
Shimura varieties and moduli

J.S. Milne

Abstract. Connected Shimura varieties are the quotients of hermitian symmetric
domains by discrete groups defined by congruence conditions. We examine their
relation with moduli varieties.
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Introduction

The hermitian symmetric domains are the complex manifolds isomorphic to
bounded symmetric domains. The Griffiths period domains are the parameter spaces
for polarized rational Hodge structures. A period domain is a hermitian symmetric
domain if the universal family of Hodge structures on it is a variation of Hodge
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structures, i.e., satisfies Griffiths transversality. This rarely happens, but, as Deligne
showed, every hermitian symmetric domain can be realized as the subdomain of a
period domain on which certain tensors for the universal family are of type (p,p)
(i.e., are Hodge tensors).

In particular, every hermitian symmetric domain can be realized as a moduli
space for Hodge structures plus tensors. This all takes place in the analytic realm,
because hermitian symmetric domains are not algebraic varieties. To obtain an
algebraic variety, we must pass to the quotient by an arithmetic group. In fact, in
order to obtain a moduli variety, we should assume that the arithmetic group is
defined by congruence conditions. The algebraic varieties obtained in this way are
the connected Shimura varieties.

The arithmetic subgroup lives in a semisimple algebraic group over Q, and
the variations of Hodge structures on the connected Shimura variety are classified
in terms of auxiliary reductive algebraic groups. In order to realize the connected
Shimura variety as a moduli variety, we must choose the additional data so that the
variation of Hodge structures is of geometric origin.

The main result of the article classifies the connected Shimura varieties for
which this is known to be possible. Briefly, in a small number of cases, the con-
nected Shimura variety is a moduli variety for abelian varieties with polarization,
endomorphism, and level structure (the PEL case); for a much larger class, the variety
is a moduli variety for abelian varieties with polarization, Hodge class, and level
structure (the PHL case); for all connected Shimura varieties except those of type
E6, E7, and certain types D, the variety is a moduli variety for abelian motives with
additional structure. In the remaining cases, the connected Shimura variety is not
a moduli variety for abelian motives, and it is not known whether it is a moduli
variety at all.

We now summarize the contents of the article.
§1. As an introduction to the general theory, we review the case of elliptic mod-

ular curves. In particular, we prove that the modular curve constructed analytically
coincides with the modular curve constructed algebraically using geometric invariant
theory.

§2. We briefly review the theory of hermitian symmetric domains. To give a
hermitian symmetric domain amounts to giving a real semisimple Lie group H with
trivial centre and a homomorphism u from the circle group to H satisfying certain
conditions. This leads to a classification of hermitian symmetric domains in terms
of Dynkin diagrams and special nodes.

§3. The group of holomorphic automorphisms of a hermitian symmetric
domain is a real Lie group, and we are interested in quotients of the domain by
certain discrete subgroups of this Lie group. In this sectionwe review the fundamental
theorems of Borel, Harish-Chandra, Margulis, Mostow, Selberg, Tamagawa, and
others concerning discrete subgroups of Lie groups.
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§4. The arithmetic locally symmetric varieties (resp. connected Shimura vari-
eties) are the quotients of hermitian symmetric domains by arithmetic (resp. con-
gruence) groups. We explain the fundamental theorems of Baily and Borel on the
algebraicity of these varieties and of the maps into them.

§5. We review the definition of Hodge structures and of their variations, and
state the fundamental theorem of Griffiths that motivated their definition.

§6. We define the Mumford-Tate group of a rational Hodge structure, and we
prove the basic results concerning their behaviour in families.

§7. We review the theory of period domains, and explain Deligne’s interpreta-
tion of hermitian symmetric domains as period subdomains.

§8. We classify certain variations of Hodge structures on locally symmetric
varieties in terms of group-theoretic data.

§9. In order to be able to realize all but a handful of locally symmetric varieties
as moduli varieties, we shall need to replace algebraic varieties and algebraic classes
by more general objects. In this section, we prove Deligne’s theorem that all Hodge
classes on abelian varieties are absolutely Hodge, and have algebraic meaning, and
we define abelian motives.

§10. Following Satake and Deligne, we classify the symplectic embeddings
of an algebraic group that give rise to an embedding of the associated hermitian
symmetric domain into a Siegel upper half space.

§11. We use the results of the preceding sections to determine which Shimura
varieties can be realized as moduli varieties for abelian varieties (or abelian motives)
plus additional structure.

Although the expert will find little that is new in this article, there is much that
is not well explained in the literature. As far as possible, complete proofs have been
included.

Notations

We use k to denote the base field (always of characteristic zero), and kal to
denote an algebraic closure of k. “Algebraic group” means “affine algebraic group
scheme” and “algebraic variety” means “geometrically reduced scheme of finite type
over a field”. For a smooth algebraic variety X over C, we let Xan denote the set X(C)
endowed with its natural structure of a complex manifold. The tangent space at a
point p of space X is denoted by Tp(X).

Vector spaces and representations are finite dimensional unless indicated oth-
erwise. The linear dual of a vector space V is denoted by V∨. For a k-vector space
V and commutative k-algebra R, VR = R⊗k V . For a topological space S, we let VS
denote the constant local system of vector spaces on S defined by V . By a lattice in a
real vector space, we mean a full lattice, i.e., the Z-module generated by a basis for
the vector space.
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A vector sheafon a complex manifold (or scheme) S is a locally free sheaf
of OS-modules of finite rank. In order for W to be a vector subsheaf of a vector
sheaf V, we require that the maps on the fibres Ws → Vs be injective. With these
definitions, vector sheaves correspond to vector bundles and vector subsheaves to
vector subbundles.

The quotient of a Lie group or algebraic group G by its centre Z(G) is denoted
by Gad. A Lie group or algebraic group is said to be adjoint if it is semisimple (in
particular, connected) with trivial centre. An algebraic group is simple (resp. almost
simple) if it connected noncommutative and every proper normal subgroup is trivial
(resp. finite). An isogeny of algebraic groups is a surjective homomorphism with
finite kernel. An algebraic group G is simply connected if it is semisimple and every
isogeny G′ → G with G′ connected is an isomorphism. The inner automorphism of
G defined by an element g is denoted by inn(g). Let ad : G→ Gad be the quotient
map. There is an action of Gad on G such that ad(g) acts as inn(g) for all g ∈ G(kal).
For an algebraic group G over R, G(R)+ is the identity component of G(R) for the
real topology. For a finite extension of fields L/k and an algebraic group G over L,
we write (G)L/k for algebraic group over k obtained by (Weil) restriction of scalars.

As usual, Gm = GL1 and µN is the kernel of Gm
N−→ Gm.

A prime of a number field k is a prime ideal inOk (a finite prime), an embedding
of k into R (a real prime), or a conjugate pair of embeddings of k into C (a complex

prime). The ring of finite adèles of Q is Af = Q⊗
(∏

p Zp
)
.

We use ι or z 7→ z̄ to denote complex conjugation on C or on a subfield of C,
and we use X ' Y to mean that X and Y isomorphic with a specific isomorphism —
which isomorphism should always be clear from the context.

For algebraic groups we use the language of modern algebraic geometry, not
the more usual language, which is based on Weil’s Foundations. For example, if G
and G′ are algebraic groups over a field k, then by a homomorphism G → G′ we
mean a homomorphism defined over k, not over some universal domain. Similarly,
a simple algebraic group over a field k need not be geometrically (i.e., absolutely)
simple.

1. Elliptic modular curves

The first Shimura varieties, and the first moduli varieties, were the elliptic
modular curves. In this section, we review the theory of elliptic modular curves as
an introduction to the general theory.

Definition of elliptic modular curves

Let D be the complex upper half plane,

D = {z ∈ C | =(z) > 0}.
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The group SL2(R) acts transitively on D by the rule(
a b

c d

)
z =

az+ b

cz+ d
.

A subgroup Γ of SL2(Z) is a congruence subgroup if, for some integer N > 1, Γ
contains the principal congruence subgroup of level N,

Γ(N)
def
= {A ∈ SL2(Z) | A ≡ I mod N} .

An elliptic modular curve is the quotient Γ\D ofD by a congruence group Γ . Initially
this is a one-dimensional complex manifold, but it can be compactified by adding
a finite number of “cusps”, and so it has a unique structure of an algebraic curve
compatible with its structure as a complex manifold.1 This curve can be realized
as a moduli variety for elliptic curves with level structure, from which it is possible
deduce many beautiful properties of the curve, for example, that it has a canonical
model over a specific number field, and that the coordinates of the special points on
the model generate class fields.

Elliptic modular curves as moduli varieties

For an elliptic curve E over C, the exponential map defines an exact sequence

(1.1) 0→ Λ→ T0(E
an)

exp−→ Ean → 0

with
Λ ' π1(Ean,0) ' H1(E

an,Z).
The functor E  (T0E,Λ) is an equivalence from the category of complex elliptic
curves to the category of pairs consisting of a one-dimensional C-vector space and a
lattice. Thus, to give an elliptic curve over C amounts to giving a two-dimensional
R-vector space V , a complex structure on V , and a lattice in V . It is known that D
parametrizes elliptic curves plus additional data. Traditionally, to a point τ of D one
attaches the quotient of C by the lattice spanned by 1 and τ. In other words, one
fixes the real vector space and the complex structure, and varies the lattice. From the
point of view of period domains and Shimura varieties, it is more natural to fix the
real vector space and the lattice, and vary the complex structure.2

Thus, let V be a two-dimensional vector space over R. A complex structure on V
is an endomorphism J of V such that J2 = −1. From such a J, we get a decomposition
VC = V+

J ⊕ V
−
J of VC into its +i and −i eigenspaces, and the isomorphism V →

VC/V
−
J carries the complex structure J on V to the natural complex structure on

VC/V
−
J . The map J 7→ VC/V

−
J identifies the set of complex structures on V with the

1We are using that the functor S San from smooth algebraic varieties over C to complex manifolds
defines an equivalence from the category of complete smooth algebraic curves to that of compact Riemann
surfaces.

2The choice of a trivialization of a variation of integral Hodge structures attaches to each point of the
underlying space a fixed real vector space and lattice, but a varying Hodge structure — see below.
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set of nonreal one-dimensional quotients of VC, i.e., with P(VC)r P(V). This space
has two connected components.

Now choose a basis for V , and identify it with R2. Let ψ : V × V → R be the
alternating form

ψ((ab) , (
c
d)) = det (a cb d) = ad− bc.

On one of the connected components, which we denote D, the symmetric bilinear
form

(x,y) 7→ ψJ(x,y)
def
= ψ(x, Jy) : V × V → R

is positive definite and on the other it is negative definite. Thus D is the set of
complex structures on V for which +ψ (rather than −ψ) is a Riemann form. Our
choice of a basis for V identifies P(VC)r P(V) with P1(C)r P1(R) and D with the
complex upper half plane.

Now let Λ be the lattice Z2 in V . For each J ∈ D, the quotient (V , J)/Λ is an
elliptic curve E with H1(E

an,Z) ' Λ. In this way, we obtain a one-to-one correspon-
dence between the points of D and the isomorphism classes of pairs consisting of
an elliptic curve E over C and an ordered basis for H1(E

an,Z).
Let EN denote the kernel of multiplication by N on an elliptic curve E. Thus,

for the curve E = (V , J)/Λ,

EN(C) = 1
N
Λ/Λ ' Λ/NΛ ≈ (Z/NZ)2.

A level-N structure on E is a pair of points η = (t1, t2) in E(C) that forms an ordered
basis for EN(C).

For an elliptic curve E over any field, there is an algebraically defined (Weil)
pairing

eN : EN × EN → µN.

When the ground field is C, this induces an isomorphism
∧2 (EN(C)) ' µN(C). In

the following, we fix a primitiveNth root ζ of 1 in C, and we require that our level-N
structures satisfy the condition eN(t1, t2) = ζ.

Identify Γ(N) with the subgroup of SL(V) whose elements preserveΛ and act as
the identity on Λ/NΛ. On passing to the quotient by Γ(N), we obtain a one-to-one
correspondence between the points of Γ(N)\D and the isomorphism classes of pairs
consisting of an elliptic curve E over C and a level-N structure η on E. Let YN denote
the algebraic curve over C with YanN = Γ(N)\D.

Let f : E → S be a family of elliptic curves over a scheme S, i.e., a flat map of
schemes together with a section whose fibres are elliptic curves. A level-N structure
on E/S is an ordered pair of sections to f that give a level-N structure on Es for each
closed point s of S.

Proposition 1.2. Let f : E→ S be a family of elliptic curves on a smooth algebraic curve
S over C, and let η be a level-N structure on E/S. The map γ : S(C) → YN(C) sending
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s ∈ S(C) to the point of Γ(N)\D corresponding to (Es,ηs) is regular, i.e., defined by a
morphism of algebraic curves.

Proof. We first show that γ is holomorphic. For this, we use that P(VC) is the Grass-
mann manifold classifying the one-dimensional quotients of VC. This means that,
for any complex manifoldM and surjective homomorphism α : OM ⊗R V →W of
vector sheaves on M with W of rank 1, the map sending m ∈ M to the point of
P(VC) corresponding to the quotient αm : VC →Wm of VC is holomorphic.

Let f : E → S be a family of elliptic curves on a connected smooth algebraic
variety S. The exponential map defines an exact sequence of sheaves on San

0 −→ R1f∗Z −→ T0(E
an/San) −→ Ean −→ 0

whose fibre at a point s ∈ San is the sequence (1.1) for Es. From the first map in the
sequence we get a surjective map

(1.3) OSan ⊗Z R1f∗Z� T0(E
an/San).

Let (t1, t2) be a level-N structure on E/S. Each point of San has an open neighbour-
hood U such that t1|Uand t2|U lift to sections t̃1 and t̃2 of T0(E

an/San) over U; now
Nt̃1 and Nt̃2 are sections of R1f∗Z over U, and they define an isomorphism

Z2
U → R1f∗Z|U.

On tensoring this with OUan ,

OUan ⊗Z Z2
U → OUan ⊗ R1f∗Z|U

and composing with (1.3), we get a surjective map

OUan ⊗R V � T0(E
an/San)|U

of vector sheaves on U, which defines a holomorphic map U→ P(VC). This maps
into D, and its composite with the quotient map D→ Γ(N)\D is the map γ. There-
fore γ is holomorphic.

It remains to show that γ is algebraic. We now assume that S is a curve. After
passing to a finite covering, we may suSppose that N is even. Let ȲN (resp. S̄) be
the completion of YN (resp. S) to a smooth complete algebraic curve. We have a
holomorphic map

San
γ−→ YanN ⊂ ȲanN ;

to show that it is regular, it suffices to show that it extends to a holomorphic map of
compact Riemann surfaces S̄an → ȲanN . The curve Y2 is isomorphic to P1 r {0,1,∞}.
The composed map

San
γ−→ YanN

onto−→ Yan2 ≈ P1(C)r {0,1,∞}
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does not have an essential singularity at any of the (finitely many) points of S̄an r
San because this would violate the big Picard theorem.3 Therefore, it extends to a
holomorphic map S̄an → P1(C), which implies that γ extends to a holomorphic
map γ̄ : S̄an → ȲanN , as required. �

Let F be the functor sending a scheme S of finite type over C to the set of
isomorphism classes of pairs consisting of a family elliptic curves f : E→ S over S
and a level-N structure η on E. According to Mumford [44], Chapter 7, the functor
F is representable when N > 3. More precisely, when N > 3 there exists a smooth
algebraic curve SN over C and a family of elliptic curves over SN endowed with a
level N structure that is universal in the sense that any similar pair on a scheme S is
isomorphic to the pullback of the universal pair by a unique morphism α : S→ SN.

Theorem 1.4. There is a canonical isomorphism γ : SN → YN.

Proof. According to Proposition 1.2, the universal family of elliptic curves with level-
N structure on SN defines a morphism of smooth algebraic curves γ : SN → YN.
Both sets SN(C) and YN(C) are in natural one-to-one correspondence with the
set of isomorphism classes of complex elliptic curves with level-N structure, and
γ sends the point in SN(C) corresponding to a pair (E,η) to the point in YN(C)
corresponding to the same pair. Therefore, γ(C) is bijective, which implies that γ is
an isomorphism. �

In particular, we have shown that the curve SN, constructed by Mumford purely
in terms of algebraic geometry, is isomorphic by the obvious map to the curve YN,
constructed analytically. Of course, this is well known, but it is difficult to find a
proof of it in the literature. For example, Brian Conrad has noted that it is used
without reference in [30].

Theorem 1.4 says that there exists a single algebraic curve over C enjoying the
good properties of both SN and YN.

2. Hermitian symmetric domains

The natural generalization of the complex upper half plane is a hermitian
symmetric domain.

Preliminaries on Cartan involutions and polarizations

LetG be a connected algebraic group over R, and let σ0 : g 7→ ḡ denote complex
conjugation on GC with respect to G. A Cartan involution of G is an involution θ of
G (as an algebraic group over R) such that the group

G(θ)(R) = {g ∈ G(C) | g = θ(ḡ)}

3Recall that this says that a holomorphic function on the punctured disk with an essential singularity
at 0 omits at most one value in C. Therefore a function on the punctured disk that omits two values has
(at worst) a pole at 0, and so extends to a function from the whole disk to P1(C).
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is compact. ThenG(θ) is a compact real form ofGC, and θ acts onG(C) as σ0σ = σσ0
where σ denotes complex conjugation on GC with respect to G(θ).

Consider, for example, the algebraic group GLV attached to a real vector space
V . The choice of a basis for V determines a transpose operator g 7→ gt, and θ : g 7→
(gt)−1 is a Cartan involution of GLV because GL(θ)V (R) is the unitary group. The
basis determines an isomorphism GLV ' GLn, and σ0(A) = Ā and σ(A) = (Āt)−1

for A ∈ GLn(C).
A connected algebraic group G has a Cartan involution if and only if it has a

compact real form, which is the case if and only if G is reductive. Any two Cartan
involutions of G are conjugate by an element of G(R). In particular, all Cartan
involutions of GLV arise, as in the last paragraph, from the choice of a basis for V .
An algebraic subgroup G of GLV is reductive if and only if it is stable under g 7→ gt

for some basis of V , in which case the restriction of g 7→ (gt)−1 to G is a Cartan
involution. Every Cartan involution of G is of this form. See [53], I, §4.

LetC be an element ofG(R)whose square is central (so inn(C) is an involution).
A C-polarization on a real representation V of G is a G-invariant bilinear form ϕ : V ×
V → R such that the form ϕC : (x,y) 7→ ϕ(x,Cy) is symmetric and positive definite.

Theorem 2.1. If inn(C) is a Cartan involution of G, then every finite dimensional real
representation of G carries a C-polarization; conversely, if one faithful finite dimensional
real representation of G carries a C-polarization, then inn(C) is a Cartan involution.

Proof. An R-bilinear form ϕ on a real vector space V defines a sesquilinear form
ϕ′ : (u, v) 7→ ϕC(u, v̄) on V(C), and ϕ′ is hermitian (and positive definite) if and
only if ϕ is symmetric (and positive definite).

Let G→ GLV be a representation of G. If inn(C) is a Cartan involution of G,
then G(innC)(R) is compact, and so there exists a G(innC)-invariant positive definite
symmetric bilinear form ϕ on V . Then ϕC is G(C)-invariant, and so

ϕ′(gu, (σg)v) = ϕ′(u, v), for all g ∈ G(C), u, v ∈ VC,

where σ is the complex conjugation on GC with respect to G(innC). Now σg =

inn(C)(ḡ) = inn(C−1)(ḡ), and so, on replacing v with C−1v in the equality, we find
that

ϕ′(gu, (C−1ḡC)C−1v) = ϕ′(u,C−1v), for all g ∈ G(C), u, v ∈ VC.

In particular, ϕ(gu,C−1gv) = ϕ(u,C−1v) when g ∈ G(R) and u, v ∈ V . Therefore,
ϕC−1 is G-invariant. As (ϕC−1)C = ϕ, we see that ϕ is a C-polarization.

For the converse, one shows that, if ϕ is a C-polarization on a faithful represen-
tation, then ϕC is invariant under G(innC)(R), which is therefore compact. �

2.2. Variant. Let G be an algebraic group over Q, and let C be an element of G(R)
whose square is central. AC-polarization on aQ-representation V ofG is aG-invariant
bilinear form ϕ : V × V → Q such that ϕR is a C-polarization on VR. In order to
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show that a Q-representation V of G is polarizable, it suffices to check that VR is
polarizable. We prove this when C2 acts as +1 or −1 on V , which are the only cases
we shall need. Let P(Q) (resp. P(R)) denote the space of G-invariant bilinear forms
on V (resp. on VR) that are symmetric when C2 acts as +1 or skew-symmetric when
it acts as −1. Then P(R) = R ⊗Q P(Q). The C-polarizations of VR form an open
subset of P(R), whose intersection with P(Q) consists of the C-polarizations of V .

Definition of hermitian symmetric domains

Let M be a complex manifold, and let Jp : TpM → TpM denote the action
of i =

√
−1 on the tangent space at a point p of M. A hermitian metric on M

is a riemannian metric g on the underlying smooth manifold of M such that Jp
is an isometry for all p.4 A hermitian manifold is a complex manifold equipped
with a hermitian metric g, and a hermitian symmetric space is a connected hermitian
manifoldM that admits a symmetry at each point p, i.e., an involution sp having
p as an isolated fixed point. The group Hol(M) of holomorphic automorphisms
of a hermitian symmetric spaceM is a real Lie group whose identity component
Hol(M)+ acts transitively onM.

Every hermitian symmetric spaceM is a product of hermitian symmetric spaces
of the following types:

• Noncompact type — the curvature is negative5 and Hol(M)+ is a noncom-
pact adjoint Lie group; example, the complex upper half plane.

• Compact type — the curvature is positive and Hol(M)+ is a compact adjoint
Lie group; example, the Riemann sphere.

• Euclidean type — the curvature is zero;M is isomorphic to a quotient of a
space Cn by a discrete group of translations.

In the first two cases, the space is simply connected. A hermitian symmetric space
is indecomposable if it is not a product of two hermitian symmetric spaces of lower
dimension. For an indecomposable hermitian symmetric spaceM of compact or
noncompact type, the Lie group Hol(M)+ is simple. See [27], Chapter VIII.

A hermitian symmetric domain is a connected complex manifold that admits a
hermitian metric for which it is a hermitian symmetric space of noncompact type.6

The hermitian symmetric domains are exactly the complex manifolds isomorphic
to bounded symmetric domains (via the Harish-Chandra embedding; [53], II §4).
Thus a connected complex manifoldM is a hermitian symmetric domain if and
only if

4Then gp is the real part of a unique hermitian form on the complex vector space TpM, which
explains the name.

5This means that the sectional curvature K(p,E) is< 0 for every p ∈M and every two-dimensional
subspace E of TpM.

6Usually a hermitian symmetric domain is defined to be a complex manifold equippedwith a hermitian
metric etc.. However, a hermitian symmetric domain in our sense satisfies conditions (A.1) and (A.2) of
[31], and so has a canonical Bergman metric, invariant under all holomorphic automorphisms.
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(a) it is isomorphic to a bounded open subset of Cn for some n, and
(b) for each point p of M, there exists a holomorphic involution of M (the

symmetry at p) having p as an isolated fixed point.

For example, the bounded domain {z ∈ C | |z| < 1} is a hermitian symmetric
domain because it is homogeneous and admits a symmetry at the origin (z 7→ −1/z).
The map z 7→ z−i

z+i is an isomorphism from the complex upper half plane D onto the
open unit disk, and so D is also a hermitian symmetric domain. Its automorphism
group is

Hol(D) ' SL2(R)/{±I} ' PGL2(R)+.

Classification in terms of real groups

2.3. LetU1 be the circle group,U1 = {z ∈ C | |z| = 1}. For each point o of a hermitian
symmetric domain D, there is a unique homomorphism uo : U

1 → Hol(D) such
that uo(z) fixes o and acts on ToD as multiplication by z (z ∈ U1).7 In particular,
uo(−1) is the symmetry at o.

Example 2.4. Let D be the complex upper half plane and let o = i. Let h : U1 →
SL2(R) be the homomorphism a + bi 7→

(
a b

−b a

)
. Then h(z) fixes o, and it acts as

z2 on To(D). For z ∈ U1, choose a square root
√
z in U1, and let uo(z) = h(

√
z)

mod ±I. Then uo(z) is independent of the choice of
√
z because h(−1) = −I. The

homomorphism uo : U
1 → SL2(Z)/ {±I} = Hol(D) has the correct properties.

Now let D be a hermitian symmetric domain. Because Hol(D) is an adjoint
Lie group, there is a unique real algebraic group H such that H(R)+ = Hol(D)+.
Similarly,U1 is the group ofR-points of the algebraic torus S1 defined by the equation
X2 + Y2 = 1. A point o ∈ D defines a homomorphism u : S1 → H of real algebraic
groups.

Theorem 2.5. The homomorphism u : S1 → H has the following properties:

SU1: only the characters z,1, z−1 occur in the representation of S1 on Lie(H)C defined
by u;8

SU2: inn(u(−1)) is a Cartan involution.

Conversely, if H is a real adjoint algebraic group with no compact factor and u : S1 → H

satisfies the conditions (SU1,2), then the set D of conjugates of u by elements of H(R)+

has a natural structure of a hermitian symmetric domain for which u(z) acts on TuD as
multiplication by z; moreover, H(R)+ = Hol(D)+.

