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Abstract

The p-cohomology of an algebraic variety in characteristic p lies naturally in the
category Db

c .R/ of coherent complexes of graded modules over the Raynaud ring
(Ekedahl-Illusie-Raynaud). We study homological algebra in this category. When the
base field is finite, our results provide relations between the the absolute cohomology
groups of algebraic varieties, log varieties, algebraic stacks, etc. and the special values
of their zeta functions. These results provide compelling evidence that Db

c .R/ is the
correct target for p-cohomology in characteristic p.
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Introduction

Each of the usual cohomology theories X H j .X;r/ on algebraic varieties arises from a
functor R� taking values in a triangulated category D equipped with a t -structure and a Tate
twist N  N.r/. The heart of D has a tensor structure and, in particular, an identity object
11. The cohomology theory satisfies

H j .X;r/'H j .R� .X/.r//, (1)

and there is an absolute cohomology theory

H
j
abs.X;r/' HomD.k/.11;R� .X/.r/Œj �/: (2)

(see, for example, Deligne 1994, �3).

�Partly supported by NSF and Graduate Research Board (UMD)
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Let k be a base field of characteristic p. For the `-adic étale cohomology, D is the
category of bounded constructible Z`-complexes (Ekedahl 1990). For the p-cohomology,
it is the category Dbc .R/ of coherent complexes of graded modules over the Raynaud ring.
This category was defined in Illusie and Raynaud 1983, and its properties were developed in
Ekedahl 1984, 1985, 1986. We study homological algebra in this category and, when k is
finite, we prove relations between Exts and zeta functions.

Let k D Fq with q D pa. The Ext of two objectsM , N of Dbc .R/ is defined by the usual
formula

Extj .M;N /D HomDbc .R/
.M;N Œj �/:

Using that k is finite, we construct a canonical complex

E.M;N/W � � � ! Extj�1.M;N /! Extj .M;N /! ExtjC1.M;N /! �� �

of abelian groups for each pair M;N in Dbc .R/.
An object P of Dbc .R/ can be regarded as a double complex of W� ŒF;V �-modules.

On tensoring P with Q and forming the associated simple complex, we obtain a bounded
complex sPQ whose cohomology groups H j .sPQ/ are F -isocrystals over k. We define the
zeta function Z.P;t/ of P to be the alternating product of the characteristic polynomials of
F a acting on these F -isocrystals. It lies in Qp.t/.

Attached to each P in Dbc .R/, there is a bounded complex R1˝LRP of graded k-vector
spaces whose cohomology groups have finite dimension. The Hodge numbers hi;j .P / of P
are defined to be the dimensions of the k-vector spaces H j .R1˝

L
RP /

i .
Finally, we let RHom.�;�/ denote the internal Hom in Dbc .R/.

THEOREM 0.1. LetM;N 2 Dbc .R/ and let P DRHom.M;N /. Let r 2 Z, and assume that
qr is not a multiple root of the minimum polynomial of F a acting on H j .sPQ/ for any
integer j .

(a) The groups Extj .M;N.r// are finitely generated Zp-modules, and the alternating
sum of their ranks is zero.

(b) The zeta function Z.P;t/ of P has a pole at t D q�r of order

�D
X

j
.�1/jC1 �j � rankZ.Extj .M;N.r///:

(c) The cohomology groups of the complex E.M;N.r// are finite, and the alternating
product of their orders �.M;N.r// satisfiesˇ̌̌̌

lim
t!q�r

Z.P;t/ � .1�qr t /�
ˇ̌̌̌�1
p

D �.M;N.r// �q�.P;r/

where
�.P;r/D

X
i;j .i�r/

.�1/iCj .r � i/ �hi;j .P /:

Here j � jp is the p-adic valuation, normalized so that jpr m
n
j�1p D p

r if m and n are prime to
p.

We identify the identity object of Dbc .R/ with the ring W of Witt vectors. Then
RHom.W;N /'N .
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Each algebraic variety (or log variety or stack) defines several objects in Dbc .R/ (see �6).
Let M.X/ be one of the objects of Dbc .R/ attached to an algebraic variety X over k, and
define the absolute cohomology of X to be

H
j
abs.X;Zp.r//D HomDbc .R/

.W;M.X/.r/Œj �/:

The complex E.W;M.X/.r// becomes,

E.X;r/W � � � !H
j�1
abs .X;Zp.r//!H

j
abs.X;Zp.r//!H

jC1
abs .X;Zp.r//! �� � :

THEOREM 0.2. Assume that qr is not a multiple root of the minimum polynomial of F a

acting on H j .sM.X/Q/ for any j .
(a) The groups H j

abs.X;Zp.r// are finitely generated Zp-modules, and the alternating
sum of their ranks is zero.

(b) The zeta function Z.M.X/; t/ of M.X/ has a pole at t D q�r of order

�D
X

j
.�1/jC1 �j � rankZp

�
H
j
abs.X;Zp.r//

�
.

(c) The cohomology groups of the complex E.X;r/ are finite, and the alternating product
of their orders �.X;Zp.r// satisfiesˇ̌̌̌

lim
t!q�r

Z.M.X/; t/ � .1�qr t /�
ˇ̌̌̌�1
p

D �.X;Zp.r// �q�.M.X/;r/:

Let X be a smooth projective variety over k, and let M.X/ D R� .X;W˝�X /. Then
H j .sM.X/Q/DH

j
crys.X=W /Q andH j

abs.X;Zp.r// is the groupH j .X;Zp.r// defined in
(4.1) below. Moreover, the zeta function and the Hodge numbers of M.X/ agree with those
of X , and so, in this case, Theorem 0.2 becomes the p-part of the main theorem of Milne
1986. See p.26 below.

Remarks
0.3. Let �.P;s/D Z.P;q�s/; s 2 C. Then � is the order of the pole of �.P;s/ at s D r ,

and
lim

t!q�r
Z.P;t/ � .1�qr t /� D lim

s!r
�.P;s/ � .s� r/� � .logq/�.

0.4. We expect that the F -isocrystals H j .sPQ/ are always semisimple (so F a always acts
semisimply) when P arises from algebraic geometry. If this fails, there will be spurious
extensions over Q that will have to be incorporated into the statement of (0.1).

0.5. The statement of Theorem 0.1 depends only on Dbc .R/ as a triangulated category with
a dg-lifting.

0.6. We leave it as an (easy) exercise for the reader to prove the analogue of (0.1) for `¤ p
(the indolent may refer to article below).

0.7. In a second article, we apply (0.1) to study the analogous statement in a triangulated
category of motivic complexes (Milne and Ramachandran 2013).
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Outline of the article

In �1 and �3 we review some of the basic theory of the category Dbc .R/ (Ekedahl, Illusie,
Raynaud), and in �2 we prove a relation between the numerical invariants of an object of
Dbc .R/. In �4 begin the study of the homological algebra of Dbc .R/, and in �5 we take the
ground field to be finite and prove Theorem 0.1. In the final section we study applications of
Theorem 0.1 to algebraic varieties.

Notations
Throughout, k is a perfect field of characteristic p ¤ 0, and W is the ring of Witt vectors
over k. As usual, � denotes the automorphism of W inducing a 7! ap modulo p. We use a
bar to denote base change to an algebraic closure xk of k. For example, xW denotes the Witt
vectors over xk. We use' to denote a canonical, or specific, isomorphism.

1 Coherent complexes of graded R-modules
In this section, we review some definitions and results of Ekedahl, Illusie, and Raynaud, for
which Illusie 1983 is a convenient reference.

1.1. The Raynaud ring is the graded W -algebra RDR0˚R1 generated by F and V in
degree 0 and d in degree 1, subject to the relations

FV D p D VF; FaD �a �F; aV D V ��a; (3)

d2 D 0; FdV D d; ad D da .a 2W /: (4)

In other words, R0 is the Dieudonné ring W� ŒF;V � and R is generated as an R0-algebra by
a single element d of degree 1 satisfying (4). For m� 1;

Rm
def
DR=.V mRCdV mR/. (5)

1.2. To give a graded R-module M D
L
i2ZM

i is the same as giving a complex

M �W � � � !M i�1 d
�!M i d

�!M iC1
! �� �

of W -modules whose components M i are R0-modules and whose differentials d satisfy
FdV D d . For n 2 Z, M fng is the graded R-module deduced from M by a shift of
degree,1 i.e.,M fngi DM nCi and d i

M fng
D .�1/ndnCiM . The graded R-modules and graded

homomorphisms of degree 0 form an abelian category Mod.R/ with derived category D.R/.
The bifunctor M;N  Hom.M;N / of graded R-modules derives to a bifunctor

RHomWD.R/opp
�DC.R/! D.Zp/

(denoted by RHomR in Illusie 1983, 2.6.2, and Ekedahl 1986, p.8, and by RHomR in
Ekedahl 1985, p.73).

1.3. A graded R-module is said to be elementary (Illusie 1983, 2.2.2, p.30) if it is one of
the following two types.

1Illusie et al. write M.n/ for the degree shift of M , but this conflicts with our notation for Tate twists.
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Type I The module is concentrated in degree zero, finitely generated over W , and V is
topologically nilpotent on it. In other words, it is a W� ŒF;V �-module whose p-
torsion submodule has finite length over W , and whose torsion-free quotient is finitely
generated and free over W with slopes lying in the interval Œ0;1Œ.

