which the analogue of the Hodge conjecture holds, and there are a
number of candidates, this will serve the same purpose, and I would be as happy as if the Hodge conjecture
were proved. For me it is motives, not Hodge, that is crucial. Deligne interview (reprinted NAMS 2014).



10. Motives for absolute Hodge classes 265

Let 𝑋 be an algebraic variety over ℂ. The cohomology group 𝐻2𝑟
𝐵 (𝑋)(𝑟) has a Hodge

structure of weight 0, and an element of type (0, 0) in it is called aHodge class of codi-
mension 𝑟 on 𝑋.6 We wish to extend this notion to all base fields of characteristic zero.
Of course, given a variety 𝑋 over a (not too big) field 𝑘, we can choose a homomorphism
𝜎∶ 𝑘 → ℂ and define a Hodge class on 𝑋 to be a Hodge class on 𝜎𝑋, but this notion may
depend on the choice of the embedding. Deligne’s idea for avoiding this problem is to
use all embeddings (Deligne 1979a, 0.7).

Let 𝑋 be an algebraic variety over an algebraically closed field 𝑘 of characteristic
zero, and let 𝜎 be a homomorphism 𝑘 → ℂ. An element 𝛾 of 𝐻2𝑟

𝑘×𝔸𝑓
(𝑋)(𝑟) is said to

be a 𝜎-Hodge class of codimension 𝑟 if 𝜎𝛾 lies in the subspace 𝐻2𝑟
𝐵 (𝜎𝑋)(𝑟) ∩ 𝐻

0,0 of
𝐻2𝑟
ℂ×𝔸𝑓

(𝜎𝑋)(𝑟). When 𝑘 is algebraically closed of finite transcendence degree over ℚ, an
element 𝛾 of 𝐻2𝑟

𝑘×𝔸(𝑋)(𝑟) is said to be an absolute Hodge class if it is 𝜎-Hodge for all
homomorphisms 𝜎∶ 𝑘 → ℂ. The absolute Hodge classes of codimension 𝑟 on 𝑋 form a
ℚ-subspace 𝐴𝐻𝑟(𝑋) of𝐻2𝑟

𝑘×𝔸𝑓
(𝑋)(𝑟).

𝐻2𝑟
𝐵 (𝜎𝑋)(𝑟) ∩𝐻

0,0 𝐻2𝑟
ℂ×𝔸𝑓

(𝜎𝑋)(𝑟)

𝐴𝐻𝑟(𝑋) 𝐻2𝑟
𝑘×𝔸𝑓

(𝑋)(𝑟)

(141)

𝜎(140)

We list the basic properties of absolute Hodge classes.

10.1 For any homomorphism 𝜎∶ 𝑘 → 𝑘′ of algebraically closed fields of finite tran-
scendence degree overℚ, the map (140) induces an isomorphism 𝐴𝐻𝑟(𝑋)→ 𝐴𝐻𝑟(𝜎𝑋)
(Deligne 1982, 2.9a).

This allows us to define𝐴𝐻𝑟(𝑋) for an algebraic variety over an arbitrary algebraically
closed field 𝑘 of characteristic zero: choose a model 𝑋0 of 𝑋 over an algebraically closed
subfield 𝑘0 of 𝑘 of finite transcendence degree over ℚ, and define 𝐴𝐻𝑟(𝑋) to be the
image of 𝐴𝐻𝑟(𝑋0) under the map𝐻2𝑟

𝑘0×𝔸𝑓
(𝑋0)(𝑟)→ 𝐻2𝑟

𝑘×𝔸𝑓
(𝑋)(𝑟). With this definition,

10.1 holds for all homomorphisms of algebraically closed fields 𝑘 of characteristic zero.
Moreover, if 𝑘 admits an embedding in ℂ, then a cohomology class is absolutely Hodge
if and only if it is 𝜎-Hodge for every such embedding.

10.2 The inclusion 𝐴𝐻𝑟(𝑋) ⊂ 𝐻2𝑟
𝑘×𝔸𝑓

(𝑋)(𝑟) induces an injective map

(
𝑘 ×𝔸𝑓

)
⊗ℚ 𝐴𝐻𝑟(𝑋)→ 𝐻2𝑟

𝑘×𝔸𝑓
(𝑋)(𝑟).

In particular 𝐴𝐻𝑟(𝑋) is a finite-dimensionalℚ-vector space.

This follows from (141) because 𝐴𝐻𝑟(𝑋) is isomorphic to aℚ-subspace of𝐻2𝑟
𝐵 (𝜎𝑋)(𝑟)

(each 𝜎).

10.3 The cohomology class of an algebraic cycle on 𝑋 is absolutely Hodge; thus, the
algebraic cohomology classes of codimension 𝑟 on𝑋 form aℚ-subspace𝐴𝑟(𝑋) of𝐴𝐻𝑟(𝑋)
(Deligne 1982, 2.1a).

6As𝐻2𝑟
𝐵 (𝑋)(𝑟) ≃ 𝐻2𝑟

𝐵 (𝑋)⊗ℚ(𝑟), this is essentially the same as an element of𝐻2𝑟
𝐵 (𝑋) of type (𝑟, 𝑟).
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10.4 The Künneth components of the diagonal are absolute Hodge classes (ibid., 2.1b).

10.5 Let 𝑋 be an algebraic variety over an algebraically closed field 𝑘, and let 𝑋0 be a
model of 𝑋 over a subfield 𝑘0 of 𝑘 such that 𝑘 is algebraic over 𝑘0; then Gal(𝑘∕𝑘0) acts
on 𝐴𝐻𝑟(𝑋) through a finite discrete quotient (ibid. 2.9b). We define

𝐴𝐻𝑟(𝑋0) = 𝐴𝐻𝑟(𝑋)Gal(𝑘∕𝑘0).

10.6 Let
𝐴𝐻∗(𝑋) =

⨁
𝑟≥0

𝐴𝐻𝑟(𝑋);

then 𝐴𝐻∗(𝑋) is aℚ-subalgebra of
⨁

𝐻2𝑟
𝑘×𝔸𝑓

(𝑋)(𝑟). For any map 𝛼∶ 𝑌 → 𝑋 of algebraic
varieties, the maps 𝛼∗ and 𝛼∗ send absolute Hodge classes to absolute Hodge classes.
(This follows easily from the definitions.)

Conjecture 10.7 (Deligne 1979a, 0.10) Every 𝜎-Hodge class on a smooth complete va-
riety over an algebraically closed field of characteristic zero is absolutely Hodge.

In other words, when 𝑘 is embeddable in ℂ,

𝜎-Hodge (for one 𝜎) ⇐⇒ absolutely Hodge.

The conjecture is known for abelian varieties (Deligne 1982, 2.11) – see Theorem 10.35
below.

Complements on absolute Hodge cycles

For 𝑋 a variety over 𝑘, 𝐶𝑝AH(𝑋) denotes the ℚ-vector space of absolute Hodge cycles on
𝑋. When 𝑋 has pure dimension 𝑛, we write

Mor𝑝AH(𝑋,𝑌) = 𝐶𝑛+𝑝AH (𝑋 × 𝑌).

Then

Mor𝑝AH(𝑋,𝑌) ⊂ 𝐻2𝑛+2𝑝(𝑋 × 𝑌)(𝑝 + 𝑛) =
⨁

𝑟+𝑠=2𝑛+2𝑝
𝐻𝑟(𝑋)⊗𝐻𝑠(𝑌)(𝑝 + 𝑛)

=
⨁

𝑠=𝑟+2𝑝
𝐻𝑟(𝑋)∨ ⊗𝐻𝑠(𝑌)(𝑝)

=
⨁

𝑟
Hom(𝐻𝑟(𝑋), 𝐻𝑟+2𝑝(𝑌)(𝑝)).

The next proposition is obvious from this and the definition of an absolute Hodge cycle.

Proposition 10.8 An element 𝑓 ofMor𝑝AH(𝑋,𝑌) gives rise to
(a) for each prime 𝓁, a homomorphism 𝑓𝓁∶ 𝐻𝓁(�̄�)→ 𝐻𝓁(�̄�)(𝑝) of graded vector spaces

(meaning that 𝑓𝓁 is a family of homomorphisms 𝑓𝑟𝓁∶ 𝐻
𝑟
𝓁(�̄�)→ 𝐻𝑟+2𝑝

𝓁 (�̄�)(𝑝));
(b) a homomorphism 𝑓dR ∶ 𝐻dR(𝑋)→ 𝐻dR(𝑌)(𝑝) of graded vector spaces;
(c) for each 𝜎∶ 𝑘 → ℂ, a homomorphism 𝑓𝜎 ∶ 𝐻𝜎(𝑋) → 𝐻𝜎(𝑌)(𝑝) of graded vector

spaces.
These maps satisfy the following conditions

(d) for all 𝛾 ∈ Γ and primes 𝓁, 𝛾𝑓𝓁 = 𝑓𝓁;
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(e) 𝑓dR is compatible with the Hodge filtrations on each homogeneous factor;

(f) for each 𝜎∶ 𝑘 → ℂ, the maps 𝑓𝜎, 𝑓𝓁, and 𝑓dR correspond under the comparison
isomorphisms (§1).

Conversely, assume that 𝑘 is embeddable in ℂ; then a family of maps 𝑓𝓁, 𝑓dR as in (a), (b)
arises from an 𝑓 ∈ Mor𝑝AH(𝑋,𝑌) provided (𝑓𝓁) and 𝑓dR satisfy (d) and (e) respectively
and for every 𝜎∶ 𝑘 → ℂ there exists an 𝑓𝜎 such that (𝑓𝓁), 𝑓dR , and 𝑓𝜎 satisfy condition
(f); moreover, 𝑓 is unique.

Similarly, a 𝜓 ∈ 𝐶2𝑛−𝑟AH (𝑋 × 𝑋) gives rise to pairings

𝜓𝑠 ∶ 𝐻𝑠(𝑋) ×𝐻2𝑟−𝑠(𝑋)→ ℚ(−𝑟).

Proposition 10.9 On every variety 𝑋 there exists a 𝜓 ∈ 𝐶2 dim𝑋−𝑟
AH (𝑋 × 𝑋) such that, for

every 𝜎∶ 𝑘 → ℂ,
𝜓𝑟𝜎 ∶ 𝐻𝑟

𝜎(𝑋,ℝ) ×𝐻𝑟
𝜎(𝑋,ℝ)→ ℝ(−𝑟)

is a polarization of real Hodge structures (in the sense of V, 12.10).

Proof Let 𝑛 = dim𝑋. Choose a projective embedding of 𝑋, and let 𝐿 be a hyperplane
section of 𝑋. Let 𝓁 be the class of 𝐿 in𝐻2(𝑋)(1), and write 𝓁 also for the map𝐻(𝑋)→
𝐻(𝑋)(1) sending a class to its cup-product with 𝓁. Assume that 𝑋 is connected, and
define the primitive cohomology of 𝑋 by

𝐻𝑟(𝑋)prim = Ker(𝓁𝑛−𝑟+1∶ 𝐻𝑟(𝑋)→ 𝐻2𝑛−𝑟+2(𝑋)(𝑛 − 𝑟 + 1)).

The hard Lefschetz theorem states that

𝓁𝑛−𝑟 ∶ 𝐻𝑟(𝑋)→ 𝐻2𝑛−𝑟(𝑋)(𝑛 − 𝑟)

is an isomorphism for 𝑟 ≤ 𝑛; it implies that

𝐻𝑟(𝑋) =
⨁

𝑠≥𝑟−𝑛, 𝑠≥0
𝓁𝑠𝐻𝑟−2𝑠(𝑋)(−𝑠)prim.

Thus, every𝑥 ∈ 𝐻𝑟(𝑋) can bewritten uniquely𝑥 =
∑
𝓁𝑠(𝑥𝑠)with𝑥𝑠 ∈ 𝐻𝑟−2𝑠(𝑋)(−𝑠)prim .

Define
∗𝑥 =

∑
(−1)(𝑟−2𝑠)(𝑟−2𝑠+1)∕2𝓁𝑛−𝑟+𝑠𝑥𝑠 ∈ 𝐻2𝑛−𝑟(𝑋)(𝑛 − 𝑟).

Then 𝑥 ↦∗ 𝑥∶ 𝐻𝑟(𝑋) → 𝐻2𝑛−𝑟(𝑋)(𝑛 − 𝑟) is a well-defined map for each of the three
cohomology theories, 𝓁-adic, de Rham, and Betti. Proposition 10.8 shows that it is
defined by an absolute Hodge cycle (rather, the map𝐻(𝑋)→ 𝐻(𝑋)(𝑛− 𝑟) that is 𝑥 ↦ ∗𝑥
on𝐻𝑟 and zero elsewhere is so defined). We take 𝜓𝑟 to be

𝐻𝑟(𝑋)⊗𝐻𝑟(𝑋)
id⊗∗

,,,,→ 𝐻𝑟(𝑋)⊗𝐻2𝑛−𝑟(𝑋)(𝑛 − 𝑟)→ 𝐻2𝑛(𝑋)(𝑛 − 𝑟)
Tr
→ ℚ(−𝑟).

Clearly it is defined by an absolute Hodge cycle, and the Hodge-Riemann bilinear
relations (see Wells 1980, 5.3) show that it defines a polarization on the real Hodge
structure𝐻𝑟

𝜎(𝑋,ℝ) for each 𝜎∶ 𝑘 → ℂ. 2

ToDo 17 Replace the reference to Wells with a reference to Voisin’s book. Add additional
references to her book.
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Proposition 10.10 For any 𝑢 ∈ Mor0AH(𝑌,𝑋), there exists a unique 𝑢′ ∈ Mor0AH(𝑋,𝑌)
such that

𝜓𝑋(𝑢𝑦, 𝑥) = 𝜓𝑌(𝑦, 𝑢′𝑥), 𝑥 ∈ 𝐻𝑟(𝑋), 𝑦 ∈ 𝐻𝑟(𝑌),

where 𝜓𝑋 and 𝜓𝑌 are the forms defined in (10.9); moreover,

Tr(𝑢◦𝑢′) = Tr(𝑢′◦𝑢) ∈ ℚ
Tr(𝑢◦𝑢′) > 0 if 𝑢 ≠ 0.

Proof The first part is obvious, and the last assertion follows from the fact that the
𝜓𝑋 and 𝜓𝑌 are positive forms for a polarization in 𝖧𝗈𝖽ℝ (the tannakian category of real
Hodge structures). 2

Corollary 10.11 Theℚ-algebraMor0AH(𝑋,𝑋) is semisimple.

Proof Apply 8.36. 2

Construction of the category of motives

Let𝖵(𝑘) be the category of smooth projective varieties over 𝑘. We now define the category
𝖢𝖵(𝑘) to have as objects symbols ℎ(𝑋), one for each 𝑋 ∈ ob𝖵(𝑘), and as morphisms

Hom(ℎ(𝑋), ℎ(𝑌)) = Mor0AH(𝑋,𝑌). (142)

There is a map
Hom(𝑌,𝑋)→ Hom(ℎ(𝑋), ℎ(𝑌))

sending a homomorphism to the cohomology class of its graph which makes ℎ into a
contravariant functor 𝖵(𝑘)→ 𝖢𝖵(𝑘).

Clearly𝖢𝖵(𝑘) is aℚ-linear category, and ℎ(𝑋⊔𝑌) = ℎ(𝑋)⊕ℎ(𝑌). There is aℚ-linear
tensor structure on 𝖢𝖵(𝑘) for which
⋄ ℎ(𝑋)⊗ ℎ(𝑌) = ℎ(𝑋 × 𝑌),

⋄ the associativity constraint is induced by (𝑋 × 𝑌) × 𝑍 → 𝑋 × (𝑌 × 𝑍),

⋄ the commutativity constraint is induced by 𝑌 × 𝑋 → 𝑋 × 𝑌, and

⋄ the unit object is ℎ(point).
The category of effective (or positive)motives𝖬+(𝑘) is defined to be the pseudo-

abelian (Karoubian) envelope of 𝖢𝖵(𝑘). Thus, an object of𝖬+(𝑘) is a pair (𝑀,𝑝) with
𝑀 ∈ 𝖢𝖵(𝑘) and 𝑝 an idempotent in End(𝑀), and

Hom((𝑀,𝑝), (𝑁, 𝑞)) = {𝑓∶ 𝑀 → 𝑁 ∣ 𝑓◦𝑝 = 𝑞◦𝑓∕ ∼}, (143)

where 𝑓 ∼ 0 if 𝑓◦𝑝 = 0 = 𝑞◦𝑓. The rule

(𝑀,𝑝)⊗ (𝑁, 𝑞) = (𝑀 ⊗𝑁,𝑝 ⊗ 𝑞)

defines a ℚ-linear tensor structure on 𝖬+(𝑘), and𝑀 ⇝ (𝑀, id)∶ 𝖢𝖵𝑘 → 𝖬+
𝑘 is a fully

faithful functor which we use to identify 𝖢𝖵𝑘 with a subcategory of 𝖬+
𝑘 . With this

identification, (𝑀,𝑝) becomes the image of 𝑝∶ 𝑀 → 𝑀. The category 𝖬+
𝑘 is pseudo-

abelian: any decomposition of id𝑀 into a sum of pairwise orthogonal idempotents

id𝑀 = 𝑒1 +⋯ + 𝑒𝑚
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corresponds to a decomposition

𝑀 = 𝑀1 ⊕⋯⊕𝑀𝑚

with 𝑒𝑖|𝑀𝑖 = id𝑀𝑖 . The functor 𝖢𝖵(𝑘)→ 𝖬+(𝑘) is universal among functors from 𝖢𝖵(𝑘)
to pseudo-abelian categories.

For any 𝑋 ∈ ob(𝖵(𝑘)) and 𝑖 ≥ 0, the projection map 𝜋𝑖𝑋 from 𝐻(𝑋) onto 𝐻𝑖(𝑋)
defines an element of Mor0AH(𝑋,𝑋) = End(ℎ(𝑋)) (see 10.4). Corresponding to the
decomposition

idℎ(𝑋) = 𝜋0𝑋 + 𝜋1𝑋 +⋯

there is a decompostion (in𝖬+(𝑘))

ℎ(𝑋) = ℎ0(𝑋) + ℎ1(𝑋) + ℎ2(𝑋) +⋯ .

This gradation of objects of 𝖢𝖵(𝑘) extends in an obvious way to objects of𝖬+
𝑘 , and the

Künneth formulas show that these gradations are compatible with tensor products (and
therefore satisfy II, 9.2a).

Let

�̇�∶ 𝑀 ⊗𝑁 → 𝑁 ⊗𝑀, �̇� = ⊕�̇�𝑟,𝑠, �̇�𝑟,𝑠 ∶ 𝑀𝑟 ⊗𝑁𝑠 → 𝑁𝑠 ⊗𝑀𝑟

be the commutativity constraint on𝖬+
𝑘 coming from 𝖢𝖵(𝑘). We define a new commuta-

tivity constraint by setting

𝛾∶ 𝑀 ⊗𝑁 → 𝑁 ⊗𝑀, 𝛾 = ⊕𝛾𝑟,𝑠, 𝛾𝑟,𝑠 = (−1)𝑟𝑠�̇�𝑟,𝑠. (144)

From now on,𝖬+(𝑘) is equipped with the modified commutativity constraint.7

Let 𝐿 be the Lefschetz motive ℎ2(ℙ1). Then 𝐻(𝐿) = ℚ(−1), from which it follows
that

Hom(𝑀,𝑁) ≃→ Hom(𝑀 ⊗ 𝐿,𝑁 ⊗ 𝐿)

for any effective motives𝑀 and𝑁. This means that 𝑉 ⇝ 𝑉⊗𝐿 is a fully faithful functor
and allows us to invert 𝐿.

Definition 10.12 The category of motives𝖬(𝑘) is defined as follows:
(a) an object of𝖬(𝑘) is a pair (𝑀,𝑚) with𝑀 ∈ ob(𝖬+(𝑘)) and𝑚 ∈ ℤ;

(b) Hom((𝑀,𝑚), (𝑁, 𝑛)) = Hom(𝑀 ⊗ 𝐿𝑟−𝑚, 𝑁 ⊗ 𝐿𝑟−𝑛), 𝑟 ≥ 𝑚, 𝑛 (for different 𝑟,
these groups are canonically isomorphic);

(c) composition of morphisms is induced by that in𝖬+(𝑘).

Proposition 10.13 The category𝖬(𝑘) is a semisimple tannakian category overℚ.

Proof Corollary 10.11 shows that the endomorphism rings of the objects of𝖬(𝑘) are
semisimple, and it follows from Proposition 6.4 that the category𝖬(𝑘) is semisimple.2

7Without the modification, an object ℎ(𝑋), 𝑋 ∈ ob𝖵(𝑘), has dimension the Euler-Poincaré character-
istic,

∑
(−1)𝑟 dim𝐻𝑟(𝑋), of 𝑋, which is not necessarily positive. After the modification, it has dimension∑

dim𝐻𝑟(𝑋).
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Summary 10.14 (a) Let 𝑤 be the gradation on𝖬(𝑘) defined above; then (𝖬(𝑘), 𝑤, 𝑇) is
a Tate triple over ℚ.