Proof. The proof is sketched in [40], 1.21; see also [53], II, Proposition 3.2 �

7See, for example, [40], Theorem 1.9.
8The maps S1 u−→HR

Ad−→ Aut(Lie(H)) define an action of S1 on Lie(H), and hence on Lie(H)C.
The condition means that Lie(H)C is a direct sum of subspaces on which u(z) acts as z, 1, or z−1.
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Thus, the pointed hermitian symmetric domains are classified by the pairs
(H,u) as in the theorem. Changing the point corresponds to conjugating u by an
element of H(R).

Classification in terms of root systems

We now assume that the reader is familiar with the classification of semisimple
algebraic groups over an algebraically closed field in terms of root systems (e.g., [29]).

Let D be an indecomposable hermitian symmetric domain. Then the corre-
sponding group H is simple, and HC is also simple because H is an inner form of
its compact form (by SU2).9 Thus, from D and a point o, we get a simple algebraic

group HC over C and a nontrivial cocharacter µ def
= uC : Gm → HC satisfying the

condition:

(*) Gm acts on Lie(HC) through the characters z, 1, z−1.

Changing o replaces µ by a conjugate. Thus the next step is to classify the pairs (G,M)

consisting of a simple algebraic group over C and a conjugacy class of nontrivial
cocharacters of G satisfying (*).

Fix a maximal torus T of G and a base S for the root system R = R(G, T), and
let R+ be the corresponding set of positive roots. As each µ inM factors through
some maximal torus, and all maximal tori are conjugate, we may choose µ ∈ M
to factor through T . Among the µ inM factoring through T , there is exactly one
such that 〈α,µ〉 > 0 for all α ∈ R+ (because the Weyl group acts simply transitively
on the Weyl chambers). The condition (*) says that 〈α,µ〉 ∈ {1,0,−1} for all roots
α. Since µ is nontrivial, not all of the 〈α,µ〉 can be zero, and so 〈α̃,µ〉 = 1 where
α̃ is the highest root. Recall that the highest root α̃ =

∑
α∈S nαα has the property

that nα > mα for any other root
∑
α∈Smαα; in particular, nα > 1. It follows that

〈α,µ〉 = 0 for all but one simple root α, and that for that simple root 〈α,µ〉 = 1 and
nα = 1. Thus, the pairs (G,M) are classified by the simple roots α for which nα = 1
— these are called the special simple roots. On examining the tables, one finds that
the special simple roots are as in the following table:

type α̃ special roots #

An α1 + α2 + · · ·+ αn α1, . . . ,αn n

Bn α1 + 2α2 + · · ·+ 2αn α1 1

Cn 2α1 + · · ·+ 2αn−1 + αn αn 1

Dn α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn α1,αn−1,αn 3

E6 α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 α1,α6 2

E7 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 α7 1

E8,F4,G2 none 0

9If HC is not simple, say, HC = H1 × H2, then H = (H1)C/R, and every inner form of H is

isomorphic toH itself (by Shapiro’s lemma), which is not compact becauseH(R) =H1(C).
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Mnemonic: the number of special simple roots is one less than the connection index
(P(R) : Q(R)) of the root system.10

To every indecomposable hermitian symmetric domain we have attached a
special node, and we next show that every special node arises from a hermitian
symmetric domain. Let G be a simple algebraic group over C with a character µ
satisfying (*). LetU be the (unique) compact real form ofG, and let σ be the complex
conjugation on G with respect to U. Finally, let H be the real form of G such that
inn(µ(−1)) ◦ σ is the complex conjugation on G with respect to H. The restriction
of µ to U1 ⊂ C× maps into H(R) and defines a homomorphism u satisfying the
conditions (SU1,2) of (2.5). The hermitian symmetric domain corresponding to
(H,u) gives rise to (G,µ). Thus there are indecomposable hermitian symmetric
domains of all possible types except E8, F4, and G2.

LetH be a real simple group such that there exists a homomorphism u : S1 → H

satisfying (SV1,2). The set of such u’s has two connected components, interchanged
by u ↔ u−1, each of which is an H(R)+-conjugacy class. The u’s form a single
H(R)-conjugacy class except when s is moved by the opposition involution ([19],
1.2.7, 1.2.8). This happens in the following cases: type An and s 6= n

2 ; type Dn with
n odd and s = αn−1 or αn; type E6 (see p. 527 below).

Example: the Siegel upper half space

A symplectic space (V ,ψ) over a field k is a finite dimensional vector space V
over k together with a nondegenerate alternating form ψ on V . The symplectic group
S(ψ) is the algebraic subgroup of GLV of elements fixing ψ. It is an almost simple
simply connected group of type Cn−1 where n = 1

2 dimk V .
Now let k = R, and let H = S(ψ). Let D be the space of complex structures

J on V such that (x,y) 7→ ψJ(x,y)
def
= ψ(x, Jy) is symmetric and positive definite.

The symmetry is equivalent to J lying in S(ψ). Therefore, D is the set of complex
structures J on V for which J ∈ H(R) and ψ is a J-polarization for H.

The action,
g, J 7→ gJg−1 : H(R)×D→ D,

of H(R) on D is transitive ([40], §6). Each J ∈ D defines an action of C on V , and

(2.6) ψ(Jx, Jy) = ψ(x,y) all x,y ∈ V =⇒ ψ(zx, zy) = |z|2ψ(x,y) all x,y ∈ V .

Let hJ : S→ GLV be the homomorphism such that hJ(z) acts on V as multiplication
by z, and let VC = V+ ⊕ V− be the decomposition of VC into its ±i eigenspaces for
J. Then hJ(z) acts on V+ as z and on V− as z̄, and so it acts on

Lie(H)C ⊂ End(V)C ' V∨
C ⊗ VC = (V+ ⊕ V−)∨ ⊗ (V+ ⊕ V−),

through the characters z−1z̄, 1, zz̄−1.

10It is possible to prove this directly. Let S+ = S∪ {α0} where α0 is the negative of the highest root
— the elements of S+ correspond to the nodes of the completed Dynkin diagram ([7], VI 4, 3). The group
P/Q acts on S+, and it acts simply transitively on the set {simple roots}∪ {α0} ([19], 1.2.5).
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For z ∈ U1, (2.6) shows that hJ(z) ∈ H; choose a square root
√
z of z in

U1, and let uJ(z) = hJ(
√
z) mod ±1. Then uJ is a well-defined homomorphism

U1 → Had(R), and it satisfies the conditions (SU1,2) of Theorem 2.5. Therefore, D
has a natural complex structure for which z ∈ U1 acts on TJ(D) as multiplication by
z and Hol(D)+ = Had(R)+. With this structure, D is the (unique) indecomposable
hermitian symmetric domain of type Cn−1. It is called the Siegel upper half space (of
degree, or genus, n).

3. Discrete subgroups of Lie groups

The algebraic varieties we are concerned with are quotients of hermitian sym-
metric domains by the action of discrete groups. In this section, we describe the
discrete groups of interest to us.

Lattices in Lie groups

Let H be a connected real Lie group. A lattice in H is a discrete subgroup Γ of
finite covolume, i.e., such that H/Γ has finite volume with respect to an H-invariant
measure. For example, the lattices in Rn are exactly the Z-submodules generated by
bases for Rn, and two such lattices are commensurable11 if and only if they generate
the same Q-vector space. Every discrete subgroup commensurable with a lattice is
itself a lattice.

Now assume thatH is semisimple with finite centre. A lattice Γ inH is irreducible
if Γ · N is dense in H for every noncompact closed normal subgroup N of H. For
example, if Γ1 and Γ2 are lattices in H1 and H2, then the lattice Γ1 × Γ2 in H1 × H2

is not irreducible because (Γ1 × Γ2) · (1×H2) = Γ1 ×H2 is not dense. On the other
hand, SL2(Z[

√
2]) can be realized as an irreducible lattice in SL2(R)× SL2(R) via the

embeddings Z[
√
2]→ R given by

√
2 7→

√
2 and

√
2 7→ −

√
2.

Theorem 3.1. Let H be a connected semisimple Lie group with no compact factors and
trivial centre, and let Γ be a lattice H. Then H can be written (uniquely) as a direct product

H = H1 × · · · ×Hr of Lie subgroups Hi such that Γi
def
= Γ ∩Hi is an irreducible lattice in

Hi and Γ1 × · · · × Γr has finite index in Γ

Proof. See [42], 4.24. �

Theorem 3.2. LetD be a hermitian symmetric domain, and let H = Hol(D)+. A discrete
subgroup Γ of H is a lattice if and only if Γ\D has finite volume. Let Γ be a lattice in
H; then D can be written (uniquely) as a product D = D1 × · · · × Dr of hermitian
symmetric domains such that Γi

def
= Γ ∩Hol(Di)+ is an irreducible lattice in Hol(Di)+

and Γ1\D1 × · · · × Γr\Dr is a finite covering of Γ\D.

11Recall that two subgroup S1 and S2 of a group are commensurable if S1 ∩S2 has finite index in both
S1 and S2. Commensurability is an equivalence relation.
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Proof. Let uo be the homomorphism S1 → H attached to a point o ∈ D (see 2.3),
and let θ be the Cartan involution inn(uo(−1)). The centralizer of uo is contained
in H(R)∩H(θ)(R), which is compact. ThereforeD is a quotient of H(R) by a compact
subgroup, from which the first statement follows. For the second statement, let
H = H1 × · · · × Hr be the decomposition of H defined by Γ (see 3.1). Then uo =

(u1, . . . ,ur) where each ui is a homomorphism S1 → Hi satisfying the conditions
SU1,2 of Theorem 2.5. Now D = D1 × · · · ×Dr with Di the hermitian symmetric
domain corresponding to (Hi,ui). This is the required decomposition. �

Proposition 3.3. Let ϕ : H → H′ be a surjective homomorphism of Lie groups with
compact kernel. If Γ is a lattice in H, then ϕ(Γ) is a lattice in H′.

Proof. The proof is elementary (it requires only that H and H′ be locally compact
topological groups). �

Arithmetic subgroups of algebraic groups

Let G be an algebraic group over Q. When r : G→ GLn is an injective homo-
morphism, we let

G(Z)r = {g ∈ G(Q) | r(g) ∈ GLn(Z)}.

Then G(Z)r is independent of r up to commensurability ([4], 7.13), and we some-
times omit r from the notation. A subgroup Γ of G(Q) is arithmetic if it is commen-
surable with G(Z)r for some r.

Theorem 3.4. Let ϕ : G→ G′ be a surjective homomorphism of algebraic groups over Q.
If Γ is an arithmetic subgroup of G(Q), then ϕ(Γ) is an arithmetic subgroup of G′(Q).

Proof. See [4], 8.11. �

An arithmetic subgroup Γ of G(Q) is obviously discrete in G(R), but it need
not be a lattice. For example, Gm(Z) = {±1} is an arithmetic subgroup of Gm(Q) of
infinite covolume in Gm(R) = R×.

Theorem 3.5. Let G be a reductive algebraic group over Q, and let Γ be an arithmetic
subgroup of G(Q).

(a) The quotient Γ\G(R) has finite volume if and only if Hom(G,Gm) = 0; in
particular, Γ is a lattice if G is semisimple.

(b) (Godement compactness criterion) The quotient Γ\G(R) is compact if and only if
Hom(G,Gm) = 0 and G(Q) contains no unipotent element other than 1.

Proof. See [4], 13.2, 8.4.12 �

12Statement (a) was proved in particular cases by Siegel and others, and in general by Borel and
Harish-Chandra [6]. Statement (b) was conjectured by Godement, and proved independently by Mostow
and Tamagawa [43] and by Borel and Harish-Chandra [6].
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Let k be a subfield of C. An automorphism α of a k-vector space V is said to
be neat if its eigenvalues in C generate a torsion free subgroup of C×. Let G be an
algebraic group over Q. An element g ∈ G(Q) is neat if ρ(g) is neat for one faithful
representation G ↪→ GL(V), in which case ρ(g) is neat for every representation ρ of
G defined over a subfield of C. A subgroup of G(Q) is neat if all its elements are. See
[4], §17.

Theorem 3.6. Let G be an algebraic group over Q, and let Γ be an arithmetic subgroup of
G(Q). Then, Γ contains a neat subgroup of finite index. In particular, Γ contains a torsion
free subgroup of finite index.

Proof. In fact, the neat subgroup can be defined by congruence conditions. See [4],
17.4. �

Definition 3.7. A semisimple algebraic group G over Q is said to be of compact type
if G(R) is compact, and it is said to be of of noncompact type if it does not contain a
nontrivial connected normal algebraic subgroup of compact type.

Thus a simply connected or adjoint group over Q is of compact type if all of its
almost simple factors are of compact type, and it is of noncompact type if none of its
almost simple factors is of compact type. In particular, an algebraic group may be of
neither type.

Theorem 3.8 (Borel density theorem). Let G be a semisimple algebraic group over Q. If
G is of noncompact type, then every arithmetic subgroup of G(Q) is dense in the Zariski
topology.

Proof. See [4], 15.12. �

Proposition 3.9. Let G be a simply connected algebraic group over Q of noncompact type,
and let Γ be an arithmetic subgroup of G(Q). Then Γ is irreducible as a lattice in G(R) if
and only if G is almost simple.

Proof. ⇒: Suppose G = G1 × G2, and let Γ1 and Γ2 be arithmetic subgroups in
G1(Q) and G2(Q). Then Γ1 × Γ2 is an arithmetic subgroup of G(Q), and so Γ is
commensurable with it, but Γ1 × Γ2 is not irreducible.

⇐: Let G(R) = H1 × · · · ×Hr be a decomposition of the Lie group G(R) such
that Γi

def
= Γ ∩Hi is an irreducible lattice in Hi (cf. Theorem 3.1). There exists a finite

Galois extension F of Q in R and a decomposition GF = G1 × · · · ×Gr of GF into
a product of algebraic subgroups Gi over F such that Hi = Gi(R) for all i. Because
Γi is Zariski dense in Gi (Borel density theorem), this last decomposition is stable
under the action of Gal(F/Q), and hence arises from a decomposition over Q. This
contradicts the almost simplicity of G unless r = 1. �

The rank, rank(G), of a semisimple algebraic group over R is the dimension
of a maximal split torus in G, i.e., rank(G) = r if G contains an algebraic subgroup
isomorphic to Grm but not to Gr+1

m .
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Theorem 3.10 (Margulis superrigidity theorem). Let G and H be algebraic groups
over Q with G simply connected and almost simple. Let Γ be an arithmetic subgroup of
G(Q), and let δ : Γ → H(Q) be a homomorphism. If rank(GR) > 2, then the Zariski
closure of δ(Γ) in H is a semisimple algebraic group (possibly not connected), and there is a
unique homomorphism ϕ : G→ H of algebraic groups such that ϕ(γ) = δ(γ) for all γ in
a subgroup of finite index in Γ .

Proof. This the special case of [33], Chapter VIII, Theorem B, p. 258, in which
K = Q = l, S = {∞}, G = G, H = H, and Λ = Γ . �

Arithmetic lattices in Lie groups

For an algebraic groupG overQ,G(R) has a natural structure of a real Lie group,
which is connected if G is simply connected (Theorem of Cartan).

Let H be a connected semisimple real Lie group with no compact factors and
trivial centre. A subgroup Γ in H is arithmetic if there exists a simply connected
algebraic group G over Q and a surjective homomorphism ϕ : G(R) → H with
compact kernel such that Γ is commensurable with ϕ(G(Z)). Such a subgroup is a
lattice by Theorem 3.5(a) and Proposition 3.3.

Example 3.11. Let H = SL2(R), and let B be a quaternion algebra over a totally
real number field F such that H⊗F,v R ≈M2(R) for exactly one real prime v. Let G
be the algebraic group over Q such that G(Q) = {b ∈ B | NormB/Q(b) = 1}. Then
H⊗Q R ≈M2(R)×H×H× · · · where H is usual quaternion algebra, and so there
exists a surjective homomorphism ϕ : G(R) → SL2(R) with compact kernel. The
image under ϕ of any arithmetic subgroup of G(Q) is an arithmetic subgroup Γ of
SL2(R), and every arithmetic subgroup of SL2(R) is commensurable with one of
this form. If F = Q and B = M2(Q), then G = SL2Q and Γ\ SL2(R) is noncompact
(see §1); otherwise B is a division algebra, and Γ\ SL2(R) is compact by Godement’s
criterion (3.5b).

For almost a century, PSL2(R) was the only simple Lie group known to have
non arithmetic lattices, and when further examples were discovered in the 1960s
they involved only a few other Lie groups. This gave credence to the idea that, except
in a few groups of low rank, all lattices are arithmetic (Selberg’s conjecture). This
was proved by Margulis in a very precise form.

Theorem 3.12 (Margulis arithmeticity theorem). Every irreducible lattice in a semisim-
ple Lie group is arithmetic unless the group is isogenous to SO(1,n) × (compact) or
SU(1,n)× (compact).

Proof. For a discussion of the theorem, see [42], §5B. For proofs, see [33], Chapter
IX, and [67], Chapter 6. �

Theorem 3.13. Let H be the identity component of the group of automorphisms of a
hermitian symmetric domain D, and let Γ be a discrete subgroup of H such that Γ\D
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has finite volume. If rankHi > 2 for each factor Hi in (3.1), then there exists a simply
connected algebraic group G of noncompact type over Q and a surjective homomorphism
ϕ : G(R)→ H with compact kernel such that Γ is commensurable with ϕ(G(Z)). Moreover,
the pair (G,ϕ) is unique up to a unique isomorphism.

Proof. The group Γ is a lattice in H by Theorem 3.2. Each factor Hi is again the
identity component of the group of automorphisms of a hermitian symmetric
domain (Theorem 3.2), and so we may suppose that Γ is irreducible. The existence
of the pair (G,ϕ) just means that Γ is arithmetic, which follows from the Margulis
arithmeticity theorem (3.12).

Because Γ is irreducible, G is almost simple (see 3.9). As G is simply connected,
this implies that G = (Gs)F/Q where F is a number field and Gs is a geometrically
almost simple algebraic group over F. If F had a complex prime, GR would have a
factor (G′)C/R, but (G′)C/R has no inner form except itself (by Shapiro’s lemma),
and so this is impossible. Therefore F is totally real.

Let (G1,ϕ1) be a second pair. Because the kernel of ϕ1 is compact, its inter-
section with G1(Z) is finite, and so there exists an arithmetic subgroup Γ1 of G1(Q)

such ϕ1|Γ1 is injective. Because ϕ(G(Z)) and ϕ1(Γ1) are commensurable, there exists
an arithmetic subgroup Γ ′ of G(Q) such that ϕ(Γ ′) ⊂ ϕ1(Γ1). Now the Margulis
superrigidity theorem 3.10 shows that there exists a homomorphism α : G → G1

such that

(3.14) ϕ1(α(γ)) = ϕ(γ)

for all γ in a subgroup Γ ′′ of Γ ′ of finite index. The subgroup Γ ′′ of G(Q) is Zariski-
dense in G (Borel density theorem 3.8), and so (3.14) implies that

(3.15) ϕ1 ◦ α(R) = ϕ.

BecauseG andG1 are almost simple, (3.15) implies that α is an isogeny, and because
G1 is simply connected, this implies that α is an isomorphism. It is unique because
it is uniquely determined on an arithmetic subgroup of G. �

Congruence subgroups of algebraic groups

As in the case of elliptic modular curves, we shall need to consider a special
class of arithmetic subgroups, namely, the congruence subgroups.

Let G be an algebraic group over Q. Choose an embedding of G into GLn, and
define

Γ(N) = G(Q) ∩ {A ∈ GLn(Z) | A ≡ 1 mod N} .

A congruence subgroup13 of G(Q) is any subgroup containing Γ(N) as a subgroup of
finite index. Although Γ(N) depends on the choice of the embedding, this definition
does not — in fact, the congruence subgroups are exactly those of the form K∩G(Q)

for K a compact open subgroup of G(Af).

13Subgroup defined by congruence conditions.
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For a surjective homomorphism G → G′ of algebraic groups over Q, the ho-
momorphism G(Q)→ G′(Q) need not send congruence subgroups to congruence
subgroups. For example, the image in PGL2(Q) of a congruence subgroup of SL2(Q)

is an arithmetic subgroup (see 3.4) but not necessarily a congruence subgroup.
Every congruence subgroup is an arithmetic subgroup, and for a simply con-

nected group the converse is often, but not always, true. For a survey of what is known
about the relation of congruence subgroups to arithmetic groups (the congruence
subgroup problem), see [49].

Aside 3.16. Let H be a connected adjoint real Lie group without compact factors. The
pairs (G,ϕ) consisting of a simply connected algebraic group over Q and a surjec-
tive homomorphism ϕ : G(R)→ H with compact kernel have been classified (this
requires class field theory). Therefore the arithmetic subgroups of H have been clas-
sified up to commensurability. When all arithmetic subgroups are congruence, there
is even a classification of the groups themselves in terms of congruence conditions
or, equivalently, in terms of compact open subgroups of G(Af).

4. Locally symmetric varieties

To obtain an algebraic variety from a hermitian symmetric domain, we need to
pass to the quotient by an arithmetic group.

Quotients of hermitian symmetric domains

Let D be a hermitian symmetric domain, and let Γ be a discrete subgroup of
Hol(D)+. If Γ is torsion free, then Γ acts freely on D, and there is a unique complex
structure on Γ\D for which the quotient map π : D→ Γ\D is a local isomorphism.
Relative to this structure, a map ϕ from Γ\D to a second complex manifold is
holomorphic if and only if ϕ ◦ π is holomorphic.

When Γ is torsion free, we often write D(Γ) for Γ\D regarded as a complex
manifold. In this case,D is the universal covering space ofD(Γ) and Γ is the group of
covering transformations. The choice of a point p ∈ D determines an isomorphism
of Γ with the fundamental group π1(D(Γ),πp).14

The complex manifold D(Γ) is locally symmetric in the sense that, for each
p ∈ D(Γ), there is an involution sp defined on a neighbourhood of p having p as an
isolated fixed point.

The algebraic structure on the quotient

Recall that Xan denotes the complex manifold attached to a smooth complex
algebraic variety X. The functor X Xan is faithful, but it is far from being surjective
on arrows or on objects. For example,

(
A1
)an

= C and the exponential function
is a nonpolynomial holomorphic map C→ C. A Riemann surface arises from an

14Let γ ∈ Γ , and choose a path from p to γp; the image of this in Γ\D is a loop whose homotopy
class does not depend on the choice of the path.
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algebraic curve if and only if it can be compactified by adding a finite number of
points. In particular, if a Riemann surface is an algebraic curve, then every bounded
function on it is constant, and so the complex upper half plane is not an algebraic
curve (the function z−i

z+i is bounded).

Chow’s theorem An algebraic variety (resp. complex manifold) is projective if it
can be realized as a closed subvariety of Pn for some n (resp. closed submanifold of
(Pn)an).

Theorem 4.1 (Chow 1949 [11]). The functor X Xan from smooth projective complex
algebraic varieties to projective complex manifolds is an equivalence of categories.

In other words, a projective complex manifold has a unique structure of a smooth
projective algebraic variety, and every holomorphic map of projective complex man-
ifolds is regular for these structures. See [63], 13.6, for the proof.

Chow’s theorem remains true when singularities are allowed and “complex
manifold” is replaced by “complex space”.

The Baily-Borel theorem

Theorem 4.2 (Baily-Borel 1966 [3]). Every quotient D(Γ) of a hermitian symmetric
domain D by a torsion-free arithmetic subgroup Γ of Hol(D)+ has a canonical structure of
an algebraic variety.

More precisely, let G be the algebraic group over Q attached to (D, Γ) in The-
orem 3.13, and assume, for simplicity, that G has no normal algebraic subgroup
of dimension 3. Let An be the vector space of automorphic forms on D for the
nth power of the canonical automorphy factor. Then A =

⊕
n>0An is a finitely

generated graded C-algebra, and the canonical map

D(Γ)→ D(Γ)∗
def
= Proj(A)

realizes D(Γ) as a Zariski-open subvariety of the projective algebraic variety D(Γ)∗

([3], §10).

Borel’s theorem

Theorem 4.3 (Borel 1972 [5]). Let D(Γ) be the quotient Γ\D in (4.2) endowed with
its canonical algebraic structure, and let V be a smooth complex algebraic variety. Every
holomorphic map f : Van → D(Γ)an is regular.

In the proof of Proposition 1.2, we saw that for curves this theorem follows from
the big Picard theorem. Recall that this says that every holomorphic map from a
punctured disk to P1(C)r {three points} extends to a holomorphic map from the
whole disk to P1(C). Following earlier work of Kwack and others, Borel generalized
the big Picard theorem in two respects: the punctured disk is replaced by a product
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of punctured disks and disks, and the target space is allowed to be any quotient of a
hermitian symmetric domain by a torsion-free arithmetic group.

Resolution of singularities ([28]) shows that every smooth quasi-projective alge-
braic variety V can be embedded in a smooth projective variety V̄ as the complement
of a divisor with normal crossings. This condition means that V̄an r Van is locally
a product of disks and punctured disks. Therefore f|Van extends to a holomorphic
map V̄an → D(Γ)∗ (by Borel) and so is a regular map (by Chow).