Type II The module is isomorphic to

Ul W
Y

n�0
kV n

deg0

d
�!

Y
n�l

kdV n

deg1

for some l 2 Z. Here F (resp. V / acts as zero on U 0
l

(resp. U 1
l

), and dV n should be
interpreted as F�nd when n < 0. In more detail, U 0

l
is the W� ŒF;V �-module kŒŒV ��

with F acting as zero. When l � 0, U 1
l

consists of the formal sums

aldV
l
CalC1dV

lC1
C�� � .al 2 k/;

and when l < 0, U 1
l

consists of the formal sums

a�lF
�ld C�� �Ca�1F

�1d Ca0d Ca1dV Ca2dV
2
C�� � .al 2 k/:

1.4. A graded R-moduleM is said to be coherent if it admits a finite filtrationM � �� � � 0
whose quotients are degree shifts of elementary modules (i.e., of the form M fng with M
elementary and n 2 Z). Coherent R-modules need not be noetherian or artinian—the object
U0 is obviously neither.

1.5. A complex M of R-modules is said to be coherent if it is bounded with coherent
cohomology. Let Dbc .R/ denote the full subcategory of D.R/ consisting of coherent com-
plexes. Ekedahl has given a criterion for a complex to lie in Dbc .R/, from which it follows
that Dbc .R/ is a triangulated subcategory of D.R/; in particular, the coherent modules form
an abelian subcategory of Mod.R/ closed under extensions (Illusie 1983, 2.4.8). In more
detail (ibid. 2.4), define a graded R�-module to be a projective system

M� D .M1 �� �  Mm MmC1 �� �/

equipped with maps F WMmC1!Mm and V WMm!MmC1 of degree zero satisfying (3)
and (4); here Mm is a graded WmŒd �-module. The graded R�-modules form an abelian
category. The functor M� lim

 �
MmWMod.R�/!Mod.R/ derives to a functor

R lim
 �
WD.R�/! D.R/:

On the other hand, the functor sending a graded R-module M to the R�-module .Rm˝R
M/m�1 derives to a functor

R�˝
L
R�WD.R/! D.R�/

These functors compose to a functor

M  yM WD.R/! D.R/:

For M in D�.R/, there is a natural map M ! yM inducing isomorphisms Rm˝LRM !
Rm˝

L
R
yM for all m, and M is said to be complete if this map is an isomorphism. Ekedahl’s

criterion states:
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A bounded complex of graded R-modules M lies in Dbc .R/ if and only if M
is complete and R1˝LRM is a bounded complex such that H i .R1˝

L
RM/ is

finite-dimensional over k for all i .

1.6. Let T be the functor of graded R-modules such that .TM/i DM iC1 and T .d/D�d ,
i.e., TM DM f1g (degree shift). It is exact and defines a self-equivalence T WDbc .R/!
Dbc .R/. The Tate twist of a coherent complex of graded R-modules M is defined as

M.r/D T r.M/Œ�r�DM frgŒ�r�I

thus M.r/i;j DM iCr;i�r (cf. Milne and Ramachandran 2005, �2).

1.7. Following Illusie 1983, 2.1, we view a complex of graded R-modules

M W � � � !M �;j !M �;jC1! �� �

as a bicomplex M �;� of R0-modules in which the first index corresponds to the R-gradation.
Thus the j th row M �;j of the bicomplex is a graded R-module and the i th column M i� is a
complex of R0-modules:

:::
:::

:::
:::

M �jC1 W � � � M i�1;jC1 M i;jC1 M iC1;jC1 � � �

M �j W � � � M i�1;j M i;j M iC1;j � � �

:::
:::

:::
:::

d d

d d

(6)

In this diagram, the squares commute, the vertical differentials commute with F and V , and
the horizontal differentials satisfy FdV D d . The cohomology modules of M are obtained
by passing to the cohomology in the columns:

H j .M/W � � � !H j .M i�1;�/
d
�!H j .M i;�/

d
�!H j .M iC1;�/! �� � :

In other words, for a complex M DM �;� of graded R-modules, H j .M/ is the graded
R-module with H j .M/i DH j .M i;�/.

By definition, M fmgŒn� is the bicomplex with

.M fmgŒn�/i;j DM iCm;jCn (7)

and with the appropriate sign changes on the differentials.

1.8. With any complex M of graded R-modules, there is an associated simple complex
sM of W -modules with

.sM/n D
M

iCjDn
M i;j ; dxij D d 0xij C .�1/id 00xij .

The functor s extends to a functor sWDC.R/! D.W /. If M 2 Dbc .M/, then sM is a perfect
complex of W -modules (Illusie 1983, p.34).
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1.9. For a coherent complex M of graded R-modules, the filtration of sM by the first
degree defines a spectral sequence

E
ij
1 DH

j .M/i H) H iCj .sM/ (8)

called the slope spectral sequence. The slope spectral sequence degenerates at E1 modulo
torsion and at E2 modulo W -modules of finite length. In particular, for r � 2, Eijr is a
finitely generated W -module of rank equal to that of H j .M/i=torsion. This was proved by
Bloch 1977 and Illusie and Raynaud 1983 for the complex M DR� .X;W˝�X / attached to
a smooth complete variety X , and by Ekedahl for a general M (see Illusie 1983, 2.5.4).

1.10. Let K DW ˝Q (field of fractions of W ). Then K˝W W� ŒF;V �'K� ŒF �. Recall
that an F -isocrystal is a K� ŒF �-module that is finite-dimensional as a K-vector space and
such that F is bijective. The F -isocrystals form an abelian subcategory of Mod.K� ŒF �/
closed under extensions, and so the subcategory Dbiso.K� ŒF �/ of Db.K� ŒF �/ consisting of
bounded complexes whose cohomology modules are F -isocrystals is triangulated.

1.11. Let M be a complex of graded R-modules with only nonnegative first degrees, and
let F 0 act on M i;j as piF . The condition FdV D d implies that pFd D dF , and so
both differentials in the diagram (6) commute with the action of F 0. Therefore s.M/ is a
complex of W� ŒF 0�-modules. If M 2 Dbc .R/, then s.M/K lies in Dbiso.K� ŒF

0�/. From the

degeneration of the slope spectral sequence at E1, we get isomorphisms

.H j .M/iK ;p
iF /'

�
H iCj .sM/K

�
Œi;iC1Œ

(9)

for M 2 Dbc .R/. This can also be written2

.Hn�i .M/iK ;p
iF /'

�
Hn.sM/K

�
Œi;iC1Œ

. (10)

1.12. A domino N is a graded R-module that admits a finite filtration N � �� � � 0 whose
quotients are elementary of type II.

Let N be elementary of type II, say N D Ul . Then N 0 D k� ŒŒV ��, and so V WN 0!N 0

is injective with cokernel N 0=V D k� ŒŒV ��=.V /' k. Similarly, F WN 1!N 1 is surjective
with kernel kdV l (l � 0) or kF�ld (l < 0).

LetN be a domino, and suppose thatN admits a filtration of length l.N /with elementary
quotients. Induction on l.N / shows that

(a) the map V WN 0! N 0 is injective with cokernel of dimension l.N / (as a k-vector
space) and F jN 0 is nilpotent;

(b) the map F WN 1 ! N 1 is surjective with kernel of dimension l.N / and V jN 1 is
nilpotent.

Therefore the number of quotients in such a filtration is independent of the filtration, and
equals the common dimension of the k-vector spaces N 0=V and of Ker

�
F WN 1!N 1

�
.

This number is called the dimension of N .
2For each n, we have Hn.sM/K D

L
H j .M/i

K
where the sum if over pairs .i;j / with iC j D n. Our

assumption on M says that i � 0, and so only Hn.M/0
K

, Hn�1.M/i
K
;. . . ;H0.M/n

K
contribute. Each of these

(with the map F ) is an isocrystal with slopes Œ0;1/. But with the map piF , the slopes of Hn�i .M/i
K

are in
Œi; iC1Œ. The slopes of distinct summands to not overlap. Hence we get (10). Cf. Illusie 1983, p.64.
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1.13. LetM be a gradedR-module. ThenZi .M/
def
DKer

�
d WM i !M iC1

�
is stable under

F but not in general under V , whereas B i .M/
def
D Im.d WM i�1!M i / is stable under V but

not in general under F . Instead, one puts

V �1Zi .M/D fx 2M i
j V nx 2Zi .M/ for all ng;

F1B i .M/D fx 2M i
j x 2 F nB i .M/ for some ng:

Then V �1Zi is the largest R0-submodule of Zi .M/; and F1B i is the smallest R0-
submodule of M i containing B iM :

B i � F1B i � V �1Zi �Zi : (11)

The homomorphism of W -modules d WM i !M iC1 factors as

M i M iC1

M i=V �1Zi F1B iC1

d

d

(12)

WhenM is coherent, the lower row in (12) is an R-module admitting a finite filtration whose
quotients are of the form Ulf�ig; in other words, .lower row/fig is a domino (Illusie 1983,
2.5.2).