(b) There is a contravariant functor ℎ∶ 𝖵(𝑘) → 𝖬(𝑘); every effective motive is the
image (ℎ(𝑋), 𝑝) of an idempotent 𝑝 ∈ End(ℎ(𝑋)) for some 𝑋 ∈ ob(𝖵(𝑘)); every motive
is of the form𝑀(𝑛) for some effective𝑀 and some 𝑛 ∈ ℤ.

(c) For smooth projective varieties 𝑋,𝑌 with 𝑋 of pure dimension𝑚,

𝐶𝑚+𝑠−𝑟AH (𝑋 × 𝑌) = Hom(ℎ(𝑋)(𝑟), ℎ(𝑌)(𝑠));

in particular,
𝐶𝑚AH(𝑋 × 𝑌) = Hom(ℎ(𝑋), ℎ(𝑌));

morphisms of motives can be expressed in terms of absolute Hodge cycles on varieties
by means of (142) and (10.12b).

(d) The constraints on 𝖬(𝑘) have an obvious definition, except that the obvious
commutativity constraint has to be modified by (142).

(e) For varieties 𝑋 and 𝑌,

ℎ(𝑋 ⊔ 𝑌) = ℎ(𝑋)⊕ ℎ(𝑌)
ℎ(𝑋 × 𝑌) = ℎ(𝑋)⊗ ℎ(𝑌)

ℎ(𝑋)∨ = ℎ(𝑋)(𝑚) if 𝑋 is of pure dimension𝑚.

(f) The fibre functors 𝐻𝓁, 𝐻dR, and 𝐻𝜎 define fibre functors on 𝖬(𝑘); these fibre
functors define morphisms of Tate triples𝖬(𝑘)→ 𝖳𝓁, 𝖳dR, 𝖳B (see V, 11.3); in particular,
𝐻(𝑇) = ℚ(1).

(g) When 𝑘 is embeddable in ℂ, Hom(𝑀,𝑁) is the vector space of families of maps

𝑓𝓁∶ 𝐻𝓁(�̄�)→ 𝐻𝓁(�̄�)
𝑓dR∶ 𝐻dR(𝑀)→ 𝐻dR(𝑁)

such that 𝑓dR preserves the Hodge filtration, 𝛾𝑓𝓁 = 𝑓𝓁 for all 𝛾 ∈ Γ, and for every
𝜎∶ 𝑘 → ℂ there exists a map 𝑓𝜎 ∶ 𝐻𝜎(𝑀) → 𝐻𝜎(𝑁) agreeing with 𝑓𝓁 and 𝑓dR under
the comparison isomorphisms.

(h) The category𝖬(𝑘) is semisimple.
(i) There exists a polarization on 𝖬(𝑘) for which 𝜋(ℎ𝑟(𝑋)) consists of the forms

defined in (10.9).

Variation of absolute Hodge classes

Lemma 10.15 Let𝑊 → 𝑉 be an inclusion of vector spaces. Let 𝑍 be a third vector space
and let 𝑧 be a nonzero element of 𝑍. Then

(𝑊⊗𝑍) ∩ (𝑉 ⊗ 𝑧) =𝑊⊗ 𝑧 (inside 𝑉 ⊗ 𝑍).

Proof Choose a basis (𝑒𝑖)𝑖∈𝐼 for𝑊 and extend it to a basis (𝑒𝑖)𝐼⊔𝐽 for 𝑉. An 𝑥 ∈ 𝑉 ⊗ 𝑍
can be written uniquely

𝑥 =
∑

𝑖∈𝐼⊔𝐽 𝑒𝑖 ⊗ 𝑧𝑖, (𝑧𝑖 ∈ 𝑍, finite sum).

If 𝑥 ∈𝑊⊗𝑍, then 𝑧𝑖 = 0 for 𝑖 ∉ 𝐼, and if 𝑥 ∈ 𝑉, then 𝑧𝑖 = 𝑧 for all 𝑖. 2
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Theorem 10.16 (Theorem of the fixed part, Deligne) Let𝜋∶ 𝑋 → 𝑆 be a smooth proper
morphism of smooth varieties over ℂ.
(a) The Leray spectral sequence

𝐻𝑟(𝑆, 𝑅𝑠𝜋∗ℚ) ⇒ 𝐻𝑟+𝑠(𝑋,ℚ)

degenerates at 𝐸2; in particular, the edge morphism

𝐻𝑛(𝑋,ℚ)→ Γ(𝑆, 𝑅𝑛𝜋∗ℚ)

is surjective.

(b) If �̄� is a smooth compactification of𝑋 with boundary �̄�∖𝑋 a union of smooth divisors
with normal crossings, then the canonical morphism

𝐻𝑛(�̄�,ℚ)→ Γ(𝑆, 𝑅𝑛𝜋∗ℚ)

is surjective.

(c) Let (𝑅𝑛𝜋∗ℚ)0 be the largest constant local subsystem of 𝑅𝑛𝜋∗ℚ (so (𝑅𝑛𝜋∗ℚ)0𝑠 =
Γ(𝑆, 𝑅𝑛𝜋∗ℚ) for all 𝑠 ∈ 𝑆(ℂ)). For each 𝑠 ∈ 𝑆, (𝑅𝑛𝜋∗ℚ)0𝑠 is a Hodge substructure
of (𝑅𝑛𝜋∗ℚ)𝑠 = 𝐻𝑛(𝑋𝑠,ℚ), and the induced Hodge structure on Γ(𝑆, 𝑅𝑛𝜋∗ℚ) is
independent of 𝑠.

In particular, the map
𝐻𝑛(�̄�,ℚ)→ 𝐻𝑛(𝑋𝑠,ℚ)

has image (𝑅𝑛𝜋∗ℚ)0𝑠 , and its kernel is independent of 𝑠.

Proof See Deligne 1971, 4.1.1, 4.1.2. 2

Delete one of the following theorems.

Theorem 10.17 (Deligne 1982, 2.12) Let 𝑆 be a smooth connected algebraic variety over
ℂ (not necessarily projective), and let 𝜋∶ 𝑋 → 𝑆 be a smooth proper morphism. Let 𝛾 be a
global section of the sheaf 𝑅2𝑟𝜋∗ℚ(𝑟)), and let 𝛾𝑠 be the image of 𝛾 in𝐻2𝑟

𝐵 (𝑋𝑠)(𝑟) (𝑠 ∈ 𝑆(ℂ)).
(a) If 𝛾𝑠 is a Hodge class for one 𝑠 ∈ 𝑆(ℂ), then it is a Hodge class for every 𝑠 ∈ 𝑆(ℂ).

(b) If 𝛾𝑠 is an absolute Hodge class for one 𝑠 ∈ 𝑆(ℂ), then it is an absolute Hodge class
for every 𝑠 ∈ 𝑆(ℂ).

Proof After replacing 𝑆 with an open affine, we may suppose that 𝑋 is a smooth quasi-
projective variety, and so it admits a smooth compactification �̄� with boundary �̄� ∖ 𝑋
a union of smooth divisors with normal crossings. Let 𝑠 ∈ 𝑆(ℂ), and let 𝑗𝑠 denote the
inclusion 𝑋𝑠 → �̄�. According to the theorem of the fixed part (10.16), the map

𝑗∗𝑠 ∶ 𝐻2𝑟
𝐵 (�̄�)(𝑟)→ 𝐻2𝑟

𝐵 (𝑋𝑠)(𝑟)

factors into

𝐻2𝑟
𝐵 (�̄�)(𝑟)

surjective
,,,,,,,,→

𝑢
Γ(𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟))

injective
,,,,,,,→ 𝐻2𝑟

𝐵 (𝑋𝑠)(𝑟)

with 𝑢 independent of 𝑠; moreover Γ(𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟)) has a Hodge structure (independent
of 𝑠) for which the injective maps are morphisms of Hodge structures .
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Let 𝛾 ∈ Γ(𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟)). If 𝛾𝑠 is of type (0, 0) for one 𝑠, then so also is 𝛾; hence 𝛾𝑠 is
of type (0, 0) for all 𝑠. This proves (a).

Identify𝐻(𝑋)⊗𝔸 with𝐻𝔸(𝑋). Let 𝜎 be an automorphism of ℂ. To say that 𝛾𝑠 is a
Hodge cycle on 𝑋𝑠 relative to 𝜎, means that there exists a 𝛾𝜎𝑠 ∈ 𝐻2𝑟(𝜎𝑋𝑠)(𝑟) such that
𝛾𝜎𝑠 ⊗ 1 = 𝜎(𝛾𝑠 ⊗ 1) in𝐻2𝑟

𝔸 (𝜎𝑋𝑠). Since 𝜎(𝛾𝑠 ⊗ 1) is in the image of

𝐻2𝑟(𝜎�̄�)(𝑟)⊗𝔸→ 𝐻2𝑟(𝜎𝑋𝑠)(𝑟)⊗𝔸,

𝛾𝜎𝑠 is in the image of
𝐻2𝑟(𝜎�̄�)(𝑟)→ 𝐻2𝑟(𝜎𝑋𝑠)(𝑟)

(apply 2.13). Let �̃�𝜎 ∈ 𝐻2𝑟(𝜎�̄�)(𝑟) map to 𝛾𝜎𝑠 . Because 𝛾𝑠 and 𝛾𝑡 have a common
pre-image in Γ(𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟)), 𝜎(𝛾𝑠 ⊗ 1) and 𝜎(𝛾𝑡 ⊗ 1) have a common pre-image in
Γ(𝜎𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟))⊗𝔸, i.e., there exists a (unique) 𝛾′ ∈ Γ(𝜎𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟))⊗𝔸, namely,
𝛾′ = �̃�𝜎 ⊗ 1, that maps to both 𝜎(𝛾𝑠 ⊗ 1) and 𝜎(𝛾𝑡 ⊗ 1). Therefore, �̃�𝜎 ⊗ 1 maps to
𝜎(𝛾𝑡 ⊗ 1) in𝐻2𝑟(𝜎𝑋𝑡)⊗𝔸, and so 𝛾𝑡 ⊗ 1 is a Hodge cycle relative to 𝜎. 2

Theorem 10.18 (Deligne 1982, 2.12, 2.14) Let 𝑆 be a smooth connected algebraic vari-
ety over ℂ (not necessarily projective), and let 𝜋∶ 𝑋 → 𝑆 be a smooth proper morphism.
Let 𝛾 be a global section of the sheaf 𝑅2𝑟𝜋∗ℚ(𝑟)), and let 𝛾𝑠 be the image of 𝛾 in𝐻2𝑟

𝐵 (𝑋𝑠)(𝑟)
(𝑠 ∈ 𝑆(ℂ)).
(a) If 𝛾𝑠 is a Hodge class for one 𝑠 ∈ 𝑆(ℂ), then it is a Hodge class for every 𝑠 ∈ 𝑆(ℂ).
(b) If 𝛾𝑠 is an absolute Hodge class for one 𝑠 ∈ 𝑆(ℂ), then it is an absolute Hodge class

for every 𝑠 ∈ 𝑆(ℂ).

Proof After replacing 𝑆 with an open affine, we may suppose that 𝑋 is a smooth quasi-
projective variety, and so it admits a smooth compactification �̄� with boundary �̄� ∖ 𝑋
a union of smooth divisors with normal crossings. Let 𝑠 ∈ 𝑆(ℂ), and let 𝑗𝑠 denote the
inclusion 𝑋𝑠 → �̄�. According to the theorem of the fixed part (10.16), the map

𝑗∗𝑠 ∶ 𝐻2𝑟
𝐵 (�̄�)(𝑟)→ 𝐻2𝑟

𝐵 (𝑋𝑠)(𝑟)

factors into

𝐻2𝑟
𝐵 (�̄�)(𝑟)

surjective
,,,,,,,,→

𝑢
Γ(𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟))

injective
,,,,,,,→ 𝐻2𝑟

𝐵 (𝑋𝑠)(𝑟)

with 𝑢 independent of 𝑠; moreover Γ(𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟)) has a Hodge structure (independent
of 𝑠) for which the injective maps are morphisms of Hodge structures .

Let 𝛾 ∈ Γ(𝑆, 𝑅2𝑟𝜋∗ℚ(𝑟)). If 𝛾𝑠 is of type (0, 0) for one 𝑠, then so also is 𝛾; hence 𝛾𝑠 is
of type (0, 0) for all 𝑠. This proves (a).

We now prove (b). Because 𝜔𝐵 is exact and faithful, the theorem of the fixed part
shows that the kernel of the morphism ℎ2𝑟(𝑗𝑠)∶ ℎ2𝑟(�̄�)(𝑟) → ℎ2𝑟(𝑋𝑠)(𝑟) on motives is
independent of 𝑠, and so ℎ2𝑟(𝑗𝑠) factors into

ℎ2𝑟(�̄�)(𝑟)
surjective
,,,,,,,,→ 𝑁

injective
,,,,,,,→ ℎ2𝑟(𝑋𝑠)(𝑟),

with themotive𝑁 being independent of 𝑠. The section 𝛾 lifts to an element of𝐻2𝑟(�̄�,ℚ(𝑟)),
which then maps to a well-defined element 𝛾′ of 𝜔𝐵(𝑁) whose image in𝐻2𝑟(𝑋𝑠,ℚ(𝑟)) is
𝛾𝑠. Now 𝛾𝑠 is absolutely Hodge if and only if only if 𝛾′ lies in the image of

Hom(𝟙, 𝑁)
𝜔𝐵,→ Hom(ℚ, 𝜔𝐵(𝑁)) ≃ 𝜔𝐵(𝑁).

This condition is independent of 𝑠. 2
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Notes Deligne’s original proof of Theorem10.18 (1982, 2.12, Principle B) requires that∇𝛾dR = 0,
but does not use the theorem of the fixed part. Blasius (1994, 3.1) used the argument in 10.17 to
show that absolute Hodge classes on abelian varieties are de Rham, and André (1996) used the
argument in 10.18 to prove a similar statement for motivated classes – see later.

de Rham-Hodge classes

For a complete smooth variety 𝑋 over ℚ̄ and an embedding 𝜎∶ ℚ̄ → ℚ̄𝑝, there is a
natural isomorphism

𝐼∶ 𝐻2𝑟
et (𝜎𝑋,ℚ𝑝)(𝑟)⊗ℚ𝑝 𝐵dR → 𝐻2𝑟

dR(𝜎𝑋)(𝑟)⊗ℚ̄𝑝 𝐵dR

(Faltings, Tsuji) compatible with cycle maps. Call an absolute Hodge class 𝛾 on 𝑋 de
Rham if, for all 𝜎, 𝐼(𝜎𝛾𝑝 ⊗ 1) = 𝜎𝛾dR ⊗ 1.

Theorem 10.19 (Blasius 1994, 3.1) Let 𝜋∶ 𝑋 → 𝑆 be a smooth proper morphism of
smooth varieties over ℚ̄ ⊂ ℂ with 𝑆 connected, and let 𝛾 ∈ Γ(𝑆ℂ, 𝑅2𝑛𝜋ℂ∗ℚ(𝑛)). If 𝛾𝑠 ∈
𝐻2𝑛
𝐵 (𝑋𝑠)(𝑛) is absolutely Hodge and de Rham for one 𝑠 ∈ 𝑆(ℚ̄), then it is absolutely Hodge

and de Rham for every 𝑠.

Proof Let 𝑠, 𝑡 ∈ 𝑆(ℚ̄) and assume 𝛾𝑠 is absolutely Hodge and de Rham. We know (see
above) that 𝛾𝑡 is absolutely Hodge, and we have to prove it is de Rham.

Let 𝜎∶ ℚ̄ → ℚ̄𝑝 be an embedding. For a smooth compactification �̄� of 𝑋 (as in
10.16) over ℚ̄, we have a commutative diagram

𝐻2𝑛
et (𝜎�̄�,ℚ𝑝)(𝑛)⊗ 𝐵dR 𝐻2𝑛

dR(𝜎�̄�)(𝑛)⊗ 𝐵dR

𝐻2𝑛
et (𝜎𝑋𝑠,ℚ𝑝)(𝑛)⊗ 𝐵dR 𝐻2𝑛

dR(𝜎𝑋𝑠)(𝑛)⊗ 𝐵dR.
←→𝐼

←→ ←→

←→𝐼

There exists �̃� ∈ 𝐻2𝑛
𝐵 (�̄�)(𝑛)mapping to 𝛾 (see an above sequence). Let �̃�𝑝 and �̃�dR be

the images of �̃� in𝐻2𝑛
et (𝜎�̄�,ℚ𝑝)(𝑛) and𝐻2𝑛

dR(𝜎�̄�)(𝑛). Because 𝛾𝑠 is de Rham, 𝐼(�̃�𝑝 ⊗ 1)
differs from �̃�dR ⊗ 1 by an element of

(
Ker(𝐻2𝑛

dR(𝜎�̄�)(𝑛)→ 𝐻2𝑛
dR(𝜎𝑋𝑠)(𝑛)

)
⊗ 𝐵dR.

But this kernel is independent of 𝑠, and so 𝛾𝑡 is also de Rham.
In summary: To say that 𝛾𝑠 is de Rham means that 𝐼(�̃�𝑝 ⊗ 1) differs from �̃�dR ⊗ 1 by

an element of the kernel of 𝑖∗𝑠 . But this kernel is independent of 𝑠. 2

Some calculations

According to (10.14g), to define a map𝑀 → 𝑁 of motives it suffices to give a procedure
for defining a map of cohomology groups 𝐻(𝑀)→ 𝐻(𝑁) that works (compatibly) for
all three theories: Betti, de Rham, and 𝓁-adic. The map will be an isomorphism if its
realization in one theory is an isomorphism.

Let 𝐺 be a finite group acting on a variety. The group algebraℚ[𝐺] acts on ℎ(𝑋), and
we define ℎ(𝑋)𝐺 to be the motive (ℎ(𝑋), 𝑝) with 𝑝 equal to the idempotent

∑
𝑔∈𝐺 𝑔

(𝐺∶ 1)
.

Note that𝐻(ℎ(𝑋)𝐺) = 𝐻(𝑋)𝐺 in each of the standard cohomology theories.
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Proposition 10.20 Assume that the finite group 𝐺 acts freely on 𝑋, so that 𝑋∕𝐺 is also
smooth; then ℎ(𝑋∕𝐺) = ℎ(𝑋)𝐺 .

Proof Since cohomology is functorial, there exists a map 𝐻(𝑋∕𝐺) → 𝐻(𝑋) whose
image lies in𝐻(𝑋)𝐺 = 𝐻(ℎ(𝑋)𝐺). The Hochschild-Serre spectral sequence

𝐻𝑟(𝐺,𝐻𝑠(𝑋)) ⇒ 𝐻𝑟+𝑠(𝑋∕𝐺)

shows that themap𝐻(𝑋∕𝐺)→ 𝐻(𝑋)𝐺 is an isomorphism for, say, the𝓁-adic cohomology,
because𝐻𝑟(𝐺,𝑉) = 0, 𝑟 > 0, if 𝑉 is a vector space over a field of characteristic zero. 2

Remark 10.21 More generally, if 𝑓∶ 𝑌 → 𝑋 is a map of finite (generic) degree 𝑛
between connected varieties of the same dimension, then the composite

𝐻(𝑋)
𝑓∗
,,→ 𝐻(𝑌)

𝑓∗,,→ 𝐻(𝑋)

is multiplication by 𝑛; there therefore exist maps

ℎ(𝑋)→ ℎ(𝑌)→ ℎ(𝑋)

with composite 𝑛, and ℎ(𝑋) is a direct summand of ℎ(𝑌).

Proposition 10.22 Let 𝐸 be a vector bundle of rank 𝑚 + 1 over a variety 𝑋, and let
𝑝∶ ℙ(𝐸)→ 𝑋 be the associated projective bundle; then

ℎ(ℙ(𝐸)) = ℎ(𝑋)⊕ ℎ(𝑋)(−1)⊕⋯⊕ ℎ(𝑋)(−𝑚).

Proof Let 𝛾 be the class in 𝐻2(ℙ(𝐸))(1) of the canonical line bundle on ℙ(𝐸), and let
𝑝∗∶ 𝐻(𝑋)→ 𝐻(ℙ(𝐸)) be the map induced by 𝑝. The map

(𝑐0,… , 𝑐𝑚)↦
∑

𝑝∗(𝑐𝑖)𝛾𝑖 ∶ 𝐻(𝑋)⊕⋯⊕𝐻(𝑋)(−𝑚)→ 𝐻(ℙ(𝐸))

has the requisite properties. 2

Proposition 10.23 Let 𝑌 be a smooth closed subvariety of codimension 𝑐 in the variety 𝑋,
and let 𝑋′ be the variety obtained from 𝑋 by blowing up 𝑌; then there is an exact sequence

0→ ℎ(𝑌)(−𝑐)→ ℎ(𝑋)⊕ ℎ(𝑌′)(−1)→ ℎ(𝑋′)→ 0,

where 𝑌′ is the inverse image of 𝑌.