Locally symmetric varieties

A locally symmetric variety is a smooth algebraic variety X over C such that Xan

is isomorphic to Γ\D for some hermitian symmetric domain D and torsion-free
subgroup Γ of Hol(D).15 In other words, X is a locally symmetric variety if the
universal covering spaceD of Xan is a hermitian symmetric domain and the group of
covering transformations ofD over Xan is a torsion-free subgroup Γ of Hol(D). When
Γ is an arithmetic subgroup of Hol(D)+, X is called an arithmetic locally symmetric
variety. The group Γ is automatically a lattice, and so the Margulis arithmeticity
theorem (3.12) shows that nonarithmetic locally symmetric varieties can occur only
when there are factors of low dimension.

A nonsingular projective curve over C has a model over Qal if and only if it
contains an arithmetic locally symmetric curve as the complement of a finite set
(Belyi; see [55], p. 71). This suggests that there are too many arithmetic locally
symmetric varieties for us to be able to say much about their arithmetic.

LetD(Γ) be an arithmetic locally symmetric variety. Recall that Γ is arithmetic if
there is a simply connected algebraic groupG overQ and a surjective homomorphism
ϕ : G(R) → Hol(D)+ with compact kernel such that Γ is commensurable with
ϕ(G(Z)). If there exists a congruence subgroup Γ0 of G(Z) such that Γ contains ϕ(Γ0)
as a subgroup of finite index, then we call D(Γ) a connected Shimura variety. Only for
Shimura varieties do we have a rich arithmetic theory (see [14], [19], and the many
articles of Shimura, especially, [57, 58, 59, 60, 61]).

Example: Siegel modular varieties

For an abelian variety A over C, the exponential map defines an exact sequence

0 −→ Λ −→ T0(A
an)

exp−→ Aan −→ 0

with T0(Aan) a complex vector space andΛ a lattice in T0(Aan) canonically isomorphic
to H1(A

an,Z).

15As Hol(D) has only finitely many components, Γ ∩Hol(D)+ has finite index in Γ . Sometimes we
only allow discrete subgroups of Hol(D) contained in Hol(D)+. In the theory of Shimura varieties, we
generally consider only “sufficiently small” discrete subgroups, and we regard the remainder as “noise”.
Algebraic geometers do the opposite.
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Theorem 4.4 (Riemann’s Theorem). The functor A  (T0(A),Λ) is an equivalence
from the category of abelian varieties over C to the category of pairs consisting of a C-vector
space V and a lattice Λ in V that admits a Riemann form.

Proof. See, for example, [47], Chapter I. �

A Riemann form for a pair (V ,Λ) is an alternating formψ : Λ×Λ→ Z such that
the pairing (x,y) 7→ ψR(x,

√
−1y) : V × V → R is symmetric and positive definite.

Here ψR denotes the linear extension of ψ to R⊗Z Λ ' V . A principal polarization
on an abelian variety A over C is Riemann form for (T0(A),Λ) whose discriminant is
±1. A level-N structure on an abelian variety over C is defined similarly to an elliptic
curve (see §1; we require it to be compatible with the Weil pairing).

Let (V ,ψ) be a symplectic space over R, and let Λ be a lattice in V such that
ψ(Λ,Λ) ⊂ Z andψ|Λ×Λ has discriminant±1. The points of the corresponding Siegel
upper half space D are the complex structures J on V such that ψJ is Riemann form
(see §2). Themap J 7→ (V , J)/Λ is a bijection fromD to the set of isomorphism classes
of principally polarized abelian varieties over C equipped with an isomorphism
Λ→ H1(A,Z). On passing to the quotient by the principal congruence subgroup

Γ(N), we get a bijection from DN
def
= Γ(N)\D to the set of isomorphism classes of

principally polarized abelian over C equipped with a level-N structure.

Proposition 4.5. Let f : A→ S be a family of principally polarized abelian varieties on
a smooth algebraic variety S over C, and let η be a level-N structure on A/S. The map
γ : S(C)→ DN(C) sending s ∈ S(C) to the point of Γ(N)\D corresponding to (As,ηs) is
regular.

Proof. The holomorphicity of γ can be proved by the same argument as in the proof
of Proposition 1.2. Its algebraicity then follows from Borel’s theorem 4.3. �

Let F be the functor sending a scheme S of finite type over C to the set of
isomorphism classes of pairs consisting of a family of principally polarized abelian
varieties f : A → S over S and a level-N structure on A. When N > 3, F is repre-
sentable by a smooth algebraic variety SN over C ([44], Chapter 7). This means that
there exists a (universal) family of principally polarized abelian varieties A/SN and a
level-N structure η on A/SN such that, for any similar pair (A′/S,η′) over a scheme
S, there exists a unique morphism α : S→ SN for which α∗(A/SN,η) ≈ (A′/S′,η′).

Theorem 4.6. There is a canonical isomorphism γ : SN → DN.

Proof. The proof is the same as that of Theorem 1.4. �

Corollary 4.7. The universal family of complex tori on DN is algebraic.

5. Variations of Hodge structures

We review the definitions.
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The Deligne torus

The Deligne torus is the algebraic torus S over R obtained from Gm over C by
restriction of the base field; thus

S(R) = C×, SC ' Gm ×Gm.

The map S(R)→ S(C) induced by R→ C is z 7→ (z, z̄). There are homomorphisms

Gm
w−−−−−→ S t−−−→ Gm, t ◦w = −2,

R× a7→a−1

−−−−−→ C× z 7→zz̄−−−→ R×.

The kernel of t is S1. A homomorphism h : S→ G of real algebraic groups gives rise
to cocharacters

µh : Gm → GC, z 7→ hC(z,1), z ∈ Gm(C) = C×,
wh : Gm → G, wh = h ◦w (weight homomorphism).

The following formulas are useful (µ = µh):

hC(z1, z2) = µ(z1) · µ(z2); h(z) = µ(z) · µ(z)(5.1)

h(i) = µ(−1) ·wh(i).(5.2)

Real Hodge structures

A real Hodge structure is a representation h : S→ GLV of S on a real vector space
V . Equivalently, it is a real vector space V together with a Hodge decomposition,

VC =
⊕

p,q∈Z
Vp,q such that Vp,q = Vq,p for all p,q.

To pass from one description to the other, use the rule ([16, 19]):

v ∈ Vp,q ⇐⇒ h(z)v = z−pz̄−qv, all z ∈ C×.

The integers hp,q def
= dimC V

p,q are called the Hodge numbers of the Hodge structure.
A real Hodge structure defines a (weight) gradation on V ,

V =
⊕

m∈Z
Vm, Vm = V ∩

(⊕
p+q=m

Vp,q
)
,

and a descending Hodge filtration,

VC ⊃ · · · ⊃ Fp ⊃ Fp+1 ⊃ · · · ⊃ 0, Fp =
⊕

p′>p
Vp

′,q′
.

The weight gradation and Hodge filtration together determine the Hodge structure
because

Vp,q = (Vp+q)C ∩ F
p ∩ Fq.

Note that the weight gradation is defined by wh. A filtration F on VC arises from a
Hodge structure of weightm on V if and only if

V = Fp ⊕ Fq whenever p+ q = m+ 1.
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The R-linear map C = h(i) is called theWeil operator. It acts as iq−p on Vp,q, and C2

acts as (−1)m on Vm.
Thus a Hodge structure on a real vector space V can be regarded as a homo-

morphism h : S→ GLV , a Hodge decomposition of V , or a Hodge filtration together
with a weight gradation of V . We use the three descriptions interchangeably.

5.3. Let V be a real vector space. To give a Hodge structure h on V of type {(−1,0),
(0,−1)} is the same as giving a complex structure on V : given h, let J act as C =

h(i); given a complex structure, let h(z) act as multiplication by z. The Hodge
decomposition VC = V−1,0⊕V0,−1 corresponds to the decomposition VC = V+⊕V−

of VC into its J-eigenspaces.

Rational Hodge structures

A rational Hodge structure is a Q-vector space V together with a real Hodge
structure on VR such that the weight gradation is defined over Q. Thus to give a
rational Hodge structure on V is the same as giving

• a gradation V =
⊕
m Vm on V together with a real Hodge structure of weight

m on VmR for eachm, or
• a homomorphism h : S→ GLVR such that wh : Gm → GLVR is defined over

Q.

The Tate Hodge structure Q(m) is defined to be the Q-subspace (2πi)mQ of C with
h(z) acting as multiplication by NormC/R(z)

m = (zz̄)m. It has weight −2m and type
(−m,−m).

Polarizations

A polarization of a real Hodge structure (V ,h) of weight m is a morphism of
Hodge structures

(5.4) ψ : V ⊗ V → R(−m), m ∈ Z,

such that

(5.5) (x,y) 7→ (2πi)mψ(x,Cy) : V × V → R

is symmetric and positive definite. The condition (5.5) means that ψ is symmetric if
m is even and skew-symmetric if it is odd, and that (2πi)m · ip−qψC(x, x̄) > 0 for
x ∈ Vp,q.

A polarization of a rational Hodge structure (V ,h) of weightm is a morphism
of rational Hodge structures ψ : V ⊗ V → Q(−m) such that ψR is a polarization
of (VR,h). A rational Hodge structure (V ,h) is polarizable if and only if (VR,h) is
polarizable (cf. 2.2).
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Local systems and vector sheaves with connection

Let S be a complex manifold. A connection on a vector sheaf V on S is a C-linear
homomorphism ∇ : V→ Ω1

S ⊗ V satisfying the Leibniz condition

∇(fv) = df⊗ v+ f · ∇v

for all local sections f of OS and v of V. The curvature of ∇ is the composite of ∇
with the map

∇1 : Ω
1
S ⊗ V→ Ω2

S ⊗ V

ω⊗ v 7→ dω⊗ v−ω∧∇(v).

A connection ∇ is said to be flat if its curvature is zero. In this case, the kernel V∇ of
∇ is a local system of complex vector spaces on S such that OS ⊗ V∇ ' V.

Conversely, let V be a local system of complex vector spaces on S. The vector
sheafV = OS⊗V has a canonical connection∇: on any open set whereV is trivial, say
V ≈ Cn, the connection is the map (fi) 7→ (dfi) : (OS)

n →
(
Ω1
S

)n
. This connection

is flat because d ◦ d = 0. Obviously for this connection, V∇ ' V.
In this way, we obtain an equivalence between the category of vector sheaves

on S equipped with a flat connection and the category of local systems of complex
vector spaces.

Variations of Hodge structures

Let S be a complex manifold. By a family of real Hodge structures on S we mean a
holomorphic family. For example, a family of real Hodge structures on S of weightm

is a local system V of R-vector spaces on S together with a filtration F on V
def
= OS⊗RV

by holomorphic vector subsheaves that gives a Hodge filtration at each point, i.e.,
such that

FpVs ⊕ Fm+1−pVs ' Vs, all s ∈ S, p ∈ Z.
For the notion of a family of rational Hodge structures, replace R with Q.

A polarization of a family of real Hodge structures of weight m is a bilinear
pairing of local systems

ψ : V × V→ R(−m)

that gives a polarization at each point s of S. For rational Hodge structures, replace
R with Q.

Let ∇ be connection on a vector sheaf V. A holomorphic vector field Z on S
is a map Ω1

S → OS, and it defines a map ∇Z : V → V. A family of rational Hodge
structures V on S is a variation of rational Hodge structures on S if it satisfies the
following axiom (Griffiths transversality):

∇Z(FpV) ⊂ Fp−1V for all p and Z.

Equivalently,
∇(FpV) ⊂ Ω1

S ⊗ Fp−1V for all p.
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Here ∇ is the flat connection on V
def
= OS ⊗Q V defined by V.

These definitions are motivated by the following theorem.

Theorem 5.6 (Griffiths 1968 [24]). Let f : X→ S be a smooth projective map of smooth
algebraic varieties over C. For each m, the local system Rmf∗Q of Q-vector spaces on
San together with the de Rham filtration on OS ⊗Q Rf∗Q ' Rf∗(Ω•X/C) is a polarizable
variation of rational Hodge structures of weight m on San.

This theorem suggests that the first step in realizing an algebraic variety as a
moduli variety should be to show that it carries a polarized variation of rational
Hodge structures.

6. Mumford-Tate groups and their variation in families

We define Mumford-Tate groups, and we study their variation in families. Throughout

this section, “Hodge structure” means “rational Hodge structure”.

The conditions (SV)

We list some conditions on a homomorphism h : S → G of real connected
algebraic groups:

SV1: the Hodge structure on the Lie algebra of G defined by Ad ◦h : S →
GLLie(G) is of type {(1,−1), (0,0), (−1,1)};

SV2: inn(h(i)) is a Cartan involution of Gad.

In particular, (SV2) says that the Cartan involutions of Gad are inner, and so Gad is
an inner form of its compact form. This implies that the simple factors of Gad are
geometrically simple (see footnote 9, p. 479).

Condition (SV1) implies that the Hodge structure on Lie(G) defined by h has
weight 0, and so wh(Gm) ⊂ Z(G). In the presence of this condition, we sometimes
need to consider a stronger form of (SV2):

SV2*: inn(h(i)) is a Cartan involution of G/wh(Gm).

Note that (SV2*) implies that G is reductive.
Let G be an algebraic group over Q, and let h be a homomorphism S → GR.

We say that (G,h) satisfies the condition (SV1) or (SV2) if (GR,h) does. When wh
is defined over Q, we say that (G,h) satisfies (SV2*) if (GR,h) does. We shall also
need to consider the condition:

SV3: Gad has no Q-factor on which the projection of h is trivial.

In the presence of (SV1,2), the condition (SV3) is equivalent to Gad being of non-
compact type (apply Lemma 4.7 of [40]).

Each condition holds for a homomorphism h if and only if it holds for a
conjugate of h by an element of G(R).
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Let G be a reductive group over Q. Let h be a homomorphism S→ GR, and let
h̄ : S→ Gad

R be ad ◦h. Then (G,h) satisfies (SV1,2,3) if and only if (Gad, h̄) satisfies
the same conditions.16

Remark 6.1. Let H be a real algebraic group. The map z 7→ z/z̄ defines an isomor-
phism S/w(Gm) ' S1, and so the formula

(6.2) h(z) = u(z/z̄)

defines a one-to-one correspondence between the homomorphisms h : S→ H trivial
on w(Gm) and the homomorphisms u : S1 → H. When H has trivial centre, h
satisfies SV1 (resp. SV2) if and only if u satisfies SU1 (resp. SU2).

Notes. Conditions (SV1), (SV2), and (SV3) are respectively the conditions (2.1.1.1),
(2.1.1.2), and (2.1.1.3) of [19], and (SV2*) is the condition (2.1.1.5).

Definition of Mumford-Tate groups

Let (V ,h) be a rational Hodge structure. Following [15], 7.1, we define the
Mumford-Tate group of (V ,h) to be the smallest algebraic subgroup G of GLV such
that GR ⊃ h(S). It is also the smallest algebraic subgroup G of GLV such that
GC ⊃ µh(Gm) (apply (5.1), p. 490). We usually regard the Mumford-Tate group
as a pair (G,h), and we sometimes denote it by MTV . Note that G is connected,
because otherwise we could replace it with its identity component. The weight map
wh : Gm → GR is defined over Q and maps into the centre of G.17

Let (V ,h) be a polarizable rational Hodge structure, and let Tm,n denote the
Hodge structure V⊗m⊗V∨⊗n (m,n ∈ N). By aHodge class of V , we mean an element
of V of type (0,0), i.e., an element of V ∩V0,0, and by a Hodge tensor of V , we mean a
Hodge class of some Tm,n. The elements of Tm,n fixed by the Mumford-Tate group
of V are exactly the Hodge tensors, and MTV is the largest algebraic subgroup of
GLV fixing all the Hodge tensors of V (cf. [20], 3.4).

The real Hodge structures form a semisimple tannakian category18 over R; the
group attached to the category and the forgetful fibre functor is S. The rational Hodge
structures form a tannakian category over Q, and the polarizable rational Hodge
structures form a semisimple tannakian category, which we denote HdgQ. Let (V ,h) be
a rational Hodge structure, and let 〈V ,h〉⊗ be the tannakian subcategory generated
by (V ,h). The Mumford-Tate group of (V ,h) is the algebraic group attached 〈V ,h〉⊗

and the forgetful fibre functor.

16For (SV1), note that Ad(h(z)): Lie(G)→ Lie(G) is the derivative of ad(h(z)): G→ G. The
latter is trivial on Z(G), and so the former is trivial on Lie(Z(G)).

17Let Z(wh) be the centralizer of wh in G. For any a ∈ R×, wh(a): VR → VR is a morphism
of real Hodge structures, and so it commutes with the action of h(S). Hence h(S) ⊂ Z(wh)R. As h
generatesG, this implies that Z(wh) =G.

18For the theory of tannakian categories, we refer the reader to [21]. In fact, we shall only need to use
the elementary part of the theory (ibid. §§1,2).
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Let G and Ge respectively denote the Mumford-Tate groups of V and V ⊕Q(1).
The action ofGe on V defines a homomorphismGe → G, which is an isogeny unless
V has weight 0, in which case Ge ' G × Gm. The action of Ge on Q(1) defines
a homomorphism Ge → GLQ(1) whose kernel we denote G1 and call the special
Mumford-Tate group of V . Thus G1 ⊂ GLV , and it is the smallest algebraic subgroup
of GLV such that G1

R ⊃ h(S1). Clearly G1 ⊂ G and G = G1 ·wh(Gm).

Proposition 6.3. Let G be a connected algebraic group over Q, and let h be a homomor-
phism S → GR. The pair (G,h) is the Mumford-Tate group of a Hodge structure if and
only if the weight homomorphism wh : Gm → GR is defined over Q and G is generated by
h (i.e., any algebraic subgroup H of G such that h(S) ⊂ HR equals G).

Proof. If (G,h) is the Mumford-Tate group of a Hodge structure (V ,h), then certainly
h generates G. The weight homomorphism wh is defined over Q because (V ,h) is a
rational Hodge structure.

Conversely, suppose that (G,h) satisfy the conditions. For any faithful repre-
sentation ρ : G → GLV of G, the pair (V ,h ◦ ρ) is a rational Hodge structure, and
(G,h) is its Mumford-Tate group. �

Proposition 6.4. Let (G,h) be the Mumford-Tate group of a Hodge structure (V ,h).
Then (V ,h) is polarizable if and only if (G,h) satisfies (SV2*).

Proof. Let C = h(i). For notational convenience, assume that (V ,h) has a single
weight m. Let G1 be the special Mumford-Tate group of (V ,h). Then C ∈ G1(R),
and a pairing ψ : V × V → Q(−m) is a polarization of the Hodge structure (V ,h) if
and only if (2πi)mψ is a C-polarization of V for G1 in the sense of §2. It follows
from (2.1) and (2.2) that a polarization ψ for (V ,h) exists if and only if inn(C) is a
Cartan involution of G1

R. Now G1 ⊂ G and the quotient map G1 → G/wh(Gm) is
an isogeny, and so inn(C) is a Cartan involution of G1 if and only if it is a Cartan
involution of G/wh(Gm). �

Corollary 6.5. The Mumford-Tate group of a polarizable Hodge structure is reductive.

Proof. An algebraic group G over Q is reductive if and only if GR is reductive, and
we have already observed that (SV2*) implies that GR is reductive. Alternatively,
polarizable Hodge structures are semisimple, and an algebraic group in characteristic
zero is reductive if its representations are semisimple (e.g., [21], 2.23). �

Remark 6.6. Note that (6.4) implies the following statement: let (V ,h) be a Hodge
structure; if there exists an algebraic group G ⊂ GLV such that h(S) ⊂ GR and (G,h)
satisfies (SV2*), then (V ,h) is polarizable.

Notes. The Mumford-Tate group of a complex abelian variety A is defined to be
the Mumford-Tate group of the Hodge structure H1(A

an,Q). In this context, special
Mumford-Tate groups were first introduced in the talk of Mumford [45] (which is
“partly joint work with J. Tate”).
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Special Hodge structures

A rational Hodge structure is special19 if its Mumford-Tate group satisfies (SV1,
2*) or, equivalently, if it is polarizable and its Mumford-Tate group satisfies (SV1).

Proposition 6.7. The special Hodge structures form a tannakian subcategory of HdgQ.

Proof. Let (V ,h) be a special Hodge structure. The Mumford-Tate group of any object
in the tannakian subcategory of HdgQ generated by (V ,h) is a quotient of MTV , and
hence satisfies (SV1,2*). �

Recall that the level of a Hodge structure (V ,h) is the maximum value of |p− q|
as (p,q) runs over the pairs (p,q) with Vp,q 6= 0. It has the same parity as the weight
of (V ,h).

Example 6.8. Let Vn(a1, . . . ,ad) denote a complete intersection of d smooth hyper-
surfaces of degrees a1, . . . ,ad in general position in Pn+d over C. Then Hn(Vn,Q)

has level 6 1 only for the varieties Vn(2), Vn(2,2), V2(3), Vn(2,2,2) (n odd), V3(3),
V3(2,3), V5(3), V3(4) ([50]).

Proposition 6.9. Every polarizable Hodge structure of level 6 1 is special.

Proof. A Hodge structure of level 0 is direct sum of copies of Q(m) for somem, and
so its Mumford-Tate group is Gm. A Hodge structure (V ,h) of level 1 is of type
{(p,p+ 1), (p+ 1,p)} for some p. Then

Lie(MTV ) ⊂ End(V) = V∨ ⊗ V ,

which is of type {(−1,1), (0,0), (1,−1)}. �

Example 6.10. Let A be an abelian variety over C. The Hodge structures HnB(A) are
special for all n. To see this, note that H1

B(A) is of level 1, and hence is special by
(6.9), and that

HnB(A) '
∧n

H1
B(A) ⊂ H1

B(A)
⊗n,

and hence HnB(A) is special by (6.7).

It follows that a nonspecial Hodge structure does not lie in the tannakian
subcategory of HdgQ generated by the cohomology groups of abelian varieties.

Proposition 6.11. A pair (G,h) is the Mumford-Tate group of a special Hodge structure
if and only if h satisfies (SV1,2*), the weight wh is defined over Q, and G is generated by
h.

Proof. Immediate consequence of Proposition 6.3, and of the definition of a special
Hodge structure. �

Note that, because h generates G, it also satisfies (SV3).

19Poor choice of name, since “special” is overused and special points on Shimura varieties don’t
correspond to special Hodge structures, but I can’t think of a better one. Perhaps an “SV Hodge structure”?
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Example 6.12. Let f : X→ S be the universal family of smooth hypersurfaces of a
fixed degree δ and of a fixed odd dimension n. For s outside a meagre subset of S,
the Mumford-Tate group of Hn(Xs,Q) is the full group of symplectic similitudes
(see 6.23 below). This implies that Hn(Xs,Q) is not special unless it has level 6 1.
According to (6.8), this rarely happens.

The generic Mumford-Tate group

Throughout this subsection, (V, F) is a family of Hodge structures on a con-
nected complex manifold S. Recall that “family” means “holomorphic family”.

Lemma 6.13. For any t ∈ Γ(S,V), the set

Z(t) = {s ∈ S | ts is of type (0,0) in Vs}

is an analytic subset of S.

Proof. An element of Vs is of type (0,0) if and only if it lies in F0Vs. On S, we have
an exact sequence

0→ F0V→ V→ Q→ 0

of locally free sheaves of OS-modules. Let U be an open subset of S such that Q is
free over U. Choose an isomorphism Q ' OrU, and let t|Umap to (t1, . . . , tr) in OrU.
Then

Z(t) ∩U = {s ∈ U | t1(s) = · · · = tr(s) = 0}.

�

Form,n ∈ N, let Tm,n = Tm,nV be the family of Hodge structures V⊗m⊗V∨⊗n

on S. Let π : S̃→ S be a universal covering space of S, and define

(6.14)
◦
S = Sr

⋃
t
π∗(Z(t))

where t runs over the global sections of the local systems π∗Tm,n (m,n ∈ N) such
that π∗(Z(t)) 6= S. Thus

◦
S is the complement in S of a countable union of proper

analytic subvarieties — we shall call such a subset meagre.

Example 6.15. For a “general” abelian variety of dimension g over C, it is known
that the Q-algebra of Hodge classes is generated by the class of an ample divisor
class ([12], [34]). It follows that the same is true for all abelian varieties in the subset
◦
S of the moduli space S. The Hodge conjecture obviously holds for these abelian
varieties.

Let t be a section of Tm,n over an open subset U of
◦
S; if t is a Hodge class in

Tm,n
s for one s ∈ U, then it is Hodge tensor for every s ∈ U. Thus, there exists a

local system of Q-subspaces HTm,n on
◦
S such that (HTm,n)s is the space of Hodge

classes in Tm,n
s for each s. Since the Mumford-Tate group of (Vs, Fs) is the largest

algebraic subgroup of GLVs fixing the Hodge tensors in the spaces Tm,n
s , we have

the following result.
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Proposition 6.16. Let Gs be the Mumford-Tate group of (Vs, Fs). Then Gs is locally
constant on

◦
S.

More precisely:

Let U be an open subset of S on which V is constant, say, V = VU;
identify the stalk Vs (s ∈ U) with V , so thatGs is a subgroup of GLV ;
then Gs is constant for s ∈ U ∩

◦
S, say Gs = G, and G ⊃ Gs for all

s ∈ Ur (U ∩
◦
S).

6.17. We say that Gs is generic if s ∈
◦
S. Suppose that V is constant, say V = VS, and

let G = Gs0 ⊂ GLV be generic. By definition, G is the smallest algebraic subgroup of
GLV such thatGR contains hs0(S). AsG ⊃ Gs for all s ∈ S, the generic Mumford-Tate
group of (V, F) is the smallest algebraic subgroup G of GLV such that GR contains
hs(S) for all s ∈ S.