1.14. The heart of a graded R-module M is the graded R0-module ~.M/D
L
~i .M/

with~i .M/D V �1Zi=F1B i (see (11)). WhenM is coherent,~.M/ is finitely generated
as a W -module; moreover, Zi=V �1Zi and F1B i=B i are of finite length, and so

~
i .M/K '

�
Zi .M/=B i .M/

�
K

(Illusie 1983, 2.5.3).

EXAMPLE 1.15. Let X be a smooth variety over a perfect field k. The de Rham-Witt
complex

W˝�X W WOX �! �� � �!W˝iX
d
�!W˝iC1X �! �� �

is a sheaf of graded R-modules on X for the Zariski topology. On applying R� to this
complex, we get a complex R� .X;W˝�X / of graded R-modules, which we regard as a
bicomplex with .i;j /th term R� .X;W˝iX /

j . When we replace each vertical complex with
its cohomology, the j th row of the bicomplex becomes

Rj� .X;W˝�X /W H j .X;WOX /! �� � !H j .X;W˝iX /
d
!H j .X;W˝iC1X /! �� � :

The complex R� .X;W˝�X / is bounded and complete (Illusie 1983, 2.4), and becomes
R� .X;˝�X / when tensored with R1, and so R� .X;W˝�X / is coherent whenX is complete.
In this case, R� .X=W / def

D s.R� .X;W˝�X // is a perfect complex of W -modules such that

H j .R� .X=W //'H j
crys.X=W / .isomorphism of W� ŒF �-modules/

(ibid. 1.3.5), and the slope spectral sequence (8) becomes

E
ij
1 DH

j .X;W˝iX / H) H iCj .X;W˝�X / .'H�crys.X=W /. (13)
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2 The numerical invariants of a coherent complex

Definition of the invariants

Let M be a coherent graded R-module. The dimension of the domino attached to d WM i !

M iC1 (see (1.13)) is denoted by T i .M/. It is equal to the number of quotients of the form
Ulf�ig (varying l) in a filtration of M with elementary quotients.

LEMMA 2.1. For a coherent graded R-module,

T i .M/D lengthW..V //W..V //˝W ŒŒV ��M
i . (14)

PROOF. It suffices to prove this for an elementary graded R-module M . If M is elementary
of type I, then V is topologically nilpotent on it, and so when we invert V ,M becomes 0; this
agrees with T 0.M/D 0. IfM is elementary of type II , sayM DUl , thenW..V //˝M 0'

W..V // and W..V //˝M 1 D 0, agreeing with T 0.M/D 1 and T i .M/D 0 for i ¤ 0. 2

Let M be an object of Dbc .R/. Ekedahl (1986, p.14) defines the slope numbers of M to
be

mi;j .M/D dimk
H j .M/i

H j .M/ip-torsCV
�
H j .M/i

�Cdimk
H jC1.M/i�1

H jC1.M/i�1p-torsCF
�
H jC1.M/i�1

�
where Xp-tors denotes the torsion submodule of X regarded as a W -module. Set

T i;j .M/D T i .H j .M//:

Ekedahl (ibid., p.85) defines the Hodge-Witt numbers of M to be

h
i;j
W .M/Dmi;j .M/CT i;j .M/�2T i�1;jC1.M/CT i�2;jC2.M/

(see also Illusie 1983, 6.3). Note that the invariants mi;j .M/ and T i;j .M/ (hence also
h
i;j
W .M/) depend only on the finite sequence .H j .M//j2Z of graded R-modules. It follows

from (7) that
h
i;j
W .M fmgŒn�/D h

iCm;jCn
W .M/: (15)

In particular (see 1.6),
h
i;j
W .M.r//D h

iCr;j�r
W .M/: (16)

EXAMPLE 2.2. We compute these invariants for certain M 2 Dbc .R/.
(a) Suppose that H j .M/i has finite length over W for all i;j . Then H j .M/i D

H j .M/ip-tors, and so mi;j .M/ is zero for all i , j . Moreover V is nilpotent on H j .M/i ,

and so T i;j .M/D 0. It follows that hi;jW .M/ is also zero for all i , j .
(b) Suppose that

H j .M/i D

�
R0=R0.F r�s �V s/ if .i;j /D .i0;j0/
0 otherwise

for some r > s � 0. Then

mi:j .M/D

8<:
dimk.W� ŒF �=.F r�s/D r � s if .i;j /D .i0;j0/
dimk.W� ŒV �=.V s/D s if .i;j /D .i0C1;j0�1/
0 otherwise.
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Note that �
R0=R0.F r�s �V s/

�
˝K 'K� ŒF �=.F

r
�ps/;

which is an F -isocrystal of slope �D s=r with multiplicitymD r . As the dominoes attached
to the H j .M/i are obviously all zero, we see that

h
i;j
W .M/Dmi:j .M/D

8<:
m.1��/ if .i;j /D .i0;j0/
m� if .i;j /D .i0C1;j0�1/
0 otherwise

where � is the unique slope of the F -isocrystal .H j0.M/
i0
K ;F / and m is its multiplicity.

(c) Suppose that�
H j0.M/i0

d
�!H j0.M/i0C1

�
D

0B@Y
n�0

kV n

deg i0

d
�!

Y
n�l

kdV n

deg i0C1

1CAD Ulf�i0g;
and that H j .M/i D 0 for all other values of i and j . Then H j .M/i DH j .M/ip-tors, and
so mi;j .M/ is zero for all i , j . The only nonzero T invariant is T i0;j0.M/D 1. It follows
that the only nonzero Hodge-Witt numbers are

h
i0;j0
W .M/D 1; h

i0C1;j0�1
W .M/D�2; h

i0C2;j0�2
W D 1:

Weighted Hodge-Witt Euler characteristics

THEOREM 2.3. For every M in Dbc .R/ and r 2 Z,X
i;j .i�r/

.�1/iCj .r � i/h
i;j
W .M/D er.M/ (17)

where

er.M/D
X
j

.�1/j�1T r�1;j�r.M/C
X

i;j;l .�i;j;l�r�i/

.�1/iCj .r � i ��i;j;l/: (18)

The sum in (17) is over the pairs of integers .i;j / such that i � r , and the first sum in
(18) is over the integers j . In the second sum in (18), .�i;j;l/l is the family of slopes (with
multiplicities) of the F -isocrystal H j .M/iK and the sum is over the triples .i;j; l/ such that
�i;j;l � r � i .

EXAMPLE 2.4. Let M be a graded R-module, regarded as an element of Dbc .R/ concen-
trated in degree j . Let F 0 act on M i as piF (assuming only nonnegative i’s occur). Then
F 0 is a � -linear endomorphism of M regarded as a complex of R0-modules

� � � M i�1 M i M iC1 � � �

� � � M i�1 M i M iC1 � � � ;

pi�1F

d

piF

d

piC1F

d

d d d

and the second term in (18) equalsX
i;l .�i;l�r/

.�1/iCj .r ��i;l/

where .�i;l/l is the family of slopes of the F -isocrystal .M i ;piF /K .



2 THE NUMERICAL INVARIANTS OF A COHERENT COMPLEX 11

LEMMA 2.5. For every distinguished triangle M 0!M !M 00!M 0Œ1� in Dbc .R/,

mi;j .M/Dmi:j .M 0/Cmi;j .M 00/

T i;j .M/D T i;j .M 0/CT i;j .M 00/;

and so
h
i:j
W .M/D h

i;j
W .M 0/Ch

i;j
W .M 00/.

PROOF. The distinguished triangle gives rise to an exact sequence of graded R-modules

� � � !H j .M 0/!H j .M/!H j .M 00/! �� � :

with only finitely many nonzero terms. It suffices to show that m and T are additive on short
exact sequences

0!M 0!M !M 00! 0 (19)

of coherent graded R-modules. Butmij .M/ depends only on xK˝W M where xK is the field
of fractions of xW , and the sequence (19) splits when tensored with xK. The additivity of T
follows from the description of T i in Lemma 2.1. 2

LEMMA 2.6. For every distinguished triangle M 0!M !M 00!M 0Œ1� in Dbc .R/,

er.M/D er.M
0/C er.M

00/. (20)

PROOF. The same argument as in the proof of Lemma 2.5 applies. 2

Proof of Theorem 2.3
The numbers do not change under extension of the base field, and so we may suppose that
k is algebraically closed. First note that, if M 0!M !M 00!M 0Œ1� is a distinguished
triangle in Dbc .R/ and (17) holds for M 0 and M 00, then it holds for M (apply 2.5 and 2.6).