Proof From the Gysin sequences

⋯ 𝐻𝑟−2𝑐(𝑌)(−𝑐) 𝐻𝑟(𝑋) 𝐻𝑟(𝑋 ∖ 𝑌) ⋯

⋯ 𝐻𝑟−2𝑐(𝑌′)(−1) 𝐻𝑟(𝑋′) 𝐻𝑟(𝑋′ ∖ 𝑌′) ⋯

←→ ←→

←→

←→

←→

←→

⇐⇐

←→ ←→ ←→ ←→

we obtain a long exact sequence

⋯→ 𝐻𝑟−2𝑐(𝑌)(−𝑐)→ 𝐻𝑟(𝑋)⊕𝐻𝑟−2(𝑌′)(−1)→ 𝐻𝑟(𝑋′)→⋯ .
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But 𝑌′ is a projective bundle over 𝑌, and so𝐻𝑟−2𝑐(𝑌)(−𝑐)→ 𝐻𝑟−2(𝑌′)(−1) is injective.
Therefore, there are exact sequences

0→ 𝐻𝑟−2𝑐(𝑌)(−𝑐)→ 𝐻𝑟(𝑋)⊕𝐻𝑟−2(𝑌′)(−1)→ 𝐻𝑟(𝑋′)→ 0,

which can be rewritten as

0→ 𝐻(𝑌)(−𝑐)→ 𝐻(𝑋)⊕𝐻(𝑌′)(−1)→ 𝐻(𝑋′)→ 0

We have constructed a sequence of motives, which is exact because the cohomology
functors are faithful and exact. 2

Corollary 10.24 With the notations of the proposition,

ℎ(𝑋′) = ℎ(𝑋)⊕
𝑐−1⨁
𝑟=1
ℎ(𝑌)(−𝑟).

Proof Proposition 10.22 shows that ℎ(𝑌′) =
𝑐−1⨁
𝑟=1

ℎ(𝑌)(𝑟). 2

Proposition 10.25 If 𝑋 is an abelian variety, then ℎ(𝑋) =
⋀
(ℎ1(𝑋)).

Proof Cup-product defines a map
⋀
(𝐻1(𝑋))→ 𝐻(𝑋)which, for the Betti cohomology,

say, is known to be an isomorphism. (See Mumford 1970, I.1.) 2

Proposition 10.26 If 𝑋 is a curve with Jacobian 𝐽, then

ℎ(𝑋) = 𝟙⊕ ℎ1(𝐽)⊕ 𝐿.

Proof The map 𝑋 → 𝐽 (well-defined up to translation) defines an isomorphism
𝐻1(𝐽)→ 𝐻1(𝑋). 2

Proposition 10.27 Let 𝑋 be a unirational variety of dimension 𝑑 ≤ 3 over an alge-
braically closed field; then

(𝑑 = 1) ℎ(𝑋) = 𝟙⊕ 𝐿;
(𝑑 = 2) ℎ(𝑋) = 𝟙⊕ 𝑟𝐿 ⊕ 𝐿2, some 𝑟 ∈ ℕ;
(𝑑 = 3) ℎ(𝑋) = 𝟙⊕ 𝑟𝐿 ⊕ ℎ1(𝐴)(−1)⊕ 𝑟𝐿2 ⊕ 𝐿3, some 𝑟 ∈ ℕ,

where 𝐴 is an abelian variety.

Proof We prove the proposition only for 𝑑 = 3. According to the resolution theorem
of Abhyankar 1966, there exist maps

ℙ3
𝑢
← 𝑋′ 𝑣

→ 𝑋

with 𝑣 surjective of finite degree and 𝑢 a composite of blowing-ups. We know

ℎ(ℙ3) = 𝟙⊕ 𝐿 ⊕ 𝐿2 ⊕ 𝐿3

(special case of (10.22)). When a point is blown up, a motive 𝐿 ⊕ 𝐿2 is added, and when
a curve 𝑌 is blown up, a motive 𝐿 ⊕ ℎ1(𝑌)(−1)⊕ 𝐿2 is added. Therefore,

ℎ(𝑋′) ≈ 𝟙⊕ 𝑠𝐿 ⊕𝑀(−1)⊕ 𝑠𝐿2 ⊕ 𝐿3,

where𝑀 is a sum of motives of the form ℎ1(𝑌), 𝑌 a curve. A direct summand of such
an𝑀 is of the form ℎ1(𝐴) for 𝐴 an abelian variety (see 10.30 below). As ℎ(𝑋) is a direct
summand of ℎ(𝑋′) (see 10.21) and Poincaré duality shows that the multiples of 𝐿2 and 𝐿3
occurring in ℎ(𝑋) are the same as those of 𝐿 and 𝟙 respectively, the proof is complete.2
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Proposition 10.28 Let 𝑋𝑛
𝑑 denote the Fermat hypersurface of dimension 𝑛 and degree 𝑑:

𝑇𝑑0 + 𝑇𝑑1 +⋯ + 𝑇𝑑𝑛+1 = 0.

Then,
ℎ𝑛(𝑋𝑛

𝑑 )⊕ 𝑑ℎ𝑛(ℙ𝑛) = ℎ𝑛(𝑋𝑛−1
𝑑 × 𝑋1

𝑑)
𝜇𝑑 ⊕ (𝑑 − 1)ℎ𝑛−2(𝑋𝑛−2

𝑑 )(−1),

where 𝜇𝑑, the group of 𝑑th roots of 1, acts on 𝑋𝑛−1
𝑑 × 𝑋1

𝑑 according to

𝜁(𝑡0∶ … ∶ 𝑡𝑛; 𝑠0∶ 𝑠1∶ 𝑠2) = (𝑡0∶ … ∶ 𝜁𝑡𝑛; 𝑠0∶ 𝑠1∶ 𝜁𝑠2)

Proof See Shioda and Katsura 1979, 2.5. 2

Effective motives of degree 1

Aℚ-rational Hodge structure is a finite-dimensional vector space 𝑉 overℚ together
with a real Hodge structure on 𝑉 ⊗ℝ whose weight decomposition is defined over ℚ.
Let 𝖧𝗈𝖽ℚ be the category ofℚ-rational Hodge structures. A polarization on an object
𝑉 of 𝖧𝗈𝖽ℚ is a bilinear pairing 𝜓∶ 𝑉 ⊗ 𝑉 → ℚ(−𝑛) such that 𝜓 ⊗ ℝ is a polarization
on the real Hodge structure 𝑉 ⊗ℝ.

Let 𝖨𝗌𝖺𝖻𝑘 be the category of abelian varieties up to isogeny over 𝑘. The following
theorem summarizes part of the theory of abelian varieties.

Theorem 10.29 (Riemann) The functor𝐻1
B ∶ 𝖨𝗌𝖺𝖻ℂ → 𝖧𝗈𝖽ℚ is fully faithful; the essen-

tial image consists of polarizable Hodge structures of weight 1.

Let𝖬(𝑘)+1 be the pseudo-abelian subcategory of𝖬(𝑘) generated by motives of the
form ℎ1(𝑋) for 𝑋 a geometrically connected curve. According to (10.26), 𝖬(𝑘)+1 can
also be described as the category generated by motives of the form ℎ1(𝐽) for 𝐽 a Jacobian.

Proposition 10.30 (a) The functor ℎ1∶ 𝖨𝗌𝖺𝖻𝑘 → 𝖬(𝑘) factors through𝖬(𝑘)+1 and de-
fines an equivalence of categories,

𝖨𝗌𝖺𝖻𝑘
∼→ 𝖬(𝑘)+1.

(b) The functor 𝐻1∶ 𝖬(ℂ)+1 → 𝖧𝗈𝖽ℚ is fully faithful; its essential image consists of
polarizable Hodge structures of weight 1.

Proof Every object of 𝖨𝗌𝖺𝖻𝑘 is a direct summand of a Jacobian, which shows that ℎ1
factors through𝖬(𝑘)+1. Assume, for simplicity, that 𝑘 is algebraically closed. Then, for
any 𝐴, 𝐵 ∈ ob(𝖨𝗌𝖺𝖻𝑘),

Hom(𝐵,𝐴) ⊂ Hom(ℎ1(𝐴), ℎ1(𝐵)) ⊂ Hom(𝐻𝜎(𝐴), 𝐻𝜎(𝐵)),

and 10.29 shows that Hom(𝐵,𝐴) = Hom(𝐻𝜎(𝐴), 𝐻𝜎(𝐵)). Thus ℎ1 is fully faithful and
(as 𝖨𝗌𝖺𝖻𝑘 is abelian) essentially surjective. This proves (a), and (b) follows from (a) and
10.29. 2
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The motivic Galois group

Let 𝑘 be a field that is embeddable inℂ. For any 𝜎∶ 𝑘 → ℂ, we define𝐺(𝜎) = 𝒜𝑢𝑡⊗(𝐻𝜎).
Thus,𝐺(𝜎) is an affine group scheme overℚ, and𝐻𝜎 defines an equivalence of categories
𝖬(𝑘) ∼→ 𝖱𝖾𝗉𝖿ℚ(𝐺(𝜎)). Because 𝐺(𝜎) plays the same role for𝖬(𝑘) as Γ = Gal(�̄�∕𝑘) plays
for𝖬0(𝑘), it is called themotivic Galois group.

Proposition 10.31 (a) The group 𝐺(𝜎) is a pro-reductive (not necessarily connected)
affine group scheme overℚ, and it is connected if 𝑘 is algebraically closed and all Hodge
cycles are absolutely Hodge.

(b) Let 𝑘 ⊂ 𝑘′ be algebraically closed fields, let 𝜎′∶ 𝑘′ → ℂ, and let 𝜎 = 𝜎′|𝑘. The
homomorphism 𝐺(𝜎′)→ 𝐺(𝜎) induced by𝖬(𝑘)→ 𝖬(𝑘′) is faithfully flat.

Proof (a) Let 𝑋 ∈ ob(𝖬(𝑘)), and let 𝖢𝑋 be the abelian tensor subcategory of 𝖬(𝑘)
generated by 𝑋, 𝑋∨, 𝑇, and 𝑇∨. Let 𝐺𝑋 = 𝒜𝑢𝑡⊗(𝐻𝜎|𝖢𝑋). As 𝖢𝑋 is semisimple (see
(10.13)), 𝐺𝑋 is a reductive group (6.13), and so 𝐺 = lim←,,𝐺𝑋 is pro-reductive. If 𝑘 is
algebraically closed and all Hodge cycles are absolutely Hodge, then (cf. 3.4) 𝐺𝑋 is
the smallest subgroup of Aut(𝐻𝜎(𝑋)) × 𝔾𝑚 such that (𝐺𝑋)ℂ contains the image of the
homomorphism 𝜇∶ 𝔾𝑚ℂ → Aut(𝐻𝜎(𝑋,ℂ)) × 𝔾𝑚ℂ defined by the Hodge structure on
𝐻𝜎(𝑋). As Im(𝜇) is connected, so also is 𝐺𝑋 .

(b) According to (2.3),𝖬(𝑘)→ 𝖬(𝑘′) is fully faithful, and so (5.2) shows that𝐺(𝜎′)→
𝐺(𝜎) is faithfully flat. 2

Remark 10.32 The quotient map 𝐺(𝜎′) → 𝐺(𝜎) in the proposition need not be an
isomorphism. For example, the motivic Galois group over ℂ, has uncountably many
quotientsPGL2, one for each isomorphism class of nonCMelliptic curves overℂ, whereas
the motivic Galois group over ℚal has only countably many.

Now let 𝑘 be arbitrary, and fix an embedding 𝜎∶ �̄� → ℂ. The inclusion 𝖬0(𝑘) →
𝖬(𝑘) defines a homomorphism 𝜋∶ 𝐺(𝜎) → Γ because Γ = 𝒜𝑢𝑡⊗(𝐻𝜎|𝖬0(𝑘)) (see 5.1),
and the functor 𝖬(𝑘) → 𝖬(�̄�) defines a homomorphism 𝑖∶ 𝐺◦(𝜎) → 𝐺(𝜎), where
𝐺◦(𝜎) def= 𝒜𝑢𝑡⊗(𝐻𝜎|𝖬(�̄�).

Proposition 10.33 (a) The sequence

1→ 𝐺◦(𝜎)
𝑖
→ 𝐺(𝜎)

𝜋
→ Γ→ 1

is exact.
(b) If all Hodge cycles are absolutely Hodge, then the identity component of 𝐺(𝜎) is

𝐺◦(𝜎).
(c) For any 𝜏 ∈ Γ, 𝜋−1(𝜏) = Hom⊗(𝐻𝜎, 𝐻𝜎𝜏), regarding 𝐻𝜎 and 𝐻𝜏 as functors on

𝑀(�̄�).
(d) For any prime 𝓁, there is a canonical continuous homomorphism 𝑠𝑝𝓁∶ Γ →

𝐺(𝜎)(ℚ𝓁) such that 𝜋◦𝑠𝑝𝓁 = id.

Proof (a) As𝖬0(𝑘)→ 𝖬(𝑘) is fully faithful, 𝜋 is faithfully flat (5.2). To show that 𝑖 is
injective, it suffices to show that every motive ℎ(𝑋), 𝑋 ∈ 𝖵�̄�, is a subquotient of a motive
ℎ(�̄�′) for some 𝑋′ ∈ 𝖵(𝑘); but 𝑋 has a model 𝑋0 over a finite extension 𝑘′ of 𝑘, and we
can take 𝑋′ = Res𝑘′∕𝑘 𝑋0. The exactness at 𝐺(𝜎) is a special case of (c).

(b) This is an immediate consequence of (10.31a) and (a).
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(c) Let𝑀,𝑁 ∈ ob(𝖬(𝑘)). Then Hom(�̄�, �̄�) ∈ ob(𝖱𝖾𝗉𝖿ℚ(Γ)), and so we can regard
it as an Artin motive over 𝑘. There is a canonical map of motives Hom(�̄�, �̄�) →
ℋ𝑜𝑚(𝑀,𝑁) giving rise to

𝐻𝜎(Hom(�̄�, �̄�)) = Hom(�̄�, �̄�)
𝐻𝜎→ Hom(𝐻𝜎(�̄�), 𝐻𝜎(�̄�)) = 𝐻𝜎(ℋ𝑜𝑚(𝑀,𝑁))

Let 𝜏 ∈ Γ; then
𝐻𝜎(�̄�) = 𝐻𝜎(𝑀) = 𝐻𝜏𝜎(𝑀) = 𝐻𝜏𝜎(�̄�)

and, for 𝑓 ∈ Hom(�̄�, �̄�),𝐻𝜎(𝜏) = 𝐻𝜏𝜎(𝜏𝑓).
Let 𝑔 ∈ 𝐺(𝑅); for any 𝑓∶ 𝑀 → 𝑁 in𝖬(𝑘), there is a commutative diagram

𝐻𝜎(𝑀,𝑅) 𝐻𝜎(𝑀,𝑅)

𝐻𝜎(𝑁,𝑅) 𝐻𝜎(𝑁,𝑅).

←→
𝑔𝑀

←→ 𝐻𝜎(𝑓) ←→ 𝐻𝜎(𝑓)

←→
𝑔𝑁

Let 𝜏 = 𝜋(𝑔), so that 𝑔 acts onHom(�̄�, �̄�) ⊂ Hom(𝑀,𝑁) as 𝜏. Then, for any 𝑓∶ �̄� → �̄�
in𝖬(�̄�)

𝐻𝜎(�̄�, 𝑅)𝑔𝑀 𝐻𝜎(�̄�, 𝑅) 𝐻𝜏𝜎(�̄�, 𝑅)

𝐻𝜎(�̄�, 𝑅) 𝐻𝜎(�̄�, 𝑅) 𝐻𝜏𝜎(�̄�, 𝑅).

←→

←→ 𝐻𝜎(𝑓)

⇐⇐

←→ 𝐻𝜎(𝜏−1𝑓) ←→ 𝐻𝜏𝜎(𝑓)

← →
𝑔𝑁 ⇐⇐

commutes. The diagram shows that 𝑔𝑀 ∶ 𝐻𝜎(�̄�, 𝑅)→ 𝐻𝜏𝜎(�̄�, 𝑅) depends only on𝑀 as
an object of𝖬(�̄�). We observed in the proof of (a) above that𝖬(�̄�) is generated bymotives
of the form �̄�, 𝑀 ∈ 𝖬(𝑘). Thus 𝑔 defines an element ofℋ𝑜𝑚⊗(𝐻𝜎, 𝐻𝜏𝜎)(𝑅), where
𝐻𝜎 and 𝐻𝜏𝜎 are to be viewed as functors on 𝖬(�̄�). We have defined a map 𝜋−1(𝜏) →
ℋ𝑜𝑚⊗(𝐻𝜎, 𝐻𝜏𝜎), and it is easy to see that it is surjective.

(d) After (c), we have to find a canonical element of Hom⊗(𝐻𝓁(𝜎𝑀), 𝐻𝓁(𝜏𝜎𝑀))
depending functorially on𝑀 ∈ 𝖬(�̄�). Extend 𝜏 to an automorphism �̄� of ℂ. For any
variety 𝑋 over �̄�, there is a �̄�−1-linear isomorphism 𝜎𝑋 ← 𝜏𝜎𝑋 which induces an
isomorphism 𝜏∶ 𝐻𝓁(𝜎𝑋)

≈→ 𝐻𝓁(𝜏𝜎𝑋). 2

Deligne’s conjecture 10.7, that every Hodge cycle is absolutely Hodge has a particu-
larly elegant formulation in terms of motives.

Conjecture 10.34 Let 𝑘 be an algebraically closed field. For any embedding 𝜎∶ 𝑘 → ℂ,
the functor𝐻𝜎 ∶ 𝖬(𝑘)→ 𝖧𝗈𝖽ℚ is fully faithful.

The functor is obviously faithful. There is no description, not even conjectural, for
the essential image of𝐻𝜎.

Abelian varieties

Theorem 10.35 (Deligne 1982, 2.11) Conjecture 10.7 is true for abelian varieties.

Proof To prove the statement, it suffices to show that every Hodge class on an abelian
variety over ℂ is absolutely Hodge. This is a consequence of the Theorem 9.18 and 10.3,
10.6, 10.18. 2

Corollary 10.36 Every absolute Hodge class on an abelian variety over ℚ̄ is de Rham.
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Proof The functor from abelian varieties over ℚ̄ to abelian varieties over ℂ is fully
faithful and the essential image contains the abelian varieties of CM-type. Using this,
one sees by the same arguments as above, that the theorem follows from the Theorem
10.19. 2

Let𝖠𝖬(𝑘) denote the tannakian subcategory of𝖬(𝑘) generated bymotives of abelian
varieties and Artin motives. Theorem 10.35 has the following restatement.

Theorem 10.37 Let 𝑘 be an algebraically closed field. For any embedding 𝜎∶ 𝑘 → ℂ,
the functor𝐻𝜎 ∶ 𝖠𝖬(𝑘)→ 𝖧𝗈𝖽ℚ is fully faithful.

Therefore, for an algebraically closed 𝑘, the group 𝐺av(𝜎) attached to 𝖠𝖬(𝑘) and
𝜎∶ 𝑘 → ℂ is a connected pro-reductive group (see 10.31), and, for an arbitrary 𝑘, the
sequence

1→ 𝐺av(𝜎)◦ → 𝐺av(𝜎)→ Γ→ 1

is exact (see 10.33) (here 𝐺av(𝜎)◦ is the identity component of 𝐺av(𝜎)).

Proposition 10.38 The motive ℎ(𝑋) ∈ ob(𝖠𝖬(𝑘)) if
(a) 𝑋 is a curve;

(b) 𝑋 is a unirational variety of dimension ≤ 3;
(c) 𝑋 is a Fermat hypersurface;

(d) 𝑋 is a 𝐾3-surface.

Before proving this, we note the following consequence.

Corollary 10.39 Every Hodge cycle on a variety that is a product of abelian varieties,
zero-dimensional varieties, and varieties of type (a), (b), (c), and (d) is absolutely Hodge.

Proof (of 10.38.) Cases (a) and (b) follow immediately from (10.26) and (10.27), and
(c) follows by induction (on 𝑛) from (10.28). In fact, one does not need the full strength
of (10.28). There is a rational map

𝑋𝑟
𝑑 × 𝑋𝑠

𝑑 𝑋𝑟+𝑠
𝑑

(𝑥0 ∶ … ∶ 𝑥𝑟+1), (𝑦0 ∶ … ∶ 𝑦𝑠+1) (𝑥0𝑦𝑠+1 ∶ … ∶ 𝑥𝑟𝑦𝑠+1 ∶ 𝜀𝑥𝑟+1𝑦0 ∶ … ∶ 𝜀𝑥𝑟+1𝑦𝑠)

where 𝜀 is a primitive 2𝑚th root of 1. The map is not defined on the subvariety

𝑌∶ 𝑥𝑟+1 = 𝑦𝑠+1 = 0.

On blowing up 𝑋𝑟
𝑑 × 𝑋

𝑠
𝑑 along the nonsingular centre 𝑌, one obtains maps

𝑍𝑟,𝑠𝑑

𝑋𝑟
𝑑 × 𝑋

𝑠
𝑑 𝑋𝑟+𝑠

𝑑 .