Let π : S̃→ S be a universal covering of S, and fix a trivialization π∗V ' VS of
V. Then, for each s ∈ S, there are given isomorphisms

(6.18) V ' (π∗V)s ' Vπs.

There is an algebraic subgroup G of GLV such that, for each s ∈ π−1(
◦
S), G maps

isomorphically onto Gs under the isomorphism GLV ' GLVπs defined by (6.18).
It is the smallest algebraic subgroup of GLV such that GR contains the image of
hs : S→ GLVR for all s ∈ S̃.

Aside 6.19. For a polarizable integral variation of Hodge structures on a smooth
algebraic variety S, Cattani, Deligne, and Kaplan ([8], Corollary 1.3) show that the
sets π∗(Z(t)) in (6.14) are algebraic subvarieties of S. This answered a question of
Weil [65].

Variation of Mumford-Tate groups in families

Definition 6.20. Let (V, F) be a family of Hodge structures on a connected complex
manifold S.

(a) An integral structure on (V, F) is a local system of Z-modules Λ ⊂ V such that
Q⊗Z Λ ' V.

(b) The family (V, F) is said to satisfy the theorem of the fixed part if, for every finite
covering a : S′ → S of S, there is a Hodge structure on the Q-vector space
Γ(S′,a∗V) such that, for all s ∈ S′, the canonical map Γ(S′,a∗V)→ a∗Vs is
a morphism of Hodge structures, or, in other words, if the largest constant
local subsystem Vf of a∗V is a constant family of Hodge substructures of
a∗V.

(c) The algebraic monodromy group at point s ∈ S is the smallest algebraic sub-
group of GLVs containing the image of the monodromy homomorphism
π1(S, s)→ GL(Vs). Its identity connected component is called the connected
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monodromy groupMs at s. In other words,Ms is the smallest connected alge-
braic subgroup of GLVs such thatMs(Q) contains the image of a subgroup
of π1(S, s) of finite index.

6.21. Let π : S̃→ S be the universal covering of S, and let Γ be the group of covering
transformations of S̃/S. The choice of a point s ∈ S̃ determines an isomorphism
Γ ' π1(S,πs). Now choose a trivialization π∗V ≈ VS̃. The choice of a point s ∈ S̃
determines an isomorphism V ' Vπ(s). There is an action of Γ on V such that, for
each s ∈ S̃, the diagram

Γ × V V

π1(S,πs) × Vs Vs

' ' '

commutes. LetM be the smallest connected algebraic subgroup of GLV suchM(Q)

contains a subgroup of Γ of finite index; in other words,

M =
⋂

{H ⊂ GLV | H connected, (Γ : H(Q) ∩ Γ) <∞}.

Under the isomorphism V ' Vπs defined by s ∈ S,Mmaps isomorphically onto
Ms.

Theorem 6.22. Let (V, F) be a polarizable family of Hodge structures on a connected
complex manifold S, and assume that (V, F) admits an integral structure. Let Gs (resp.
Ms) denote the Mumford-Tate (resp. the connected monodromy group) at s ∈ S.

(a) For all s ∈
◦
S,Ms ⊂ Gder

s .
(b) If Tm,n satisfies the theorem of the fixed part for all m,n, then Ms is normal

in Gder
s for all s ∈

◦
S; moreover, if Gs′ is commutative for some s′ ∈ S, then

Ms = G
der
s for all s ∈ S.

The theorem was proved by Deligne (see [15], 7.5; [66], 7.3) except for the
second statement of (b), which is Proposition 2 of [1]. The proof of the theorem
will occupy the rest of this subsection.

Example 6.23. Let f : X→ P1 be a Lefschetz pencil over C of hypersurfaces of fixed
degree and odd dimension n, and let S be the open subset of P1 where Xs is smooth.
Let (V, F) be the variation of Hodge structures Rnf∗Q on S. The action of π1(S, s) on
Vs = Hn(Xan

s ,Q) preserves the cup-product form on Vs, and a theorem of Kazhdan
and Margulis ([17], 5.10) says that the image of π1(S, s) is Zariski-dense in the
symplectic group. It follows that the generic Mumford-Tate group Gs is the full
group of symplectic similitudes. This implies that, for s ∈

◦
S, the Hodge structure Vs

is not special unless it has level 6 1.
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Proof of (a) of Theorem 6.22 We first show thatMs ⊂ Gs for s ∈
◦
S. Recall that

on
◦
S there is a local system of Q-vector spaces HTm,n ⊂ Tm,n such that HTm,n

s is
the space of Hodge tensors in Tm,n

s . The fundamental group π1(S, s) acts on HTm,n
s

through a discrete subgroup of GL(HTm,n
s ) (because it preserves a lattice in Tm,n

s ),
and it preserves a positive definite quadratic form on HTm,n

s . It therefore acts on
HTm,n

s through a finite quotient. As Gs is the algebraic subgroup of GLVs fixing the
Hodge tensors in some finite direct sum of spaces Tm,n

s , this shows that the image
of some finite index subgroup of π1(S, s) is contained in Gs(Q). HenceMs ⊂ Gs.

We next show thatMs is contained in the special Mumford-Tate group G1
s at

s. Consider the family of Hodge structures V ⊕ Q(1), and let Ges be its Mumford-
Tate group at s. As V ⊕ Q(1) is polarizable and admits an integral structure, its
connected monodromy group Me

s at s is contained in Ges . As Q(1) is a constant
family,Me

s ⊂ Ker(Ges → GLQ(1)) = G
1
s. ThereforeMs =M

e
s ⊂ G1

s.
There exists an objectW in RepQGs ' 〈Vs〉⊗ ⊂ HdgQ such that Gder

s ·whs(Gm)

is the kernel of Gs → GLW . The Hodge structureW admits an integral structure, and
its Mumford-Tate group is G′ ' Gs/

(
Gder
s ·whs(Gm)

)
. AsW has weight 0 and G′

is commutative, we find from (6.4) that G′(R) is compact. As the action of π1(S, s)
onW preserves a lattice, its image in G′(R) must be discrete, and hence finite. This
shows that

Ms ⊂
(
Gder
s ·whs(Gm)

)
∩G1

s = G
der
s .

Proof of the first statement of (b) of Theorem 6.22 We first prove two lemmas.

Lemma 6.24. Let V be a Q-vector space, and let H ⊂ G be algebraic subgroups of GLV .
Assume:

(a) the action of H on any H-stable line in a finite direct sum of spaces Tm,n is trivial;
(b) (Tm,n)H is G-stable for all m,n ∈ N.

Then H is normal in G.

Proof. There exists a line L in some finite direct sum T of spaces Tm,n such that H is
the stabilizer of L in GLV (Chevalley’s theorem, [20], 3.1a,b). According to (a),H acts
trivially on L. LetW be the intersection of the G-stable subspaces of T containing
L. Then W ⊂ TH because TH is G-stable by (b). Let ϕ be the homomorphism
G → GLW∨⊗W defined by the action of G on W. As H acts trivially on W, it is
contained in the kernel of ϕ. On the other hand, the elements of the kernel of ϕ act
as scalars onW, and so stabilize L. Therefore H = Ker(ϕ), which is normal in G. �

Lemma 6.25. Let (V, F) be a polarizable family of Hodge structures on a connected complex
manifold S. Let L be a local system of Q-vector spaces on S contained in a finite direct sum
of local systems Tm,n. If (V, F) admits an integral structure and L has dimension 1, then
Ms acts trivially on Ls.
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Proof. The hypotheses imply that L also admits an integral structure, and so π1(S, s)
acts through the finite subgroup {±1} of GLLs . This implies thatMs acts trivially
on Ls. �

We now prove the first part of (b) of the theorem. Let s ∈
◦
S; we shall apply

Lemma 6.24 toMs ⊂ Gs ⊂ GLVs . After passing to a finite covering of S, we may
suppose that π1(S, s) ⊂ Ms(Q). AnyMs-stable line in

⊕
m,n Tm,n

s is of the form
Ls for a local subsystem L of

⊕
m,n Tm,n

s , and so hypothesis (a) of Lemma 6.24
follows from (6.25). It remains to show (Tm,n

s )Ms is stable under Gs. Let H be the
stabilizer of (Tm,n

s )Ms in GLTm,n
s

. Because Tm,n satisfies the theorem of the fixed
part, (Tm,n

s )Ms is a Hodge substructure of Tm,n
s , and so (Tm,n

s )Ms

R is stable under
h(S). Therefore h(S) ⊂ HR, and this implies that Gs ⊂ H.

Proof of the second statement of (b) of Theorem 6.22 We first prove a lemma.

Lemma 6.26. Let (V, F) be a variation of polarizable Hodge structures on a connected
complex manifold S. Assume:

(a) Ms is normal in Gs for all s ∈
◦
S;

(b) π1(S, s) ⊂Ms(Q) for one (hence every) s ∈ S;
(c) (V, F) satisfies the theorem of the fixed part.

Then the subspace Γ(S,V) of Vs is stable under Gs, and the image of Gs in GLΓ(S,V) is
independent of s ∈ S.

In fact, (c) implies that Γ(S,V) has a well-defined Hodge structure, and we shall
show that the image of Gs in GLΓ(S,V) is the Mumford-Tate group of Γ(S,V).

Proof. We begin with observation: let G be the affine group scheme attached to the
tannakian category HdgQ and the forgetful fibre functor; for any (V ,hV ) in HdgQ, G
acts on V through a surjective homomorphismG→ MTV ; therefore, for any (W,hW)

in 〈V ,hV〉⊗, MTV acts onW through a surjective homomorphism MTV → MTW .
For every s ∈ S,

Γ(S,V) = Γ(S,Vf) = (Vf)s = Vπ1(S,s)
s

(b)
= VMs

s .

The subspace VMs
s of Vs is stable under Gs when s ∈

◦
S because thenMs is normal in

Gs, and it is stable underGs when s /∈
◦
S because thenGs is contained in some generic

Mumford-Tate group. Because (V, F) satisfies the theorem of the fixed part, Γ(S,V)
has a Hodge structure (independent of s) for which the inclusion Γ(S,V)→ Vs is a
morphism of Hodge structures. From the observation, we see that the image of Gs
in GLΓ(S,V) is the Mumford-Tate group of Γ(S,V), which does not depend on s. �

We now prove thatMs = G
der
s when some Mumford-Tate group Gs′ is commu-

tative. We know thatMs is a normal subgroup of Gder
s for s ∈

◦
S, and so it remains to

show that Gs/Ms is commutative for s ∈
◦
S under the hypothesis.
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We begin with a remark. Let N be a normal algebraic subgroup of an algebraic
group G. The category of representations of G/N can be identified with the category
of representations of G on which N acts trivially. Therefore, to show that G/N is
commutative, it suffices to show that G acts through a commutative quotient on
every V on which N acts trivially. If G is reductive and we are in characteristic zero,
then it suffices to show that, for one faithful representation V of G, the group G acts
through a commutative quotient on (Tm,n)N for allm,n ∈ N.

Let T = Tm,n. According to the remark, it suffices to show that, for s ∈
◦
S, Gs

acts on TMs
s through a commutative quotient. This will follow from the hypothesis,

once we check that T satisfies the hypotheses of Lemma 6.26. Certainly, Ms is a
normal subgroup of Gs for s ∈

◦
S, and π1(S, s) will be contained inMs once we have

passed to a finite cover. Finally, we are assuming that T satisfies the theorem of the
fixed part.

Variation of Mumford-Tate groups in algebraic families

When the underlying manifold is an algebraic variety, we have the following
theorem.

Theorem 6.27 (Griffiths, Schmid). A variation of Hodge structures on a smooth algebraic
variety over C satisfies the theorem of the fixed part if it is polarizable and admits an integral
structure.

Proof. When the variation of Hodge structures arises from a projective smooth map
X → S of algebraic varieties and S is complete, this is the original theorem of the
fixed part ([25], §7). In the general case it is proved in [54], 7.22. See also [13], 4.1.2
and the footnote on p. 45. �

Theorem 6.28. Let (V, F) be a variation of Hodge structures on a connected smooth
complex algebraic variety S. If (V, F) is polarizable and admits an integral structure, then
Ms is a normal subgroup of Gder

s for all s ∈
◦
S, and the two groups are equal if Gs is

commutative for some s ∈ S.

Proof. If (V, F) is polarizable and admits an integral structure, thenTm,n is polarizable
and admits an integral structure, and so it satisfies the theorem of the fixed part
(Theorem 6.27). Now the theorem follows from Theorem 6.22. �

7. Period subdomains

We define the notion of a period subdomain, and we show that the hermitian
symmetric domains are exactly the period subdomains on which the universal family
of Hodge structures is a variation of Hodge structures.
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Flag manifolds

Let V be a complex vector space and let d = (d1, . . . ,dr) be a sequence of
integers with dimV > d1 > · · · > dr > 0. The flag manifold Grd(V) has as points the
filtrations

V ⊃ F1V ⊃ · · · ⊃ FrV ⊃ 0, dim FiV = di.

It is a projective complex manifold, and the tangent space to Grd(V) at the point
corresponding to a filtration F is

TF(Grd(V)) ' End(V)/F0 End(V)

where

Fj End(V) = {α ∈ End(V) | α(FiV) ⊂ Fi+jV for all i}.

Theorem 7.1. Let VS be the constant sheaf on a connected complex manifold S defined by
a real vector space V, and let (VS, F) be a family of Hodge structures on S. Let d be the
sequence of ranks of the subsheaves in F.

(a) The map ϕ : S → Grd(VC) sending a point s of S to the point of Grd(VC)

corresponding to the filtration Fs on V is holomorphic.
(b) The family (VS, F) satisfies Griffiths transversality if and only if the image of the

map

(dϕ)s : TsS→ Tϕ(s) Grd(VC)

lies in the subspace F−1
s End(VC)/F

0
s End(VC) of End(VC)/F

0
s End(VC) for all

s ∈ S.

Proof. Statement (a) simply says that the filtration is holomorphic, and (b) restates
the definition of Griffiths transversality. �

Period domains

We now fix a real vector space V , a Hodge filtration F0 on V of weightm, and a
polarization t0 : V × V → R(m) of the Hodge structure (V , F0).

Let D = D(V , F0, t0) be the set of Hodge filtrations F on V of weight m with
the same Hodge numbers as (V , F0) for which t0 is a polarization. Thus D is the set
of descending filtrations

VC ⊃ · · · ⊃ Fp ⊃ Fp+1 ⊃ · · · ⊃ 0

on VC such that

(a) dimC F
p = dimC F

p
0 for all p,

(b) VC = Fp ⊕ Fq whenever p+ q = m+ 1,
(c) t0(Fp, Fq) = 0 whenever p+ q = m+ 1, and
(d) (2πi)m t0C(v,Cv̄) > 0 for all nonzero elements v of VC.
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Condition (b) requires that F be a Hodge filtration of weight m, condition (a)
requires that (V , F) have the same Hodge numbers as (V , F0), and the conditions (c)
and (d) require that t0 be a polarization.

Let D∨ = D∨(V , F0, t0) be the set of filtrations on VC satisfying (a) and (c).

Theorem 7.2. The set D∨ is a compact complex submanifold of Grd(V), and D is an
open submanifold of D∨.

Proof. We first remark that, in the presence of (a), condition (c) requires that Fm+1−p

be the orthogonal complement of Fp for all p. In particular, each of Fp and Fm+1−p

determines the other.
Whenm is odd, t0 is alternating, and the remark shows that D∨ can be identi-

fied with the set of filtrations

VC ⊃ F(m+1)/2 ⊃ F(m+3)/2 ⊃ · · · ⊃ 0

satisfying (a) and such that F(m+1)/2 is totally isotropic for t0. Let S be the symplectic
group for t0. Then S(C) acts transitively on these filtrations, and the stabilizer P
of the filtration F0 is a parabolic subgroup of S. Therefore S(C)/P(C) is a compact
complex manifold, and the bijection S(C)/P(C) ' D∨ is holomorphic. The proof
whenm is even is similar.

The submanifold D of D∨ is open because the conditions (b) and (d) are
open. �

The complex manifold D = D(V , F0, t0) is the (Griffiths) period domain defined
by (V , F0, t0).

Theorem 7.3. Let (V, F, t) be a polarized family of Hodge structures on a complex manifold
S. Let U be an open connected subset of S on which the local system V is trivial, and choose
an isomorphism V|U ' VU and a point o ∈ U. The map P : U→ D(V , Fo, to) sending a
point s ∈ U to the point (Vs, Fs, ts) is holomorphic.

Proof. The map s 7→ Fs : U→ Grd(V) is holomorphic by (7.1) and it takes values in
D. As D is a complex submanifold of Grd(V) this implies that the map U→ D is
holomorphic ([23], 4.3.3). �

The map P is called the period map.
The constant local system of real vector spaces VD on D becomes a polarized

family of Hodge structures on D in an obvious way (called the universal family)

Theorem 7.4. If the universal family of Hodge structures on D = D(V , F0, t0) satisfies
Griffiths transversality, then D is a hermitian symmetric domain.

Proof. Let h0 : S→ GLV be the homomorphism corresponding to the Hodge filtra-
tion F0, and let G be the algebraic subgroup of GLV whose elements fix t0 up to
scalar. Then h0 maps into G, and h0 ◦ w maps into its centre (recall that V has a
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single weightm). Therefore (see 6.1), there exists a homomorphism u0 : S1 → Gad

such that h0(z) = u0(z/z̄) mod Z(G)(R).
Let o be the point F0 of D, and let g denote LieG with the Hodge structure

provided by Ad ◦h0. Then

gC/g
00 ' To(D) ⊂ To(Grd(V)) ' End(V)/F0 End(V).

If the universal family of Hodge structures satisfies Griffiths transversality, then gC =

F−1gC (by 7.1b). As g is of weight 0, it must be of type {(1,−1), (0,0), (−1,1), and so
h0 satisfies the condition SV1. Hence u0 satisfies condition SU1 of Theorem 2.5.

Let G1 be the subgroup of G of elements fixing t0. As t0 is a polarization of
the Hodge structure, (2πi)mt0 is a C-polarization of V relative to G1, and so inn (C)

is a Cartan involution of G1 (Theorem 2.1). Now C = h0(i) = u0(−1), and so
u0 satisfies condition SU2 of Theorem 2.5. The set D is a connected component
of the space of homomorphisms u : S1 → (G1)ad, and so it is equal to the set of
conjugates of u0 by elements of (G1)ad(R)+ (apply 7.6 below with S replaced by S1).
Any compact factors of (G1)ad can be discarded, and so Theorem 2.5 shows that D is
a hermitian symmetric domain. �

Remark 7.5. The universal family of Hodge structures on the period domain
D(V ,h, t0) satisfies Griffiths transversality only if (a) (V ,h) is of type {(−1,0), (0,−1)},
or (b) (V ,h) of type {(−1,1), (0,0), (1,−1)} and h−1,1 6 1, or (c) (V ,h) is a Tate twist
of one of these Hodge structures.

Period subdomains

7.6. We shall need the following statement ([19], 1.1.12.). Let G be a real algebraic
group, and let X be a (topological) connected component of the space of homomor-
phisms S → G. Let G1 be the smallest algebraic subgroup of G through which all
the h ∈ X factor. Then X is again a connected component of the space of homomor-
phisms of S into G1. Since S is a torus, any two elements of X are conjugate, and
so the space X is a G1(R)+-conjugacy class of morphisms from S into G. It is also
a G(R)+-conjugacy class, and G1 is a normal subgroup of the identity component
of G.

Let (V , F0) be a real Hodge structure of weightm. A tensor t : V⊗2r → R(−mr)
of V is a Hodge tensor of (V , F0) if it is a morphism of Hodge structures. Concretely,
this means that t is of type (0,0) for the natural Hodge structure on

Hom(V⊗2r,R(−mr)) '
(
V∨
)⊗2r

(−mr),

or that it lies in F0
(
Hom(V⊗2r,R(−mr))

)
.

We now fix a real Hodge structure (V , F0) of weightm and a family t = (ti)i∈I
of Hodge tensors of (V , F0). We assume that I contains an element 0 such that t0 is a
polarization of (V , F0). LetD(V , F0, t) be a connected component of the set of Hodge
filtrations F in D(V , F0, t0) for which every ti is a Hodge tensor. Thus, D(V , F0, t) is a
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connected component of the space of Hodge structures on V for which every ti is a
Hodge tensor and t0 is a polarization.

Let G be the algebraic subgroup of GLV ×GLQ(1) fixing the ti. Then G(R)
consists of the pairs (g, c) such that

ti(gv1, . . . ,gv2r) = crmti(v1, . . . , v2r)

for i ∈ I. Let h be a homomorphism S→ GLV . The ti are Hodge tensors for (V ,h)
if and only if the homomorphism

z 7→ (h(z), zz̄) : S→ GLV ×Gm

factors through G. Thus, to give a Hodge structure on V for which all the ti are
Hodge tensors is the same as giving a homomorphism h : S → G, and so D is a
connected component of the space of homomorphisms S→ G.

Let G1 be the smallest algebraic subgroup of G through which all the h in
D factor. According to (7.6), D is a G1(R)+-conjugacy class of homomorphisms
S→ G1. The group G1(C) acts on D∨(V , F0, t0), and we let D∨(V , F0, t) denote the
orbit of F0.

Theorem 7.7. The set D∨(V , F0, t) is a compact complex submanifold of D∨(V , F0, t0),
and D is an open complex submanifold of D∨.

Proof. In fact, D∨(V , F0, t0) is a smooth projective algebraic variety. The stabilizer P
of F0 in the algebraic group G1C is parabolic, and so the orbit of F0 in the algebraic
variety D∨(V , F0, t0) is smooth projective variety. Thus, its complex points form a
compact complex submanifold. As

D(V ,h0, t0) = D(V ,h0, t0) ∩D∨(V ,h0, t0),

it is an open complex submanifold of D∨(V ,h0, t0). �

We call D = D(V , F0, t) the period subdomain defined by (V , F0, t).

Theorem 7.8. Let (V, F) be a family of Hodge structures on a complex manifold S, and
let t = (ti)i∈I be a family of Hodge tensors of V. Assume that I contains an element 0
such that t0 is a polarization. Let U be a connected open subset of S on which the local
system V is trivial, and choose an isomorphism V|U ≈−→ VU and a point o ∈ U. The map
P : U→ D(V , Fo, to) sending a point s ∈ U to the point (Vs, Fs, ts) is holomorphic.

Proof. Same as that of Theorem 7.3. �

Theorem 7.9. If the universal family of Hodge structures on D satisfies Griffiths transver-
sality, then D is a hermitian symmetric domain.

Proof. Essentially the same as that of Theorem 7.4. �

Theorem 7.10. Every hermitian symmetric domain arises as a period subdomain.
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Proof. Let D be a hermitian symmetric domain, and let o ∈ D. Let H be the real
adjoint algebraic group such that H(R)+ = Hol(D)+, and let u : S1 → H be the
homomorphism such that u(z) fixes o and acts on T0(D) as multiplication by z
(see §2). Let h : S → H be the homomorphism such that h(z) = uo(z/z̄) for z ∈
C× = S(R). Choose a faithful representation ρ : H→ GLV of G. Because u satisfies
(2.5, SU2), the Hodge structure (V , ρ ◦ h) is polarizable. Choose a polarization and
include it in a family t of tensors for V such that H is the subgroup of GLV ×GLQ(1)

fixing the elements of t. Then D ' D(V ,h, t). �

Notes. The interpretation of hermitian symmetric domains as moduli spaces for
Hodge structures with tensors is taken from [19], 1.1.17.

Why moduli varieties are (sometimes) locally symmetric

Fix a base field k. A moduli problem over k is a contravariant functor F from the
category of (some class of) schemes over k to the category of sets. A variety S over k
together with a natural isomorphism φ : F → Homk(−,S) is called a fine solution to
the moduli problem. A variety that arises in this way is called a moduli variety.

Clearly, this definition is too general: every variety S represents the functor
hS = Homk(−,S). In practice, we only consider functors for which F(T) is the set of
isomorphism classes of some algebro-geometric objects over T , for example, families
of algebraic varieties with additional structure.

If S represents such a functor, then there is an object α ∈ F(S) that is universal
in the sense that, for any α′ ∈ F(T), there is a unique morphism a : T → S such
that F(a)(α) = α′. Suppose that α is, in fact, a smooth projective map f : X→ S of
smooth varieties over C. Then Rmf∗Q is a polarizable variation of Hodge structures
on S admitting an integral structure (Theorem 5.6). A polarization of X/S defines a
polarization of Rmf∗Q and a family of algebraic classes on X/S of codimensionm
defines a family of global sections of R2mf∗Q(m). Let D be the universal covering
space of San. The pull-back of Rmf∗Q to D is a variation of Hodge structures whose
underlying locally constant sheaf of Q-vector spaces is constant, say, equal to VS;
thus we have a variation of Hodge structures (VS, F) on D. We suppose that the
additional structure on X/S defines a family t = (ti)i∈I of Hodge tensors of VS
with t0 a polarization. We also suppose that the family of Hodge structures on
D is universal20, i.e., that D = D(V , F0, t). Because (VS, F) is a variation of Hodge
structures, D is a hermitian symmetric domain (by 7.9). The Margulis arithmeticity
theorem (3.12) shows that Γ is an arithmetic subgroup ofG(D) except possibly when
G(D) has factors of small dimension. Thus, when looking at moduli varieties, we
are naturally led to consider arithmetic locally symmetric varieties.