A complex M in Dbc .R/ has only finitely many nonzero cohomology groups, and each
has a finite filtration whose quotients are elementary graded R-modules. By using induction
on the sum of the lengths of the shortest such filtrations, one sees that it suffices to prove the
formula for a complex M having only one nonzero cohomology module, which is a degree
shift of an elementary graded R-module, i.e., we may assume M DH j0.M/D N f�i0g

where N is elementary.
Assume that N is elementary of type I. If N is torsion, then both sides are zero. We may

suppose that N is a Dieudonne module of slope � 2 Œ0;1Œ with multiplicity m (because N is
isogenous to a direct sum of such modules — recall that k is algebraically closed). In this
case (see 2.2b), the only nonzero Hodge-Witt invariants of M are

h
i0;j0
W .M/Dmi0;j0.M/Dm.1��/

h
i0C1;j0�1
W .M/Dmi0C1;j0�1.M/Dm�:

Both sides of (17) are zero if r � i0, and so we may suppose that r > i0. Then the left hand
side (17) is

.�1/i0Cj0.r � i0/h
i0;j0C .�1/i0C1Cj0�1.r � i0�1/h

i0C1;j0�1

D.�1/i0Cj0.r � i0/.1��/mC .�1/
i0Cj0.r � i0�1/�m

D.�/i0Cj0.r � i0��/m:
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On the other hand, the isocrystal H j .M/iK is zero for .i;j /¤ .i0;j0/ and H j0.M/
i0
K is an

isocrystal with slope � of multiplicity m, and so

er.M/D .�1/i0Cj0.r � i0��/m:

If N is of type II, i.e., H j0.M/ D Ulf�i0g, then T i0;j0 D 1 is the only non-zero T -
invariant (see 2.2c), and so

er.M/D

�
.�1/i0Cj0 if r D i0C1
0 otherwise

The nonzero hW -invariants are

h
i0;j0
W D 1 h

i0C1;j0�1
W D�2 h

i0C2;j0�2
W D 1;

from which (17) follows by an elementary calculation.

ASIDE 2.7. Here is an alternative proof of Theorem 2.3. Let

L.r/D
X

i;j .i�r/
.�1/iCj .r � i/

�
T i;j .M/�2T i�1;jC1.M/CT i�2;jC2.M/

�
.

The contribution of T i0;j0 to this sum is .�1/i0Cj0T i0;j0 if i0 D r � 1 and 0 otherwise.
Therefore

L.r/D
X

j
.�1/r�1CjT r�1;j

D

X
j
.�1/j�1T r�1;j�r :

(21)

For an F -crystal P , let PŒi;iC1Œ D .K˝W P /Œi;iC1Œ (part with slopes �, i � � < iC1).
From the degeneration of the slope spectral sequence (1.9) at E1 modulo torsion, we find
that

Hn.sM/Œi;iC1Œ ' .H
n�i .M/iK ;p

iF /:

From this, it follows that

mi;n�i .M/D
X

�2Œi;iC1Œ

.iC1��/hn��
X

�2Œi�1;iŒ

.i �1��/hn�

where hn
�

is the multiplicity of � as a slope of Hn.sM/ (cf. Illusie 1983, 6.2). Using these
two statements, we find thatX

i;j .i�r/

.�1/iCj .r � i/mi;j .M/D
X

i;j;l .�i;j;l�r�i/

.�1/iCj .r � i ��i;j;l/: (22)

On adding (21) and (22), we obtain (17).

Weighted Hodge Euler characteristics

Following Ekedahl (1986, p.14), we define the Hodge numbers of an M in Dbc .R/ to be

hi;j .M/D dimk.H
j .R1˝

L
RM/i /:
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THEOREM 2.8. For every M in Dbc .R/ and i 2 Z,X
j
.�1/jh

i;j
W .M/D

X
j
.�1/jhi;j .M/. (23)

PROOF. As for Theorem 2.3, it suffices to prove this for an elementary R-module, where it
can be checked directly. See Ekedahl 1986, IV, Theorem 3.2. 2

For M D R� .W˝�X /, the formula (23) was found independently by Crew and Milne
(cf. ibid. p.86).

THEOREM 2.9. For every M in Dbc .R/;X
i;j .i�r/

.�1/iCj .r � i/hi;j .M/D er.M/: (24)

PROOF. We have

LHS D
X

i�r
.�1/i .r � i/

�X
j
.�1/jhi;j .M/

�
(23)
D

X
i�r
.�1/i .r � i/

�X
j
.�1/jh

i;j
W .M/

�
D RHS. 2

3 Internal Homs and tensor products in Dbc.R/

We review some constructions from Ekedahl 1985.

The internal tensor product
Let M and N be graded R-modules. Ekedahl (1985, p.69) defines M �N to be the largest
quotient of M ˝W N ,

x˝y 7! x �yWM ˝W N !M �N ,

in which the following relations hold: Vx�yDV.x�Fy/, x�VyDV.F x�y/, F.x�y/D
Fx �Fy, d.x �y/D dx �yC .�1/deg.x/x �dy.

Regard W as a graded R-module concentrated in degree zero with F acting as � . Then

W �M 'M 'M �W; (25)

and so W plays the role of the identity object 11.
The bifunctor .M;N / M �N of graded R-modules derives to a bifunctor

�
L
WD�.R/�D�.R/! D�.R/.

If M and N are in Dbc .R/, then so also is

M y�N
def
D
3
M �LN .

See Ekedahl 1985, I, 4.8; Illusie 1983, 2.6.1.10.
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The internal Hom

For gradedR-modulesM;N , we let Homd .M;N / denote the set of gradedR-homomorphisms
M ! N of degree d , and we let Hom�.M;N /D

L
d Homd .M;N /. Let RR denote the

ring R regarded as a graded left R-module. The internal Hom of two graded R-modules
M;N is

Hom.M;N / def
D Hom�.RR�M;N/:

This graded Zp-module becomes a graded R-module thanks to the right action of R on RR,
and Hom derives to a bifunctor

RHomWD.R/opp
�DC.R/! D.R/

(denoted by RHomR in Illusie 1983, 2.6.2.6, by RHomŠR in Ekedahl 1985, p.73, and by
RHomŠR in Ekedahl 1986, p.8).

The functor RHom.M;N / commutes with extension of the base field. For M in D�.R/
and N in DC.R/,

RHom.W;N /
(25)
' RHom�.RR;N/'N (26)

RHom.W;RHom.M;N //'RHom.M;N /: (27)

(isomorphisms in Dbc .R/ and D.Zp/ respectively). Ekedahl shows that

R1˝
L
RRHom.M;N /'RHom.R1˝LRM;R1˝

L
RM/

(isomorphism in D.kŒd �/) and that

6RHom.M;N /'RHom. yM; yN/, (28)

and so his criterion (see 1.5) shows that RHom.M;N / lies in Dbc .R/ when both M and N
do. See Illusie 1983, 2.6.2.

4 Homological algebra in the category Dbc.R/

Throughout this section, S D Speck, and �m D Z=pmZ.

The perfect site

An S -schemeU is perfect if its absolute Frobenius mapFabsWU
.1=p/!U is an isomorphism.

The perfection T pf of an S -scheme T is the limit of the projective system T
Fabs
 � T .1=p/

Fabs
 �

�� � . The scheme T pf is perfect, and for any perfect S -scheme U , the canonical map T pf! T

defines an isomorphism
HomS .U;T pf/! HomS .U;T /:

Let Pf=S denote the category of perfect affine schemes over S . A perfect group scheme
over S is a representable functor Pf=S ! Gp. For any affine group scheme G over S , the
functor U  G.U /WPf=S ! Gp is a perfect group scheme represented by Gpf. We say that
a perfect group scheme is algebraic if it is represented by an algebraic S -scheme.
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Let S denote the category of sheaves of commutative groups on .Pf=S/et. The commuta-
tive perfect algebraic group schemes killed by some power of p form an abelian subcategory
G of S which is closed under extensions. Let G 2 G. The identity component Gı of G has a
finite composition series whose quotients are isomorphic to Gpf

a , and the quotient G=Gı is
étale. The dimension of G is the dimension of any algebraic group whose perfection is Gı.
The category G is artinian. See Milne 1976, �2, or Berthelot 1981, II.

EXAMPLE 4.1. Let f WX!S be a smooth scheme over S . The functorsU � .U;Wm˝
i
X /

are sheaves for the étale topology on X . The composite

WmC1˝
i
X

F
�!Wm˝

i
X !Wm˝

i
X=d.Wm˝

i�1
X /

factors through Wm˝iX , and so defines a homomorphism

F WWm˝
i
X !Wm˝

i
X=d.Wm˝

i�1
X /.

The sheaf �m.i/ on Xet is defined to be the kernel of

1�F WWm˝
i
X !Wm˝

i
X=d.Wm˝

i�1
X /

(Milne 1976, �1; Berthelot 1981, p.209). The mapWmC1˝iX !Wm˝
i
X defines a surjective

map �mC1.i/! �m.i/ with kernel �1.i/.
Assume that f is proper. The sheaves Rif��m.r/ lie in G. When mD 1, this is proved

in Milne 1976, 2.7, and the general case follows by induction on m. Following Milne 1986,
p.309, we define

H i .X;.Z=pmZ/.r//DH i�r.Xet;�m.r//

H i .X;Zp.r//D lim
 �

H i .X;.Z=pmZ/.r//.

The functor M  M F

For a complex M of graded R-modules, we define

MF
DRHom.W;M/: (29)

Then M  MF is a functor DC.R/! D.Zp/.
Let yR denote the completion lim

 �
Rm of R. From

W 'R0=R0.1�F /'R=R.1�F /;

we get an exact sequence

0! yR
1�F
�! yR!W ! 0 (30)

of graded R-modules (Ekedahl 1985, III, 1.5.1, p.90). If M is in Dbc .R/, then, because M is
complete,

RHom. yR;M/'RHom.R;M/'M 0 (31)

(isomorphisms of graded R-modules; ibid. I, 5.9.3ii, p.78). Now (30) gives a canonical
isomorphism

MF
' s.M 0 1�F

�!M 0/ (32)
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(ibid. I, 1.5.4(i), p.90), which explains the notation. Note that

s.M 0 1�F
�!M 0/D Cone.1�F WM 0

!M 0/Œ�1�. (33)

For M;N in Dbc .R/, we have

RHom.M;N /
(27)
' RHom.W;RHom.M;N // def

DRHom.M;N /F (34)

in D.Zp/.