By induction, we can assume that the motives of 𝑋𝑟
𝑑, 𝑋

𝑠
𝑑, and 𝑌(= 𝑋𝑟−1

𝑑 × 𝑋𝑠−1
𝑑 ) are

in 𝖠𝖬(𝑘). Corollary (10.24) now shows that ℎ(𝑍𝑟,𝑠𝑑 ) ∈ ob(𝖠𝖬(𝑘)) and (10.21) that
ℎ(𝑋𝑟+𝑠

𝑑 ) ∈ ob(𝖠𝖬(𝑘)).
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For (d), we first note that the proposition is obvious if 𝑋 is a Kummer surface, for
then 𝑋 = �̃�∕⟨𝜎⟩, where �̃� is an abelian variety 𝐴 with its 16 points of order ≤ 2 blown
up and 𝜎 induces 𝑎 ↦ −𝑎 on 𝐴.

Next consider an arbitrary 𝐾3-surface 𝑋, and fix a projective embedding of 𝑋. Then

ℎ(𝑋) = ℎ(ℙ2)⊕ ℎ2(𝑋)prim

and so it suffices to show that ℎ2(𝑋)prim is in 𝖠𝖬(𝑘). We can assume 𝑘 = ℂ. It is known
(Kuga and Satake 1967; Deligne 1972, 6.5) that there is a smooth connected variety 𝑆
over ℂ and families

𝑓∶ 𝑌 → 𝑆
𝑎∶ 𝐴 → 𝑆

of polarized 𝐾3-surfaces and abelian varieties respectively parametrized by 𝑆 having the
following properties:
(a) for some 0 ∈ 𝑆, 𝑌0

def= 𝑓−1(0) is 𝑋 together with its given polarization;

(b) for some 1 ∈ 𝑆, 𝑌1 is a polarized Kummer surface;

(c) there is an inclusion 𝑢∶ 𝑅2𝑓∗ℚ(1)prim → ℰ𝑛𝑑(𝑅1𝑎∗ℚ) compatible with theHodge
filtrations.

The map 𝑢0∶ 𝐻2
B(𝑋)(1)prim → End(𝐻1(𝐴0,ℚ)) is therefore defined by a Hodge cycle,

and it remains to show that it is defined by an absolute Hodge cycle. But the initial
remark shows that 𝑢1, being a Hodge cycle on a product of Kummer and abelian surfaces,
is absolutely Hodge, and Theorem 10.17 completes the proof. 8 2

Motives of abelian varieties of potential CM-type

An abelian variety 𝐴 over 𝑘 is said to be of potential CM-type if it becomes of CM-type
over an extension of 𝑘. Let 𝐴 be such an abelian variety defined over ℚ, and letMT(𝐴)
be the Mumford-Tate group of 𝐴ℂ (Deligne 1982, §5). Since 𝐴ℂ is of CM-type,MT(𝐴)
is a torus, and we let 𝐿 ⊂ ℂ be a finite Galois extension of ℚ splittingMT(𝐴) and such
that all the torsion points on 𝐴 have coordinates in 𝐿ab. Let 𝖠𝖬(ℚ)𝐴,𝐿 be the tannakian
subcategory of 𝖠𝖬(ℚ) generated by 𝐴, the Tate motive, and the Artin motives split by
𝐿ab, and let 𝐺𝐴 be the affine group scheme attached to this tannakian category and the
fibre functor𝐻B.

Proposition 10.40 There is an exact sequence of affine group schemes

1→ MT(𝐴)
𝑖
→ 𝐺𝐴

𝜋
→ Gal(𝐿ab∕ℚ)→ 1.

Proof Let 𝖠𝖬(ℂ)𝐴 be the image of 𝖠𝖬(ℚ)𝐴,𝐿 in𝖬(ℂ); thenMT(𝐴) is the affine group
scheme associated with 𝖠𝖬(ℂ)𝐴, and so the above sequence is a subsequence of the
sequence in (10.33a). 2

Remark 10.41 If we identifyMT(𝐴)with a subgroup ofAut(𝐻1
B(𝐴)), then (as in 10.33a)

𝜋−1(𝜏) becomes identified with the MT(𝐴)-torsor whose 𝑅-points, for any ℚ-algebra
𝑅, are the 𝑅-linear homomorphisms 𝑎∶ 𝐻1(𝐴ℂ, 𝑅) → 𝐻1(𝜏𝐴ℂ, 𝑅) such that 𝑎(𝑠) = 𝜏𝑠

8For a more detailed proof for the case of 𝐾3 surfaces, see §7 of André, Yves. Pour une théorie
inconditionnelle des motifs. Inst. Hautes Études Sci. Publ. Math. No. 83 (1996), 5–49.
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for all (absolute) Hodge cycles on 𝐴ℚ̄. We can also identify MT(𝐴) with a subgroup
of Aut(𝐻𝐵

1 (𝐴)) and then it becomes more natural to identify 𝜋
−1(𝜏) with the torsor of

𝑅-linear isomorphisms 𝑎∨∶ 𝐻1(𝐴ℂ, 𝑅)→ 𝐻1(𝜏𝐴ℂ, 𝑅) preserving Hodge cycles.
On passing to the projective limit over all 𝐴 and 𝐿, we obtain an exact sequence

1→ 𝑆◦ → 𝑆 → Gal(ℚ̄∕ℚ)→ 1

with 𝑆◦ and 𝑆 respectively the connected Serre group and the Serre group. This sequence
plays an important role in Articles III, IV, and V of Deligne et al. 1982.

In the next two sections, I describe two alternative theories to absolute Hodge classes.
I have chosen to define them as subtheories of absolute Hodge classes because having
them as subtheories of an existing robust theory simplifies the exposition. The reader
may prefer a different choice.

11 Motives for almost-algebraic classes

Let 𝑋 be an algebraic variety over a field 𝑘 of characteristic zero.

Definition 11.1 An almost-algebraic class of codimension 𝑟 on 𝑋 is an absolute
Hodge class 𝛾 of codimension 𝑟 such that there exists pullback diagram

𝒳 𝑋

𝑆 Spec 𝑘

←→ 𝑓
←→

←→

←→

and a global section �̃� of 𝑅2𝑟𝑓∗𝔸(𝑟) satisfying the following conditions:
(a) 𝑆 is the spectrum of a regular integral domain of finite type over ℤ;
(b) 𝑓 is smooth and projective;
(c) the fibre of �̃� over Spec 𝑘 is 𝛾, and the reduction of �̃� at 𝑠 is algebraic for all closed

points 𝑠 in a dense open subset of 𝑆.

The Künneth components of the diagonal are almost-algebraic (8.6). Therefore,
when we define the category of motives using almost-algebraic classes it has a weight
gradation, and traces are still rational.

Theorem 11.2 Let 𝑋 be a smooth projective geometrically irreducible variety over 𝑘, and
let𝐻 be a standard Weil cohomology theory. For any integrally almost-algebraic cycle 𝑍 on
𝑋 × 𝑋 of codimension 𝑛, the characteristic polynomial of the induced endomorphism of
𝐻𝑖(𝑋) lies in ℤ[𝑇] and is independent of𝐻.

Proof This follows by specialization from 8.7. 2

To be continued.

Notes Tate 1994, p.76: “This notion of almost algebraic class seems to be part of folklore.”
Serre SB 446-12 (1973-74): “In the general case, we can say that the∆𝑖𝑗 are “almost algebraic”:

they become algebraic when the coefficients of the equations of 𝑋 are specialized to a finite
field. From that one deduces easilty (Katz-Messing; Kleiman Dix Exposes) that, if 𝑓∶ 𝑋 → 𝑋
is an endomorphism of 𝑋, the characteristic polynomial of 𝑓 acting on 𝐻𝑖(𝑋,ℚ𝓁) has integer
coefficients and it independent of 𝓁.”
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12 Motives for motivated classes

Let 𝑘 be a field of characteristic zero, and let𝑋 be a smooth projective variety of dimension
𝑛 over 𝑘. There exist unique elements 𝜋𝑖𝑋 ∈ 𝐴𝐻𝑛(𝑋 × 𝑋) such 𝜋𝑖𝑋 acts as the 𝑖th
Künneth projector in each standard Weil cohomology, and there exists a unique 𝑐Λ ∈
𝐴𝐻𝑛−2(𝑋 × 𝑋) such that

[𝑐Λ, 𝐿] =
2𝑛∑

𝑖=0
(𝑛 − 𝑖)𝜋𝑖

(see 10.4, 8.17).
Suppose that for each smooth projective variety 𝑋 over 𝑘 and 𝑟 ∈ ℕ, we have a

ℚ-subspace 𝐶𝑟(𝑋) of 𝐴𝐻𝑟(𝑋), and that these satisfy
(a) 𝐶𝑟(𝑋) contains all algebraic classes and 𝑐Λ,
(b) the spaces 𝐶𝑟(𝑋) are stable under intersection product and under pullback and

pushforward by morphisms of algebraic varieties.
For example, the spaces 𝐶𝑟(𝑋) = 𝐴𝐻𝑟(𝑋) satisfy these conditions. We let

𝑀𝐴𝑟(𝑋) =
⋂

𝑖
𝐶𝑟𝑖 (𝑋),

where the (𝐶𝑟𝑖 (𝑋))𝑋,𝑟 run over all families satisfying the above conditions. Thus, (𝑀𝐴𝑟(𝑋))
is the smallest such family. We call the elements of𝑀𝐴𝑟(𝑋) the algebraic* classes of
codimension 𝑟 on 𝑋.

Proposition 12.1 Let 𝑋, 𝑌 be a smooth projective varieties over 𝑘 of dimension 𝑛.
(a) 𝑀𝐴(𝑋 × 𝑋) is aℚ-subalgebra of 𝐴𝐻(𝑋 × 𝑋).
(b) For anymorphism 𝑓∶ 𝑋 → 𝑌, 𝑓∗ and 𝑓∗map algebraic* classes to algebraic* classes.

Proof These statements follow directly from the definition. 2

Proposition 12.2 Let 𝑋 be a smooth projective variety over 𝑘 of dimension 𝑛. The classes
𝐿, Λ,𝑐 Λ, ∗, 𝑝0,… , 𝑝2𝑛, and 𝜋0,… , 𝜋2𝑛 are all algebraic*.

Proof As 𝐿 and 𝑐Λ are algebraic*, this follows from Proposition 8.15 applied to alge-
braic* classes. 2

Proposition 12.3 The standard conjectures hold for every standard Weil cohomology
theory (using algebraic* classes). Therefore, for all varieties𝑋 over 𝑘 and all integers 𝑝 such
that 2𝑝 ≤ 𝑛 = dim(𝑋), the quadratic form

𝑎, 𝑏 ↦ (−1)𝑝⟨𝐿𝑛−2𝑝𝑎𝑏⟩

is positive definite on the set of 𝑎 ∈ 𝑀𝐴𝑝(𝑋) such that 𝐿𝑛−2𝑝+1𝑎 = 0.

Proof Indeed, by definition the subfamily𝑀𝐴𝑟(𝑋) is the smallest containing the alge-
braic classes and such that the standard conjecture of Lefschetz type holds. The standard
conjecture of Hodge type holds for algebraic* classes because it holds for absolute Hodge
classes. 2

Proposition 12.4 For any standard Weil cohomology theory, the following hold.
(a) The operators Λ, 𝑐Λ, ∗, 𝑝0,… , 𝑝2𝑛, 𝜋0,… , 𝜋2𝑛 are the classes of algebraic* cycles that

do not depend on the theory.
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(b) The Betti numbers 𝑏𝑖 = dim𝐻𝑖(𝑋) do not depend on the theory.
(c) The characteristic polynomial of an endomorphism induced by a rationally (resp.

integrally) algebraic cycle has rational (resp. integer) coefficients that do not depend
on the theory.

(d) If the map𝐻𝑖(𝑋)→ 𝐻𝑗(𝑌) induced by an algebraic cycle is bijective (resp. injective,
resp. surjective) in one theory, then it bijective (resp. injective, resp. surjective) in every
theory. In fact, the inverse (resp. one left inverse, resp. one right inverse) may be
induced by an algebraic cycle that does not depend on the theory.

Proof See the proof of 8.39. 2

Proposition 12.5 The category of motives, defined using algebraic* classes, is a semisim-
ple tannakian category overℚ with a canonical polarization.

Proof Obvious from the above. 2

Proposition 12.6 Let 𝑆 be a smooth connected algebraic variety over ℂ (not necessarily
projective), and let 𝜋∶ 𝑋 → 𝑆 be a smooth proper morphism. Let 𝛾 be a global section
of the sheaf 𝑅2𝑟𝜋∗ℚ(𝑟)), and let 𝛾𝑠 be the image of 𝛾 in 𝐻2𝑟

𝐵 (𝑋𝑠)(𝑟) (𝑠 ∈ 𝑆(ℂ)). If 𝛾𝑠 is a
algebraic* for one 𝑠 ∈ 𝑆(ℂ), then it is algebraic* for every 𝑠 ∈ 𝑆(ℂ).

Proof Replace “absolute Hodge" with “algebraic* ” in the proof of 10.18. 2

Proposition 12.7 Onan abelian variety over a field 𝑘 of characteristic zero, every absolute
Hodge class is algebraic*.

Proof Apply Theorem 9.18. 2

Proposition 12.8 On an abelian variety over ℂ every Hodge class is algebraic*.

Proof Apply Theorem 9.18. 2

Proposition 12.9 Let 𝑋 be a smooth projective variety over 𝑘. An absolute Hodge class
on 𝑋 is algebraic* if and only if it is of the form pr𝑋𝑌𝑋∗ (𝛼∪ ∗ 𝛽) where
⋄ 𝛼 and 𝛽 are algebraic classes on 𝑋 × 𝑌 (𝑌 arbitrary),

⋄ * is relative to 𝐿 × 1 + 1 × 𝐿.

Proof The classes of this form are obviously algebraic*. Conversely, André 1996 shows
that classes of this form satisfy the conditions defining the family (𝑀𝑋𝑟(𝑋))𝑋,𝑟. 2

Notes Proposition 12.9 shows that algebraic* classes are essentially the same as André’s moti-
vated classes (André 1996). Here I have used the theory of absolute Hodge classes to simplify the
exposition of the theory of motivated classes.





Appendix A

Categories and 2-Categories

Let 𝖢 and 𝖣 be categories. An equivalence of 𝖢 and 𝖣 is a system

𝖢 𝖣,

←→𝐹←→

𝐺
𝜂∶ id𝖢 → 𝐺𝐹, 𝜖∶ 𝐹𝐺 → id𝖣, (145)

where 𝐹 and 𝐺 are functors and 𝜂 and 𝜖 are natural isomorphisms (invertible natural
transformations). We call a functor 𝐹∶ 𝖢 → 𝖣 an equivalence if it can be extended
to such a system. A functor 𝐹 is an equivalence if and only if it is fully faithful and
essentially surjective (every object of 𝖣 is isomorphic to an object in the image of 𝐹).

These conditions may be too strong. For example, we shall need to consider functors
𝐹∶ 𝖢 → 𝖣 such that the objects of 𝖣 are only “equivalent” to objects in the image. To be
able talk about such functors, we need morphisms of morphisms. In other words, we
need 2-categories. But first, we review adjoint functors.

Review of adjoint functors

Let 𝖢 and 𝖣 be categories.

A.1 An adjunction is a triple (𝐹, 𝐺, 𝜙) consisting of a pair of functors

𝖢 𝖣

←→𝐹←→

𝐺
(146)

and a family of bijections

𝜙𝑋,𝑌 ∶ Hom𝖣(𝐹𝑋,𝑌)→ Hom𝖢(𝑋,𝐺𝑌),

natural in 𝑋 ∈ ob𝖢 and 𝑌 ∈ ob𝖣. We call (𝐹, 𝐺) an adjoint pair, with 𝐹 the left
adjoint of 𝐺 and 𝐺 the right adjoint of 𝐹 . There are natural transformations

𝜂∶ id𝖢 → 𝐺𝐹, 𝜂𝑋 = 𝜙(id𝐹𝑋)∶ 𝑋 → 𝐺𝐹𝑋
𝜖∶ 𝐹𝐺 → id𝖣, 𝜖𝑌 = 𝜙−1(id𝐺𝑌)∶ 𝐹𝐺𝑌 → 𝑌,

called the unit and counit of the adjunction, satisfying the triangle identities,

(𝐹
𝐹𝜂
,→ 𝐹𝐺𝐹

𝜖𝐹
,→ 𝐹) = id𝐹 (𝐺

𝜂𝐺
,→ 𝐺𝐹𝐺

𝐺𝜖
,→ 𝐺) = id𝐺 . (147)

See A.6 for the notation 𝐹𝜂 and 𝜖𝐹.
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A.2 Let 𝐹 and 𝐺 be functors 𝖢 𝖣

←→𝐹←→

𝐺
, and let 𝜂∶ id𝖢 → 𝐺𝐹 and 𝜖∶ 𝐹𝐺 → id𝖣 be

natural transformations satisfying the triangle identities. Then the map

𝜙𝑋,𝑌 ∶ Hom𝖣(𝐹𝑋,𝑌)→ Hom𝖢(𝑋,𝐺𝑌), 𝑓 ↦ 𝐺𝑓◦𝜂𝑋 ,

is natural in 𝑋 and 𝑌, and has inverse

𝜓𝑋,𝑌 ∶ Hom𝖢(𝑋,𝐺𝑌)→ Hom𝖣(𝐹𝑋,𝑌), 𝑓 ↦ 𝜖𝑋◦𝐹𝑓.

In particular, 𝜙𝑋,𝑌 is a bijection, and so the triple (𝐹, 𝐺, 𝜙) is an adjunction with unit 𝜂
and counit 𝜖.

A.3 Let 𝐹 and 𝐺 be functors 𝖢 𝖣

←→𝐹←→

𝐺
, and let 𝜖∶ 𝐹𝐺 → id𝖣 be a natural trans-

formation. There exists a natural transformation 𝜂∶ id𝖢 → 𝐺𝐹 such that the triangle
identities hold if and only if the map

𝜓𝑋,𝑌 ∶ Hom𝖢(𝑋,𝐺𝑌)→ Hom𝖣(𝐹𝑋,𝑌), 𝑓 ↦ 𝜖𝑋◦𝐹𝑓,

is bijective for all 𝑋 in 𝖢 and 𝑌 in 𝖣, in which case (𝐹, 𝐺, 𝜓−1) is an adjunction with 𝜂
and 𝜖 as its unit and counit. The natural transformation 𝜂 is unique if it exists.

A.4 Let (𝐹, 𝐺, 𝜂, 𝜖) be an equivalence, as in (145). After replacing either one of 𝜖 or 𝜂
with a different natural isomorphism, we obtain a system satisfying the triangle identities
(A.1). In particular, 𝐹 and 𝐺 will then be adjoints.

A.5 (Adjoint functor theorem) Let 𝖢 and 𝖣 be abelian categories with exact in-
ductive limits, and assume that 𝖢 has a set of generators. Then a functor 𝐹∶ 𝖢 → 𝖣 has
a right adjoint if and only if it is right exact and compatible with direct sums.

Notes This is standard category theory. See, for example, Borceux 1994a, Chapter 3, or Riehl
2016, Chapter 4.

Definition of 2-categories

A 2-category is a category enriched over the category of small categories equipped
with its cartesian monoidal structure (I, 1.7). When we forget the arrows in the Hom-
categories, we get a category in the usual sense. Thus, a 2-category can be viewed as a
category in the usual sense enriched with morphisms between morphisms.

In more detail, a 2-category has objects, 1-morphisms, and 2-morphisms. The objects
and 1-morphisms form a category in the usual sense. For each pair 𝐴, 𝐵 of objects, there
is a small category 𝖧𝗈𝗆(𝐴, 𝐵) having the 1-morphisms 𝑓∶ 𝐴 → 𝐵 as objects and the
2-morphisms1

𝐴 𝐵

← →
𝑓

← →𝑔

⇐⇒ 𝛼

as morphisms. Composition of morphisms in the category 𝖧𝗈𝗆(𝐴, 𝐵) is called vertical
composition,

𝐴 𝐵

← →

𝑓

← →𝑔

← →

ℎ

⇐

⇒

𝛼

⇐

⇒

𝛽
⇝ 𝐴 𝐵.

← →

𝑓

← →

ℎ

⇐

⇒ 𝛽◦𝛼

1We sometimes use the symbol⇒ to denote 2-morphisms.
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For each triple 𝐴, 𝐵, 𝐶 of objects, there is a horizontal composition

(◦, ∗)∶ 𝖧𝗈𝗆(𝐵, 𝐶) × 𝖧𝗈𝗆(𝐴, 𝐵)→ 𝖧𝗈𝗆(𝐴,𝐶), (148)

𝐴 𝐵 𝐶

← →
𝑓

← →𝑔

← →ℎ

← →
𝑖

⇐⇒ 𝛼 ⇐⇒ 𝛽 ⇝ 𝐴 𝐶.

← →
ℎ◦𝑓

← →
𝑖◦𝑔

⇐⇒ 𝛽∗𝛼

Here “×” denotes the Cartesian product of categories. The system is required to satisfy
the middle four interchange law: given a diagram,

𝐴 𝐵 𝐶,

← →

𝑓

← →𝑔

← →
ℎ

⇐

⇒

𝛼
⇐

⇒

𝛽
← →𝑖

← →𝑗

← →

𝑘

⇐

⇒ 𝛾

⇐

⇒
𝛿

the 2-morphism 𝑖◦𝑓 ⇒ 𝑘◦ℎ obtained by first composing vertically and then horizontally
equals that obtained by first composing horizontally and then vertically,

(𝛿◦𝛾) ∗ (𝛽◦𝛼) = (𝛿 ∗ 𝛽)◦(𝛾 ∗ 𝛼).