Remark 7.11. In fact it is unusual for amoduli problem to lead to a locally symmetric
variety. The above argument will usually break down where we assumed that the

20This happens rarely!
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variation of Hodge structures is universal. Essentially, this will happen only when
a “general” member of the family has a Hodge structure that is special in the sense
of §6. Even for smooth hypersurfaces of a fixed degree, this is rarely happens (see
6.8 and 6.12). Thus, in the whole universe of moduli varieties, locally symmetric
varieties form only a small, but important, class.

Application: Riemann’s theorem in families

Let A be an abelian variety over C. The exponential map defines an exact
sequence

0→ H1(A
an,Z)→ T0(A

an)
exp−→ Aan → 0.

From the first map in this sequence, we get an exact sequence

0→ Ker(α)→ H1(A
an,Z)C

α−→ T0(A
an)→ 0.

The Z-module H1(A
an,Z) is an integral Hodge structure with Hodge filtration

F−1 = H1(A
an,Z)C ⊃ F0 = Ker(α) ⊃ 0.

Let ψ be a Riemann form for A. Then 2πiψ is a polarization for the Hodge structure
H1(A

an,Z).

Theorem 7.12. The functor A  H1(A
an,Z) is an equivalence from the category of

abelian varieties over C to the category of polarizable integral Hodge structures of type
{(−1,0), (0,−1)}.

Proof. In view of the correspondence between complex structures and Hodge struc-
tures of type {(−1,0), (0,−1)} (see 5.3), this is simply a restatement of Theorem 4.4.

�

Theorem 7.13. Let S be a smooth algebraic variety over C. The functor

(A
f−→ S) R1f∗Z

is an equivalence from the category of families of abelian varieties over S to the category of
polarizable integral variations of Hodge structures of type {(−1,0), (0,−1)}.

Proof. Let fA : A→ S be a family of abelian varieties over S. The exponential defines
an exact sequence of sheaves on San,

0→ R1f
A
∗ Z→ T0(A

an)→ Aan → 0.

From this one sees that the map Hom(Aan,Ban) → Hom(R1f
A
∗ Z,R1fB∗ Z) is an iso-

morphism. The S-scheme HomS(A,B) is unramified over S, and so its algebraic
sections coincide with its holomorphic sections (cf. [13], 4.4.3). Hence the functor
is fully faithful. In particular, a family of abelian varieties is uniquely determined
by its variation of Hodge structures up to a unique isomorphism. This allows us to
construct the family of abelian varieties attached to a variation of Hodge structures
locally. Thus, we may suppose that the underlying local system of Z-modules is
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trivial. Assume initially that the variation of Hodge structures on S has a principal
polarization, and endow it with a level-N structure. According Proposition 4.5, the
variation of Hodge structures on S is the pull-back of the canonical variation of
Hodge structures on DN by a regular map α : S → DN. Since the latter variation
arises from a family of abelian varieties (Theorem 4.6), so does the former.

In fact, the argument still applies when the variation of Hodge structures is
not principally polarized, since [44], Chapter 7, hence Theorem 4.6, applies also
to nonprincipally polarized abelian varieties. Alternatively, Zarhin’s trick (cf. [36],
16.12) can be used to show that (locally) the fourth multiple of the variation of
Hodge structures is principally polarized. �

8. Variations of Hodge structures on locally symmetric varieties

In this section, we explain how to classify variations of Hodge structures on
arithmetic locally symmetric varieties in terms of certain auxiliary reductive groups.
Throughout, we write “family of integral Hodge structures” to mean “family of
rational Hodge structures that admits an integral structure”.

Existence of Hodge structures of CM-type in a family

Proposition 8.1. Let G be a reductive group over Q, and let h : S→ GR be a homomor-
phism. There exists a G(R)+-conjugate h0 of h such that h0(S) ⊂ T0R for some maximal
torus T0 of G.

Proof. (Mumford 1969 [46, p. 348]) Let K be the centralizer of h in GR, and let T
be the centralizer in GR of some regular element of LieK; it is a maximal torus in K.
Because h(S) centralizes T , h(S) · T is a torus in K, and so h(S) ⊂ T . If T ′ is a torus in
GR containing T , then T ′ centralizes h, and so T ′ ⊂ K; therefore T = T ′, and so T is
maximal in GR. For a regular element λ of Lie(T), T is the centralizer of λ. Choose a
λ0 ∈ Lie(G) that is close to λ in Lie(G)R, and let T0 be its centralizer in G. Then T0
is a maximal torus of G (over Q). Because T0R and TR are close, they are conjugate:

T0R = gTg−1 for some g ∈ G(R)+. Now h0
def
= inn(g) ◦ h factors through T0R. �

A rational Hodge structure is said to be of CM-type if it is polarizable and its
Mumford-Tate group is commutative (hence a torus by 6.5).

Proposition 8.2. Let (V , F0) be a rational Hodge structure of some weight m, and let
t = (ti)i∈I be a family of tensors of (V , F0) including a polarization. Then the period
subdomain defined by (V , F0, t)R includes a Hodge structure of CM-type.

Proof. We are given a Q-vector space V , a homomorphism h0 : S → GLVR , and
a family of Hodge tensors V⊗2r → Q(−mr) including a polarization. Let G be
the algebraic subgroup of GLV ×GLQ(1) fixing the ti. Then G is a reductive group
because inn(h0(i)) is a Cartan involution. The period subdomainD is the connected
component containing h0 of the space of homomorphisms h : S → GR (see §7).
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This contains the G(R)+-conjugacy class of h0, and so the statement follows from
Proposition 8.1. �

Description of the variations of Hodge structures on D(Γ)

Consider an arithmetic locally symmetric variety D(Γ). Recall that this means
that D(Γ) is an algebraic variety whose universal covering space is a hermitian sym-
metric domain D and that the group of covering transformations Γ is an arithmetic
subgroup of the real Lie group Hol(D)+; moreover, D(Γ)an = Γ\D.

According to Theorem 3.2, D decomposes into a productD = D1× · · · ×Dr of
hermitian symmetric domains with the property that each group Γi

def
= Γ ∩Hol(Di)+

is an irreducible arithmetic subgroup of Hol(Di)+ and the map

D1(Γ1)× · · · ×Dr(Γr)→ D(Γ)

is finite covering. In order to be able to apply the theorems of Margulis we assume
that

(8.3) rank(Hol(Di)) > 2 for each i

in the remainder of this subsection. We also fix a point o ∈ D.
Recall (2.3) that there exists a unique homomorphism u : U1 → Hol(D) such

that u(z) fixes o and acts as multiplication by z on To(D). That Γ is arithmetic means
that there exists a simply connected algebraic group H over Q and a surjective homo-
morphism ϕ : H(R)→ Hol(D)+ with compact kernel such that Γ is commensurable
with ϕ(H(Z)). The Margulis superrigidity theorem implies that the pair (H,ϕ) is
unique up to a unique isomorphism (see 3.13).

Let
Had

R = Hc ×Hnc

whereHc (resp. Hnc) is the product of the compact (resp. noncompact) simple factors
of Had

R . The homomorphism ϕ(R) : H(R) → Hol(D)+ factors through Hnc(R)+,
and defines an isomorphism of Lie groups Hnc(R)+ → Hol(D)+. Let h̄ denote
the homomorphism S/Gm → Had

R whose projection into Hc is trivial and whose
projection into Hnc corresponds to u as in (6.1). In other words,

(8.4) h̄(z) = (hc(z),hnc(z)) ∈ Hc(R)×Hnc(R)

where hc(z) = 1 and hnc(z) = u(z/z̄) in Hnc(R)+ ' Hol(D)+. The map gh 7→ go

identifies D with the set of Had(R)+-conjugates of h̄ (Theorem 2.5).
Let (V, F) be a polarizable variation of integral Hodge structures on D(Γ), and

let V = Vπ(o). Then π∗V ' VD where π : D→ Γ\D is the quotient map. LetG ⊂ GLV
be the generic Mumford-Tate group of (V, F) (see p. 498), and let t be a family of
tensors of V (in the sense of §7), including a polarization t0, such that G is the
subgroup of GLV ×GLQ(1) fixing the elements of t. As G contains the Mumford-Tate
group at each point of D, t is a family of Hodge tensors of (VD, F). The period map
P : D→ D(V ,ho, t) is holomorphic (Theorem 7.8).
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We now assume that the monodromy map ϕ′ : Γ → GL(V) has finite kernel,
and we pass to a finite covering, so that Γ ⊂ G(Q). Now the elements of t are Hodge
tensors of (V, F).

There exists an arithmetic subgroup Γ ′ of H(Q) such that ϕ(Γ ′) ⊂ Γ . The
Margulis superrigidity theorem 3.10, shows that there is a (unique) homomorphism
ϕ′′ : H→ G of algebraic groups that agrees with ϕ′ ◦ϕ on a subgroup of finite index
in Γ ′,

H(Q)+ Hol(D)+ H

∪ ∪

Γ ′ Γ G(Q) G

ϕ

ϕ|Γ ′ ϕ′

ϕ′′

It follows from the Borel density theorem 3.11 that ϕ′′(H) is the connected
monodromy group at each point of D(Γ). Hence H ⊂ Gder, and the two groups are
equal if the Mumford-Tate group at some point of D(Γ) is commutative (Theorem
6.22). When we assume that, the homomorphism ϕ′′ : H→ G induces an isogeny
H→ Gder, and hence21 an isomorphism Had → Gad. Let (V ,ho) = (V, F)o. Then

ad ◦ho : S→ Gad
R ' Had

equals h̄. Thus, we have a commutative diagram

(8.5)

H

(Had, h̄) (G,h) GLV
ρ

in which G is a reductive group, the homomorphism H→ G has image Gder, wh is
defined over Q, and h satisfies (SV2*).

Conversely, suppose that we are given such a diagram (8.5). Choose a family t
of tensors for V , including a polarization, such thatG is the subgroup of GLV ×GQ(1)

fixing the tensors. Then we get a period subdomain D(V ,h, t) and a canonical
variation of Hodge structures (V, F) on it. Pull this back to D using the period
isomorphism, and descend it to a variation of Hodge structures on D(Γ). The mon-
odromy representation is injective, and some fibre is of CM-type by Proposition 8.2.

Summary 8.6. LetD(Γ) be an arithmetic locally symmetric domain satisfying the condition
(8.3) and fix a point o ∈ D. To give

21Let G be a reductive group. The algebraic subgroup Z(G) · Gder is normal, and the quotient
G/

(
Z(G)◦ ·Gder

)
is both semisimple and commutative, and hence is trivial. ThereforeG = Z(G)◦ ·

Gder, from which it follows that Z(Gder) = Z(G) ∩ Gder. For any isogeny H → Gder, the map
Had → (Gder)ad is certainly an isomorphism, and we have just shown that (Gder)ad → Gad is an
isomorphism. ThereforeHad→ Gad is an isomorphism.
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a polarizable variation of integral Hodge structures on D(Γ) such that
some fibre is of CM-type and the monodromy representation has finite
kernel

is the same as giving

a diagram (8.5) in which G is a reductive group, the homomorphism
H→ G has image Gder, wh is defined over Q, and h satisfies (SV2*).

Fundamental Question 8.7. For which arithmetic locally symmetric varietiesD(Γ) is
it possible to find a diagram (8.5) with the property that the corresponding variation
of Hodge structures underlies a family of algebraic varieties? or, more generally, a
family of motives?

In §§10,11, we shall answer Question 8.7 completely when “algebraic variety”
and “motive” are replaced with “abelian variety” and “abelian motive”.

Existence of variations of Hodge structures

In this subsection, we show that, for every arithmetic locally symmetric variety,
there exists a diagram (8.5), and hence a variation of polarizable integral Hodge
structures on the variety.

Proposition 8.8. Let H be a semisimple algebraic group over Q, and let h̄ : S→ Had be
a homomorphism satisfying (SV1,2,3). Then there exists a reductive algebraic group G over
Q and a homomorphism h : S→ GR such that

(a) Gder = H and h̄ = ad ◦h,
(b) the weight wh is defined over Q, and
(c) the centre of G is split by a CM field (i.e., a totally imaginary quadratic extension

of a totally real number field).

Proof. We shall need the following statement:
Let G be a reductive group over a field k (of characteristic zero), and let L be a

finite Galois extension of k splitting G. Let G′ → Gder be a covering of the derived
group of G. Then there exists a central extension

1→ N→ G1 → G→ 1

such that G1 is a reductive group, N is a product of copies of (Gm)L/k, and

(Gder
1 → Gder) = (G′ → Gder).

See [41], 3.1.
A number field L is CM if and only if it admits a nontrivial involution ιL such

that σ ◦ ιL = ι ◦ σ for every homomorphism σ : L→ C. We may replace h̄ with an
Had(R)+-conjugate, and so assume (by Proposition 8.1) that there exists a maximal
torus T̄ of Had such that h̄ factors through T̄R. Then T̄R is anisotropic (by (SV2)), and
so ι acts as −1 on X∗(T̄). It follows that, for any σ ∈ Aut(C), σι and ισ have the same
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action on X∗(T̄), and so T̄ splits over a CM-field L, which can be chosen to be Galois
over Q. From the statement, there exists a reductive group G and a central extension

1→ N→ G→ Had → 1

such thatGder = H andN is a product of copies of (Gm)L/Q. The inverse image T of T̄
in G is a maximal torus, and the kernel of T � T̄ is N. Because N is connected, there
exists a µ ∈ X∗(T) lifting µh̄ ∈ X∗(T̄).

22 The weight w = −µ− ιµ of µ lies in X∗(Z),
where Z = Z(G) = N. Clearly ιw = w and so, as the Tate cohomology group23

H0
T (R,X∗(Z)) = 0, there exists a µ0 ∈ X∗(Z) such that (ι+1)µ0 = w. Whenwe replace

µ with µ− µ0, we find that w = 0; in particular, w is defined over Q. Let h : S→ GR

correspond to µ as in (5.1), p. 490. Then (G,h) fulfils the requirements. �

Corollary 8.9. For any semisimple algebraic group H over Q and homomorphism h̄ :

S/Gm → Had
R satisfying (SV1,2,3), there exists a reductive group G with Gder = H and a

homomorphism h : S→ GR lifting h̄ and satisfying (SV1,2*,3).

Proof. Let (G,h) be as in the proposition. Then G/Gder is a torus, and we let T be the
smallest subtorus of it such that TR contains the image of h. Then TR is anisotropic,
and when we replace G with the inverse image of T , we obtain a pair (G,h) satisfying
(SV1,2*,3). �

Let G be a reductive group over Q, and let h : S → GR be a homomorphism
satisfying (SV1,2,3). The homomorphism h is said to be special if h(S) ⊂ TR for
some torus T ⊂ G.24 In this case, there is a smallest such T , and when (T ,h) is the
Mumford-Tate group of a CM Hodge structure we say that h is CM.

Proposition 8.10. Let h : S→ GR be special. Then h is CM if

(a) wh is defined over Q, and
(b) the connected centre of G is split by a CM-field.

Proof. It is known that a special h is CM if and only if it satisfies the Serre condition:

(τ− 1)(ι+ 1)µh = 0 = (ι+ 1)(τ− 1)µh for all τ ∈ Gal(Qal/Q).

As wh = (ι+ 1)µh, the first condition says that

(τ− 1)(ι+ 1)µh = 0 for all τ ∈ Aut(C),

and the second condition implies that

τιµh = ιτµh for all τ ∈ Aut(C).

22The functor X∗ is exact, and so 0 → X∗(T̄) → X∗(T) → X∗(N) → 0 is exact. In fact, it is
split-exact (as a sequence of Z-modules) because X∗(N) is torsion-free. On applying Hom(−,Z) to it,
we get the exact sequence · · · → X∗(T)→ X∗(T̄)→ 0.

23Let g = Gal(C/R). The g-module X∗(Z) is induced, and so the Tate cohomology group
H0
T (g,X∗(Z)) = 0. By definition,H0

T (g,X∗(Z)) = X∗(Z)
g/(ι+ 1)X∗(Z).

24Of course, h(S) is always contained in a subtorus of GR, even a maximal subtorus; the point is
that there should exist such a torus defined over Q.
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Let T ⊂ G be a maximal torus such that h(S) ⊂ TR. The argument in the proof of
(8.8) shows that τιµ = ιτµ for µ ∈ X∗(T), and since

X∗(T)Q = X∗(Z)Q ⊕ X∗(T/Z)Q

we see that the same equation holds for µ ∈ X∗(T). Therefore (ι + 1)(τ − 1)µ =

(τ− 1)(ι+ 1)µ, and we have already observed that this is zero. �

9. Absolute Hodge classes and motives

In order to be able to realize all but a handful of Shimura varieties as moduli
varieties, we shall need to replace algebraic varieties and algebraic classes by more
general objects, namely, by motives and absolute Hodge classes.

The standard cohomology theories

Let X be a smooth complete25 algebraic variety over an algebraically closed
field k (of characteristic zero as always).

For each prime number `, the étale cohomology groups26 Hr`(X)(m)
def
=

Hr`(Xet,Q`(m)) are finite dimensional Q`-vector spaces. For any homomorphism
σ : k→ k′ of algebraically closed fields, there is a canonical base change isomorphism

(9.1) Hr`(X)(m)
σ−→ Hr`(σX)(m), σX

def
= X⊗k,σ k′.

When k = C, there is a canonical comparison isomorphism

(9.2) Q` ⊗Q H
r
B(X)(m)→ Hr`(X)(m).

Here HrB(X) denotes the Betti cohomology group Hr(Xan,Q).

The de Rham cohomology groups HrdR(X)(m)
def
= Hr(XZar,Ω•X/k)(m) are finite

dimensional k-vector spaces. For any homomorphism σ : k→ k′ of fields, there is a
canonical base change isomorphism

(9.3) k′ ⊗k HrdR(X)(m)
σ−→ HrdR(σX)(m).

When k = C, there is a canonical comparison isomorphism

(9.4) C⊗Q H
r
B(X)(m)→ HrdR(X)(m).

We let Hrk×Af(X)(m) denote the product of HrdR(X)(m) with the restricted prod-
uct of the topological spaces Hr`(X)(m) relative to their subspaces Hr(Xet,Z`)(m).
This is a finitely generated free module over the ring k×Af. For any homomorphism

25Many statements hold without this hypothesis, but we shall need to consider only this case.
26The “(m)” denotes a Tate twist. Specifically, for Betti cohomology it denotes the tensor product

with the Tate Hodge structure Q(m), for de Rham cohomology it denotes a shift in the numbering of the
filtration, and for étale cohomology it denotes a change in Galois action by a multiple of the cyclotomic
character.
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σ : k→ k′ of algebraically closed fields, the maps (9.1) and (9.3) give a base change
homomorphism

(9.5) Hrk×Af(X)(m)
σ−→ Hrk′×Af(σX)(m).

When k = C, the maps (9.2) and (9.4) give a comparison isomorphism

(9.6) (C× Af)⊗Q H
r
B(X)(m)→ HrC×Af(X)(m).

Notes. For more details and references, see [20], §1.

Absolute Hodge classes

Let X be a smooth complete algebraic variety over C. The cohomology group
H2r
B (X)(r) has a Hodge structure of weight 0, and an element of type (0,0) in it is

called a Hodge class of codimension r on X.27 We wish to extend this notion to all base
fields of characteristic zero. Of course, given a variety X over a field k, we can choose
a homomorphism σ : k→ C and define a Hodge class on X to be a Hodge class on
σX, but this notion depends on the choice of the embedding. Deligne’s idea for
avoiding this problem is to use all embeddings ([18], 0.7).

H2r
B (σX)(r) ∩H0,0 H2r

C×Af(σX)(r)

AHr(X) H2r
k×Af(X)(r)

(9.6)

σ(9.5)

Let X be a smooth complete al-
gebraic variety over an algebraically
closed field k of characteristic zero, and
let σ be a homomorphism k → C.
An element γ of H2r

k×Af(X)(r) is a σ-
Hodge class of codimension r if σγ lies
in the subspace H2r

B (σX)(r) ∩ H0,0 of
H2r

C×Af(σX)(r). When k has finite tran-
scendence degree over Q, an element γ of H2r

k×A(X)(r) is an absolute Hodge class if
it is σ-Hodge for all homomorphisms σ : k → C. The absolute Hodge classes of
codimension r on X form a Q-subspace AHr(X) of H2r

k×Af(X)(r).
We list the basic properties of absolute Hodge classes.

9.7. The inclusion AHr(X) ⊂ H2r
k×Af(X)(r) induces an injective map

(k× Af)⊗Q AH
r(X)→ H2r

k×Af(X)(r);

in particular AHr(X) is a finite dimensional Q-vector space.

This follows from (9.6) becauseAHr(X) is isomorphic to aQ-subspace ofH2r
B (σX)(r)

(each σ).

9.8. For any homomorphism σ : k → k′ of algebraically closed fields of finite
transcendence degree over Q, the map (9.5) induces an isomorphism AHr(X) →
AHr(σX) ([20], 2.9a).

27As H2r
B (X)(r) ' H2r

B (X)⊗ Q(r), this is essentially the same as an element of H2r
B (X) of type

(r, r).
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This allows us to defineAHr(X) for a smooth complete variety over an arbitrary
algebraically closed field k of characteristic zero: choose a model X0 of X over an
algebraically closed subfield k0 of k of finite transcendence degree overQ, and define
AHr(X) to be the image of AHr(X0) under the map H2r

k0×Af(X0)(r)→ H2r
k×Af(X)(r).

With this definition, (9.8) holds for all homomorphisms of algebraically closed
fields k of characteristic zero. Moreover, if k admits an embedding in C, then a
cohomology class is absolutely Hodge if and only if it is σ-Hodge for every such
embedding.

9.9. The cohomology class of an algebraic cycle on X is absolutely Hodge; thus, the
algebraic cohomology classes of codimension r on X form a Q-subspace Ar(X) of
AHr(X) ([20], 2.1a).

9.10. The Künneth components of the diagonal are absolute Hodge classes (ibid.,
2.1b).

9.11. Let X0 be a model of X over a subfield k0 of k such that k is algebraic over k0;
then Gal(k/k0) acts on AHr(X) through a finite discrete quotient (ibid. 2.9b).

9.12. Let
AH∗(X) =

⊕
r>0

AHr(X);

then AH∗(X) is a Q-subalgebra of
⊕
H2r
k×Af(X)(r). For any regular map α : Y → X

of complete smooth varieties, the maps α∗ and α∗ send absolute Hodge classes to
absolute Hodge classes. (This follows easily from the definitions.)

Theorem 9.13 (Deligne 1982 [20], 2.12, 2.14). Let S be a smooth connected algebraic
variety over C, and let π : X→ S be a smooth proper morphism. Let γ ∈ Γ(S,R2rπ∗Q(r)),
and let γs be the image of γ in H2r

B (Xs)(r) (s ∈ S(C)).
(a) If γs is a Hodge class for one s ∈ S(C), then it is a Hodge class for every s ∈ S(C).
(b) If γs is an absolute Hodge class for one s ∈ S(C), then it is an absolute Hodge

class for every s ∈ S(C).

Proof. Let X̄ be a smooth compactification of X whose boundary X̄r X is a union of
smooth divisors with normal crossings, and let s ∈ S(C). According to [14], 4.1.1,
4.1.2, there are maps

H2r
B (X̄)(r)

onto−−−−→ Γ(S,R2rπ∗Q(r))
injective−−−−→ H2r

B (Xs)(r)

whose composite H2r
B (X̄)(r) → H2r

B (Xs)(r) is defined by the inclusion Xs ↪→ X̄;
moreover Γ(S,R2rπ∗Q(r)) has a Hodge structure (independent of s) for which the
injective maps are morphisms of Hodge structures (theorem of the fixed part).

Let γ ∈ Γ(S,R2rπ∗Q(r)). If γs is of type (0,0) for one s, then so also is γ; then
γs is of type (0,0) for all s. This proves (a).

Let σ be an automorphism of C (as an abstract field). It suffices to prove (b)
with “absolute Hodge” replaced with “σ-Hodge”. We shall use the commutative
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diagram (A = C× Af):

H2r
B (X̄)(r)

onto−−−−→ Γ(S,R2rπ∗Q(r))
injective−−−−→ H2r

B (Xs)(r)y? 7→?A

y y
H2r

A (X̄)(r)
onto−−−−→ Γ(S,R2rπ∗A(r))

injective−−−−→ H2r
A (Xs)(r)yσ yσ yσ

H2r
A (σX̄)(r)

onto−−−−→ Γ(σS,R2r(σπ)∗A(r))
injective−−−−→ H2r

A (σXs)(r)x x x
H2r
B (σX̄)(r)

onto−−−−→ Γ(σS,R2r(σπ)∗Q(r))
injective−−−−→ H2r

B (σXs)(r).

The middle map σ uses a relative version of the base change map (9.5). The other
maps σ are the base change isomorphisms and the remaining vertical maps are
essential tensoring with A (and are denoted ? 7→?A).

Let γ be an element of Γ(S,R2rπ∗Q(r)) such that γs is σ-Hodge for one s.
Recall that this means that there is a γσs ∈ H2r

B (σXs)(r) of type (0,0) such that
(γσs )A = σ(γs)A in H2r

A (σXs)(r). As γs is in the image of

H2r
B (X̄)(r)→ H2r

B (Xs)(r),

σ(γs)A is in the image of

H2r
A (σX̄)(r)→ H2r

A (σXs)(r).

Therefore (γσs )A is also, which implies (by linear algebra28) that γσs is in the image of

H2r
B (σX̄)(r)→ H2r

B (σXs)(r).