The functor M  MF
�

Let S� denote the category of projective systems of sheaves .Pm/m2N on .Pf=S/et with Pm
a sheaf of �m-modules, and let G� denote the full subcategory of systems .Pm/m2N with
Pm in G. Then G� is an abelian subcategory of S� closed under extensions.

Let M be a graded R-module, and let Mm D Rm˝RM . Let Mi
m denote the sheaf

Spec.A/ M i
m˝W WA on .Pf=S/et, and let Mi denote the projective system .Mi

m/m2N.
Thus Mi 2 S�. Let F (resp. V ) denote the endomorphism of Mi defined by F ˝� (resp.
V ˝��1) on .M i

m˝W WA/m. In this way, we get an R�-module

M�W � � � !Mi
�

d
�!MiC1

� ! �� �

in S�. Cf. Illusie and Raynaud 1983 IV, 3.6.3.

EXAMPLE 4.2. Let M DM 0 be an elementary graded R-module of type I. For each m,
the map 1�F WMm!Mm is surjective with kernel the étale group scheme MF

m over k
corresponding to the natural representation of Gal.xk=k/ on .M ˝W xW /F˝� . Therefore
MF
� is a pro-étale group scheme over k with

MF
� .
xk/

def
D lim
 �

MF
m.
xk/D .M ˝W xW /

F˝� :

Cf. (5.5) below.

EXAMPLE 4.3. Let M be an elementary graded R-module of type II. Then 1�F WMi
�!

Mi
� is bijective for i D 0, and it is surjective with kernel canonically isomorphic to Gpf

a for
i D 1 (Illusie and Raynaud 1983, IV, 3.7, p.195).

PROPOSITION 4.4. Let M be a coherent graded R-module. For each i , the map 1�
F WMi

�!Mi
� is surjective, and its kernel .Mi

�/
F lies in G�. There is an exact sequence

0! U i ! .MF
� /
i
!Di ! 0

with U i a connected unipotent perfect algebraic group of dimension T i�1.M/ and Di the
profinite étale group corresponding to the natural representation of Gal.xk=k/ on .~iM ˝W
xW /F˝� .

PROOF. When M is an elementary graded R-module, the proposition is proved in the two
examples. The proof can be extended to all coherent graded R-modules by using Illusie and
Raynaud 1983, IV 3.10, 3.11, p.196. 2
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COROLLARY 4.5. LetM be a coherent gradedR-module, and letH i .M/DZi .M/=B i .M/.
Then Di .xk/ def

D lim
 �m

Dim.
xk/ is a finitely generated Zp-module, and

Di .xk/˝Zp Qp ' .H
i .M/˝W xK/

F˝� .

PROOF. According to (4.4), Di .xk/' .~iM ˝W xW /F˝� . Now the statement follows from
(1.14). 2

Let � .Set;�/ denote the functor

.Mm/m2N lim
 �

� .Set;Mm/WS�!Mod.Zp/.

It derives to a functor R� .Set;�/WD.S�/! D.Zp/.
For a coherent graded R-module M , the system M� depends only on the projective

system M� D .Mm/m. The functor M� M�WMod.R�/! S� is exact, and so it defines a
functor

M� M�WD.R�/! D.S�/:
Let

MF
� D Cone.M0

�

1�F
�!M0

�/Œ�1�: (35)

PROPOSITION 4.6. The following diagram commutes:

Dbc .R/ Db.R�/ Db.S�/

Db.R/ Db.Zp/:

M M�

M yM

.�/F

R lim
 �

R� .Set;�/

.�/F

The functor .�/F on the top row (resp. bottom row) is that defined in (35) (resp. (29). In
other words, for M in Dbc .R/,

R� .Set;MF
� /'M

F :

PROOF. This follows directly from the definitions and the isomorphism (32, 33)

MF
' Cone.1�F WM 0

!M 0/Œ�1�. 2

PROPOSITION 4.7. Let M 2 Dbc .R/, and let r 2 Z. For each j; there is an exact sequence

0! U j !H j .M.r/F� /!Dj ! 0

with U j a connected unipotent perfect algebraic group of dimension T r�1;j�r and Dj the
profinite étale group corresponding to the natural representation of Gal.xk=k/ on .~r

�
H j .M/

�
˝

xW /F˝� .

PROOF. Apply (4.4) to H j .M.r// with i D 0. 2

COROLLARY 4.8. The Zp-module Dj .xk/ is finitely generated, and

Dj .xk/˝Zp Qp ' .H
r.H j .M//˝ xK/F˝� . (36)

Here H r.H j .M// is the Er;j2 term in the slope spectral sequence for M .

PROOF. Apply (4.5) to H j .M/. 2
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The functors RHom

If M;N in Dbc .R/, then P def
DRHom.M;N / lies in Dbc .R/ (see �3). Let

RHom.M;N/D PF� .

Then RHom is a bifunctor

RHomWDbc .R/�Dbc .R/! DbG�.S�/

(denoted by RHomR in Ekedahl 1986, p.11, except that he allows graded homomorphisms
of any degree).

PROPOSITION 4.9. For M;N 2 Dbc .R/,

R� .Set;RHom.M;N//'RHom.M;N /: (37)

PROOF. From (4.6) with P DRHom.M;N /, we find that

R� .Set;RHom.M;N//'RHom.M;N /F .

But RHom.M;N /F 'RHom.M;N / (see (34)). 2

For M;N in Dbc .R/, we let

Extj .M;N /DH j .RHom.M;N //

Extj .M;N /DH j .RHom.M;N //

Extj .M;N /DH j .RHom.M;N//:

The first is a Zp-module, the second is a coherent graded R-module, and the third is an
object of G�. From (27) and (37) we get spectral sequences

Exti .W;Extj .M;N // H) ExtiCj .M;N /

Ri� .Set;Extj .M;N // H) ExtiCj .M;N /.

The identity component of Extj .M;N / is a perfect algebraic group of dimension T i�1;j .M;N /
where

T i;j .M;N /
def
D T i;j .RHom.M;N //D T i .Extj .M;N //.

For example, it follows from (26) that

Extj .W;M/DH j .M/

Extj .W;M/DH j .MF
� /; and

T i;j .W;M/D T i;j .M/:

ASIDE 4.10. If M 2 Dbc .R/, then the dual

D.M/
def
DRHom.M;W /

of M also lies in Dbc .R/. If M;N 2Dbc .R/, then

D.M/y�N 'RHom.M;N /

(see Illusie 1983, 2.6.3.4). In particular,

T i;j .M;N /D T i;j .D.M/y�N/:
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5 The proof of the main theorem

Throughout this section, � is a profinite group isomorphic to yZ, and 
 is a topological
generator for � . For a � -module M , the kernel and cokernel of 1�
 WM !M are denoted
by M� and M� respectively.

Elementary preliminaries
Let ŒS� denote the cardinality of a set S . For a homomorphism f WM !N of abelian groups,
we let

z.f /D
ŒKer.f /�
ŒCoker.f /�

when both cardinalities are finite.

LEMMA 5.1. Let M be a finitely generated Zp-module with an action of � , and let
f WM� ! M� be the map induced by the identity map on M . Then z.f / is defined
if and only if 1 is not a multiple root of the minimum polynomial 
 on M , in which case
M� has rank equal to the multiplicity of 1 as an eigenvalue of 
 on MQp and

z.f /D
ˇ̌̌Y

i; ai¤1
.1�ai /

ˇ̌̌
p

where .ai /i2I is the family of eigenvalues of 
 on MQp .

PROOF. Elementary and easy.