When𝒞 is a 2-category, we write𝒞0 for the collection of objects,𝒞1 for the collection
of 1-morphisms, and 𝒞2 for the collection of 2-morphisms.

To distinguish them, we sometimes call categories in the usual sense 1-categories.

Example A.6 The 2-category 𝒞𝒶𝓉 has as objects the small categories, as 1-morphisms
the functors between categories, and as 2-morphisms the natural transformations be-
tween functors. The vertical composite of natural transformations 𝛼∶ 𝐹 ⇒ 𝐺 and
𝛽∶ 𝐺 ⇒ 𝐻 is the natural transformation 𝛽◦𝛼∶ 𝐹 ⇒ 𝐻 such that

(𝛽◦𝛼)𝑐 = 𝛽𝑐◦𝛼𝑐 ∶ 𝐹(𝑐)→ 𝐻(𝑐)

for all objects 𝑐. The horizontal composite of natural transformations 𝛼∶ 𝐹 ⇒ 𝐺 and
𝛽∶ 𝐻 ⇒ 𝐼,

𝖠 𝖡 𝖢,

← →𝐹

← →
𝐺

← →𝐻

← →
𝐼

⇐⇒ 𝛼 ⇐⇒ 𝛽

is the natural transformation 𝛽 ∗ 𝛼∶ 𝐻◦𝐹 → 𝐼◦𝐺 such that (𝛽 ∗ 𝛼)𝑐 is the diagonal
map in the commutative square

(𝐻◦𝐹)(𝑐) (𝐼◦𝐹)(𝑐)

(𝐻◦𝐺)(𝑐) (𝐼◦𝐺)(𝑐)

←→
𝛽𝐹(𝑐)

←→ 𝐻(𝛼𝑐) ←→ 𝐼(𝛼𝑐)

←→
𝛽𝐺(𝑐)

for all objects 𝑐 of 𝖠. For example, from

𝖠 𝖡 𝖢,← →𝐹

← →𝐻

← →
𝐼

⇐⇒ 𝛽
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we get a natural transformation 𝛽𝐹∶ 𝐻𝐹 → 𝐼𝐹, namely, 𝛽 ∗ id𝐹 , and from

𝐴 𝐵 𝐶

← →𝐹

← →
𝐺

← →𝐻⇐⇒ 𝛼

we get a natural transformation𝐻𝛼∶ 𝐻◦𝐹 → 𝐻◦𝐺. With this notation,

𝛽 ∗ 𝛼 = (𝛽𝐺)◦(𝐻𝛼) = (𝛼𝐼)◦(𝐹𝛽).

We can now make the following definition.

Definition A.7 Let 𝐴 and 𝐵 be objects in a 2-category. An equivalence between 𝐴
and 𝐵 is a system

𝐴 𝐵,

←→
𝑓

←→𝑔 𝜂∶ id𝐴 ⇒ 𝑔◦𝑓, 𝜖∶ 𝑓◦𝑔 ⇒ id𝐵,

where𝑓 and 𝑔 are 1-morphisms and 𝜂 and 𝜖 are 2-isomorphisms (invertible 2-morphisms).
We call a 1-morphism 𝑓∶ 𝐴 → 𝐵 an equivalence if it can be extended to such a system,
and we say that 𝐴 and 𝐵 are equivalent, denoted 𝐴 ∼ 𝐵, if there exists such an 𝑓.

A.8 Let (𝑓, 𝑔, 𝜂, 𝜖) be an equivalence. As inA.4, after possibly replacing either one of 𝜖 or
𝜂 with a different 2-isomorphism, the system (𝑓, 𝑔, 𝜂, 𝜖)will satisfy the triangle identities
(A.1). Such a system (𝑓, 𝑔, 𝜂, 𝜖) is then called an internal or adjoint equivalence. See
Johnson and Yau 2021, 6.2.4.

A.9 If 𝐴 ∼ 𝐴′ and 𝐵 ∼ 𝐵′, then 𝖧𝗈𝗆(𝐴, 𝐵) ∼ 𝖧𝗈𝗆(𝐴′, 𝐵′). More precisely, from
equivalences between 𝐴 and 𝐴′ and between 𝐵 and 𝐵′, we get an equivalence between
𝖧𝗈𝗆(𝐴, 𝐵) and 𝖧𝗈𝗆(𝐴′, 𝐵′).

Notes What we call a “2-category” is sometimes called a “strict 2-category”. Our “2-category”
is called a “locally small 2-category” in Johnson and Yau 2021, 2.3.9 (because we require the
hom categories to be small).

2-functors and 2-equivalence

Definition A.10 Let 𝒞 and𝒟 be 2-categories. A 2-functor 𝐹∶ 𝒞 → 𝒟 consists of a
function 𝐹0∶ 𝒞0 → 𝒟0 and a family of functors

𝐹𝐴,𝐵 ∶ 𝖧𝗈𝗆𝒞(𝐴, 𝐵)→ 𝖧𝗈𝗆𝒟(𝐹0𝐴, 𝐹0𝐵),

indexed by the pairs of objects 𝐴, 𝐵 in 𝒞, satisfying the following conditions,
(a) 𝐹 is a functor between the underlying 1-categories of 𝒞 and𝒟,

(b) 𝐹 preserves horizontal compositions of 2-morphisms, i.e., the following diagram
commutes,

𝖧𝗈𝗆𝒞(𝐵, 𝐶) × 𝖧𝗈𝗆𝒞(𝐴, 𝐵) 𝖧𝗈𝗆𝒞(𝐴,𝐶)

𝖧𝗈𝗆𝒟(𝐹0𝐵, 𝐹0𝐶) × 𝖧𝗈𝗆𝒟(𝐹0𝐴, 𝐹0𝐵) 𝖧𝗈𝗆𝒟(𝐹0𝐴, 𝐹0𝐶).

←→ 𝐹𝐵,𝐶×𝐹𝐴,𝐵

← →horizontal
composition

←→ 𝐹𝐴,𝐶

← →horizontal
composition
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Definition A.11 Let 𝐹, 𝐺∶ 𝒞 ⇉ 𝒟 be two 2-functors of 2-categories. A 2-(natural
transformation) 𝛼∶ 𝐹 → 𝐺 is a family of 1-morphisms

𝛼𝐴 ∶ 𝐹𝐴 → 𝐺𝐴

indexed by the objects 𝐴 of 𝒞 such that
(a) for each 1-morphism 𝑓∶ 𝐴 → 𝐵, the diagram

𝐹𝐴 𝐺𝐴

𝐹𝐵 𝐺𝐵

←→
𝛼𝐴

←→ 𝐹𝑓 ←→ 𝐺𝑓

←→
𝛼𝐵

commutes, and

(b) for each 2-morphism 𝜃∶ 𝑓 ⇒ 𝑔 in 𝖧𝗈𝗆𝒞(𝐴, 𝐵), the diagram

(𝐺𝑓)◦𝛼𝐴 𝛼𝐵◦(𝐹𝑓)

(𝐺𝑔)◦𝛼𝐴 𝛼𝐵◦(𝐹𝑔)

⇐⇐

←→ (𝐺𝜃)∗id𝛼𝐴 ←→ id𝛼𝐴∗(𝐺𝜃)

⇐⇐

commutes in 𝖧𝗈𝗆𝒟(𝐹𝐴,𝐺𝐵).

Definition A.12 A 2-(natural transformation) 𝛼∶ 𝐹 → 𝐺 is a 2-(natural isomor-
phism) if there exists a 2-(natural transformation) 𝛽∶ 𝐺 → 𝐹 such that 𝛽𝛼 = id𝐹 and
𝛼𝛽 = id𝐺 .

Definition A.13 Let𝒞 and𝒟 be 2-categories. A 2-equivalence of𝒞 and𝒟 is a system

𝒞 𝒟

←→𝐹←→

𝐺
, 𝜂∶ id𝒞 → 𝐺𝐹, 𝜖∶ 𝐹𝐺 → id𝒟,

where 𝐹 and 𝐺 are 2-functors and 𝜂 and 𝜖 are 2-(natural isomorphisms). We call a
2-functor 𝐹∶ 𝒞 → 𝒟 a 2-equivalence if it can be extended to such a system.

Theorem A.14 (Whitehead theorem for 2-equivalence) Let 𝒞 and 𝒟 be 2-cat-
egories. A 2-functor 𝐹∶ 𝒞 → 𝒟 is a 2-equivalence if and only if
(a) the underlying functor on the 1-categories is an equivalence, and
(b) 𝐹 is fully faithful on 2-morphisms.

Condition (b) in the theorem means that, for all objects 𝐴, 𝐵 in 𝒞, the functor

𝐹𝐴,𝐵 ∶ 𝖧𝗈𝗆𝒞(𝐴, 𝐵)→ 𝖧𝗈𝗆𝒟(𝐹0𝐴, 𝐹0𝐵)

is fully faithful.

A.15 The conditions in the theorem are equivalent to
(a) 𝐹0 is surjective on isomorphism classes of objects, and

(b) for all objects 𝐴, 𝐵 in 𝒞, the functor

𝐹𝐴,𝐵 ∶ 𝖧𝗈𝗆𝒞(𝐴, 𝐵)→ 𝖧𝗈𝗆𝒟(𝐹0𝐴, 𝐹0𝐵)

is an isomorphism of 1-categories.
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As the condition (b) suggests, a 2-equivalence is the analogue of an isomorphism
of 1-categories. As we explain in the next subsection, the analogue of the more useful
notion of an equivalence of 1-categories is an equivalence of 2-categories (also called a
biequivalence).

Notes For the above statements, see Johnson and Yau 2021, 4.1.8 (A.10), 4.2.11 (A.11), 1.3.11
(A.12, A.13), and 7.5.8 (A.14).

Pseudofunctors and the equivalence of 2-categories

We need to relax some conditions in the last subsection. The notion of a pseudo widget
is obtained from that of a widget by allowing certain equalities to be isomorphisms.

Definition A.16 Let 𝒞 and𝒟 be 2-categories. A pseudofunctor 𝐹∶ 𝒞 → 𝒟 consists
of a function 𝐹0∶ 𝒞0 → 𝒟0 and a family of functors

𝐹𝐴,𝐵 ∶ 𝖧𝗈𝗆𝒞(𝐴, 𝐵)→ 𝖧𝗈𝗆𝒟(𝐹0𝐴, 𝐹0𝐵), 𝐴, 𝐵 ∈ ob(𝒞),

satisfying the same conditions as for a 2-functor except that the diagram in A.10(b) com-
mutes only up to a given natural isomorphism, i.e., we are given natural isomorphisms

𝐹2𝑓,𝑔 ∶ 𝐹𝑔◦𝐹𝑓
≃,→ 𝐹(𝑔◦𝑓), 𝑓 ∈ Hom(𝐴, 𝐵), 𝑔 ∈ Hom(𝐵, 𝐶),

satisfying certain conditions instead of equalities 𝐹𝑔◦𝐹𝑓 = 𝐹(𝑔◦𝑓). There is also a unity
constraint. See Johnson and Yau 2021, 4.1.2.

A.17 Pseudo-functors preserve internal equivalences (ibid., 6.2.3).

Definition A.18 Let 𝐹, 𝐺∶ 𝒞 ⇉ 𝒟 be two pseudofunctors of 2-categories. A pseudo
natural transformation 𝛼∶ 𝐹 → 𝐺 is a family of 1-morphisms

𝛼𝐴 ∈ 𝖧𝗈𝗆𝖡(𝐹𝐴,𝐺𝐴)

indexed by the objects 𝐴 of 𝒞 and a family of invertible 2-morphisms

𝛼𝑓 ∶ 𝐺(𝑓)◦𝛼𝐴 ⇐⇒ 𝛼𝐵◦𝐹(𝑓)

indexed by the 1-morphisms 𝑓 of 𝒞 satisfying certain coherence conditions (ibid., 4.2.1).

Pseudo natural transformations are also called strong transformations.

Definition A.19 Let 𝛼, 𝛽∶ 𝐹 ⇉ 𝐺 be pseudo natural transformations of pseudofunc-
tors 𝐹, 𝐺∶ 𝒞 ⇉ 𝒟. Amodification Γ∶ 𝛼 → 𝛽 is a family of 2-morphisms

Γ𝐴 ∶ 𝛼𝐴 ⇒ 𝛽𝐴,

indexed by the objects of 𝒞, such that the diagram

(𝐺𝑓)𝛼𝐴 (𝐺𝑓)𝛽𝐴

𝛼𝐵(𝐹𝑓) 𝛽𝐵(𝐹𝑓)

←→ 𝛼𝑓

←→
id𝐺𝑓∗Γ𝐴

←→ 𝛽𝑓

←→
Γ𝐵∗id𝐹𝑓

commutes in 𝖧𝗈𝗆𝒟(𝐹𝐴,𝐺𝐵) (ibid., 4.4.1, 4.4.3).
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Definition A.20 Let𝒞 and𝒟 be 2-categories such that𝒞0 is a set. There is a 2-category
𝒫𝓈ℱ𝓊𝓃(𝒞,𝒟) with
⋄ objects the pseudofunctors 𝒞 → 𝒟,

⋄ 1-morphisms the pseudo natural transformations between such pseudofunctors,
⋄ 2-morphisms the modifications between such pseudo natural transformations.

See Johnson and Yau 2021, 4.4.13, where the category is denoted 𝖡𝗂𝖼𝖺𝗍ps(𝒞,𝒟).

Definition A.21 Let𝒞 and𝒟 be 2-categories. A biequivalence of𝒞 and𝒟 is a system

𝒞 𝒟.

←→𝐹←→

𝐺
id𝒞 → 𝐺𝐹, 𝐹𝐺 → id𝒟,

where 𝐹 and 𝐺 are pseudofunctors and id𝒞 → 𝐺𝐹 and 𝐹𝐺 → id𝒟 are pseudo natural
transformations that are internal equivalences in𝒫𝓈ℱ𝓊𝓃(𝒞,𝒞) and𝒫𝓈ℱ𝓊𝓃(𝒟,𝒟)
respectively. We call a pseudofunctor 𝐹∶ 𝒞 → 𝒟 a biequivalence if it can be extended
to a biequivalence in the above sense (ibid. 6.2.8).

Note that the condition for a 2-functor of 2-categories to be a 2-equivalence is much
stronger than the condition to be a biequivalence. A biequivalence is also called an
equivalence between 2-categories (it is the correct analogue of an equivalence of 1-
categories).

Definition A.22 Let 𝐹, 𝐺∶ 𝒞 ⇉ 𝒟 be pseudofunctors of 2-categories. A pseudo
natural transformation 𝛼∶ 𝐹 → 𝐺 is an equivalence if each component 𝛼𝐴 ∶ 𝐹(𝐴)→
𝐺(𝐴) is an equivalence in the category𝒟.

This is equivalent to 𝛼 itself being an equivalence in the 2-category𝒫𝓈ℱ𝓊𝓃(𝒞,𝒟).
Thus, we can restate definition A.21 as follows.

Definition A.23 An equivalence between 2-categories 𝒞 and𝒟 consists of
(a) pseudofunctors 𝐹∶ 𝒞 → 𝒟 and 𝐺∶ 𝒟 → 𝒞,
(b) pseudo natural transformations id𝒞 → 𝐺◦𝐹 and 𝐹◦𝐺 → id𝒟 that are themselves

equivalences.

Proposition A.24 Let 𝐹∶ 𝒞 → 𝒟 be a pseudofunctor of 2-categories. If 𝐹 is an equiva-
lence (of 2-categories), then, for all 𝐴, 𝐵 ∈ ob𝒞, the functor

𝐹𝐴,𝐵 ∶ 𝖧𝗈𝗆𝒞(𝐴, 𝐵)→ 𝖧𝗈𝗆𝒟(𝐹0𝐴, 𝐹0𝐵)

is an equivalence of 1-categories.

Proof See Johnson and Yau 2021, 6.2.13. 2

Theorem A.25 (Whitehead theorem for biequivalence) Let 𝒞 and𝒟 be 2-cat-
egories. A pseudofunctor 𝐹∶ 𝒞 → 𝒟 is a biequivalence if and only if
(a) 𝐹0 is surjective on equivalence classes of objects, and
(b) for all objects 𝐴, 𝐵 of𝒞, the component functor

𝐹𝐴,𝐵 ∶ 𝖧𝗈𝗆𝒞(𝐴, 𝐵)→ 𝖧𝗈𝗆𝒟(𝐹0𝐴, 𝐹0𝐵)

is an equivalence of 1-categories.
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Proof Johnson and Yau 2021, 7.4.1. 2

A.26 The conditions in the theorem are equivalent to,
(a) 𝐹 is surjective on equivalence classes of objects,

(b) 𝐹 is surjective on isomorphism classes of 1-morphisms (between any two objects),

(c) 𝐹 is bijective on 2-morphisms (between any two 1-morphisms).

Remark A.27 (a) When the 𝐹 in the theorem is a 2-functor, there need not exist a
2-functor 𝐺 satisfying the conditions in A.21, only a pseudofunctor.

(b) When 𝐹 is a biequivalence, the underlying functor on 1-categories need not be
full, faithful, or essentially surjective.

(c) Let 𝐹∶ 𝒞 → 𝒟 be a 2-functor of 2-categories. If 𝐹 is a 2-equivalence, then 𝐹0
is surjective on isomorphism classes of objects; if it is a biequivalence, it need only be
surjective on equivalence classes of objects.

Theorem A.28 (?) Let𝐹∶ 𝒞 → 𝒟 be a 2-functor of 2-categories. If there exists a 2-functor
𝐺∶ 𝒟 → 𝒞 and equivalences

𝐴 ∼ 𝐺𝐹(𝐴), natural in 𝐴 ∈ ob𝒞
𝐵 ∼ 𝐹𝐺(𝐵), natural in 𝐵 ∈ ob𝒟,

then 𝐹 is an equivalence of 2-categories.

Proof We check the conditions of Theorem A.25. From 𝐵 ∼ 𝐹𝐺(𝐵), we see that 𝐹 is
surjective on equivalence classes of objects. Consider the functors

𝖧𝗈𝗆𝒞(𝐴, 𝐵)
𝑎
,→ 𝖧𝗈𝗆𝒟(𝐹𝐴, 𝐹𝐵)

𝑏
,→ 𝖧𝗈𝗆𝒞(𝐺𝐹𝐴,𝐺𝐹𝐵)

𝑐
,→ 𝖧𝗈𝗆𝒟(𝐹𝐺𝐹𝐴, 𝐹𝐺𝐹𝐵).

The composites 𝑏◦𝑎 and 𝑐◦𝑏 are equivalences of 1-categories, from which it follows that
𝑎 = 𝐹𝐴,𝐵 is an equivalence of 1-categories, as required. Cf. the proof of Johnson and Yau
2021, 6.2.13. 2

Notes The Whitehead theorems are classical folklore. They were named by Johnson and Yau
2021 in analogy with the Whitehead theorm in homotopy. They are also made explicit in Gabber
and Ramero 2018, 2.4.30.

ToDo 18 Check TheoremA.28. Deligne argues that nonstrict 2-categories are the correct objects.

The Yoneda lemma

Definition A.29 Let 𝒞 be a 2-category such that 𝒞0 is a set. There is a (Yoneda)
pseudofunctor ℎ∶ 𝒞 → 𝒫𝓈ℱ𝓊𝓃(𝒞op,𝒞𝒶𝓉) such that
⋄ for any object 𝐴, ℎ𝐴 is the pseudofunctor Hom𝒞(−, 𝐴),

⋄ for any 1-morphism 𝑓∶ 𝐴 → 𝐵, ℎ𝑓 is the strong transformation 𝑓∗∶ ℎ𝐴 → ℎ𝐵,
and

⋄ for any 2-morphism 𝛼∶ 𝑓 → 𝑔, ℎ𝛼 is the modification 𝛼∗.
See Johnson and Yau 2021, 8.2.1.
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A.30 (Yoneda lemma) Given a 2-category𝒜, an object𝐴 of𝒜, and a 2-functor𝐹∶ 𝒜 →
𝒞𝒶𝓉, there exists an isomorphism of 1-categories

𝐹(𝐴)→ 2−𝖭𝖺𝗍(ℎ𝐴, 𝐹),

where ℎ𝐴 = Hom𝒜(𝐴,−) is defined similarly to ℎ𝐴, and the right-hand side is the
1-category with objects the 2-(natural transformations) ℎ𝐴 ⇒ 𝐹 as objects and the
modifications as arrows. See Borceux 1994a, 7.10.3.

A.31 (Yoneda embedding) Let 𝒞 be a 2-category such that 𝒞0 is a set. For all objects
𝐴, 𝐵 of 𝒞, and corresponding objects ℎ𝐴, ℎ𝐵 of𝒫𝓈ℱ𝓊𝓃(𝒞op,𝒞𝒶𝓉), the functor

ℎ∶ 𝖧𝗈𝗆(𝐴, 𝐵)→ 𝖧𝗈𝗆(ℎ𝐴, ℎ𝐵)

is an isomorphism of 1-categories. See Johnson and Yau 2021, 8.3.13.