Let γ̃σ be a pre-image of γσs in H2r
B (σX̄)(r).

Let s′ be a second point of S, and let γ̃σs′ be the image of γ̃σ in H2r
B (σXs′)(r). By

construction, (γ̃σ)A maps to σγA in Γ(σS,R2r(σπ)∗A(r)), and so (γ̃σs′)A = σ(γs′)A in
H2r

A (σXs′)(r), which demonstrates that γs′ is σ-Hodge. �

Conjecture 9.14 (Deligne [18], 0.10). Every σ-Hodge class on a smooth complete variety
over an algebraically closed field of characteristic zero is absolutely Hodge, i.e.,

σ-Hodge (for one σ) =⇒ absolutely Hodge.

Theorem 9.15 (Deligne 1982 [20], 2.11). Conjecture 9.14 is true for abelian varieties.

28Apply the following elementary statement:

Let E,W, and V be vector spaces, and let α :W→ V be a linear map; let v ∈ V ; if
e⊗ v is in the image of 1⊗α : E⊗W→ E⊗V for some nonzero e ∈ E, then v
is in the image of α.

To prove the statement, choose an f ∈ E∨ such that f(e) = 1. If
∑
ei ⊗ α(wi) = e⊗ v, then∑

f(ei)wi = v.
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To prove the theorem, it suffices to show that every Hodge class on an abelian
variety over C is absolutely Hodge.29 We defer the proof of the theorem to the next
subsection.

Aside 9.16. Let XC be a smooth complete algebraic variety over C. Then XC has a
model X0 over a subfield k0 of C finitely generated over Q. Let k be the algebraic
closure of k0 in C, and let X = X0k. For a prime number `, let

Tr`(X) =
⋃
U
H2r
` (X)(r)U (space of Tate classes)

where U runs over the open subgroups of Gal(k/k0) — as the notation suggests,
Tr`(X) depends only on X/k. The Tate conjecture ([62], Conjecture 1) says that the
Q`-vector space Tr`(X) is spanned by algebraic classes. Statement 9.11 implies that
AHr(X) projects into Tr`(X), and (9.7) implies that the map Q`⊗Q AH

r(X)→ Tr`(X)

is injective. Therefore the Tate conjecture implies that Ar(X) = AHr(X), and so the
Tate conjecture for X and one ` implies that all absolute Hodge classes on XC are
algebraic. Thus, in the presence of Conjecture 9.14, the Tate conjecture implies the
Hodge conjecture. In particular, Theorem 9.15 shows that, for an abelian variety, the
Tate conjecture implies the Hodge conjecture.

Proof of Deligne’s theorem

It is convenient to prove Theorem 9.15 in the following more abstract form.

Theorem 9.17. Suppose that for each abelian variety A over C we have a Q-subspace
Cr(A) of the Hodge classes of codimension r on A. Assume:

(a) Cr(A) contains all algebraic classes of codimension r on A;
(b) pull-back by a homomorphism α : A → B of abelian varieties maps Cr(B) into

Cr(A);
(c) let π : A → S be an abelian scheme over a connected smooth complex algebraic

variety S, and let t ∈ Γ(S,R2rπ∗Q(r)); if ts lies in Cr(As) for one s ∈ S(C), then
it lies in Cr(As) for all s.

Then Cr(A) contains all the Hodge classes of codimension r on A.

Corollary 9.18. If hypothesis (c) of the theorem holds for algebraic classes on abelian
varieties, then the Hodge conjecture holds for abelian varieties. (In other words, for abelian
varieties, the variational Hodge conjecture implies the Hodge conjecture.)

Proof. Immediate consequence of the theorem, because the algebraic classes satisfy
(a) and (b). �

The proof of Theorem 9.17 requires four steps.

29Let A be an abelian variety over k, and suppose that γ is σ0-Hodge for some homomorphism
σ0 : k→ C. We have to show that it is σ-Hodge for every σ : k→ C. But, using the Zorn’s lemma, one
can show that there exists a homomorphism σ′ : C→ C such that σ = σ′ ◦ σ0. Now γ is σ-Hodge if
and only if σ0γ is σ′-Hodge.
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Step 1: The Hodge conjecture holds for powers of an elliptic curve As Tate
observed ([62], p. 19), the Q-algebra of Hodge classes on a power of an elliptic curve
is generated by those of type (1,1).30 These are algebraic by a theorem of Lefschetz.

Step 2: Split Weil classes lie in C Let A be a complex abelian variety, and let
ν be a homomorphism from a CM-field E into End(A)Q. The pair (A,ν) is said
to be of Weil type if the tangent space T0(A) is a free E ⊗Q C-module. In this case,

d
def
= dimEH1

B(A) is even and the subspace
∧d
EH

1
B(A)(

d
2 ) of H

d
B(A)(

d
2 ) consists of

Hodge classes ([20], 4.4). When E is quadratic over Q, these Hodge classes were
studied by Weil [65], and for this reason are calledWeil classes. A polarization of (A,ν)
is a polarization λ of A whose whose Rosati involution acts on ν(E) as complex
conjugation. The Riemann form of such a polarization can be written

(x,y) 7→ TrE/Q(fφ(x,y))

for some totally imaginary element f of E and E-hermitian form φ on H1(A,Q). If λ
can be chosen so that φ is split (i.e., admits a totally isotropic subspace of dimension
d/2), then the Weil classes are said to be split.

Lemma 9.19. All split Weil classes of codimension r on an abelian variety A lie in Cr(A).

Proof. Let (A,ν, λ) be a polarized abelian variety of split Weil type. Let V = H1(A,Q),
and let ψ be the Riemann form of λ. The Hodge structures on V for which the
elements of E act as morphisms and ψ is a polarization are parametrized by a period
subdomain, which is hermitian symmetric domain (cf. 7.9). On dividing by a
suitable arithmetic subgroup, we get a smooth proper map π : A → S of smooth
algebraic varieties whose fibres are abelian varieties with an action of E (Theorem
7.13). There is a Q-subspaceW of Γ(S,Rdπ∗Q(d2 )) whose fibre at every point s is the
space of Weil classes on As. One fibre of π is (A,ν) and another is a power of an
elliptic curve. Therefore the lemma follows from Step 1 and hypotheses (a,c). (See
[20], 4.8, for more details.) �

Step 3: Theorem 9.17 for abelian varieties of CM-type A simple abelian variety
A is of CM-type if End(A)Q is a field of degree 2 dimA over Q, and a general abelian
variety is of CM-type if every simple isogeny factor of it is of CM-type. Equivalently,
it is of CM-type if the Hodge structure H1(A

an,Q) is of CM-type. According to [2]:

For any complex abelian variety A of CM-type, there exist complex
abelian varieties BJ of CM-type and homomorphisms A→ BJ such
that every Hodge class onA is a linear combination of the pull-backs
of split Weil classes on the BJ.

Thus Theorem 9.17 for abelian varieties of CM-type follows from Step 2 and hypoth-
esis (b). (See [20], §5, for the original proof of this step.)

30This is most conveniently proved by applying the criterion [39], 4.8.
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Step 4: Completion of the proof of Theorem 9.17 Let t be a Hodge class on a
complex abelian variety A. Choose a polarization λ for A. Let V = H1(A,Q) and
let hA be the homomorphism defining the Hodge structure on H1(A,Q). Both t
and the Riemann form t0 of λ can be regarded as Hodge tensors for V . The period
subdomain D = D(V ,hA, {t, t0}) is a hermitian symmetric domain (see 7.9). On
dividing by a suitable arithmetic subgroup, we get a smooth proper map π : A→ S

of smooth algebraic varieties whose fibres are abelian varieties (Theorem 7.13) and
a section t of R2rπ∗Q(r). For one s ∈ S, the fibre (A, t)s = (A, t), and another fibre
is an abelian variety of CM-type (apply 8.1), and so the theorem follows from Step
3 and hypothesis (c). (See [20], §6, for more details.)

Motives for absolute Hodge classes

We fix a base field k of characteristic zero; “variety” will mean “smooth projec-
tive variety over k”.

For varieties X and Y with X connected, we let

Cr(X, Y) = AHdimX+r(X× Y)

(correspondences of degree r from X to Y). When X has connected components Xi,
i ∈ I, we let

Cr(X, Y) =
⊕

i∈I
Cr(Xi, Y).

For varieties X, Y,Z, there is a bilinear pairing

f,g 7→ g ◦ f : Cr(X, Y)× Cs(Y,Z)→ Cr+s(X,Z)

with
g ◦ f def

= (pXZ)∗(p
∗
XYf · p∗YZg).

Here the p’s are projection maps from X× Y × Z. These pairings are associative and
so we get a “category of correspondences”, which has one object hX for every variety
over k, and whose Homs are defined by

Hom(hX,hY) = C0(X, Y).

Let f : Y → X be a regular map of varieties. The transpose of the graph of f is an
element of C0(X, Y), and so X hX is a contravariant functor.

The category of correspondences is additive, but not abelian, and so we enlarge
it by adding the images of idempotents. More precisely, we define a “category of
effective motives”, which has one object h(X, e) for each variety X and idempotent e
in the ring End(hX) = AHdimX(X× X), and whose Homs are defined by

Hom(h(X, e),h(Y, f)) = f ◦ C0(X, Y) ◦ e.

This contains the old category by hX↔ h(X, id), and h(X, e) is the image of hX e−→
hX.

The category of effective motives is abelian, but objects need not have duals. In
the enlarged category, the motive hP1 decomposes into hP1 = h0P1 ⊕ h2P1, and it
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turns out that, to obtain duals for all objects, we only have to “invert” the motive
h2P1. This is most conveniently done by defining a “category of motives” which has
one object h(X, e,m) for each pair (X, e) as before and integerm, and whose Homs
are defined by

Hom(h(X, e,m),h(Y, f,n)) = f ◦ Cn−m(X, Y) ◦ e.

This contains the old category by h(X, e)↔ h(X, e,0).
We now list some properties of the category Mot(k) of motives.

9.20. The Hom’s in Mot(k) are finite dimensional Q-vector spaces, and Mot(k) is a
semisimple abelian category.

9.21. Define a tensor product on Mot(k) by

h(X, e,m)⊗ h(X, f,n) = h(X× Y, e× f,m+ n).

With the obvious associativity constraint and a suitable31 commutativity constraint,
Mot(k) becomes a tannakian category.

9.22. The standard cohomology functors factor throughMot(k). For example, define

ω`(h(X, e,m)) = e
(⊕

i
Hi`(X)(m)

)
(image of e acting on

⊕
iH

i
`(X)(m)). Then ω` is an exact faithful functor Mot(k)→

VecQ` commuting with tensor products. Similarly, de Rham cohomology defines
an exact tensor functor ωdR : Mot(k)→ Veck, and, when k = C, Betti cohomology
defines an exact tensor functor Mot(k)→ VecQ. The functors ω`, ωdR, and ωB are
called the `-adic, de Rham, and Betti fibre functors, and they send a motive to its
`-adic, de Rham, or Betti realization.

The Betti fibre functor on Mot(C) takes values in HdgQ, and is faithful (almost
by definition). Deligne’s conjecture 9.14 is equivalent to saying that it is full.

Abelian motives

Definition 9.23. A motive is abelian if it lies in the tannakian subcategory Motab(k)
of Mot(k) generated by the motives of abelian varieties.

The Tate motive, being isomorphic to
∧2
h1E for any elliptic curve E, is an

abelianmotive. It is known that h(X) is an abelianmotive if X is a curve, a unirational
variety of dimension 6 3, a Fermat hypersurface, or a K3 surface.

Deligne’s theorem 9.15 implies that ωB : Motab(C)→ HdgQ is fully faithful.

31Not the obvious one! It is necessary to change some signs.
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CM motives

Definition 9.24. Amotive over C is of CM-type if its Hodge realization is of CM-type.

Lemma 9.25. Every Hodge structure of CM-type is the Betti realization of an abelian
motive.

Proof. Elementary (see, for example, [37], 4.6). �

Therefore ωB defines an equivalence from the category of abelian motives of
CM-type to the category of Hodge structures of CM-type.

Proposition 9.26. Let GHdg (resp. GMab) be the affine group scheme attached to HdgQ
and its forgetful fibre functor (resp. Motab(C) and its Betti fibre functor). The kernel of
the homomorphism GHdg → GMab defined by the tensor functor ωB : Motab(C)→ HdgQ
is contained in (GHdg)

der.

Proof. Let S be the affine group scheme attached to the category HdgcmQ of Hodge
structures of CM-type and its forgetful fibre functor. The lemma shows that the
functor HdgcmQ ↪→ HdgQ factors through Motab(C) ↪→ HdgQ, and so GHdg → S factors
through GHdg → GMab:

GHdg → GMab � S.

Hence

Ker(GHdg → GMab) ⊂ Ker(GHdg � S) =
(
GHdg

)der
.

�

Special motives

Definition 9.27. A motive over C is special if its Hodge realization is special (see
p. 496).

It follows from (6.7) that the special motives form a tannakian subcategory of
Mot(k), which includes the abelian motives (see 6.10).

Question 9.28. Is every special Hodge structure the Betti realization of a motive?
(Cf. [19], p. 248; [32], p. 216; [56], 8.7.)

More explicitly: for each simple special Hodge structure (V ,h), does there exist
an algebraic variety X over C and an integerm such that (V ,h) is a direct factor of⊕
r>0H

r
B(X)(m) and the projection

⊕
r>0H

r
B(X)(m)→ V ⊂

⊕
r>0H

r
B(X)(m) is an

absolute Hodge class on X.
A positive answer to (9.28) would imply that all connected Shimura varieties

are moduli varieties for motives (see §11). Apparently, no special motive is known
that is not abelian.
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Families of abelian motives For an abelian variety A over k, let

ωf(A) = lim←−AN(k
al), AN(k

al) = Ker(N : A(kal)→ A(kal)).

This is a free Af-module of rank 2dimA with a continuous action of Gal(kal/k).
Let S be a smooth connected variety over k, and let k(S) be its function field. Fix

an algebraic closure k(S)al of k(S), and let k(S)un be the union of the subfields L of
k(S)al such that the normalization of S in L is unramified over S. We say that an action
of Gal(k(S)al/k(S)) on a module is unramified if it factors through Gal(k(S)un/k(S)).

Theorem 9.29. Let S be a smooth connected variety over k. The functorA Aη
def
= Ak(S)

is a fully faithful functor from the category of families of abelian varieties over S to the
category of abelian varieties over k(S), with essential image the abelian varieties B over
k(S) such that ωf(B) is unramified.

Proof. When S has dimension 1, this follows from the theory of Néron models. In
general, this theory shows that an abelian variety (or a morphism of abelian varieties)
extends to an open subvariety U of S such that S r U has codimension at least 2.
Now we can apply32 [10], I 2.7, V 6.8. �

The functor ωf extends to a functor on abelian motives such that ωf(h1A) =
ωf(A) if A is an abelian variety.

Definition 9.30. Let S be a smooth connected variety over k. A familyM of abelian
motives over S is an abelian motiveMη over k(S) such that ωf(Mη) is unramified.

Let M be a family of motives over a smooth connected variety S, and let
η̄ = Spec(k(S)al). The fundamental group π1(S, η̄) = Gal(k(S)un/k(S)), and so the
representation of π1(S, η̄) on ωf(Mη) defines a local system of Af-modules ωf(M).
Less obvious is that, when the ground field is C,M defines a polarizable variation of
Hodge structures on S,HB(M/S). WhenM can be represented in the form (A,p,m)

on S, this is obvious. However,M can always be represented in this fashion on an
open subset of S, and the underlying local system of Q-vector spaces extends to the
whole of S because the monodromy representation is unramified. Now it is possible
to show that the variation of Hodge structures itself extends (uniquely) to the whole
of S, by using results from [54], [9], and [26]. See [38], 2.40, for the details.

Theorem 9.31. Let S be a smooth connected variety over C. The functor sending a family
M of abelian motives over S to its associated polarizable Hodge structure is fully faithful,
with essential image the variations of Hodge structures (V, F) such that there exists a dense
open subset U of S, an integer m, and a family of abelian varieties f : A → S such that
(V, F) is a direct summand of Rf∗Q.

Proof. This follows from the similar statement (7.13) for families of abelian varieties
(see [38], 2.42). �

32Recall that we are assuming that the base field has characteristic zero — the theorem is false without
that condition.
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10. Symplectic Representations

In this subsection, we classify the symplectic representations of groups. These
were studied by Satake in a series of papers (see especially [51, 52, 53]). Our exposi-
tion follows that of Deligne [19].

In §8 we proved that there exists a correspondence between variations of Hodge
structures on locally symmetric varieties and certain commutative diagrams

(10.1)

H

(Had, h̄) (G,h) GLV
ρ

In this section, we study whether there exists such a diagram and a nondegenerate
alternating form ψ on V such that ρ(G) ⊂ G(ψ) and ρR ◦ h ∈ D(ψ). Here G(ψ) is
the group of symplectic similitudes (algebraic subgroup of GLV whose elements fix ψ
up to a scalar) and D(ψ) is the Siegel upper half space (set of Hodge structures h on
V of type {(−1,0), (0,−1)} for which 2πiψ is a polarization33). Note that G(ψ) is a
reductive group whose derived group is the symplectic group S(ψ).

Preliminaries

10.2. The universal covering torus T̃ of a torus T is the projective system (Tn, Tnm
m−→

Tn) in which Tn = T for all n and the indexing set is Nr {0} ordered by divisibility.
For any algebraic group G,

Hom(T̃ ,G) = lim−→
n>1

Hom(Tn,G).

Concretely, a homomorphism T̃ → G is represented by a pair (f,n) in which f is a
homomorphism T → G and n ∈ N r {0}; two pairs (f,n) and (g,m) represent the
same homomorphism T̃ → G if and only if f◦m = g◦n. A homomorphism f : T̃ → G

factors through T if and only if it is represented by a pair (f,1). A homomorphism
G̃m → GLV represented by (µ,n) defines a gradation V =

⊕
Vr, r ∈ 1

n
Z; here

V a
n

= {v ∈ V | µ(t)v = tav}; the r for which Vr 6= 0 are called the weights the
representation of G̃m on V . Similarly, a homomorphism S̃→ GLV represented by
(h,n) defines a fractional Hodge decomposition VC =

⊕
Vp,q with p,q ∈ 1

n
Z.

The real case

Throughout this subsection, H is a simply connected real algebraic group
without compact factors, and h̄ is a homomorphism S/Gm → Had satisfying the
conditions (SV1,2), p. 493, and whose projection on each simple factor of Had is
nontrivial.

33This description agrees with that in §2 because of the correspondence in (5.3).
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Definition 10.3. A homomorphism H → GLV with finite kernel is a symplectic
representation of (H, h̄) if there exists a commutative diagram

H

(Had, h̄) (G,h) (G(ψ),D(ψ)),

in which ψ is a nondegenerate alternating form on V , G is a reductive group, and h
is a homomorphism S→ G; the homomorphism H→ G is required to have image
Gder.

In other words, there exists a real reductive groupG, a nondegenerate alternating
form ψ on V , and a factorization

H
a−→ G

b−→ GLV

of H → GLV such that a(H) = Gder, b(G) ⊂ G(ψ), and b ◦ h ∈ D(ψ); the isogeny
H→ Gder induces an isomorphism Had c−→ Gad (see footnote 21, p. 511), and it is
required that h̄ = c−1 ◦ ad ◦h.

We shall determine the complex representations of H that occur in the com-
plexification of a symplectic representation (and we shall omit “the complexification
of”).

Proposition 10.4. A homomorphism H→ GLV with finite kernel is a symplectic repre-
sentation of (H, h̄) if there exists a commutative diagram

H

(Had, h̄) (G,h) GLV ,
ρ

in which G is a reductive group, the homomorphism H→ G has image Gder, and (V , ρ◦h)
has type {(−1,0), (0,−1)}.

Proof. Let G′ be the algebraic subgroup of G generated by Gder and h(S). After
replacing G with G′, we may suppose that G itself is generated by Gder and h(S).
Then (G,h) satisfies (SV2*), and it follows from Theorem 2.1 that there exists a
polarization ψ of (V , ρ ◦ h) such that Gmaps into G(ψ) (cf. the proof of 6.4). �
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Let (H, h̄) be as before. The cocharacter µh̄ ofHad
C lifts to a fractional cocharacter

µ̃ of HC:

G̃m
µ̃−−−−→ HCy yad

Gm −−−−→
µh̄

Had
C .

Lemma 10.5. If an irreducible complex representation W of H occurs in a symplectic
representation, then µ̃ has at most two weights a and a+ 1 onW.

Proof. Let H ϕ−→ (G,h) −→ GLV be a symplectic representation of (H, h̄), and letW
be an irreducible direct summand of VC. The homomorphisms ϕC ◦ µ̃ : G̃m → GC

coincides with µh when composed with GC → Gad
C , and so ϕC ◦ µ̃ = µh · ν with ν

central. On V , µh has weights 0,1. If a is the unique weight of ν on W, then the
only weights of µ̃ onW are a and a+ 1. �

Lemma 10.6. Assume that H is almost simple. A nontrivial irreducible complex represen-
tationW of H occurs in a symplectic representation if and only if µ̃ has exactly two weights
a and a+ 1 onW.

Proof. ⇒: Let (µ,n) represent µ̃. As HC is almost simple and W nontrivial, the
homomorphism Gm → GLW defined by µ is nontrivial, therefore noncentral, and
the two weights a and a+ 1 occur.

⇐: Let (W, r) be an irreducible complex representation of H with weights
a,a + 1, and let V be the real vector space underlying W. Define G to be the
subgroup of GLV generated by the image of H and the homotheties: G = r(H) ·Gm.
Let h̃ be a fractional lifting of h̄ to H̃:

S̃ h̃−−−−→ HCy yad

S −−−−→
h̄

Had
C .

Let Wa and Wa+1 be the subspaces of weight a and a + 1 of W. Then h̃(z) acts

on Wa as (z/z̄)a and on Wa+1 as (z/z̄)a+1, and so h(z) def
= h̃(z)z−az̄1+a acts on

these spaces as z̄ and z respectively. Therefore h is a true homomorphism S → G,
projecting to h̄ on Had, and V is of type {(−1,0), (0,−1)} relative to h. We may now
apply Lemma 10.4. �

We interpret the condition in Lemma 10.6 in terms of roots and weights.
Let µ̄ = µh̄. Fix a maximal torus T in HC, and let R = R(H, T) ⊂ X∗(T)Q be the
corresponding root system. Choose a base S for R such that 〈α, µ̄〉 > 0 for all α ∈ S
(cf. §2).
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Recall that, for each α ∈ R, there exists a unique α∨ ∈ X∗(T)Q such that
〈α,α∨〉 = 2 and the symmetry sα : x 7→ x− 〈x,α∨〉α preserves R; moreover, for all
α ∈ R, 〈R,α∨〉 ⊂ Z. The lattice of weights is

P(R) = {$ ∈ X∗(T)Q | 〈$,α∨〉 ∈ Z all α ∈ R},

the fundamental weights are the elements of the dual basis {$1, . . . ,$n} to {α∨
1 , . . . ,

α∨
n }, and that the dominant weights are the elements

∑
ni$i, ni ∈ N. The quotient

P(R)/Q(R) of P(R) by the lattice Q(R) generated by R is the character group of Z(H):

P(R)/Q(R) ' X∗(Z(H)).

The irreducible complex representations of H are classified by the dominant
weights. We shall determine the dominant weights of the irreducible complex
representations such that µ̃ has exactly two weights a and a+ 1.

There is a unique permutation τ of the simple roots, called the opposition
involution, such that the τ2 = 1 and the map α 7→ −τ(α) extends to an action of
the Weyl group. Its action on the Dynkin diagram is determined by the following
rules: it preserves each connected component; on a connected component of type
An, Dn (n odd), or E6, it acts as the unique nontrivial involution, and on all other
connected components, it acts trivially ([64], 1.5.1). Thus:

An

Dn n odd

E6

Proposition 10.7. LetW be an irreducible complex representation of H, and let $ be its
highest weight. The representationW occurs in a symplectic representation if and only if

(10.8) 〈$+ τ$, µ̄〉 = 1.

Proof. The lowest weight ofW is −τ($). The weights β ofW are of the form

β = $+
∑
α∈R

mαα, mα ∈ Z,

and

〈β, µ̄〉 ∈ Z.
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Thus, 〈β, µ̄〉 takes only two values a,a+ 1 if and only if

〈−τ($), µ̄〉 = 〈$, µ̄〉− 1,

i.e., if and only if (10.8) holds. �

Corollary 10.9. If W is symplectic, then $ is a fundamental weight. Therefore the
representation factors through an almost simple quotient of H.

Proof. For every dominant weight $, 〈$+ τ$, µ̄〉 ∈ Z because $+ τ$ ∈ Q(R). If
$ 6= 0, then 〈$ + τ$, µ̄〉 > 0 unless µ̄ kills all the weights of the representation
corresponding to$. Hence a dominant weight satisfying (10.8) can not be a sum of
two dominant weights. �

The corollary allows us to assume that H is almost simple. Recall from §2 that
there is a unique special simple root αs such that, for α ∈ S,

〈α, µ̄〉 =

{
1 if α = αs
0 otherwise.

When a weight $ is expressed as a Q-linear combination of the simple roots, 〈$, µ̄〉
is the coefficient of αs. For the fundamental weights, these coefficients can be found
in the tables in [7], VI. A fundamental weight $ satisfies (10.8) if and only if

(10.10) (coefficient of αs in $+ τ$) = 1.