LEMMA 5.2. Consider a commutative diagram

� � � ����! C j�1 C j
f j

����! C jC1??ygj�1 x??hj ??ygjC1
� � � ����! Aj�1

dj�1

����! Aj
dj

����! AjC1 ����! �� �??yhj�1 x??gj ??yhjC1
Bj�1

f j�1

����! Bj BjC1 ����! �� �

in which A� is a bounded complex of abelian groups and each column is a short exact
sequence (in particular, the g’s are injective and the h’s are surjective). The cohomology
groups H j .A�/ are all finite if and only if the numbers z.f j / are all defined, in which caseY

j
ŒH j .A�/�.�1/

j

D

Y
j
z.f j /.�1/

j

:

PROOF. Because hj�1 is surjective, gj maps the image of f j�1 into the image of d j�1.
Because gjC1 is injective and hj is surjective, hj maps the kernel of d j onto the kernel of
f j . The snake lemma applied to

Im.f j�1/
gj

����! Im.d j�1/ ����! 0??y ??y ??y
0 ����! Bj

gj

����! Ker.d j /
hj

����! Ker.f j / ����! 0
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gives an exact sequence

0! Coker.f j�1/!H j .A�/! Ker.f j /! 0:

ThereforeH j .A�/ is finite if and only if Coker.f j�1/ and Ker.f j / are both finite, in which
case

ŒH j .A�/�D ŒCoker.f j�1/� � ŒKer.f j /�:

On combining these statements for all j , we obtain the lemma. 2

Cohomological preliminaries
Let � be a finite ring, and let �� be the group ring. For a �-module M , we let M�
denote the corresponding co-induced module. ThusM� consists of the locally constant maps
f W� !M and � 2 � acts on f according to the rule .�f /.�/ D f .��/. When M is a
discrete � -module, there is an exact sequence

0!M �!M�
˛

�!M�! 0; (38)

in which the first map sends m 2M to the map � 7! �m and the second map sends f 2M�
to � 7! f .�
/�
f .�/. Let F be the functor M  M� WMod.�� /!Mod.�/. The class
of co-induced �� -modules is F -injective, and so (38) defines isomorphisms

RF.M/' F.M�
˛

�!M�/' .M

1�

�!M/

in DC.�/. For the second isomorphism, note that M�
� is the set of constant functions

� !M , and if f is the constant function with valuem, then .˛
f /.�/D f .�
/�
f .�/D
m�
m.

Now let Mod.��� / denote the category of projective systems .Mm/m2N with Mm a
discrete � -module killed by pm, and let F be the functor Mod.��� /!Mod.Zp/ sending
.Mm/m to lim

 �
M�
m . We say that an object .Mm/m of Mod.��� / is co-induced if Mm is

co-induced for each m. For every complex X D .Xm/m of ��� -modules, there is an exact
sequence

0!X !X�
˛

�!X�! 0 (39)

of complexes with Xj� D .X
j
m�/m for all j;m. The class of co-induced ��� -modules is

F -injective, and so (39) defines isomorphisms

RF.X/' s.F.X� �!X�//' s. EX
1�

�! EX/ (40)

in DC.Zp/ where EX D .R lim
 �
/.X/ and EX

1�

�! EX is a double complex with EX as both its

zeroth and first column. From (40), we get a long exact sequence

� � � !H j�1. EX/
1�

�!H j�1. EX/!RjF.X/!H j . EX/

1�

�!H j . EX/! �� � : (41)

If .Mm/m is a ��� -module satisfying the Mittag-Leffler condition, then

RjF..Mm/m/'H
j
cts.�; lim

 �
Mm/

(continuous cohomology). Let �� D .Z=pmZ/m. Then

R1F.��/'H
1
cts.�;Zp/' Homcts.�;Zp/,
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which has a canonical element � , namely, that mapping 
 to 1. We can regard � as an
element of

Ext1.��;��/D HomDC.��� /.��;��Œ1�/:

Thus, for X in DC.��� /, we obtain maps

� WX !XŒ1�

R� WRF.X/!RF.X/Œ1�:

The second map is described explicitly by the following map of double complexes:

RF.X/ EX EX

RF.X/Œ1� EX EX

�1 0 1

R� 


1�


1�


For all j , the following diagram commutes

RjF.X/ RjC1F.X/

H j . EX/ H j . EX/

dj

id

(42)

where d j DH j .R�/ and the vertical maps are those in (41). The sequence

� � � �!Rj�1F.X/
dj�1

�! RjF.X/
dj

�!RjC1F.X/ �! �� � (43)

is a complex because R� ıR� D 0.

Review of F -isocrystals

Let V be an F -isocrystal over k. The xK-module xV def
D xK˝K V becomes an F -isocrystal

over xk with xF acting as �˝F .

5.3. Let � be a nonnegative rational number, and write � D s=r with r;s 2 N, r > 0,
.r; s/D 1. Define E� to be the F –isocrystal K� ŒF �=.K� ŒF �.F r �ps//.

When k is algebraically closed, every F -isocrystal is semisimple, and the simple F -
isocrystals are exactly the E� with � 2Q�0. Therefore an F -isocrystal has a unique (slope)
decomposition

V D
M

��0
V� (44)

with V� a sum of copies of E�. See Demazure 1972, IV.
When k is merely perfect, the decomposition (44) of xV is stable under Gal.xk=k/, and so

arises from a (slope) decomposition of V . In other words, V D
L
�V� with V� D xV�. If

�D r=s with r;s as above, then V� is the largestK-submodule of V such that F rV�D psV�.
The F -isocrystal V� is called the part of V with slope �, and f� j V� ¤ 0g is the set of slopes
of V .
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5.4. Let V be an F -isocrystal over k. The characteristic polynomial

PV;˛.t/
def
D det.1�˛t jV /

of an endomorphism ˛ of V lies in QpŒt �. Let k D Fq with q D pa, so that F a is an
endomorphism of .V;F /, and let

PV;F a.t/D
Y

i2I
.1�ai t /; ai 2 xQp.

According to a theorem of Manin,
�
ordq.ai /

�
i2I

is the family of slopes of V . Here ordq is
the p-adic valuation on xQp normalized so that ordq.q/D 1. See Demazure 1972, pp.89-90.

5.5. Let .V;F / be an F -isocrystal over k D Fpa , and let � 2 N. Let

V.�/ D fv 2 xV j xFv D p
�vg (Qp-subspace of xV ).

Then V.�/ is a Qp-structure on V�. In other words, V� has a basis of elements e with the
property that xF e D p�e, and hence�


˝F a
�
e D xF ae D q�e:

Therefore, as c runs over the eigenvalues of F a on V with ordq.c/D �, the quotient q�=c
runs over the eigenvalues of 
 on V.�/; moreover, c is a multiple root of the minimum
polynomial of F a on V� if and only if q�=c is a multiple root of the minimum polyomial of

 on V.�/. See Milne 1986, 5.3.

5.6. Let .V;F / be an F -isocrystal over k D Fpa . If F a is a semisimple endomorphism
of V (as a K-vector space), then End.V;F / is semisimple, because it is a Qp-form of the
centralizer of F a in End.V /; it follows that .V;F / is semisimple. Conversely, if .V;F / is
semisimple, then F a is semisimple, because it lies in the centre of the semisimple algebra
End.V;F /. Let V and V 0 be nonzero F -isocrystals; then V ˝V 0 is semisimple if and only
if both V and V 0 are semisimple.

A preliminary calculation

In this subsection, k is the finite field Fq with q D pa, and � D Gal.xk=k/. We take the
Frobenius element x 7! xq to be the generator 
 of � .

Recall that for P in Dbc .R/, H
j .sP /K is an F -isocrystal.

PROPOSITION 5.7. Let M;N 2 Dbc .R/, let P DRHom.M;N /, and let r 2 Z. For each j ,
let

fj WExtj . xM; xN.r//� ! Extj . xM; xN.r//�

be the map induced by the identity map. Then z.fj / is defined if and only if qr is not a
multiple root of the minimum polynomial of F a on H j .sP /K , in which case

z.fj /D

ˇ̌̌̌
ˇ̌ Y
aj;l¤qr

�
1�

aj;l

qr

�ˇ̌̌̌ˇ̌
p

ˇ̌̌̌
ˇ̌ Y
ordq.aj;l /<r

qr

aj;l

ˇ̌̌̌
ˇ̌
p

qT
r�1;j�r .P /

where .aj;l/l is the family of eigenvalues of F a acting on H j .sP /K .
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PROOF. (Following the proof of Milne 1986, 6.2.) Let Gj denote the perfect pro-group
scheme Extj .M;N.r// def

DH j .P.r/F� /. There is an exact sequence

0! U j !Gj !Dj ! 0

in which U j is a connected unipotent perfect algebraic group of dimension T r�1;j�r.P /
and Dj is a pro-étale group such that Dj .xk/ is a finitely generated Zp-module and

Dj .xk/˝Zp Qp 'H
j .sP.r/K/.0/ 'H

j .sPK/.r/ (45)

(see 4.7, 4.8). The map 1�
 WU j .xk/! U j .xk/ is surjective because it is étale and U j is
connected. On applying the snake lemma to

0 ����! U j .xk/ ����! Gj .xk/ ����! Dj .xk/ ����! 0??y1�
 ??y1�
 ??y1�

0 ����! U j .xk/ ����! Gj .xk/ ����! Dj .xk/ ����! 0;

and using that the first vertical arrow is surjective, we obtain the upper and lower rows of the
following exact commutative diagram

0 ����! U j .xk/� ����! Gj .xk/� ����! Dj .xk/� ����! 0??yf 0j ??yfj ??yf 00j
0 ����! 0 ����! Gj .xk/� ����! Dj .xk/� ����! 0:

(46)

Because U j has a composition series whose quotients are isomorphic to Gpf
a ,

ŒU j .k/�D qdim.U j /
D qT

r�1;j�r

.