2-limits

TBA There are several inductive limits of categories in the text, which should probably
be 2-limits, once I understand the difference.

Aside A.32 As a rough rule of thumb, in a 1-category, objects can be considered to be the “same”
if they are isomorphic, and parallel morphisms if they are equal. In a 2-category, objects can be
considered to be the “same” if they are equivalent, parallel 1-morphisms if they are isomorphic,
and parallel 2-morphisms if they are equal.





Appendix B

Ind categories

We review what we need in the rest of the work.

Basic definitions

B.1 A set with an order ≤ is filtered if, for every pair of elements 𝑎, 𝑏, there exists an
element 𝑐 such that 𝑎, 𝑏 ≤ 𝑐. A category is filtered if, for every pair 𝑖, 𝑗 of objects, there
exists an object 𝑘 and morphisms 𝑖 → 𝑘, 𝑗 → 𝑘, and for every parallel pair of morphisms
𝑢, 𝑣∶ 𝑖 ⇉ 𝑗 there exists a morphism 𝑤∶ 𝑗 → 𝑘 such that 𝑤◦𝑢 = 𝑤◦𝑣. A filtered set can
be viewed as a filtered category in an obvious way.

B.2 Let 𝖢 be a category. An ind-object in 𝖢 is a functor 𝛼 ⇝ 𝑋𝛼 ∶ 𝖠 → 𝖢, where 𝖠 a
small filtered category. On setting

Hom((𝑋𝛼), (𝑌𝛽)) = lim←,,
𝛼
lim,,→
𝛽
Hom(𝑋𝛼, 𝑌𝛽), (149)

we obtain a category Ind𝖢. The same category is obtained when 𝐴 is required to be a
filtered set (SGA 4, I, 8.1.6). The functor sending an object of 𝖢 to a constant inductive
system embeds 𝖢 as a full subcategory of Ind𝖢.

B.3 We write “lim,,→”𝑋𝛼 for the object of Ind𝖢 defined by the inductive system (𝑋𝛼)𝛼.
The functor

“lim,,→”𝑋𝛼 ⇝ lim,,→ℎ𝑋𝛼
is an equivalence of Ind𝖢 with the category of functors 𝖢op → 𝖲𝖾𝗍 that are small filtered
inductive limits of representable functors. In this way, we get an equivalence

lim,,→
𝛼
ℎ𝑋𝛼 (−)∶ Ind𝖢 → 𝖫𝖾𝗑(𝖢op, 𝖲𝖾𝗍),

where 𝖫𝖾𝗑 is the category of left exact functors and natural transformations (SGA 4, I,
8.3.3).

B.4 If 𝖢 is an abelian category, then so also is Ind𝖢 (SGA 4, I, Exercice 8.9.9c), and the
canonical functor 𝖢 → Ind𝖢 is exact (ibid. 8.8.2), so 𝖢 is an abelian subcategory of Ind𝖢.
Small filtered inductive limits exist in Ind𝖢 (ibid. 8.5.1) and are exact, i.e., commute
with finite projective limits (ibid. 8.9.1d). If 𝐹∶ 𝖢 → 𝖣 is a right exact functor of abelian
categories, then Ind𝐹 commutes with inductive limits (SGA 4, I, 8.7.1.7, 8.7.2.2, 8.9.8).

The same statement holds with “abelian” replaced by “homological” (see B.22).

295
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Ind categories of categories whose objects are noetherian

B.5 Recall that a subobject of an object 𝑋 is an equivalence class of monomorphisms
with target 𝑋. A category iswell-powered if the subobjects of any object form a set, in
which case they form a partially ordered set. An object is artinian (resp. noetherian) if
the set of its subobjects satisfies the descending chain condition (resp. ascending chain
condition).

Proposition B.6 Let 𝖢 be a homological category (for example, an abelian category) all
of whose objects are noetherian.
(a) Every object𝑋 of Ind𝖢 is of the form “lim,,→”𝑋𝛼, where (𝑋𝛼)𝛼 is filtered inductive system

in 𝖢 whose transition morphisms are monomorphisms.

(b) The category 𝖢 is stable under subquotients in Ind𝖢, i.e., if 𝑋 is in 𝖢 and 𝑍 is a
subquotient of 𝑋 in Ind𝖢, then 𝑍 is in 𝖢.

(c) Let𝑋 =“lim,,→”𝑋𝛼, where (𝑋𝛼)𝛼 is an inductive system as in (a). Each𝑋𝛼 is a subobject
of 𝑋, and the set of 𝑋𝛼 is cofinal in the collection of all subobjects of 𝑋.

Proof (a). Let 𝑋 =“lim,,→”𝑋𝛼. For each 𝛼, the kernels of the morphisms 𝑋𝛼 → 𝑋𝛽,
𝛽 > 𝛼, form an increasing system of subobjects of 𝑋𝛼, which is stationary because
𝑋𝛼 is noetherian. Let 𝐾𝛼 = Ker(𝑋𝛼 → 𝑋𝛽) for all 𝛽 sufficiently large. The canonical
morphism

“lim,,→”𝑋𝛼 → “lim,,→”(𝑋𝛼∕𝐾𝛼)

is an isomorphism, and the inductive system (𝑋𝛼∕𝐾𝛼)𝛼 satisfies (a).
(b) Because 𝖢 is an homological subcategory of Ind𝖢, it is stable under subquotients

if it is stable under subobjects. Let𝑌 ∈ ob𝖢, and let𝑋 be a subobject of𝑌 in Ind𝖢. Write
𝑋 =“lim,,→”𝑋𝛼, where (𝑋𝛼)𝛼 is an inductive system as in (a). For each 𝛼, the inductive
limit of the monomorphisms 𝑋𝛼 → 𝑋𝛽, 𝛽 > 𝛼, is a monomorphism 𝑋𝛼 → 𝑋 (exactness
of inductive limits in Ind𝖢; see B.4). Thus the𝑋𝛼 are subobjects of𝑌. As𝑌 is noetherian,
they form a stationary system, and so 𝑋 = 𝑋𝛼 ∈ ob𝖢 for 𝛼 sufficiently large.

(c) As in the proof of (b), the morphisms 𝑋𝛼 → 𝑋 are monic, and so the 𝑋𝛼 are
subobjects of 𝑋. For any other subobject 𝑍 of 𝑋 in 𝖢, we have

Hom(𝑍,𝑋) = lim,,→
𝛼
Hom(𝑍,𝑋𝛼),

and so 𝑍 → 𝑋 factors through 𝑋𝛼 for some 𝛼. 2

Proposition B.7 Let 𝖣 be an homological category and 𝖢 a full subcategory stable under
finite sums and subquotients. If
(a) all objects of 𝖢 are noetherian,

(b) small filtered inductive limits exist in 𝖣 and are exact, and

(c) every object of 𝖣 is a small filtered inductive limit of objects of 𝖢,
then the functor

“lim,,→”𝑋𝛼 ⇝ lim,,→𝑋𝛼 ∶ Ind𝖢 → 𝖣

is an equivalence of categories, with inverse the functor sending an object 𝑋 of 𝖣 to the
inductive system of its subobjects in 𝖢.

Loosely, we can say that 𝖣 is the category of ind-objects of 𝖢.
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Proof As in the proof of B.6(a),(c), we can deduce from (c) that each 𝑋 in 𝖣 is a
small filtered inductive limit of subobjects 𝑋𝛼 in 𝖢. Moreover, the 𝑋𝛼 are cofinal in the
collection of all subobjects of 𝑋 in 𝖢. To see this, let 𝑍 ∈ ob𝖢 be a subobject of 𝑋; on
passing to the limit in

0→ 𝑍 ∩ 𝑋𝛼 → 𝑋𝛼 → 𝑋∕𝑍,

we find that the 𝑍 ∩𝑋𝛼 have inductive limit 𝑍; as 𝑍 is noetherian, they form a stationary
system, and so this means that 𝑍 is contained in 𝑋𝛼 for all sufficiently large 𝛼. We have
shown that 𝑋 is the inductive limit of its subobjects in 𝖢, and so the composite

𝖣 → Ind𝖢 → 𝖣

is the identity functor. Conversely, every 𝑋 in Ind𝖢 is a “lim,,→”𝑋𝛼 as in B.6(a) and the 𝑋𝛼
are cofinal in the set of subobjects in 𝖢 of lim,,→𝑋𝛼; therefore the composite

Ind𝖢 → 𝖣 → Ind𝖢

is the identity functor. 2

We list some examples where Proposition B.7 implies that 𝖣 ∼ Ind𝖢. Throughout 𝑘
be a field.

Example B.8 Let 𝑅 be a noetherian ring. Take 𝖢 to be the category𝖬𝗈𝖽𝖿(𝑅) of finitely
generated 𝑅-modules and 𝖣 to be the category𝖬𝗈𝖽(𝑅) of all 𝑅-modules. The conditions
of B.7 are obviously satisfied.

Example B.9 More generally, let 𝑋 be a noetherian scheme, and take 𝖢 to be the cat-
egory of coherent sheaves on 𝑋 and 𝖣 to be the category of quasi-coherent sheaves.
Condition (c) of B.7 follows from the fact that every quasi-coherent 𝒪𝑋-module is the
inductive limit of its quasi-coherent 𝒪𝑋-submodules of finite type (EGA I, 9.4.9).

Example B.10 Let 𝐿 be a coalgebra over a noetherian ring 𝑅. If 𝐿 is flat over 𝑅, then the
category 𝖼𝗈𝖬𝗈𝖽(𝐿) of right 𝐿-comodules is abelian. Moreover, every 𝐿-comodule is the
union of the 𝐿-subcomodules finitely generated over 𝑅 (Serre 1968, Cor. 2). Therefore,
𝖼𝗈𝖬𝗈𝖽(𝐿) is locally noetherian, and its noetherian objects are those finitely generatd
over 𝑅.

Example B.11 Let 𝐺 be an affine group scheme over 𝑘. Take 𝖢 to be the category
𝖱𝖾𝗉𝖿(𝐺) of representations of 𝐺 on finite-dimensional 𝑘-vector spaces, and 𝖣 to be
the category 𝖱𝖾𝗉 of representations of 𝐺 on arbitrary 𝑘-vector spaces. Condition (c)
of B.7 says that every representation is the inductive limit of its finite-dimensional
subrepresentations (II, 1.16).

Example B.12 Let 𝐺 be an affine 𝑘-groupoid acting transitively on an affine 𝑘-scheme
𝑆. Take 𝖢 to be the category 𝖱𝖾𝗉𝖿(𝑆∶ 𝐺) of representations of 𝐺 on locally free sheaves
of finite rank on 𝑆, and 𝖣 to be the category of representations of 𝐺 on quasi-coherent
sheaves on 𝑆. When 𝑆 is the spectrum of a field, condition (c) of B.7 follows from III,
6.6. The general case then follows from III, 3.4 (whose proof uses gerbes). If there is an
𝑠 ∈ 𝑆(𝑘), then the functor “fibre at 𝑠” is an equivalence of 𝖱𝖾𝗉𝖿(𝑆∶𝐺) with 𝖱𝖾𝗉𝖿(𝐺𝑠,𝑠)
(ibid.), and we are back in the last example.
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Example B.13 An abelian category is noetherian if it is essentially small and its objects
are noetherian. It is locally noetherian if it has inductive limits, filtered inductive limits
are exact, and there exists a family of noetherian generators with small index set. Let
𝖢 be a noetherian abelian category. There exists a locally noetherian abelian category
𝖣 such that 𝖢 is equivalent to the category of noetherian objects in 𝖣. Moreover, this
condition determines 𝖣 up to equivalence. See Gabriel 1962, II, §4.

Example B.14 Take 𝖢 to be an abelian category whose objects are noetherian, and 𝖣 to
be the category of additive left exact functors from 𝖢op to the category of abelian groups.

Extension of scalars

B.15 Let 𝑘 be a field and 𝑘′ an extension of 𝑘. Suppose that we are given a pair of
𝑘-linear abelian categories 𝖢 ⊂ 𝖣 satisfying the conditions of Proposition B.7, a pair of
𝑘′-linear abelian categories 𝖢′ ⊂ 𝖣′ satisfying the same conditions, and an adjoint pair
of functors

𝖣 𝖣′

← →extension
←→

restriction

(extension of scalars, restriction of scalars). The functor restriction of scalars induces a
functor

𝖣′ → {object 𝑋 of 𝖣 together with a 𝑘-linear 𝑘′-module structure}. (150)

For 𝑋 in 𝖣 and 𝑉 a 𝑘-vector space, the functor 𝑌 ⇝ Hom(𝑉,Hom(𝑋,𝑌)) is repre-
sentable, and we let 𝑉 ⊗𝑘 𝑋 denote the object in 𝖣 representing it, so

Hom(𝑉 ⊗𝑘 𝑋,𝑌) ≃ Hom(𝑉,Hom(𝑋,𝑌)).

If (𝑒𝑖)𝑖∈𝐼 is a basis for 𝑉 (possibly infinite), then 𝑉 ⊗𝑘 𝑋 is a direct sum of copies of 𝑋
indexed by 𝐼. A 𝑘′-module structure can be interpreted as a morphism 𝑘′ ⊗𝑘 𝑋 → 𝑋
with certain properties.

Let 𝑋 be an object of 𝖣 equipped with a 𝑘-linear 𝑘′-module structure. We say that
𝑌 ⊂ 𝑋 generates 𝑋 as a 𝑘′-module if the composite

𝑘′ ⊗𝑘 𝑌 → 𝑘′ ⊗𝑘 𝑋 → 𝑋

is an epimorphism, i.e., any 𝑘′-submodule of𝑋 containing 𝑌 equals𝑋. We let 𝖢𝑘′ denote
the category of objects of 𝖣 ∼ Ind𝖢 equipped with a 𝑘-linear 𝑘′-module structure and
generated as a 𝑘′-module by a subobject in 𝖢.

Proposition B.16 In the above situation, suppose
(a) that the functor (150) is an equivalence;

(b) the extension of scalars 𝖣 → 𝖣′ sends 𝖢 into 𝖢′.
Then the functor restriction of scalars induces an equivalence 𝖢′ → 𝖢𝑘′ .

Proof Identify 𝖣 with Ind𝖢, and, by (150), 𝖣′ with the category of Ind-objects of 𝖢
equipped with a 𝑘′-module structure. With these identification, the restriction of scalars
functor becomes the forgetful functor. Its left adjoint (extension of scalars) becomes
𝑋 ⇝ 𝑘′ ⊗𝑘 𝑋. It remains to determine 𝖢′.

If𝑋 ∈ ob𝖣′ is generated as a 𝑘′-module by a 𝖣-subobject𝑌 ⊂ 𝑋 with𝑌 ∈ ob𝖢, then
it is a quotient of 𝑘′ ⊗𝑘 𝑌 and is therefore in 𝖢′. Conversely, if 𝑋 ∈ ob𝖢′, we write it in
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𝖣 as a filtered union of its subobjects 𝑋𝛼 in 𝖢. Since 𝑋 is noetherian in 𝖢′, the system
of submodule images of the 𝑘′ ⊗𝑘 𝑋𝛼 in 𝑋 is stationary. Therefore 𝑋 is a quotient of
𝑘′ ⊗𝑘 𝑋𝛼 for 𝛼 sufficiently large, and so lies in 𝖢𝑘′ . 2

Example B.17 We list some examples where Proposition B.16 implies that 𝖢′ ∼ 𝖢𝑘.
(a) Let 𝑋 be a scheme of finite type over 𝑘 and 𝑋′ the scheme over 𝑘′ deduced from

𝑋 by extension of scalars. Take 𝖢 and 𝖢′ to be the categories of coherent sheaves
on 𝑋 and 𝑋′ and 𝖣 and 𝖣′ the categories of quasi-coherent sheaves. In this case,
“restriction of scalars” is direct image by the morphism 𝑋′ → 𝑋.

(b) Let𝐺 be an affine algebraic group over 𝑘 and𝐺′ the group scheme over 𝑘′ deduced
from 𝐺 by extension of scalars. Take 𝖢 = 𝖱𝖾𝗉𝖿(𝐺) and 𝖢′ = 𝖱𝖾𝗉𝖿(𝐺′), and let 𝖣
and 𝖣′ be as in B.11.

(c) More generally, let 𝐺 be an affine groupoid acting transitively on an affine scheme
𝑆 over 𝑘 and 𝐺′, 𝑆′ the schemes over 𝑘′ deduced from 𝐺, 𝑆 by extension of scalars.
Let 𝖣 and 𝖣′ be as in a B.12.

Pro categories

B.18 On reversing the arrows, we get the notion of a pro-object. A pro-object in a
category 𝖢 is a small filtered projective system 𝛼 ⇝ 𝑋𝛼, and

Hom((𝑋𝛼), (𝑌𝛽)) = lim←,,
𝛽
lim,,→
𝛼
Hom(𝑋𝛼, 𝑌𝛽).

If 𝖢 is homological, so also is Pro𝖢, and the canonical functor 𝖢 → Pro𝖢 is exact. The
opposites (duals) of Propositions B.6 and B.7 hold for homological categories 𝖢 whose
objects are artinian.

Example B.19 Let 𝖢 = 𝖵𝖾𝖼𝖿(𝑘), the category of finite-dimensional vector spaces over 𝑘.
Then Ind𝖢 is the category of all vector spaces over 𝑘 and Pro𝖢 is the category of linearly
compact vector spaces over 𝑘. Duality is an antiequivalence betuween Ind𝖢 and Pro𝖢.

Example B.20 Let 𝑘 be a field. Take 𝖢 to be the category of affine algebraic group
schemes over 𝑘, and 𝖣 to be the category of all affine group schemes over 𝑘. The objects
of 𝖢 are artinian and the category 𝖣 is homological. The functor

“lim←,,”𝐺𝛼 ⇝ lim←,,𝐺𝛼 ∶ Pro𝐶 → 𝖣

is an equivalence of categories, with inverse the functor sending an affine group scheme
𝐺 to the projective system of its algebraic quotients (the system (𝐺∕𝑁)𝑁 , where runs
over the normal subgroup schemes of 𝐺 such that 𝐺∕𝑁 is algebraic). Every affine group
scheme over 𝑘 is the limit of a filtered projective system of algebraic group schemes over
𝑘 whose transition morphisms are faithfully flat.

If 𝐺 = lim←,,𝐺𝛼, we view its Lie algebra

Lie(𝐺) = lim←,,Lie(𝐺𝛼)

as a pro Lie algebra. If 𝐺 = Spec(𝐴) and 𝐼 is ideal of 𝑓 ∈ 𝐴 zero at the origin, the linearly
compact vector space underlying Lie𝐺 is the dual of 𝐼∕𝐼2.
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Example B.21 More generally, fix a field 𝑘 and an affine 𝑘-scheme 𝑆. Take 𝖢 (resp.𝖣) to
be the category of 𝑘-groupoids acting transitively on 𝑆 and whose kernel is an algebraic
group (resp. affine group scheme) over 𝑘. The objects of 𝖢 are artinian (1.27). The
functor

“lim←,,”𝐺𝛼 ⇝ lim←,,𝐺𝛼 ∶ Pro𝐶 → 𝖣

is an equivalence of categories, with inverse the functor sending a 𝑘-groupoid 𝐺 to the
projective system (𝐺∕𝑁)𝑁 , where 𝑁 runs over the normal subgroup schemes of 𝐺∆

such that 𝐺∆∕𝑁 is algebraic. Every affine faithful 𝑆∕𝑘-groupoid is the limit of a filtered
projective system, with faithfully flat transition morphisms, of algebraic 𝑘-groupoids
acting faithfully on 𝑆.

Homological categories

We review the definition of homological categories.

B.22 A category is said to be finitely complete if all equalizers and finite products exist.
This means that finite projective limits, indexed by any finite category, exist.

Let 𝖢 be such a category. A morphism in 𝖢 is a regular epimorphism if it is the
coequalizer of some parallel pair of morphisms. As the name suggests, regular epimor-
phisms are epimorphisms.

Let 𝑓∶ 𝐴 → 𝐵 be a morphism in 𝖢. A parallel pair of morphisms 𝑖1, 𝑖2∶ 𝑃 ⇉ 𝐴 is
the kernel pair of 𝑓 if (𝑖1, 𝑖2)∶ 𝑃 → 𝐴 ×𝐵 𝐴 is an isomorphism.

The category 𝖢 is regular if (a) every kernel pair admits a coequalizer, and (b) regular
epimorphisms are stable under pullbacks. For example, the categories of sets, groups,
and topological groups (but not topological spaces) are all regular. In a regular category,
every morphism factors into a regular epimorphism 𝑞 followed by a monomorphism 𝑖
(the image factorization),

𝐴
𝑞
,→ 𝐼

𝑖
,→ 𝐵,

and this factorization is unique up to a unique isomorphism.
Assume that the terminal object of 𝖢 is also initial, so that kernels are defined (as

the equalizer of the morphism with the zero morphism). The category 𝖢 is homological
if it is regular and the split short five lemma holds, i.e., given a commutative diagram

Ker(𝑓) 𝐴 𝐵

Ker(𝑓′) 𝐴′ 𝐵′

←→𝑖

←→ 𝑢

←→
𝑓

←→ 𝑣 ←→ 𝑤
←→𝑠

←→𝑖
′ ←→

𝑓′

←→

𝑠′

{
𝑣◦𝑖 = 𝑖′◦𝑢
𝑤◦𝑓 = 𝑓′◦𝑣
𝑣◦𝑠 = 𝑠′◦𝑤

with (𝑓, 𝑠) and (𝑓′, 𝑠′) split epimorphisms, the morphism 𝑣 is an isomorphism if 𝑢 and
𝑤 are. The group objects in any category with finite products satisfy the split short five
lemma.