In the following, we write α1, . . . ,αn for the simple roots and $1, . . . ,$n for
the fundamental weights with the usual numbering. In the diagrams, the solid node
is the special node corresponding to αs, and the nodes correspond to symplectic
representations (and we call them symplectic nodes).

TypeAn. The opposition involution τ switches the nodes i and n+1−i. According
to the tables in Bourbaki, for 1 6 i 6 (n+ 1)/2,

$i =
n+1−i
n+1 α1 +

2(n+1−i)
n+1 α2 + · · ·+ i(n+1−i)

n+1 αi + · · ·+ 2i
n+1αn−1 +

i
n+1αn.

Replacing i with n+ 1− i reflects the coefficients, and so

τ$i = $n+1−i =
i
n+1α1 +

2i
n+1α2 + · · ·+ 2(n+1−i)

n+1 αn−1 +
n+1−i
n+1 αn.

Therefore,

$i+τ$i = α1+2α2+· · ·+iαi+iαi+1+· · ·+iαn+1−(i+1)+iαn+1−i+· · ·+2αn−1+αn,

i.e., the sequence of coefficients is

(1,2, . . . , i, i, . . . , i, i, . . . ,2,1).

Let αs = α1 or αn. Then every fundamental weight satisfies (10.10):34

34[19], Table 1.3.9, overlooks this possibility.
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An(1)

An(n)

Let αs = αj, with 1 < j < n. Then only the fundamental weights $1 and $n satisfy
(10.10):

An(j)
j

As P/Q is generated by $1, the symplectic representations form a faithful family.

Type Bn. In this case, αs = α1 and the opposition involution acts trivially on the
Dynkin diagram, and so we seek a fundamental weight$i such that$i = 1

2α1 + · · · .
According to the tables in Bourbaki,

$i = α1 + 2α2 + · · ·+ (i− 1)αi−1 + i(αi + αi+1 + · · ·+ αn) (1 6 i < n)

$n = 1
2 (α1 + 2α2 + · · ·+ nαn),

and so only $n satisfies (10.10):

Bn(1)

As P/Q is generated by $n, the symplectic representations form a faithful family.

Type Cn. In this case αs = αn and the opposition involution acts trivially on the
Dynkin diagram, and so we seek a fundamental weight$i such that$i = · · ·+ 1

2αn.
According to the tables in Bourbaki,

$i = α1 + 2α2 + · · ·+ (i− 1)αi−1 + i(αi + αi+1 + · · ·+ αn−1 +
1
2αn),

and so only $1 satisfies (10.10):

Cn

As P/Q is generated by $1, the symplectic representations form a faithful family.

Type Dn. The opposition involution acts trivially if n is even, and switches αn−1

and αn if n is odd. According to the tables in Bourbaki,

$i = α1 + 2α2 + · · ·+ (i− 1)αi−1 + i(αi + · · ·+ αn−2) +
i
2 (αn−1 + αn),

1 6 i 6 n− 2
$n−1 = 1

2

(
α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1
2nαn−1 +

1
2 (n− 2)αn

)
$n = 1

2

(
α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1
2 (n− 2)αn−1 +

1
2nαn

)
Let αs = α1. As α1 is fixed by the opposition involution, we seek a fundamental

weight $i such that $i = 1
2α1 + · · · . Both $n−1 and $n give rise to symplectic

representations:

Dn(1)
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When n is odd, $n−1 and $n each generates P/Q, and when n is even $n−1 and
$n together generate P/Q. Therefore, in both cases, the symplectic representations
form a faithful family.

Let αs = αn−1 or αn and let n = 4. The nodes α1, α3, and α4 are permuted
by automorphisms of the Dynkin diagram (hence by outer automorphisms of the
corresponding group), and so this case is the same as the case αs = α1:

D4(1) D4(3) D4(4)

The symplectic representations form a faithful family.
Let αs = αn−1 or αn and let n > 5. When n is odd, τ interchanges αn−1 and

αn, and so we seek a fundamental weight $i such that $i = · · · + aαn−1 + bαn
with a+ b = 1; when n is even, τ is trivial, and we seek a fundamental weight $i
such that $i = · · ·+ 1

2αn−1 + · · · or · · ·+ 1
2αn. In each case, only $1 gives rise to a

symplectic representation:

Dn(n− 1)

Dn(n)

Theweight$1 generates a subgroup of order 2 (and index 2) in P/Q. LetC ⊂ Z(H) be
the kernel of$1 regarded as a character ofZ(H). Then every symplectic representation
factors through H/C, and the symplectic representations form a faithful family of
representations of H/C.

Type E6. In this case, αs = α1 or α6, and the opposition involution interchanges α1

and α6. Therefore, we seek a fundamental weight$i such that$i = aα1 + · · ·+bα6

with a+b = 1. In the following diagram, we list the value a+b for each fundamental
weight $i:

E6(1)
2 2 3

4

3 2

As no value equals 1, there are no symplectic representations.
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Type E7. In this case, αs = α7, and the opposition involution is trivial. Therefore,
we seek a fundamental weight$i such that$i = · · ·+ 1

2α7. In the following diagram,
we list the coefficient of α7 for each fundamental weight $i:

E7(7)
1 2 3

3
2

5
2

4
2

3
2

As no value is 1
2 , there are no symplectic representations.

Following [19], 1.3.9, we write DR for the case Dn(1) and DH for the cases
Dn(n− 1) and Dn(n).

Summary 10.11. Let H be a simply connected almost simple group over R, and let
h̄ : S/Gm → Had be a nontrivial homomorphism satisfying (SV1,2). There exists a sym-
plectic representation of (H, h̄) if and only if it is of type A, B, C, or D. Except when (H, h̄)
is of type DH

n, n > 5, the symplectic representations form a faithful family of representations
of H; when (H, h̄) is of type DH

n, n > 5, they form a faithful family of representations of
the quotient of the simply connected group by the kernel of $1.

The rational case

Now let H be a semisimple algebraic group over Q, and let h̄ be a homomor-
phism S/Gm → Had

R satisfying (SV1,2) and generating Had.

Definition 10.12. A homomorphism H → GLV with finite kernel is a symplectic
representation of (H, h̄) if there exists a commutative diagram

(10.13)

H

(Had, h̄) (G,h) (G(ψ),D(ψ)),
ρ

in which ψ is a nondegenerate alternating form on V , G is a reductive group (over
Q), and h is a homomorphism S→ GR; the homomorphism H→ G is required to
have image Gder,

Given a diagram (10.13), we may replace G with its image in GLV and so
assume that the representation ρ is faithful.

We now assume that H is simply connected and almost simple. Then H = (Hs)F/Q
for some geometrically almost simple algebraic group Hs over a number field F.
Because HR is an inner form of its compact form, the field F is totally real (see the
proof of 3.13). Let I = Hom(F,R). Then,

HR =
∏
v∈I

Hv, Hv = H
s ⊗F,v R.
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The Dynkin diagram D of HC is a disjoint union of the Dynkin diagrams Dv of the
group HvC. The Galois group Gal(Qal/Q) acts on it in a manner consistent with its
projection to I. In particular, it acts transitively on D and so all the factors Hv of HR

are of the same type. We let Ic (resp. Inc) denote the subset of I of v for which Hv
is compact (resp. not compact), and we let Hc =

∏
v∈Ic Hv and Hnc =

∏
v∈Inc Hv.

Because h̄ generates Had, Inc is nonempty.

Proposition 10.14. Let F be a totally real number field. Suppose that for each real prime
v of F, we are given a pair (Hv, h̄v) in which Hv is a simply connected algebraic group over
R of a fixed type, and h̄v is a homomorphism S/Gm → Had

v satisfying (SV1,2) (possibly
trivial). Then there exists an algebraic group H over Q such that H⊗F,v R ≈ Hv for all v.

Proof. There exists an algebraic group H over F such that H⊗F,v R is an inner form
of its compact form for all real primes v of F. For each such v, Hv is an inner form of
H⊗F,v R, and so defines a cohomology class in H1(Fv,Had). The proposition now
follows from the surjectivity of the map

H1(F,Had)→
∏

v real
H1(Fv,Had)

([48], Proposition 1). �

Pairs (H, h̄) for which there do not exist symplectic representations
H is of exceptional type Assume that H is of exceptional type. If there exists an h̄
satisfying (SV1,2), then H is of type E6 or E7 (see §2). A symplectic representation
of (H, h̄) over Q gives rise to a symplectic representation of (HR, h̄) over R, but we
have seen (10.11) that no such representations exist.
(H, h̄) is of mixed type D. By this we mean that H is of type Dn with n > 5 and that
at least one factor (Hv, h̄v) is of type DR

n and one of type DH
n. Such pairs (H, h̄) exist

by Proposition 10.14. The Dynkin diagram of HR contains connected components

Dn(1)

and

Dn(n)

or Dn(n − 1). To give a symplectic representation for HR, we have to choose a
symplectic node for each real prime v such that Hv is noncompact. In order for
the representation to be rational, the collection of symplectic nodes must be stable
under Gal(Qal/Q), but this is impossible, because there is no automorphism of the
Dynkin diagram of type Dn, n > 5, carrying the node 1 into either the node n− 1
or the node n.
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Pairs (H, h̄) for which there exist symplectic representations

Lemma 10.15. Let G be a reductive group over Q and let h be a homomorphism S→ GR

satisfying (SV1,2*) and generatingG. For any representation (V , ρ) ofG such that (V , ρ◦h)
is of type {(−1,0), (0,−1)}, there exists an alternating form ψ on V such that ρ induces a
homomorphism (G,h)→ (G(ψ),D(ψ)).

Proof. The pair (ρG, ρ ◦ h) is the Mumford-Tate group of (V , ρ ◦ h) and satisfies
(SV2*). The proof of Proposition 6.4 constructs a polarization ψ for (V , ρ ◦ h) such
that ρG ⊂ G(ψ). �

Proposition 10.16. A homomorphism H→ GLV is a symplectic representation of (H, h̄)
if there exists a commutative diagram

H

(Had, h̄) (G,h) GLV ,
ρ

in which G is a reductive group whose connected centre splits over a CM-field, the homomor-
phism H→ G has image Gder, the weight wh is defined over Q, and the Hodge structure
(V , ρ ◦ h) is of type {(−1,0), (0,−1)}.

Proof. The hypothesis on the connected centre Z◦ says that the largest compact
subtorus of Z◦R is defined over Q. Take G′ to be the subgroup of G generated by this
torus, Gder, and the image of wh. Now (G′,h) satisfies (SV2*), and we can apply
10.15. �

We classify the symplectic representations of (H, h̄) with ρ faithful. Note that
the quotient of H acting faithfully on V is isomorphic to Gder.

Let (V , r) be a symplectic representation of (H, h̄). The restriction of the rep-
resentation to Hnc is a real symplectic representation of Hnc, and so, according to
Corollary 10.9, every nontrivial irreducible direct summand of rC|Hnc factors through
Hv for some v ∈ Inc and corresponds to a symplectic node of the Dynkin diagram
Dv of Hv.

D

I T

s

Let W be an irreducible direct summand of VC.
Then

W ≈
⊗

v∈T
Wv

for some irreducible symplectic representationsWv of
HvC indexed by a subset T of I. The irreducible representationWv corresponds to a
symplectic node s(v) of Dv. Because r is defined over Q, the set s(T) is stable under
the action of Gal(Qal/Q). For v ∈ Inc, the set s(T)∩Dv consists of a single symplectic
node.
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Given a diagram (10.13), we let S(V) denote the set of subsets s(T) of the nodes
of D asW runs over the irreducible direct summands of V . The set S(V) satisfies the
following conditions:

(10.17a) for S ∈ S(V), S ∩ Dnc is either empty or consists of a single symplectic
node of Dv for some v ∈ Inc;

(10.17b) S is stable under Gal(Qal/Q) and contains a nonempty subset.

Given such a set S, let H(S)C be the quotient of HC that acts faithfully on the
representation defined by S. The condition (10.17b) ensures that H(S) is defined
over Q. According to Galois theory (in the sense of Grothendieck), there exists an
étale Q-algebra KS such that

Hom(KS,Qal) ' S (as sets with an action of Gal(Qal/Q)).

Theorem 10.18. For any set S satisfying the conditions (10.17), there exists a diagram
(10.13) such that the quotient of H acting faithfully on V is H(S).

Proof. We prove this only in the case that S consists of one-point sets. For an S as in
the theorem, the set S′ of {s} for s ∈ S ∈ S satisfies (10.17) and H(S) is a quotient
of H(S′).

Recall that H = (Hs)F/Q for some totally real field F. We choose a totally
imaginary quadratic extension E of F and, for each real embedding v of F in Ic, we
choose an extension σ of v to a complex embedding of E. Let T denote the set of σ’s.
Thus

E
σ−→ C

∪ ∪
F

v−→ R
T = {σ | v ∈ Ic}.

We regard E as a Q-vector space, and define a Hodge structure hT on it as
follows: E⊗Q C ' CHom(E,C) and the factor with index σ is of type (−1,0) if σ ∈ T ,
type (0,−1) if σ̄ ∈ T , and of type (0,0) if σ lies above Inc. Thus (Cσ = C):

E⊗Q C =
⊕
σ∈T Cσ ⊕

⊕
σ̄∈T Cσ ⊕

⊕
σ/∈T∪T̄ Cσ.

hT (z) z z̄ 1

Because the elements of S are one-point subsets of D, we can identify them
with elements of D, and so regard S as a subset of D. It has the properties:

(a) if s ∈ S ∩Dnc, then s is a symplectic node;
(b) S is stable under Gal(Qal/Q) and is nonempty.

Let KD be the smallest subfield of Qal such that Gal(Qal/KD) acts trivially on
D. Then KD is a Galois extension of Q in Qal such that Gal(KD/K) acts faithfully on
D. Complex conjugation acts as the opposition involution on D, which lies in the
centre of Aut(D); therefore KD is either totally real or CM.
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The Q-algebra KS can be taken to be a product of subfields of KD. In particular,
KS is a product of totally real fields and CM fields. The projection S→ I corresponds
to a homomorphism F→ KS.

For s ∈ S, let V(s) be a complex representation ofHC with dominant weight the
fundamental weight corresponding to s. The isomorphism class of the representation⊕
s∈S V(s) is defined over Q. The obstruction to the representation itself being

defined over Q lies in the Brauer group of Q, which is torsion, and so some multiple
of the representation is defined over Q. Let V be a representation of H over Q such
that VC ≈

⊕
s∈S nV(s) for some integer n, and let Vs denote the direct summand

of VC isomorphic to nV(s). These summands are permuted by Gal(Qal/Q) in a
fashion compatible with the action of Gal(Qal/Q) on S, and the decomposition
VC =

⊕
s∈S Vs corresponds therefore to a structure of aKS-module onV : let s′ : KS →

Qal be the homomorphism corresponding to s ∈ S; then a ∈ KS acts on Vs as
multiplication by s′(a).

LetH′ denote the quotient ofH that acts faithfully onV . ThenH′R is the quotient
of HR described in (10.11).

A lifting of h̄ to a fractional morphism of S into H′R defines a fractional Hodge
structure on V of weight 0, which can be described as follows. Let s ∈ S, and let
v be its image in I; if v ∈ Ic, then Vs is of type (0,0); if v ∈ Inc, then Vs is of type
{(r,−r), (r − 1,1 − r)} where r = 〈$s, µ̄〉 (notations as in 10.7). We renumber this
Hodge structure to obtain a new Hodge structure on V :

old new

Vs, v ∈ Ic (0,0) (0,0)

Vs, v ∈ Inc (r,−r) (0,−1)

Vs, v ∈ Inc (r− 1,1− r) (−1,0).

We endow the Q-vector space E⊗F V with the tensor product Hodge structure.
The decomposition

(E⊗F V)⊗Q R =
⊕

v∈I
(E⊗F,v R)⊗R (V ⊗F,v R),

is compatible with the Hodge structures. The type of the Hodge structure on each
direct summand is given by the following table:

E⊗F,v R V ⊗F,v R

v ∈ Ic {(−1,0), (0,−1)} {(0,0)}

v ∈ Inc {(0,0)} {(−1,0), (0,−1)}.

Therefore, E ⊗F V has type {(−1,0), (0,−1)}. Let G be the algebraic subgroup of
GLE⊗FV generated by E× and H′. The homomorphism h : S → (GLE⊗FV )R corre-
sponding to the Hodge structure factors through GR, and the derived group of G is
H′. Now apply (10.16). �
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Aside 10.19. The trick of using a quadratic imaginary extension E of F in order to
obtain a Hodge structure of type {(−1,0), (0,−1)} from one of type {(−1,0), (0,0),
(0,−1)} in essence goes back to Shimura (cf. [14], §6).

Conclusion Now let H be a semisimple algebraic group over Q, and let h̄ be a
homomorphism S→ Had

R satisfying (SV1,2) and generating H.

Definition 10.20. The pair (H, h̄) is of Hodge type if it admits a faithful family of
symplectic representations.

Theorem 10.21. A pair (H, h̄) is of Hodge type if it is a product of pairs (Hi, h̄i) such
that either

(a) (Hi, h̄i) is of type A, B, C, or DR, and H is simply connected, or
(b) (Hi, h̄i) is of type DH

n (n > 5) and equals (Hs)F/Q for the quotient Hs of the
simply connected group of type DH

n by the kernel of $1 (cf. 10.11).

Conversely, if (H, h̄) is a Hodge type, then it is a quotient of a product of pairs satisfying
(a) or (b).

Proof. Suppose that (H, h̄) is a product of pairs satisfying (a) and (b), and let (H′, h̄′)
be one of these factors with H′ almost simple. Let H̃′ be the simply connected
covering group of H. Then (10.11) allows us to choose a set S satisfying (10.17)
and such that H′ = H(S). Now Theorem 10.18 shows that (H′, h̄′) admits a faithful
symplectic representation. A product of pairs of Hodge type is clearly of Hodge type.

Conversely, suppose that (H, h̄) is of Hodge type, let H̃ be the simply connected
covering group of H, and let (H′, h̄′) be an almost simple factor of (H̃, h̄). Then
(H′, h̄′) admits a symplectic representation with finite kernel, and so (H′, h̄′) is not of
type E6, E7, or mixed type D (see p. 532). Moreover, if (H′, h̄′) is of type DH

n, n > 5,
then (10.11) shows that it factors through the quotient described in (b). �

Notice that we haven’t completely classified the pairs (H, h̄) of Hodge type
because we haven’t determined exactly which quotients of products of pairs satisfying
(a) or (b) occur as H(S) for some set S satisfying (10.17).

11. Moduli

In this section, we determine (a) the pairs (G,h) that arise as the Mumford-Tate
group of an abelian variety (or an abelian motive); (b) the arithmetic locally sym-
metric varieties that carry a faithful family of abelian varieties (or abelian motives);
(c) the Shimura varieties that arise as moduli varieties for polarized abelian varieties
(or motives) with Hodge class and level structure.

Mumford-Tate groups

Theorem 11.1. Let G be an algebraic group over Q, and let h : S→ GR be a homomor-
phism that generates G and whose weight is rational. The pair (G,h) is the Mumford-Tate
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group of an abelian variety if and only if h satisfies (SV2*) and there exists a faithful
representation ρ : G→ GLV such that (V , ρ ◦ h) is of type {(−1,0), (0,−1)}

Proof. The necessity is obvious (apply (6.4) to see that (G,h) satisfies (SV2*)). For
the sufficiency, note that (G,h) is the Mumford-Tate group of (V , ρ ◦ h) because
h generates G. The Hodge structure is polarizable because (G,h) satisfies (SV2*)
(apply 6.4), and so it is the Hodge structure H1(A

an,Q) of an abelian variety A by
Riemann’s theorem 4.4. �

The Mumford-Tate group of a motive is defined to be the Mumford-Tate group
of its Betti realization.

Theorem 11.2. Let (G,h) be an algebraic group over Q, and let h : S → GR be a
homomorphism satisfying (SV1,2*) and generating G. Assume that wh is defined over Q.
The pair (G,h) is the Mumford-Tate group of an abelian motive if and only if (Gder, h̄) is a
quotient of a product of pairs satisfying (a) and (b) of (10.21).

The proof will occupy the rest of this subsection. Recall that GHdg is the affine
group scheme attached to the tannakian categoryHdgQ of polarizable rational Hodge
structures and the forgetful fibre functor (see 9.26). It is equipped with a homo-
morphism hHdg : S→ (GHdg)R. If (G,h) is the Mumford-Tate group of a polarizable
Hodge structure, then there is a unique homomorphism ρ(h) : GHdg → G such that
h = ρ(h)R ◦ hHdg. Moreover, (GHdg,hHdg) = lim←−(G,h).

Lemma 11.3. Let H be a semisimple algebraic group over Q, and let h̄ : S/Gm → Had
R be

a homomorphism satisfying (SV1,2,3). There exists a unique homomorphism

ρ(H, h̄) :
(
GHdg

)der → H

such that the following diagram commutes:

(GHdg)
der ρ(H,h̄)−−−−→ Hy y

GHdg −−−−→
ρ(h̄)

Had.

Proof. Two such homomorphisms ρ(H, h̄) would differ by a map into Z(H). Because
(GHdg)

der is connected, any such map is constant, and so the homomorphisms are
equal.

For the existence, choose a pair (G,h) as in (8.9). Then (G,h) is the Mumford-
Tate group of a polarizable Hodge structure, and we can take ρ(H, h̄) = ρ(h)|(GHdg)

der.
�

Lemma 11.4. The assignment (H, h̄) 7→ ρ(H, h̄) is functorial: if α : H → H′ is a
homomorphism taking Z(H) into Z(H′) and carrying h̄ to h̄′, then ρ(H′, h̄′) = α◦ρ(H, h̄).
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Proof. The homomorphism h̄′ generates H′ad (by SV3), and so the homomorphism
α is surjective. Choose a pair (G,h) for (H, h̄) as in (8.9), and let G′ = G/Ker(α).
Write α again for the projection G→ G′ and let h′ = αR ◦ h. This equality implies
that

ρ(h′) = α ◦ ρ(h).
On restricting this to (GHdg)

der, we obtain the equality

ρ(H′, h̄′) = α ◦ ρ(H, h̄).

�

Recall that GMab is the affine group scheme attached to the category of abelian
motives over C and the Betti fibre functor. The functor Motab(C) → HdgQ is fully
faithful by Deligne’s theorem (9.15), and so it induces a surjective mapGHdg → GMab.

Lemma 11.5. If (H,h) is of Hodge type, then ρ(H, h̄) factors through (GMab)
der.

Proof. Let (G,h) be as in the definition (10.12), and replace G with the algebraic
subgroup generated byh. Then (G,h) is theMumford-Tate group of an abelian variety
(Riemann’s theorem 4.4), and so ρ(h) : GHdg → G factors through GHdg → GMab.

Therefore ρ(H, h̄)maps the kernel of
(
GHdg

)der → (GMab)
der into the kernel ofH→ G.

By assumption, the intersection of these kernels is trivial. �

Lemma 11.6. The homomorphism ρ(H, h̄) factors through (GMab)
der if and only if (H, h̄)

has a finite covering by a pair of Hodge type.

Proof. Suppose that there is a finite covering α : H′ → H such that (H′, h̄) is of Hodge
type. By Lemma 11.5, ρ(H′, h̄) factors through (GMab)

der, and therefore so also does
ρ(H, h̄) = α ◦ ρ(H′, h̄).

Conversely, suppose that ρ(H, h̄) factors through (GMab)
der. There will be an

algebraic quotient (G,h) of (GMab,hMab) such that (H, h̄) is a quotient of (Gder, ad ◦h).
Consider the category of abelian motivesM such that the action of GMab on ωB(M)

factors through G. By definition, this category is contained in the tensor category
generated by h1(A) for some abelian variety A. We can replace G with the Mumford-
Tate group of A. Then (Gder, ad ◦h) has a faithful symplectic embedding, and so it is
of Hodge type. �

We can now complete the proof of the Theorem 11.2. From (9.26), we know
that ρ(h) factors through GMab if and only if ρ(Gder, ad ◦h) factors through (GMab)

der,
and from (11.6) we know that this is true if and only if (Gder, ad ◦h) has a finite
covering by a pair of Hodge type.

Aside 11.7. Let G be an algebraic group over Q and let h be a homomorphism
S→ GR. If (G,h) is the Mumford-Tate group of a motive, then h generates G, wh is
defined over Q, and h satisfies (SV2*). Assume that (G,h) satisfies these conditions.
A positive answer to Question 9.28 would imply that (G,h) is the Mumford-Tate
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group of a motive if h satisfies (SV1). If Gder is of type E8, F4, or G2, then there does
not exist an h satisfying (SV1) (apply §2 to h|S1). Nevertheless, it has recently been
shown that there exist motives whose Mumford-Tate group is of type G2 ([22]).

Notes. This subsection follows §1 of [38].

Families of abelian varieties and motives

Let S be a connected smooth algebraic variety over C, and let o ∈ S(C). A
family f : A → S of abelian varieties over S defines a local system V = R1f∗Z of
Z-modules on San. We say that the family is faithful if the monodromy representation
π1(S

an,o)→ GL(Vo) is injective.
Let D(Γ) = Γ\D be an arithmetic locally symmetric variety, and let o ∈ D. By

definition, there exists a simply connected algebraic group H over Q and a surjective
homomorphism ϕ : H(R) → Hol(D)+ with compact kernel such that ϕ(H(Z)) is
commensurable with Γ . Moreover, with amild condition on the ranks, the pair (H,ϕ)
is uniquely determined up to a unique isomorphism (see 3.13). Let h̄ : S→ Had be
the homomorphism whose projection into a compact factor of Had is trivial and
is such that ϕ(h̄(z)) fixes o and acts on To(D) as multiplication by z/z̄ (cf. (8.4),
p. 510).