On the other hand, it follows from (5.5) that the eigenvalues of 
 acting on Dj .xk/Qp are the
quotients qr=aj;l with ordq.aj;l/D r . Therefore, (5.1) and (5.5) show that z.f 00j / is defined
if and only if the minimum polynomial of F a on H j .sP /K does not have qr as a multiple
root, in which case

z.f 00j /D

ˇ̌̌̌
ˇY
l

�
1�

qr

aj;l

�ˇ̌̌̌
ˇ
p

where the product is over the aj;l such that ordq.aj;l/D r but aj;l ¤ qr . Note thatˇ̌̌̌
1�

aj;l

qr

ˇ̌̌̌
p

D

ˇ̌̌̌
1�

qr

aj;l

ˇ̌̌̌
p

if ordq.aj;l/D r;

and ˇ̌̌̌
1�

aj;l

qr

ˇ̌̌̌
p

D

�
jaj;l=q

r jp if ordq.aj;l/ < r
1 if ordq.aj;l/ > r:

Therefore

z.f 00j /D

ˇ̌̌̌
ˇ̌ Y
aj;l¤qr

�
1�

aj;l

qr

�ˇ̌̌̌ˇ̌
p

ˇ̌̌̌
ˇ̌ Y
ordq.aj;l /<r

qr

aj;l

ˇ̌̌̌
ˇ̌
p

where both products are over all aj;l satisfying the conditions. The snake lemma applied to
(46) shows z.fj / is defined if and only if both z.f 0j / and z.f 00j / are defined, in which case
z.fj /D z.f

0
j / � z.f

00
j /. The proposition now follows. 2
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Definition of the complex E.M;N.r//
Recall (4.9) that the bifunctor

RHomWD.R/opp
�DC.R/! D.Zp/

factors canonically through

R� .Set;�/WDC.S�/! D.Zp/

where � .Set;�/ is the functor .Pm/m  lim
 �

� .Set;Pm/. Since R� .Set;�/ obviously
factors through

RF WDC.��� /! D.Zp/; F D
�
.Mm/m lim

 �
M�
m

�
; � D Gal.xk=k/;

so also does RHom. Therefore, for M;N 2 Dbc .R/, there exists a well-defined object X in
DC.��� / such that RF.X/DRHom.M;N.r//. For an algebraically closed base field k,
RF.X/D EX , and so, for a general k, EX DRHom. xM; xN.r//.

Now let k be Fq with q D pa. With X as in the last paragraph, the sequence (41) gives
us short exact sequences

0! Extj�1. xM; xN.r//� ! Extj .M;N.r//! Extj . xM; xN.r//� ! 0. (47)

Moreover, (43) becomes a complex

E.M;N.r//W � � � ! Extj�1.M;N.r//! Extj .M;N.r//! ExtjC1.M;N.r//! �� �

This is the unique complex for which the following diagram commutes,

Extj . xM; xN.r//�
f j

��! Extj . xM; xN.r//�x?? ??y
� � � �! Extj�1.M;N.r//

dj�1

���! Extj .M;N.r//
dj

��! ExtjC1.M;N.r// �!�� �??y x??
Extj�1. xM; xN.r//�

f j�1

���! Extj�1. xM; xN.r//�
(48)

(the vertical maps are those in (47) and the maps f j are induced by the identity map).
Let P 2 Dbc .R/. The zeta function Z.P;t/ of P is the alternating product of the

characteristic polynomials of F a acting on the isocrystals H j .sP /K :

Z.P;t/D
Y

j
det.1�F at jH j .sP /K/

.�1/jC1 :

Proof of Theorem 0.1
We first note that the condition on the minimum polynomial of F a implies that the minimum
polynomial of 
 on H j .sP xK/.r/ does not have 1 as a multiple root (see 5.5). Let

Pj .t/D det.1�F at jH j .sP /K/D
Y

l
.1�aj;l t /:
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(a) We have Extj . xM; xN.r// D Extj .M;N.r//.xk/ where Extj .M;N.r// is a pro-
algebraic group such that the identity component of Extj .M;N.r// is algebraic and the
quotient of Extj .M;N.r// by its identity component is a pro-étale group .Djm/m such
that lim
 �m

D
j
m.xk/ is a finitely generated Zp-module (see 4.7, 4.8). Hence the Zp-modules

Extj . xM; xN.r//� and Extj . xM; xN.r//� are finitely generated. Now

rank.Extj .M;N.r///D rank.Extj�1. xM; xN.r//� /C rank.Extj . xM; xN.r//� /:

The hypothesis on the action of the Frobenius element implies that

Extj . xM; xN.r//� ˝Q' Extj . xM; xN.r//� ˝Q

for all j , and so

rank.Extj .M;N.r///D rank.Extj�1. xM; xN.r//� /C rank.Extj . xM; xN.r//� /:

Therefore, X
j
.�1/j rank.Extj .M;N.r///D 0:

(b) Let �j be the multiplicity of qr as an inverse root of Pj . Then

�j D rankExtj . xM; xN.r//� D rankExtj . xM; xN.r//� ,

and so X
j
.�1/jC1 �j � rank.Extj .M;N.r///D

X
j
.�1/jC1 �j � .�j�1C�j /

D

X
j
.�1/j�j

D �.

(c) From Lemma 5.2 applied to the diagram (48), we find that

�.M;N.r//D
Y

j
z.f j /.�1/

j

.

According to Proposition 5.7,

z.f j /D

ˇ̌̌̌
ˇ̌ Y
aj;l¤qr

�
1�

aj;l

qr

�ˇ̌̌̌ˇ̌
p

ˇ̌̌̌
ˇ̌ Y
ordq.aj;l /<r

qr

aj;l

ˇ̌̌̌
ˇ̌
p

qT
r�1;j�r .P /::

where .aj;l/l is the family of eigenvalues of F a acting on H j .sP.r//Q. Note thatY
aj;l¤qr

�
1�

aj;l

qr

�
D lim
t!q�r

Pj .t/

.1�qr t /�j
.

According to (5.4), ˇ̌̌̌
ˇ̌ Y
ordq.aj;l /<r

qr

aj;l

ˇ̌̌̌
ˇ̌
�1

p

D

X
l .�j;l<r/

r ��j;l

where .�j;l/l is the family of slopes H j .sP.r//Q. Therefore

�.M;N.r//D

ˇ̌̌̌
lim

t!q�r
Z.M;N;t/ � .1�qr t /�

ˇ̌̌̌�1
p

q�er .P /:

Theorem 2.9 completes the proof.



6 APPLICATIONS TO ALGEBRAIC VARIETIES 26

6 Applications to algebraic varieties
Throughout, S D Spec.k/ where k is perfect field of characteristic p > 0.

Recall that the zeta function of an algebraic variety X over a finite field Fq is defined to
be the formal power series Z.X;t/ 2QŒŒt �� such that

log.Z.X; t//D
X
n>0

Nntn

n
; Nn D #.X.Fqn//; (49)

and that Dwork (1960) proved that Z.X;t/ 2Q.t/.

Smooth complete varieties
Let X be a smooth complete variety over a perfect field k, and let

M.X/DR� .X;W˝�X / 2 Dbc .R/

(see 1.15). For all j � 0,

H j .s .M.X///'H j
crys.X=W / (50)

(isomorphism of F -isocrystals; see 1.15), and so

Z.M.X/; t/D
Y

j
det.1�F at jH j

crys.X=W /
.�1/jC1

Q :

That this equals Z.X;t/ is proved in Katz and Messing 1974 for X projective, and the
complete case can be deduced from the projective case by using de Jong’s theory of alterations
(Suh 2012). Moreover, H j

crys.X=W /Q can be replaced by H j
rig.X/ (see 6.2 below). Finally,

H
j
abs.X;Zp.r// is the group H j .X;Zp.r// defined in (4.1) (Milne and Ramachandran

2005), and
hi;j .M.X//D hi;j .X/

def
D dimH j .X;˝iX /;

becauseR1˝LRM.X/'R� .X;˝
�
X / (see 1.15). Therefore, whenX is projective, Theorem

0.2 becomes the p-part of Theorem 0.1 of Milne 1986.

Rigid cohomology
Before considering more general algebraic varieties, we briefly review the theory of rigid
cohomology. This was introduced in the 1980s by Pierre Berthelot as a common generaliza-
tion of crystalline and Washnitzer-Monsky cohomology. The book Le Stum 2007 is a good
reference for the foundations. We write H i

rig.X/ (resp. H i
rig;c.X/) for the rigid cohomology

(resp. rigid cohomology with compact support) of a variety X over a perfect field k.

6.1. Both H i
rig.X/ and H i

rig;c.X/ are F -isocrystals over k; in particular, they are finite-
dimensional vector spaces over K. Cohomology with compact support is contravariant for
proper maps and covariant for open immersions; ordinary cohomology is contravariant for
all regular maps. The Künneth theorem is true for both cohomology theories. (Berthelot
1997a, Berthelot 1997b, Grosse-Klönne 2002).
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6.2. When X is smooth complete variety,

H i
rig.X/'H

i
crys.X/Q

(canonical isomorphism of F -isocrystals). (Berthelot 1986).

6.3. Let U be an open subvariety of X with closed complement Z; then there is a long
exact sequence

� � � !H i
rig;c.U /!H i

rig;c.X/!H i
rig;c.Z/! �� �

(Berthelot 1986, 3.1).

6.4. Rigid cohomology is a Bloch-Ogus theory. In particular, there is a theory of rigid
homology and cycle class maps. (Petrequin 2003.)

6.5. Rigid cohomology is a mixed-Weil cohomology theory and hence factors through the
triangulated category of complexes of mixed motives. (Cisinski and Déglise 2012a,b).