Amorphism in a homological category is normal if its image is a kernel. For example
a homomorphism 𝑓∶ 𝐺 → 𝐻 of topological groups is a normal morphism if and only if
its image (in the sense of sets) is a normal subgroup of𝐻 on which the quotient topology
coincides with the subspace topology.

A sequence

1→ 𝐴
𝑓
,→ 𝐵

𝑔
,→ 𝐶 → 1
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in a homological category is said to be exact if𝑓 = Ker(𝑔) and 𝑔 is a regular epimorphism;
in particular,𝑓 is a normalmorphism. Long exact sequences can be defined, as for abelian
categories, using the image factorization.

All the classical lemmas for abelian categories holdmutatismutandis for homological
categories. For example, the snake lemma holds for a diagram in which the vertical
arrows are normal morphisms. See Borceux and Bourn 2004, Chapter 4.

Notes The exposition in this section largely follows Deligne 1989 §4. See also Artin and Mazur
1969, Appendix, pp. 147–166, Gabriel 1962, and SGA 4, I, §8.





Appendix C

Nonabelian cohomology

We review some definitions fromGiraud 1971. Throughout, weworkwith affine schemes.
This allows us to sheafify (basically bounded) presheaves for the fpqc topology without
having to pass to a larger universe.

1 Fibred categories

Let 𝖠 be a small category and 𝜙∶ 𝖥 → 𝖠 a functor. For an object 𝑆 of 𝖠, the fibre of 𝖥 at
𝑆 is the category 𝖥𝑆 whose objects are the 𝑋 in 𝖥 such that 𝜙(𝑋) = 𝑆 and whose arrows
are the 𝑓 in 𝖥 such that 𝜙(𝑓) = id𝑆. For an arrow 𝑎∶ 𝜙(𝑌)→ 𝜙(𝑋), we let Hom𝑎(𝑌,𝑋)
denote the set of 𝑓∶ 𝑌 → 𝑋 such that 𝜙(𝑓) = 𝑎.

Let 𝑎∶ 𝑇 → 𝑆 be an arrow in 𝖠 and let 𝑓 ∈ Hom𝑎(𝑌,𝑋). We say that (𝑌, 𝑓) is
an inverse image 𝑋 relative to 𝑎, and write 𝑌 = 𝑎∗𝑋, if, for every 𝑍 ∈ ob 𝖥𝑇 and
𝑔 ∈ Hom𝑎(𝑍,𝑋), there exists a unique ℎ ∈ Homid𝑇 (𝑍,𝑌) such that 𝑓◦ℎ = 𝑔:

𝑍

𝑌 𝑋

𝑇 𝑆.

←→ ℎ

←

→
𝑔

←→
𝑓

←→𝑎

In other words, there is an isomorphism Homid𝑇 (𝑍, 𝑎
∗𝑋) ≃ Hom𝑎(𝑍,𝑋), natural in

𝑍 ∈ ob 𝖥𝑇.

The functor 𝜙∶ 𝖥 → 𝖠 is a fibred category if

(a) (existence of inverse images) for every arrow 𝑎∶ 𝑇 → 𝑆 in 𝖠 and 𝑋 ∈ ob(𝖥𝑆), an
inverse image 𝑎∗𝑋 exists, and

(b) (transitivity of inverse images) given arrows 𝑈
𝑏
,→ 𝑇

𝑎
,→ 𝑆 in 𝖠 and 𝑋 ∈ ob 𝖥𝑆,

𝑏∗(𝑎∗𝑋) is an inverse image of 𝑋 relative to 𝑎◦𝑏.

In a fibred category, 𝑎∗ can be made into a functor 𝖥𝑈 → 𝖥𝑉 , and for every pair 𝑎, 𝑏 of
composable morphisms in 𝖠, (𝑎◦𝑏)∗ ≃ 𝑏∗◦𝑎∗.

Let 𝜙∶ 𝖥 → 𝖠 and 𝜙′∶ 𝖥′ → 𝖠 be fibred categories over 𝖠. A functor 𝑢∶ 𝖥 → 𝖥′
such that 𝜙′◦𝑢 = 𝜙 is cartesian if it preserves inverse images. When 𝑢, 𝑢′ are cartesian
functors 𝖥 → 𝖥′, a cartesian natural transformation is a natural transformation
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𝑚∶ 𝑢 → 𝑢′ such that id𝜙′ ∗ 𝑚 = id𝜙,

𝖥 𝖥′ 𝖠

← →𝑢

← →
𝑢′

← →
𝜙′

← →
𝜙′

⇐⇒ 𝑚 ⇐⇒ id𝜙′ = 𝖥 𝖠.

← →
𝜙

← →
𝜙

⇐⇒ id𝜙

We write 𝖢𝖺𝗋𝗍(𝖥, 𝖥′) for the category whose objects are the cartesian functors 𝖥 → 𝖥′ and
whose morphisms are the cartesian natural transformations.

There is a 2-category ℱ𝒾𝒷(𝖠) whose objects are the fibred categories 𝜙∶ 𝖥 → 𝖠,
whose 1-morphisms are the cartesian functors, and whose 2-morphisms are the cartesian
natural transformations (Giraud 1971, I, 1.8.1).

Let 𝜙∶ 𝖥 → 𝖠 be a fibred category, and view 𝖠 as a 2-category with only a single
2-morphism between any two 1-morphisms. For each object 𝑆 of 𝖠, we have a category
𝖥𝑆, and for each morphism 𝑇 → 𝑆 we have an inverse image functor 𝐹𝑆 → 𝐹𝑇. These
form a pseudofunctor 𝖠op → 𝖢𝖺𝗍, and every pseudofunctor arises from a fibred category.
More precisely, there is a canonical 2-equivalence of 2-categories

𝒫𝓈ℱ𝓊𝓃(𝖠op,𝒞𝒶𝓉) ∼ ℱ𝒾𝒷(𝖠)

under which 2-functors correspond to split fibred categories. In particular, every fi-
bred category over 𝖠 is isomorphic to one defined by a pseudofunctor (Grothendieck’s
construction; Johnson and Yau 2021, 10.1.11, 10.6.16).

2 Sheaves for the fpqc topology

Let 𝑆 be an affine scheme Spec(𝑅), and let 𝖠𝖿𝖿𝑆 denote the category of affine schemes
over 𝑆. The fpqc topology1 on 𝖠𝖿𝖿𝑆 is that for which the coverings are finite surjective
families of flat morphisms 𝑈𝑖 → 𝑈 of affine 𝑆-schemes. A sheaf of sets on 𝑆 is a
contravariant functor ℱ ∶ 𝖠𝖿𝖿𝑆 → 𝖲𝖾𝗍 satisfying the sheaf condition: for all coverings
(𝑈𝑖 → 𝑈)𝑖∈𝐼 , the sequence

ℱ(𝑈)→
∏

𝑖∈𝐼
ℱ(𝑈𝑖)⇉

∏
𝑖,𝑗∈𝐼×𝐼

ℱ(𝑈𝑖 ×𝑈𝑗)

is exact, i.e., the first arrow is the equalizer of the parallel pair. More concretely, a sheaf
of sets for the fpqc topology on 𝖠𝖿𝖿𝑆 is a functor ℱ ∶ Alg𝑅 → 𝖲𝖾𝗍 such that
(a) ℱ(𝑅1 × 𝑅2) = ℱ(𝑅1) ×ℱ(𝑅2), and

(b) for any faithfully flat map 𝑅 → 𝑅′, the arrowℱ(𝑅)→ ℱ(𝑅′) is the equalizer of the
parallel pair of arrows ℱ(𝑅′)⇉ ℱ(𝑅′ ⊗𝑅 𝑅′) defined by 𝑎 ↦ 𝑎 ⊗ 1, 1⊗ 𝑎.

For any 𝑆-scheme 𝑋, the functor 𝑇 ⇝ ℎ𝑋(𝑇)
def= Hom𝑆(𝑇,𝑋) is a sheaf. Indeed, (a) is

obvious, and (b) follows from the exactness of 𝑅 → 𝑅′ ⇉ 𝑅′ ⊗𝑅 𝑅′ (Waterhouse 1979,
13.1).

3 Stacks (Champs)

Let 𝑆 be an affine scheme, and let 𝜙∶ 𝖥 → 𝖠𝖿𝖿𝑆 be a fibred category over 𝖠𝖿𝖿𝑆.
1In order to be sure that associated sheaves exist, we should consider only basically bounded presheaves;

see Waterhouse 1975.
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Descent data

Let 𝑎∶ 𝑉 → 𝑈 be a faithfully flat morphism of affine 𝑆-schemes, and let 𝐹 ∈ ob(𝖥𝑈). A
descent datum on 𝐹 relative to 𝑎 is an isomorphism

𝑢∶ pr∗1(𝐹)→ pr∗2(𝐹)

over 𝑉 ×𝑈 𝑉 satisfying the “cocycle” condition

pr∗31(𝑢) = pr∗32(𝑢)◦ pr
∗
21(𝑢)

over 𝑉 ×𝑈 𝑉 ×𝑈 𝑉,

pr∗1 𝐹 pr∗2 𝐹 pr∗3 𝐹.

← →
pr∗21(𝑢)

← →
pr∗31(𝑢)

← →
pr∗32(𝑢)

Here pr𝑖 is the projection onto the 𝑖th factor and pr𝑗𝑖 is the projection

𝑉 ×𝑈 𝑉 ×𝑈 𝑉 → 𝑉 ×𝑈 𝑉

onto the (𝑖, 𝑗)th factor. With the obvious notion of morphism, the pairs (𝐹, 𝑢) form a
category 𝖣𝖾𝗌𝖼(𝑉∕𝑈).

There is a functor 𝖥𝑈 → 𝖣𝖾𝗌𝖼(𝑉∕𝑈) sending an object 𝐹 of 𝖥𝑈 to (𝑎∗𝐹, 𝑢)with 𝑢 the
canonical isomorphism

pr∗1(𝑎
∗𝐹) ≃ (𝑎◦ pr1)

∗𝐹 = (𝑎◦ pr2)
∗𝐹 ≃ pr∗2(𝑎

∗𝐹).

Definition

A stack is a fibred category 𝜙∶ 𝖥 → 𝖠𝖿𝖿𝑆 such that, for all faithfully flat morphisms
𝑎∶ 𝑉 → 𝑈 in 𝖠𝖿𝖿𝑆, the functor 𝖥𝑈 → 𝖣𝖾𝗌𝖼(𝑉∕𝑈) is an equivalence of categories.

Explicitly, this means the following:
(a) for an affine 𝑆-scheme 𝑈 and objects 𝐹, 𝐺 in 𝖥𝑈 , the functor sending 𝑎∶ 𝑉 → 𝑈

to Hom(𝑎∗𝐹, 𝑎∗𝐺) is a sheaf of sets on 𝑈 (for the fpqc topology);
(b) for every faithfully flat morphism 𝑉 → 𝑈 of affine 𝑆-schemes, descent is effective

(that is, every descent datum for 𝑉∕𝑈 is isomorphic to the descent datum defined
by an object of 𝖥𝑈).

In other words, a fibred category is a stack if both morphisms and objects, given locally
for the fpqc topology, patch to global objects.

Amorphism of stacks is a cartesian functor, and amorphism of morphisms of
stacks is cartesian natural transformation. Thus the stacks over 𝖠𝖿𝖿𝑆 form a 2-category
with

𝖧𝗈𝗆(𝖥, 𝖥′) = 𝖢𝖺𝗋𝗍(𝖥, 𝖥′).

Examples

Let 𝑆 be an affine scheme.
⋄ There is a fibred category 𝜙∶ Mod→ 𝖠𝖿𝖿𝑆 such that Mod𝑈 is the category of

Γ(𝑈,𝒪𝑈)-modules. Descent theory shows that this is a stack: if𝑅 → 𝑅′ is faithfully
flat, then 𝑅′⊗𝑅 − is an equivalence from 𝑅-modules to 𝑅′-modules equipped with
a descent datum (Waterhouse 1979, 17.2).
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⋄ There is a fibred category 𝜙∶ Proj→ 𝖠𝖿𝖿𝑆 such that Proj𝑈 is the category of
finitely generated projective Γ(𝑈,𝒪𝑈)-modules. Descent theory shows that this is
a stack: if 𝑅 → 𝑅′ is faithfully flat, then an 𝑅-module𝑀 is finitely generated and
projective if and only if 𝑅′ ⊗𝑅 𝑀 is.

⋄ There is a fibred category 𝜙∶ Aff→ 𝖠𝖿𝖿𝑆 such that Aff𝑈 = 𝖠𝖿𝖿𝑈 , i.e., the fibre
over 𝑈 is the category of affine 𝑈-schemes. Descent theory shows that this is a
stack (Waterhouse 1979, 17.3).

Prestacks and the associated stack

A fibred category is a prestack if it satisfies the condition (a) to be a stack, i.e., for all
𝐹, 𝐺 ∈ ob 𝖥𝑈 , the functor

(
𝑉

𝑎
,→ 𝑈

)
⇝ Hom(𝑎∗𝐹, 𝑎∗𝐺)

is a sheaf on 𝑈 for the fpqc topology.
Let 𝜙∶ 𝖥 → 𝖠𝖿𝖿𝑆 be a prestack. The associated stack 𝜙∶ 𝖥′ → 𝖠𝖿𝖿𝑆 of 𝖥 (Giraud

1971, II, 2.1.3, 2.1.4)2 contains it as a full subcategory and is characterized by having the
property that every object of 𝖥′ is locally in 𝖥. For any stack 𝖧 over 𝖠𝖿𝖿𝑆, the inclusion
functor 𝑖∶ 𝖥 → 𝖥′ induces an equivalence of categories

𝖧𝗈𝗆(𝖥′,𝖧) ∼,→ 𝖧𝗈𝗆(𝖥,𝖧), (151)

compatible with base change.

4 Gerbes

Let 𝑆 be an affine scheme. A gerbe over 𝑆 is a stack 𝖦 → 𝖠𝖿𝖿𝑆 such that,
(a) for all 𝑈, the category 𝖦𝑈 is a groupoid (all morphisms are isomorphisms);

(b) there exists a faithfully flat morphism 𝑈 → 𝑆 such that 𝖦𝑈 is nonempty;

(c) any two objects of a fibre 𝖦𝑈 are locally isomorphic (i.e., their inverse images
under some faithfully flat morphism 𝑉 → 𝑈 of affine 𝑆-schemes are isomorphic).

Amorphism of gerbes over 𝑆 is a morphism of stacks whose domain and codomain are
gerbes, and similarly for a morphism of morphisms of gerbes. Thus the gerbes over 𝖠𝖿𝖿𝑘
form a 2-category such that

𝖧𝗈𝗆(𝖥, 𝖥′) = 𝖢𝖺𝗋𝗍(𝖥, 𝖥′).

A gerbe G→ 𝖠𝖿𝖿𝑆 is neutral if G𝑆 is nonempty.

Example: torsors

Let 𝐺 be a sheaf of groups on 𝑆 (for the fpqc topology). There is a fibred category
Tors(𝐺)→ 𝖠𝖿𝖿𝑆 such that Tors(𝐺)𝑈 is the category of right torsors under 𝐺 over 𝑈. It
is neutral, because of the trivial torsor under 𝐺 over 𝑆 (𝐺 acting on itself on the right).

2To construct 𝖥′, we have to add an object over 𝑈 for each faithfully flat morphism 𝑉 → 𝑈 and object
over 𝑉 with a descent datum. We can do this by defining ob 𝖥′𝑈 = lim,,→𝖣𝖾𝗌𝖼(𝑉∕𝑈), where 𝑉 → 𝑈 runs over
a suitably large collection faithfully flat morphisms.
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Conversely, let 𝖦 be a neutral gerbe, and choose a 𝑄 ∈ ob(𝖦𝑆). Then 𝐺
def= 𝒜𝑢𝑡(𝑄)

is a sheaf of groups on 𝑆, and, for any 𝑎∶ 𝑈 → 𝑆 and 𝑃 ∈ ob(𝖦𝑈), ℐ𝑠𝑜𝑚(𝑎∗𝑄, 𝑎∗𝑃) is a
torsor under 𝐺 over 𝑈. The functor

𝑃 ⇝ ℐ𝑠𝑜𝑚𝑈(𝑎∗𝑄, 𝑎∗𝑃)∶ 𝖦 → Tors(𝐹)

is an isomorphism of gerbes.

5 Bands (Liens)

Throughout, 𝑆 is an affine scheme.

C.1 Let 𝑎∶ 𝑉 → 𝑈 be a faithfully flat morphism of affine schemes over 𝑆. To give an
group scheme of finite presentation over 𝑈 is the same as giving a group scheme 𝐺 of
finite presentation over 𝑉 together with an isomorphism 𝑢∶ pr∗1 𝐺 → pr∗2 𝐺 satisfying
the cocycle condition. By definition, to give a band over 𝑈 is the same as giving a
group scheme 𝐺 of finite presentation over a suitable 𝑉 together with an isomorphism
𝑢∶ pr∗1 𝐺 → pr∗2 𝐺 satisfying the cocycle conditionmodulo inner automorphisms.

C.2 Wemake this more explicit. Let LI𝑈 be the category whose objects are sheaves of
groups on 𝑈 (for the fpqc topology) and whose morphisms 𝐹 → 𝐺 are the sections of
the quotient sheaf

𝐺∖ℋ𝑜𝑚(𝐹, 𝐺)∕𝐹,

where 𝐹 and 𝐺 act by inner automorphisms. On varying 𝑈, we get a fibred category
LI→ 𝖠𝖿𝖿𝑆. It is, in fact, a prestack, and we let LIEN→ 𝖠𝖿𝖿𝑆 denote the associated stack.
Thus LI is a full subcategory of LIEN, and every object of LIEN is locally in LI. An object
of LIEN𝑈 is called a band (lien) over 𝑈.

C.3 Wemake this (even) more explicit. Let 𝐹 and 𝐺 be sheaves of groups for the fpqc
topology on 𝑆, and let 𝐺ad be the quotient sheaf 𝐺∕𝑍, where 𝑍 is the centre of 𝐺. The
action of 𝐺ad on 𝐺 induces an action of 𝐺ad on the sheaf ℐ𝑠𝑜𝑚(𝐹, 𝐺), and we set

Isex(𝐹, 𝐺) = Γ
(
𝑆, 𝐺ad∖ℐ𝑠𝑜𝑚(𝐹, 𝐺)

)
.

Every band 𝐵 over 𝑆 is defined by a triple (𝑈,𝐺, 𝑢), where 𝑈 is faithfully flat and affine
over 𝑆, 𝐺 is a sheaf of groups on 𝑈, and 𝑢 ∈ Isex(pr∗1 𝐺, pr

∗
2 𝐺) is such that

pr∗31(𝑢) = pr∗32(𝑢)◦ pr
∗
21(𝑢).

If 𝑉 is also a faithfully flat affine 𝑆-scheme, and 𝑎∶ 𝑉 → 𝑈 is an 𝑆-morphism, then
(𝑈,𝐺, 𝑢) and (𝑉, 𝑎∗(𝐺), (𝑎 × 𝑎)∗(𝑢)) define the same band. If 𝐵1 and 𝐵2 are the bands
defined by (𝑈,𝐺1, 𝑢1) and (𝑈,𝐺2, 𝑢2), then an element 𝜓 ∈ Isex(𝐺1, 𝐺2) such that
pr∗2(𝜓)◦𝑢1 = 𝑢2◦ pr∗1(𝜓) defines an isomorphism 𝐵1 → 𝐵2.

C.4 Let 𝖦 be a gerbe on 𝖠𝖿𝖿𝑆. By definition, there exists an object 𝑄 ∈ 𝖦𝑈 for some 𝑈
affine and faithfully flat over 𝑆. Let 𝐺 = 𝒜𝑢𝑡(𝑄); it is a sheaf of groups on 𝑈. Again, by
definition, pr∗1 𝑄 and pr∗2 𝑄 are locally isomorphic on 𝑈 ×𝑆 𝑈, and the locally-defined
isomorphisms determine an element 𝑢 ∈ Isex(pr∗1 𝐺, pr

∗
2 𝐺). The triple (𝑈,𝐺, 𝑢) defines

a band 𝐵 which is uniquely determined up to a unique isomorphism. This is the band of
the gerbe 𝖦.
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C.5 When 𝐺 is a sheaf of groups on 𝑆, we write Bd(𝐺) for the band defined by (𝑆, 𝐺, id).
Then

Isom(Bd(𝐺1),Bd(𝐺2)) = Isex(𝐺1, 𝐺2).