Theorem 11.8. There exists a faithful family of abelian varieties on D(Γ) having a fibre
of CM-type if and only if (H, h̄) admits a symplectic representation (10.12).

Proof. Let f : A → D(Γ) be a faithful family of abelian varieties on D(Γ), and let
(V, F) be the variation of Hodge structures R1f∗Q. Choose a trivialization π∗V ≈ VD,
and let G ⊂ GLV be the generic Mumford-Tate group (see 6.17). As in (§8), we get a
commutative diagram

(11.9)

H

(Had, h̄) (G,h) GLV
ρ

in which the image of H → G is Gder. Because the family is faithful, the map
H→ Gder is an isogeny, and so (H, h̄) admits a symplectic representation.

Conversely, a symplectic representation of (H, h̄) defines a variation of Hodge
structures (8.6), which arises from a family of abelian varieties by Theorem 7.13
(Riemann’s theorem in families). �

Theorem 11.10. There exists a faithful family of abelian motives on D(Γ) having a fibre
of CM-type if and only if (H, h̄) has finite covering by a pair of Hodge type.

Proof. The proof is essentially the same as that of Theorem 11.8. The points are
the determination of the Mumford-Tate groups of abelian motives in (11.2) and
Theorem 9.31, which replaces Riemann’s theorem in families. �
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Shimura varieties

In the above, we have always considered connected varieties. As Deligne [14]
observed, it is often more convenient to consider nonconnected varieties.

Definition 11.11. A Shimura datum is a pair (G,X) consisting of a reductive group
G over Q and a G(R)+-conjugacy class of homomorphisms S → GR satisfying
(SV1,2,3).35

Example 11.12. Let (V ,ψ) be a symplectic space over Q. The group G(ψ) of sym-
plectic similitudes together with the space X(ψ) of all complex structures J on VR

such that (x,y) 7→ ψ(x, Jy) is positive definite is a Shimura datum.

Let (G,X) be a Shimura datum. The map h 7→ h̄
def
= ad ◦h identifies X with a

Gad(R)+-conjugacy class of homomorphisms h̄ : S/Gm → Gad
R satisfying (SV1,2,3).

Thus X is a hermitian symmetric domain (2.5, 6.1). More canonically, the set X
has a unique structure of a complex manifold such that, for every representation
ρR : GR → GLV , (VX, ρ ◦h)h∈X is a holomorphic family of Hodge structures. For this
complex structure, (VX, ρ ◦ h)h∈X is a variation of Hodge structures, and so X is a
hermitian symmetric domain.

The Shimura variety attached to (G,X) and the choice of a compact open
subgroup K of G(Af) is36

ShK(G,X) = G(Q)+\X×G(Af)/K

where G(Q)+ = G(Q) ∩G(R)+. In this quotient, G(Q)+ acts on both X (by conju-
gation) and G(Af), and K acts on G(Af). Let C be a set of representatives for the
(finite) double coset space G(Q)+\G(Af)/K; then

G(Q)+\X×G(Af)/K '
⊔
g∈C

Γg\X, Γg = gKg−1 ∩G(Q)+.

Because Γg is a congruence subgroup of G(Q), its image in Gad(Q) is arithmetic
(3.4), and so ShK(G,X) is a finite disjoint union of connected Shimura varieties. It
therefore has a unique structure of an algebraic variety. As K varies, these varieties
form a projective system.

We make this more explicit in the case that Gder is simply connected. Let
ν : G→ T be the quotient of G by Gder, and let Z be the centre of G. Then ν defines
an isogeny Z→ T , and we let

T(R)† = Im(Z(R)→ T(R)),

T(Q)† = T(Q) ∩ T(R)†.

35In the usual definition, X is taken to be aG(R)-conjugacy class. For our purposes, it is convenient
to choose a connected component of X.

36This agrees with the usual definition because of [40], 5.11.
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The set T(Q)†\T(Af)/ν(K) is finite and discrete. For K sufficiently small, the map

(11.13) [x,a] 7→ [ν(a)] : G(Q)\X×G(Af)/K→ T(Q)†\T(Af)/ν(K)

is surjective, and each fibre is isomorphic to Γ\X for some congruence subgroup Γ of
Gder(Q). For the fibre over [1], the congruence subgroup Γ is contained in K∩Gder(Q),
and equals it if Z(Gder) satisfies the Hasse principal for H1, for example, if Gder has
no factors of type A.

Example 11.14. Let G = GL2. Then

(G
ν−→ T) = (GL2

det−→ Gm)

(Z
ν−→ T) = (Gm

2−→ Gm),

and therefore
T(Q)†\T(Af)/ν(K) = Q>0\A×f /det(K).

Note that A×f = Q>0 · Ẑ× (direct product) where Ẑ = lim←−n Z/nZ '
∏
` Z`. For

K = K(N)
def
= {a ∈ Ẑ× | a ≡ 1, modN},

we find that
T(Q)†\T(Af)/ν(K) ' (Z/NZ)×.

Definition 11.15. A Shimura datum (G,X) is ofHodge type if there exists an injective
homomorphism G → G(ψ) sending X into X(ψ) for some symplectic pair (V ,ψ)
over Q.

Definition 11.16. A Shimura datum (G,X) is of abelian type if, for one (hence all)
h ∈ X, the pair (Gder, ad ◦h) is a quotient of a product of pairs satisfying (a) or (b)
of (10.21).

A Shimura variety Sh(G,X) is said to be of Hodge or abelian type if (G,X) is.

Notes. See [40], §5, for proofs of the statements in this subsection. For the structure
of the Shimura variety when Gder is not simply connected, see [19], 2.1.16.

Shimura varieties as moduli varieties

Throughout this subsection, (G,X) is a Shimura datum such that

(a) wX is defined over Q and the connected centre of G is split by a CM-field,
and

(b) there exists a homomorphism ν : G→ Gm ' GLQ(1) such that ν ◦wX = −2.

Fix a faithful representation ρ : G → GLV . Assume that there exists a pairing
t0 : V × V → Q(m) such that (i) gt0 = ν(g)mt0 for all g ∈ G and (ii) t0 is a polariza-
tion of (V , ρR◦h) for allh ∈ X. Then there exist homomorphisms ti : V⊗ri → Q(mri2 ),
1 6 i 6 n, such that G is the subgroup of GLV whose elements fix t0, t1, . . . , tn.
When (G,X) is of Hodge type, we choose ρ to be a symplectic representation.
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Let K be a compact open subgroup of G(Af). Define HK(C) to be the set of
triples

(W, (si)06i6n,ηK)

in which

• W = (W,hW) is a rational Hodge structure,
• each si is a morphism of Hodge structures W⊗ri → Q(mri2 ) and s0 is a
polarization ofW,

• ηK is a K-orbit of Af-linear isomorphisms VAf →WAf sending each ti to si,

satisfying the following condition:

(*) there exists an isomorphism γ : W → V sending each si to ti
and hW onto an element of X.

Lemma 11.17. For (W, . . .) in HK(C), choose an isomorphism γ as in (*), let h be the
image of hW in X, and let a ∈ G(Af) be the composite VAf

η−→WAf
γ−→ VAf . The class

[h,a] of the pair (h,a) in G(Q)+\X×G(Af)/K is independent of all choices, and the map

(W, . . .) 7→ [h,a] : HK(C)→ ShK(G,X)(C)

is surjective with fibres equal to the isomorphism classes.

Proof. The proof involves only routine checking. �

For a smooth algebraic variety S over C, let FK(S) be the set of isomorphism
classes of triples (A, (si)06i6n,ηK) in which

• A is a family of abelian motives over S,
• each si is a morphism of abelian motives A⊗ri → Q(mri2 ), and
• ηK is a K-orbit of Af-linear isomorphisms VS → ωf(A/S) sending each ti
to si,37

satisfying the following condition:

(**) for each s ∈ S(C), the Betti realization of (A, (si),ηK)s lies in
HK(C).

With the obvious notion of pullback, FK becomes a functor from smooth complex
algebraic varieties to sets. There is a well-defined injective map FK(C)→ HK(C)/≈,
which is surjective when (G,X) is of abelian type. Hence, in this case, we get an
isomorphism α : FK(C)→ ShK(C).

Theorem 11.18. Assume that (G,X) is of abelian type. The map α realizes ShK as a
coarse moduli variety for FK, and even a fine moduli variety when Z(Q) is discrete in Z(R)
(here Z = Z(G)).

Proof. To say that (ShK,α) is coarse moduli variety means the following:

37The isomorphism η is defined only on the universal covering space of San, but the family ηK is
stable under π1(S,o), and so is “defined” on S.
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(a) for any smooth algebraic variety S over C, and ξ ∈ F(S), the map s 7→
α(ξs) : S(C)→ ShK(C) is regular;

(b) (ShK,α) is universal among pairs satisfying (a) .

To prove (a), we use that ξ defines a variation of Hodge structures on S (see
p. 523). Now the universal property of hermitian symmetric domains (7.8) shows
that the map s 7→ α(ξs) is holomorphic (on the universal covering space, and hence
on the variety), and Borel’s theorem 4.3 shows that it is regular.

Next assume that Z(Q) is discrete in Z(R). Then the representation ρ defines
a variation of Hodge structures on ShK itself (not just its universal covering space),
which arises from a family of abelian motives. This family is universal, and so ShK
is a fine moduli variety.

We now prove (b). Let S′ be a smooth algebraic variety over C and let α′ : FK(C)
→ S′(C) be a map with the following property: for any smooth algebraic variety
S over C and ξ ∈ F(S), the map s 7→ α′(ξs) : S(C) → S′(C) is regular. We have
to show that the map s 7→ α′α−1(s) : ShK(C) → S′(C) is regular. When Z(Q) is
discrete in Z(R), the map is that defined by α′ and the universal family of abelian
motives on ShK, and so it is regular by definition. In the general case, we let G′

be the smallest algebraic subgroup of G such that h(S) ⊂ G′R for all h ∈ X. Then
(G′,X) is a Shimura datum (cf. 7.6), which now is such that Z(Q) is discrete in Z(R);
moreover, ShK∩G′(Af)(G

′,X) consists of a certain number of connected components
of ShK(G,X). As themap is regular on ShK∩G′(Af)(G

′,X), and ShK(G,X) is a union of
translates of ShK∩G′(Af)(G

′,X), this shows that the map is regular on ShK(G,X). �

Remarks

11.19. When (G,X) is of Hodge type in Theorem 11.18, the Shimura variety is a
moduli variety for abelian varieties with additional structure. In this case, the moduli
problem can be defined for all schemes algebraic over C (not necessarily smooth),
and Mumford’s theorem can be used to prove that the Shimura variety is moduli
variety for the expanded functor.

11.20. It is possible to describe the structure ηK by passing only to a finite covering,
rather than the full universal covering. This means that it can be described purely
algebraically.

11.21. For certain compact open groups K, the structure ηK can be interpreted as a
level-N structure in the usual sense.

11.22. Consider a pair (H, h̄) having a finite covering of Hodge type. Then there
exists a Shimura datum (G,X) of abelian type such that (Gder, ad ◦h) = (H, h̄) for
some h ∈ X. The choice of a faithful representation ρ for G gives a realization of the
connected Shimura variety defined by any (sufficiently small) congruence subgroup
of H(Q) as a fine moduli variety for abelian motives with additional structure. For
example, when H is simply connected, there is a map HK(C)→ T(Q)†\T(Af)/ν(K)
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(see (11.13), p. 541), and the moduli problem is obtained from FK by replacing
HK(C) with its fibre over [1]. Note that the realization involves many choices.

11.23. For each Shimura variety, there is a well-defined number field E(G,X), called
the reflex field. When the Shimura variety is a moduli variety, it is possible choose
the moduli problem so that it is defined over E(G,X). Then an elementary descent
argument shows that the Shimura variety itself has a model over E(G,X). A priori, it
may appear that this model depends on the choice of the moduli problem. How-
ever, the theory of complex multiplication shows that the model satisfies a certain
reciprocity law at the special points, which characterize it.

11.24. The (unique)model of a Shimura variety over the reflex fieldE(G,X) satisfying
(Shimura’s) reciprocity law at the special points is called the canonical model. As we
have just noted, when a Shimura variety can be realized as a moduli variety, it has a
canonical model. More generally, when the associated connected Shimura variety is
a moduli variety, then Sh(G,X) has a canonical model ([61], [19]). Otherwise, the
Shimura variety can be embedded in a larger Shimura variety that contains many
Shimura subvarieties of type A1, and this can be used to prove that the Shimura
variety has a canonical model ([35]).

Notes. For more details on this subsection, see [38].

References

[1] Y. André. Mumford-Tate groups of mixed Hodge structures and the theorem of
the fixed part. Compositio Math., 82, 1–24, 1992a. ← 499

[2] Y. André. Une remarque à propos des cycles deHodge de type CM, in: Séminaire
de Théorie des Nombres, Paris, 1989–1990, 1–7. Progr. Math., 102 , Birkhäuser
Boston, Boston, MA, 1992b. ← 519

[3] Jr.W. L. Baily and A. Borel. Compactification of arithmetic quotients of bounded
symmetric domains. Ann. of Math. (2), 84, 442–528, 1966. ← 487

[4] A. Borel. Introduction aux groupes arithmétiques, in: Publications de l’Institut
de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et
Industrielles, 1341, Hermann, Paris, 1969. ← 482, 483

[5] A. Borel. Some metric properties of arithmetic quotients of symmetric spaces
and an extension theorem. J. Differential Geometry, 6, 543–560, 1972. ← 487

[6] A. Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann.
of Math. (2), 75, 485–535, 1962. ← 482

[7] N. Bourbaki. Groupes et Algèbres de Lie. Éléments demathématique. Hermann;
Masson, Paris. Chap. I, Hermann 1960; Chap. II,III, Hermann 1972; Chap.
IV,V,VI, Masson 1981;Chap. VII,VIII, Masson 1975; Chap. IX, Masson 1982
(English translation available from Springer). ← 480, 528

[8] E. Cattani, P. Deligne, and A. Kaplan. On the locus of Hodge classes. J. Amer.
Math. Soc., 8, 483–506, 1995. ← 498



J.S. Milne 545

[9] E. Cattani, A. Kaplan, and W. Schmid. Degeneration of Hodge structures. Ann.
of Math. (2), 123, 457–535, 1986. ← 523

[10] C.-L. Chai and G. Faltings. Degeneration of abelian varieties, volume 22 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin,
1990. ← 523

[11] W.-L. Chow. On compact complex analytic varieties. Amer. J. Math., 71, 893–
914, 1949. ← 487

[12] A. Comessatti. Sugl’indici di singolarita a più dimensioni della varieta abeliane.
Rendiconti delSeminarioMatematicodellaUniversitàdiPadova,50–79,1938.← 497

[13] P. Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., 5–57,
1971a. ← 502, 508

[14] P. Deligne. Travaux de Shimura, in: Séminaire Bourbaki, 23ème année
(1970/71), Exp. No. 389, 123–165.Lecture Notes in Math., 244, Springer, Berlin,
1971b. ← 488, 516, 536, 540

[15] P. Deligne. La conjecture de Weil pour les surfaces K3. Invent. Math., 15,
206–226, 1972. ← 494, 499

[16] P. Deligne. Les constantes des équations fonctionnelles des fonctions L, in:
Modular functions of one variable, II (Proc. Internat. Summer School, Univ.
Antwerp, Antwerp, 1972), 501–597. Lecture Notes in Math., 349, Springer,
Berlin, 1973. ← 490

[17] P. Deligne. La conjecture deWeil. I. Inst. Hautes Études Sci. Publ. Math., 273–307,
1974. ← 499

[18] P. Deligne. Valeurs de fonctions L et périodes d’intégrales, in: Automor-
phic forms, representations and L-functions (Proc. Sympos. Pure Math., Ore-
gon State Univ., Corvallis, Ore., 1977), Part 2, 313–346. Proc. Sympos. Pure
Math.,XXXIII, Amer. Math. Soc., Providence, R.I., 1979a. ← 515, 517

[19] P. Deligne. VariétésdeShimura: interprétationmodulaire,et techniquesdecon-
structiondemodèles canoniques, in: Automorphicforms,representationsand
L-functions(Proc. Sympos.PureMath.,OregonStateUniv.,Corvallis,Ore.,1977),
Part2, 247–289.Proc. Sympos.PureMath.,XXXIII, Amer.Math.Soc., Providence,
R.I.,1979b. ← 480, 488, 490, 494, 505, 507, 522, 524, 528, 531, 541, 544

[20] P. Deligne. Hodge cycles on abelian varieties (notes by J.S. Milne), in : Hodge
cycles, motives, and Shimura varieties, 9–100. Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 1982. A corrected version is available at jmilne.org.
← 494, 500, 515, 516, 517, 519, 520

[21] P. Deligne and J. S. Milne. Tannakian categories, in: Hodge cycles, motives, and
Shimura varieties, 101–228. Lecture Notes in Mathematics, 900, Springer-Verlag,
Berlin, 1982. ← 494, 495

[22] M. Dettweiler and S. Reiter. Rigid local systems and motives of typeG2. Compos.
Math., 146, 929–963, 2010. With an appendix by Michael Dettweiler and
Nicholas M. Katz. ← 539



546 Shimura varieties and moduli

[23] H. Grauert and R. Remmert. Coherent analytic sheaves, Grundlehren der Mathe-
matischen Wissenschaften, 265, Springer-Verlag, Berlin, 1984. ← 504

[24] P. A. Griffiths. Periods of integrals on algebraic manifolds. I, II. Amer. J. Math.,
90, 568–626, 805–865, 1968. ← 493

[25] P. A. Griffiths. Periods of integrals on algebraic manifolds: Summary of main
results and discussion of open problems. Bull. Amer. Math. Soc., 76, 228–296,
1970. ← 502

[26] P. A. Griffiths and W. Schmid. Locally homogeneous complex manifolds. Acta
Math., 123, 253–302, 1969. ← 523

[27] S. Helgason. Differential geometry, Lie groups, and symmetric spaces. Pure and
Applied Mathematics, 80, Academic Press Inc., New York, 1978. ← 477

[28] H. Hironaka. Resolution of singularities of an algebraic variety over a field of
characteristic zero. I, II. Ann. of Math., 79, 109–326, 1964. ← 488

[29] J. E. Humphreys. Linear algebraic groups. Springer-Verlag, New York, 1975.
← 479

[30] N. M. Katz and B. Mazur. Arithmetic moduli of elliptic curves, Annals of
Mathematics Studies, 108, Princeton University Press, Princeton, NJ, 1985.
← 475

[31] S. Kobayashi. Geometry of bounded domains. Trans. Amer. Math. Soc., 92,
267–290, 1959. ← 477

[32] R. P. Langlands. Automorphic representations, Shimura varieties, and motives.
Ein Märchen, in: Automorphic forms, representations and L-functions (Proc.
Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, 205–
246. Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979.
← 522

[33] G. A. Margulis. Discrete subgroups of semisimple Lie groups, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991. ← 484

[34] A. Mattuck. Cycles on abelian varieties. Proc. Amer. Math. Soc., 9, 88–98, 1958.
← 497

[35] J. S. Milne. The action of an automorphism of C on a Shimura variety and
its special points, in: Arithmetic and geometry, Vol. I, 239–265. Progr. Math.,
Birkhäuser Boston, Boston, MA, 1983. ← 544

[36] J. S. Milne. Abelian varieties, in: Arithmetic geometry (Storrs, Conn., 1984),
103–150. Springer, New York, 1986. ← 509

[37] J. S. Milne. Motives over finite fields, in: Motives (Seattle, WA, 1991), 401–459.
Proc. Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994a. ← 522

[38] J. S. Milne. Shimura varieties and motives, in: Motives (Seattle, WA, 1991),
447–523. Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1994b.
← 523, 539, 544

[39] J. S. Milne. Lefschetz classes on abelian varieties. Duke Math. J., 96, 639–675,
1999. ← 519



J.S. Milne 547

[40] J. S. Milne. Introduction to Shimura varieties, in: J. Arthur and R. Kottwitz
(eds.), Harmonic analysis, the trace formula, and Shimura varieties, 265–378.
Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005. Available at:
http://www.claymath.org/library/. ← 478, 480, 493, 540, 541

[41] J. S. Milne and K.-Y. Shih. Conjugates of Shimura varieties, in: Hodge cycles,
motives, and Shimura varieties, 280–356. Lecture Notes in Mathematics, Springer-
Verlag, Berlin, 1982. ← 512

[42] D. Morris. Introduction to arithmetic groups, 2008. arXive:math/0106063v3
← 481, 484

[43] G. D. Mostow and T. Tamagawa. On the compactness of arithmetically defined
homogeneous spaces. Ann. of Math. (2), 76, 446–463, 1962. ← 482

[44] D. Mumford. Geometric invariant theory. Ergebnisse der Mathematik und ihrer
Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin, 1965. ← 475, 489,
509

[45] D. Mumford. Families of abelian varieties, in: Algebraic Groups and Discontin-
uous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 347–351.
Amer. Math. Soc., Providence, R.I., 1966. ← 495

[46] D. Mumford. A note of Shimura’s paper “Discontinuous groups and abelian
varieties”. Math. Ann., 181, 345–351. 1969. ← 509

[47] D. Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies
in Mathematics, 5. Published for the Tata Institute of Fundamental Research,
Bombay, 1970. ← 489

[48] G. Prasad and A. S. Rapinchuk. On the existence of isotropic forms of semi-
simple algebraic groups over number fields with prescribed local behavior. Adv.
Math., 207, 646–660, 2006. ← 532

[49] G. Prasad and A. S. Rapinchuk. Developments on the congruence subgroup
problem after the work of Bass, Milnor and Serre, 2008. (arXiv:0809.1622)
← 486

[50] M. Rapoport. Complément à l’article de P. Deligne “La conjecture de Weil pour
les surfaces K3”. Invent. Math., 15, 227–236, 1972. ← 496

[51] I. Satake. Holomorphic imbeddings of symmetric domains into a Siegel space.
Amer. J. Math., 87, 425–461, 1965. ← 524

[52] I. Satake. Symplectic representations of algebraic groups satisfying a certain
analyticity condition. Acta Math., 117, 215–279, 1967. ← 524

[53] I. Satake. Algebraic structures of symmetric domains, Kanô Memorial Lectures, 4,
Iwanami Shoten, Tokyo, 1980. ← 476, 477, 478, 524

[54] W. Schmid. Variation of Hodge structure: the singularities of the period map-
ping. Invent. Math., 22, 211–319, 1973. ← 502, 523

[55] J.-P. Serre. Lectures on the Mordell-Weil theorem, 2nd ed. Aspects of Mathe-
matics, E15. Friedr. Vieweg & Sohn, Braunschweig. Translated from the French
and edited by Martin Brown from notes by Michel Waldschmidt, 1990. ← 488

http://www.claymath.org/library/


548 Shimura varieties and moduli

[56] J.-P. Serre. Propriétés conjecturales des groupes de Galois motiviques et des
représentations l-adiques, in: Motives (Seattle, WA, 1991), 377–400. Proc.
Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994. ← 522

[57] G. Shimura. On the field of definition for a field of automorphic functions.
Ann. of Math. (2), 80, 160–189. 1964. ← 488

[58] G. Shimura. Moduli and fibre systems of abelian varieties. Ann. of Math. (2),
83, 294–338, 1966. ← 488

[59] G. Shimura. Algebraic number fields and symplectic discontinuous groups.
Ann. of Math. (2), 86, 503–592, 1967a. ← 488

[60] G. Shimura. Construction of class fields and zeta functions of algebraic curves.
Ann. of Math. (2), 85, 58–159, 1967b. ← 488

[61] G. Shimura. On canonical models of arithmetic quotients of bounded sym-
metric domains. Ann. of Math. (2), 91, 144–222; II ibid. 92, 528–549, 1970.
← 488, 544

[62] J. T. Tate. Algebraic cohomology classes, in: Lecture Notes Prepared in Con-
nection with Seminars held at the Summer Institute on Algebraic Geometry,
Woods Hole, MA, July 6 – July 31, 1964. American Mathematical Society,
1964. Reprinted as: Algebraic cycles and poles of zeta functions, Arithmetical
Algebraic Geometry, Harper & Row, (1965), 93–110. ← 518, 519

[63] J. L. Taylor. Several complex variables with connections to algebraic geometry
and Lie groups, Graduate Studies in Mathematics, 46, American Mathematical
Society, Providence, RI, 2002. ← 487

[64] J. Tits. Classification of algebraic semisimple groups, in: Algebraic Groups and
Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965),
33–62. Amer. Math. Soc., Providence, R.I., 1966. ← 527

[65] A. Weil. Abelian varieties and the Hodge ring. Talk at a conference held at
Harvard in honor of Lars Ahlfors (Oevres Scientifiques 1977c, 421–429), 1977.
← 498, 519

[66] Y. G. Zarhin. Weights of simple Lie algebras in the cohomology of algebraic
varieties. Izv. Akad. Nauk SSSR Ser. Mat., 48, 264–304, 1984. ← 499

[67] R. J. Zimmer. Ergodic theory and semisimple groups,Monographs in Mathematics,
81, Birkhäuser Verlag, Basel, 1984. ← 484

Ann Arbor, MI 48104 USA
E-mail address: jmilne@umich.edu