Thus, Bd(𝐺1) and Bd(𝐺2) are isomorphic if and only if 𝐺2 is an inner form of 𝐺1, i.e., 𝐺2
becomes isomorphic to 𝐺1 on some faithfully flat affine 𝑆-scheme 𝑇, and the class of 𝐺2
in𝐻1(𝑆,𝒜𝑢𝑡(𝐺1)) comes from𝐻1(𝑆, 𝐺ad

1 ). When 𝐺2 is commutative, then

Isom(Bd(𝐺1),Bd(𝐺2)) = Isex(𝐺1, 𝐺2) = Isom(𝐺1, 𝐺2),

and we usually do not distinguish Bd(𝐺2) from 𝐺2.

C.6 The centre 𝑍(𝐵) of the band 𝐵 defined by (𝑈,𝐺, 𝑢) is defined by (𝑈,𝑍, 𝑢| pr∗1 𝑍),
where 𝑍 is the centre of 𝐺. The above remark shows that 𝑢| pr∗1 𝑍 lifts to an element
𝑢1 ∈ Isom(pr∗1 𝑍, pr

∗
2 𝑍), and one checks immediately that pr

∗
31(𝑢1) = pr∗32(𝑢1)◦ pr

∗
21(𝑢1).

Thus (𝑈,𝑍, 𝑢| pr∗1 𝑍) arises from a sheaf of groups on 𝑆, which we identify with 𝑍(𝐵).

C.7 The category LI𝑈 contains the category of sheaves of commutative groups and
morphisms. Thus, we see that there is an equivalence from the stack of sheaves of
commutative groups to the stack of commutative bands.

C.8 Aband𝐵 is said to be affine (resp. algebraic) if it can be defined by a triple (𝑈,𝐺, 𝑢)
with 𝐺 an affine (resp. algebraic) group scheme over𝑈. A gerbe is said to be affine (resp.
algebraic) if it is banded by an affine (resp. algebraic) band.

Now take 𝑆 = Spec 𝑘, 𝑘 a field, and let LI𝑈 be the category whose objects are group
schemes of finite presentation over 𝑈. If 𝖦 is an affine gerbe, then 𝒜𝑢𝑡(𝑥) is a band in
this new sense. Every algebraic group 𝐺 over 𝑘 defines a band, which we denote Bd(𝐺).

C.9 If 𝑘 is algebraically closed, then every algebraic band over 𝑘 is the band of an
algebraic group over 𝑘. To see this, let 𝐵 be such a band. For some affine 𝑘-scheme 𝑈, 𝐵
defines an element of �̆�1(𝑈∕𝑘, 𝐵ad). There is an exact sequence of pointed sets

𝐻1(𝑘, 𝐵)→ 𝐻1(𝑘, 𝐵ad)→ 𝐻2(𝑘, 𝑍(𝐵))

(fpqc cohomology groups). Now 𝐻2(𝑘, 𝑍(𝐵)) is equal to the fppf cohomology group (see
the next section), hence it is zero because 𝑘 is algebraically closed. Thus, the class of 𝐵
in �̆�1(𝑈∕𝑘, 𝐵ad) lifts to a class in �̆�1(𝑈∕𝑘, 𝐵), which defines an algebraic group scheme
over 𝑘.

C.10 Let �̄� be an algebraic closure of 𝑘. From C.9, we see that every algebraic band over
𝑘 is defined by a pair (𝐺, 𝑢), where𝐺 is an algebraic group over 𝑘 and 𝑢 is an isomorphism
pr1 𝐺 → pr2 𝐺 satisfying the cocycle condition modulo inner automorphisms.

Now assume that 𝑘 has characteristic zero. Let �̄� be an algebraic closure of 𝑘, and let
Γ = Gal(�̄�∕𝑘).

C.11 Let 𝐺 be an algebraic group over �̄�. A �̄�∕𝑘-kernel3 in 𝐺 is a homomorphism

𝜅∶ Γ→ Out(𝐺(�̄�)) def=
Aut(𝐺(�̄�))
Inn(𝐺(�̄�))

such that
3Following Springer 1966, 1.12.
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(a) every automorphism �̃�(𝜎) of 𝐺(�̄�) lifting 𝜅(𝜎) is 𝜎-linear,

(b) for some finite extension 𝐾 ⊂ �̄� of 𝑘, the restriction of 𝜅 to Gal(�̄�∕𝐾) is defined by
a model of 𝐺 over 𝑘.

C.12 The kernel of a �̄�∕𝑘-groupoid has the structure of a �̄�∕𝑘-kernel.

C.13 Let 𝐺 be an algebraic group over �̄�. To give 𝐺 the structure of a band over 𝑘 is the
same as giving it the structure of a �̄�∕𝑘-kernel.

6 Cohomology

The fpqc topology versus the fppf topology

Let 𝑆 be an affine scheme. The fpqc topology on 𝖠𝖿𝖿𝑆 is that for which the coverings are
finite surjective families of flat morphisms of affine 𝑆-schemes. For the fppf topology
the morphisms are required to be flat of finite presentation.

Proposition C.14 Let 𝐹 be a presheaf of abelian groups on 𝖠𝖿𝖿𝑘 transforming projective
limits (of affine 𝑘-schemes) to inductive limits. Then the canonical maps

�̆�𝑖(𝑘fppf , 𝐹)→ �̆�𝑖(𝑘fpqc, 𝐹)

are isomorphisms for all 𝑖.

Proof For a 𝑘-algebra 𝑅, define 𝐻𝑖(𝑅∕𝑘, 𝐹) to be the 𝑖th cohomology group of the
complex

𝐹(𝑅)→ 𝐹(𝑅⊗2)→⋯→ 𝐹(𝑅⊗𝑖)→⋯ .

Then
�̆�𝑖(𝑘fpqc, 𝐹) = lim,,→𝐻𝑖(𝑅∕𝑘, 𝐹), (*)

where the limit is over all 𝑘-algebras, and

�̆�𝑖(𝑘fppf , 𝐹) = lim,,→𝐻𝑖(𝑅∕𝑘, 𝐹), (**)

where the limit is over all finitely generated 𝑘-algebras. For any 𝑘-algebra 𝑅,

𝐹(𝑅⊗𝑖) = lim,,→
𝑅′
𝐹(𝑅′⊗𝑖),

where the limit is over the finitely generated 𝑘-subalgebras 𝑅′ of 𝑅, and so

𝐻𝑖(𝑅∕𝑘, 𝐹) = lim,,→
𝑅′
𝐻𝑖(𝑅′∕𝑘, 𝐹).

Hence the two limits (*) and (**) are equal. 2

Proposition C.15 Let 𝑆 be an affine scheme and 𝐺 an affine group scheme flat of finite
presentation over 𝑆. Then the canonical map

𝐻1(𝑆fppf , 𝐺)→ 𝐻1(𝑆fpqc, 𝐺)

is a bijection.
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Proof The sets classify the isomorphisms classes of torsors under 𝐺 for the two topolo-
gies over 𝑆, and the functor

𝖳𝗈𝗋𝗌(𝑆fppf , 𝐺)→ 𝖳𝗈𝗋𝗌(𝑆fpqc, 𝐺)

is an equivalence (even an isomorphism) of categories. Indeed, under the hypotheses,
the torsors are representable by affine schemes flat and of finite presentation over 𝑆. The
functor is obviously fully faithful, and every fpqc torsor 𝑇 under 𝐺 is also an fppf torsor
because it has a point in an affine scheme flat and of finite presentation over 𝑆, namely,
in 𝑇 itself. 2

Corollary C.16 Let 𝑍 be a commutative algebraic group over 𝑘. The canonical map

𝐻2(𝑘fppf , 𝑍)→ 𝐻2(𝑘fpqc, 𝑍)

is an isomorphism.

Proof Consider the diagram

0 �̌�2(𝑘fppf, 𝑍) 𝐻2(𝑘fppf, 𝑍) �̌�1(𝑘fppf,ℋ1(𝑘fppf, 𝑍)) �̌�3(𝑘fppf, 𝑍)

0 �̌�2(𝑘fpqc, 𝑍) 𝐻2(𝑘fpqc, 𝑍) �̌�1(𝑘fpqc,ℋ1(𝑘fpqc, 𝑍)) �̌�3(𝑘fpqc, 𝑍)

←→ ←→

←→ 𝑎

←→

←→ 𝑏

←→
←→ 𝑐 ←→ 𝑑

←→ ←→ ←→ ←→

in which the rows are part of the spectral sequence relating Čech and derived cohomology
(Milne 1980, III, 2.9). The maps 𝑎 and 𝑑 are isomorphisms by C.14. The canonical map
ℋ1(𝑘fppf , 𝑍)→ℋ1(𝑘fpqc, 𝑍) is an isomorphism by C.15, and the two functors transform
projective limits of affine schemes to inductive limits, so 𝑐 is an isomorphism by C.14.
Now the five-lemma shows that 𝑏 is an isomorphism. 2

Remark C.17 Let 𝐺 be a smooth affine group scheme over an affine scheme 𝑆. The
canonical map

𝐻𝑖(𝑆et, 𝐺)→ 𝐻𝑖(𝑆fppf , 𝐺)

is an isomorphism for 𝑖 ≤ 1, and for all 𝑖 if 𝐺 is commutative (Theorem of Grothendieck;
see Milne 1980, III, 3.9).

Notes This subsection is mostly extracted from Saavedra 1972, III, 3.1.

Applications

Let 𝐵 be a band on 𝖠𝖿𝖿𝑆, and let 𝖦 and 𝖧 be gerbes banded by 𝐵. Every morphism
𝑚∶ 𝖦 → 𝖧 banded by id𝐵 is an equivalence (IV, 1.23). We say either that 𝑚 is a 𝐵-
morphism or a 𝐵-equivalence, since the two are the same. The cohomology set𝐻2(𝑆, 𝐵)
is defined to be the set of 𝐵-equivalence classes of 𝐵-gerbes. If 𝑍 is the centre of 𝐵, then
𝐻2(𝑆, 𝑍) is equal to the cohomology group of 𝑍 in the usual sense of the fpqc topology
on 𝑆, and either𝐻2(𝑆, 𝐵) is empty or𝐻2(𝑆, 𝑍) acts simply transitively on it (Giraud 1971,
IV, 3.3.3).

Proposition C.18 Let 𝖦 be an affine algebraic gerbe over 𝖠𝖿𝖿𝑘. There exists a finite
extension 𝑘′ of 𝑘 such that the fibre of 𝖦 over Spec 𝑘′ is nonempty (see also III, 10.3).
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Proof By assumption, the band 𝐵 of 𝖦 is defined by a triple (𝑈,𝐺, 𝑢) with 𝐺 a group
scheme of finite presentation over 𝑈. Let 𝑈 = Spec𝑅. The 𝑘-algebra 𝑅 can be replaced
by a finitely generated subalgebra, and then by a quotient modulo a maximal ideal,
and so we may suppose that 𝑈 = Spec 𝑘′, where 𝑘′ is a finite field extension of 𝑘. We
shall show that the gerbes 𝖦 and Tors(𝐺) become 𝐵-equivalent over some finite field
extension of 𝑘′. The statement preceding the proposition shows that we have to prove
that an element of 𝐻2(𝑈fpqc, 𝑍), where 𝑍 is the centre of 𝐵, is killed by a finite field
extension of 𝑘′. But this assertion is obvious for𝐻2(𝑈fppf , 𝑍) (Milne 1980, III, 2.11), and
so we can apply C.16. 2

Remark C.19 The same argument (using C.17) shows that for a gerbe over 𝖠𝖿𝖿𝑘 with
smooth affine band, there exists a finite separable extension 𝑘′ of 𝑘 such that the fibre
over Spec 𝑘′ is nonempty. Deduce that a tannakian category over 𝑘 with prosmooth
band has a fibre functor over 𝑘sep.

Theorem C.20 (?) Let 𝖦 be a gerbe over 𝖠𝖿𝖿𝑘. For any algebraically closed field 𝐾 con-
taining 𝑘, the fibre of 𝖦 over Spec𝐾 is nonempty.

Proof Wemay suppose that 𝑘 is algebraically closed, and have to show that 𝖦 is neutral.
Let 𝐺 be the affine group scheme over 𝑘 such that Bd(𝐺) is the band of 𝖦 (exists by
C.9). When 𝐺 is of finite type, the statement was proved in C.18. In the general case,
write 𝐺 = lim←,,𝐺𝛼 as a limit of algebraic groups 𝐺𝛼 with faithfully flat transition maps.For each 𝛼, we have a morphism of gerbes 𝖦 → 𝖦𝛼 corresponding to the epimorphism
Bd(𝐺) → Bd(𝐺𝛼).4 We know that each set 𝐺𝛼(𝑘) is nonempty, and have to show that
lim←,,𝐺𝛼(𝑘) is nonempty. For this, try using II, Lemma 7.8. If that doesn’t work, rewritethe proof of III, Theorem 10.1, in the present context. [Exercise for the reader.] 2

4Let 𝑢∶ 𝐿 → 𝑀 be an epimorphism of gerbes. For any 𝐿-gerbe 𝑃, there exists an𝑀-gerbe 𝑄 and a
𝑢-morphism 𝑃 → 𝑄 (Giraud 1971, IV, 2.3.18).
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(𝑚)+, 241
1-category, 287
2-category, 286
2-equivalence, 289
2-functor, 288
2-isomorphism, 288
2-morphism of groupoids, 107
2-natural transformation, 289

absolute Hodge class, 265
action, 82
adequate equivalence relation, 229
adjoint pair, 285
adjunction, 285
affine band, 308
affine gerbe, 168, 308
affine group scheme, 58

algebraic, 59
pro-smooth, 90

affine group scheme in 𝖳, 47
affine monoid scheme, 57
affine scheme in a tensorial category, 47
affine 𝑇-scheme, 47
𝖠𝖿𝖿𝑘, 165
𝖠𝖿𝖿𝑆, 165
algebra, 57

nonassociative, 85
algebra in a tensor category, 85
algebraic, 233
algebraic band, 308
algebraic cycles

group of, 227
algebraic gerbe, 308
algebraic group, 59

compact, 91
linearly reductive, 81
reductive, 78
semisimple, 79

algebraic scheme over a field, 143

algebraic variety, 143, 227
map of, 227

antipode, 59
artinian object, 296
associativity constraint, 11
𝒜𝑢𝑡⊗, 28

band, 307
affine, 308
algebraic, 308

banded, 219
bialgebra

commutative, 58
biequivalence, 291
bilinear form

balanced, 256

cartesian, 303
cartesian functor, 165
cartesian natural transformation, 303
category

of correspondences, 230
closed symmetric monoidal, 22
fibred, 303
finitely complete, 300
locally finite, 34
locally noetherian, 298
monoidal, 12
noetherian, 298
pre-tannakian, 38
pseudo-abelian, 230
rigid tensor, 25
semisimple, 238
symmetric monoidal, 17
tensorial, 32
well-powered, 296

category of effective motives, 230
centre of a band, 308
coalgebra, 58
coefficient field, 233
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coevaluation morphism, 22
commutativity constraint, 15
𝖼𝗈𝖬𝗈𝖽𝖿(𝐿), 115
comodule, 59
compact real form, 6
compatible, 207, 208
compatible constraints, 15
compatible Weil forms, 6
composition series, 64
conjecture

𝐴(𝑋, 𝐿), 247
𝐵(𝑋), 247
𝐶(𝑋), 241
𝐶+(𝑋), 241
𝐷(𝑋), 252
Deligne, 266, 278
Hodge, 241
𝐼(𝑋, 𝐿), 251
standard of Hodge type, 251
standard of Lefschetz type, 247
Tate, 241

correspondence of degree r, 230
counit, 285

degree map, 228
descent datum, 155, 305
dimension (categorical), 26
dominant tensor functor, 29
dual, 22

weak, 21

effective descent, 166
effective motives, 268
equivalence

adjoint, 288
internal, 288
of objects in a 2-category, 288

equivalence of categories, 285
equivalence of tensor categories, 19
essentially small category, 8
essentially surjective, 285
evaluation morphism, 22
extension of groups, 161
exterior power, 49

fibre functor, 3, 36, 218
filtered, 90
splittable, 90

graded, 90
filtered category, 295

filtered 𝑅-module, 90
filtered set, 295
filtration

split, 89
filtration of 𝖱𝖾𝗉(𝐺), 89
freely generated, 41
fundamental group, 5

of a pre-tannakian category, 48
fundamental group scheme

true, 92
fundamental groupoid

of a topological space, 107

generator, 64
tensor, 33

gerbe, 166, 306
algebraic, 308

gradation
of a tannakian category, 88
on a functor, 88
on an object, 88

graded 𝑅-module, 90
graph, 228
group scheme

trigonalizable, 78
unipotent, 77

groupoid, 106
commutative, 107
transitive, 4, 106

groupoid acting on 𝑆, 106
groupoid internal to a category, 108
groupoid of automorphisms, 171
groupoid scheme, 4

hermitian form, 256, 257
hexagon axiom, 15
Hodge class, 265
Hodge element, 216, 222
Hodge structure

rational, 94
real, 94
Tate, 94

ℋ𝑜𝑚⊗, 19
Hom⊗, 19
homogeneous polarization, 208, 210
homomorphism

faithfully flat, 44
flat, 44

homomorphism of rings, 43
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Hopf algebra, 59
commutative, 59

horizontal composition, 287
ℎ𝑃, 64

ideal, 231
nil, 238
tensor, 231

identity object, 16
inner, 215
integrally algebraic, 233
intersect properly, 228
intersection product, 228
inverse image, 303
inverse of an object, 17
invertible object, 17
isomorphism of tensor functors, 19
isotropy group, 107
iterate of a tensor product, 16

Jacobson radical, 238

kernel of a groupoid, 107
Künneth projector, 241

Lefschetz class, 258, 259
Lefschetz group, 260
left adjoint, 285
local for the fpqc topology, 167
locally finite 𝑘-linear category, 34

monoidoid scheme, 110
morphism

of fibre functors, 36
of filtered modules, 90
of gerbes, 166, 306
of groupoids, 107
of k-groupoids, 110
of tannakian categories, 37
of Tate triples, 218
of tensor functors, 19

motive
Artin, 237
finite-dimensional, 236
Lefschetz, 231

motivic Galois group, 5
multiplicative type, 88

neutral, 218
neutral gerbe, 306

noetherian object, 296
nondegenerate, 205
numeric characters, 159

orbit topology, 84

parity, 205, 209
pentagon axiom, 11
polarization, 5, 214, 216, 222, 224

of a Hodge structure, 94
symmetric, 6

polarization (graded), 221
polarization of a rational Hodge struc-

ture, 94
polarization on a representation, 201
positive, 209
positive involution, 257
positive-definite, 217
positive-definite bilinear form, 257
potential CM-type, 280
prestack, 166
primitive cohomology, 267
primitive elements, 244
projection formula, 228
projective object, 64
pseudo natural transformation, 290

𝑅-module, 176
rank (categorical), 26
real envelope, 91
reductive, 63
reflexive object, 22
regular representation, 60
𝖱𝖾𝗉𝖿(𝐺), 59
Rep(G), 166
𝖱𝖾𝗉𝖿(𝑆∶𝐺), 112
representation

of a coalgebroid, 115
of a gerbe, 166
of a group scheme, 59
of a groupoid, 107, 111
of a monoid scheme, 59

represented, 176
right adjoint, 285
rigid, 3
rigid tensor subcategory, 29
ring

semisimple, 238
ring in a tensorial category, 43
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semilinear, 199
semisimple ring, 238
semsimple category, 238
sesquilinear form, 205
𝜎-linear, 148
sign conjecture, 6, 239
simple object, 64
simply transitive, 82
skew-hermitian form, 256
𝔰𝔩2-triple, 247
small category, 8
stable under subobjects, 75
stack, 166, 305
standard conjecture

of Hodge type, 251
strictly full subcategory, 8
strong transformation, 290
subcategory

abelian, 32
tannakian, 36
tensorial, 32

subobject, 296
𝗌𝖵𝖾𝖼(𝑘), 41
symmetric, 217
symmetric polarization, 216

tannakian category, 3, 36
algebraic, 38
neutral, 3, 36

Tate motive, 231
Tate object, 218
Tate triple, 218
tensor category, 3, 15

abelian, 29
additive, 29

tensor equivalence, 19
tensor functor, 3, 18
tensor generator, 33
tensor product of categories, 95
tensor subcategory, 29
tensorial category, 3
topology

fppf, 309
fpqc, 304, 309

torsor, 82
trivial, 82

totally positive, 200
trace morphism, 26
transporter, 86

transpose, 206
triangle identities, 285
trivial object of a tannakian category, 37

unit, 285
unit object, 12

𝖵(𝑘), 227
𝖵0, 217
vector bundle

finite, 92
semi-stable, 92

vector sheaf, 92
vertex group, 107
vertical composition, 286

weak dual of an object, 21
weak Lefschetz, 233
weight gradation, 94, 218
Weil classes, 261
Weil cohomology theory, 232
Weil form, 5, 206, 208
Weil operator, 94

⟨𝑋⟩, 67
⟨𝑋⟩⊗, 33

Yoneda pseudofunctor, 292

𝑍𝐺 , 150
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