6.6. Rigid cohomology satisfies proper cohomological descent (Tsuzuki 2003).

6.7. Rigid cohomomology (with compact support) can be described in terms of the log-
arithmic de Rham-Witt cohomology of smooth simplicial schemes (Lorenzon, Mokrane,
Tsuzuki, Shiho, Nakkajima). We explain this below.

6.8. When k is finite, say, k D Fpa ,

Z.X;t/D det.1�F at jH j
rig;c.X//

.�1/jC1

(Étesse and Le Stum 1993).

6.9. When k is finite, the F -isocrystals H i
rig.X/ and H i

rig;c.X/ are mixed; in particular,
the eigenvalues of ˚ D F a are Weil numbers.

The functors X  H i
rig.X/ and X  H i

rig;c.X/ arise from functors to Dbiso.K� ŒF �/,
which we denote hrig.X/ and hrig;c.X/ respectively.

Varieties with log structure
Endow S with a fine log structure, and let X be a complete log-smooth log variety of Cartier
type over S (Kato 1989). In this situation, Lorenzon (2002, Theorem 3.1) defines a complex
M.X/

def
DR� .X;W˝�X / of graded R-modules, and proves that it lies in Dbc .R/. Therefore,

Theorem 0.2 applies to X .

Smooth varieties
Let V D X XE be the complement of a divisor with normal crossings E in a smooth
complete variety X of dimension n, and let mX be the canonical log structure on X defined
by E,

mX D ff 2OX j f is invertible outside Eg

(Kato 1989, 1.5). Then .X;mX / is log-smooth (ibid. �3).



6 APPLICATIONS TO ALGEBRAIC VARIETIES 28

Define M.V / 2 Dbc .R/ to be the complex of graded R-modules attached to .X;mX / as
above,

M.V /DR� ..X;mX /;W˝
�
X /DR� .X;W˝

�
X .logE//:

We caution that this definition of M.V / uses the presentation of V as X XE — it is not
known at present that M.V / depends only on V . However

H i .s.M.V //Q 'H
i
rig.V /

(Nakkajima 2012, 1.0.18, p.13), and so s.M.V //Q is independent of the compactification X
of V .

We define Mc.V / to be the Tate twist of the dual of MV /:

Mc.V /DD.M.V //.�n/.

(see 4.10). From Berthelot’s duality of rigid cohomology (Berthelot 1997a; Nakkajima and
Shiho 2008, 3.6.0.1), we have the following isomorphism of F -isocrystals

H
j
rig;c.V /' HomK.H

2n�j
rig .V /;K.�n//:

It follows that
H j .s.Mc.V //Q 'H

j
rig;c.V /: (51)

We define
H j
c .V;Zp.r//D Hom.W;Mc.V /.r/Œj �/.

Now take k D Fpa . It follows from (6.8) and (51) that

Z.V; t/DZ.Mc.V /; t/.

Moreover,
R1˝

L
RM.V /'R� .X;˝

�
X .logE//:

(Lorenzon 2002, 2.17, or Nakkajima and Shiho 2008, p.184). Therefore, in this case,
Theorem 0.2 becomes the following statement.

THEOREM 6.10. Assume that qr is not a multiple root of the minimum polynomial of F a

acting on H j
rig.V / for any j .

(a) The groups H j
c .V;Zp.r// are finitely generated Zp-modules, and the alternating sum

of their ranks is zero.
(b) The zeta function Z.V; t/ of X has a pole at t D q�r of order

�D
X

j
.�1/jC1 �j � rankZp

�
H j
c .V;Zp.r//

�
.

(c) The cohomology groups of the complex

E.V;r/W � � � !H j�1
c .V;Zp.r//!H j

c .V;Zp.r//!H jC1
c .V;Zp.r//! �� �

are finite, and the alternating product of their orders �.V;Zp.r// satisfiesˇ̌̌̌
lim

t!q�r
Z.V; t/ � .1�qr t /�

ˇ̌̌̌�1
p

D �.V;Zp.r// �q�.V;r/

where �.V;r/D
P
i�r;j .�1/

iCj .r � i/hi;j .V /.

We caution the reader that it is not known that every smooth variety U can be expressed
as the complement of a normal crossings divisor in a smooth complete variety.
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General varieties

PHILOSOPHY

With each variety V over k, there should be associated objects M.V /; Mc.V /, MBM .V /,
M h.V / in Dbc .R/ arising as the p-adic realizations of the various motives of V . See the
discussion Voevodsky et al. 2000, pp.181–182.

At present, it does not seem to be known whether there exists a W -linear cohomology
theory underlying Berthelot’s rigid cohomology, i.e., a cohomology theory that gives finitely
generated W -modules H j

c .V / stable under F with Q˝ZH
j
c .V / D H

j
rig;c.V / for each

variety V .
Deligne’s technique of cohomological descent in Hodge theory has been transplanted

to rigid and log-de Rham Witt theory by the brave efforts of N. Tsuzuki, A. Shiho, and
Y. Nakkajima. While their results do not provide the invariants of V above, they are still
sufficient for applications to zeta functions. Even though Mc.V / is the only relevant object
for zeta values, we consider both M.V / and Mc.V /.

THE ORDINARY COHOMOLOGY OBJECT M.V /

Let V be a variety of dimension n over k equipped with an embedding V ,! V 0 of V into a
proper scheme V 0. Then (see Nakkajima 2012, especially 1.0.18, p.13), there is a simplicial
proper hypercovering .U�;X�/ of .V;V 0/ with X� a proper smooth simplicial scheme over
k and U� the complement of a simplicial strict divisor with normal crossings E� on X�;
moreover,

H i
rig.V /'H

i .X�;W˝
�
X�
.logE�//Q:

For each j � 0,
R� .Xj ;W˝

�
Xj .logEj // 2Dbc .R/

(Lorenzon 2002). As Dbc .R/ is a triangulated subcategory of D.R/, this implies that

R� .X�d ;W˝
�
X�d

.logE�d // 2 Dbc .R/

for each truncation X�d of the simplicial scheme X�. The inclusion X�d !X� induces an
isomorphism

H i .X�;W˝
�
X�
.logE�//Q 'H i .X�d ;W˝

�
X�d

.logE�d //Q

for all i provided d > .nC1/.nC2/ because both terms are isomorphic to H i
rig.V /. For

the left hand side, this follows from 1.0.8 or 12.9.1 of Nakkajima 2012. For the right
hand side, we apply Theorem 3.5.4, p.243, of Nakkajima and Shiho 2008: H i

rig.V /D 0 for
i > 2n and the spectral sequence 3.5.4.1 degenerates at E1, implying that only finitely many
Xj ’s contribute to the rigid cohomology of V . The bound on d comes from the arguments
following the isomorphism 3.5.0.4 on p.242 ibid. See also pp.122-125 of Nakkajima 2012.

We let
M.V /DR� .X�d ;W˝

�
X�d

.logE�d //

for any integer d > .nC1/.nC2/. While M.V / may depend on d , X�, and the embedding
into V 0, the object s.M.V //Q is independent of these choices up to canonical isomorphism
because H i .s.M.V //Q/'H

i
rig.V /. Recall that H i

rig.V /D 0 for i > 2n.
We need to truncate because it is not clear that the object R� .X�;W˝�X�.logE�// lies

in Dbc .R/.
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THE COHOMOLOGY OBJECT WITH COMPACT SUPPORT Mc.V /

Let V ,! V 0 be as in the last subsubsection. Let �WZ ,! V 0 denote the inclusion of the
reduced closed complement Z of V . One can find a proper hypercovering Y�!Z and a
morphism f WY�!X� lifting �. Applying the results of the previous subsubsection to Z and
fixing an integer d > .nC 1/.nC 2/, we get M.Z/ and a map f �WM.V 0/!M.Z/. We
define Mc.V /Œ1� to be the mapping cone of f �. This is an object of Dbc .R/:

LEMMA 6.11. For all V ,! V 0 as above,

H i .s.Mc.V //'H
i
rig;c.V / :

PROOF. As the map f lifts �, the map

f �WH i .s.M.V 0//Q/!H i .s.M.Z//Q/

can be identified with the map ��WH i
rig.V

0/!H i
rig.Z/. But as V 0 and Z are proper, rigid

cohomology is the same as rigid cohomology with compact support. The lemma now follows
from the long exact sequence (6.3). 2

Combining the lemma with the result of Etesse-Le Stum above, we obtain that the zeta
function Z.V; t/ of V is equal to the zeta function of Mc.V /. Therefore, from Theorem 0.1
we obtain Theorem 6.10 for V .

Application of strong resolution of singularities
Geisser (2006) has shown how the assumption of a strong form of resolution of singularities
leads to a definition of groups H i

c .V;Z.r// for an arbitrary variety V over k, which, when k
is finite, are closely connected to special values of zeta functions. His definition involves the
eh-topology, where the coverings are generated by étale coverings and abstract blow-ups
(ibid. 2.1).

We now sketch how his argument provides an object Mc.V / 2 Dbc .R/. For a complete
V , we define M.V /DR� .Veh;�

�W˝�V / where �� denotes pullback from eh-sheaves on
the category of smooth varieties over k to eh-sheaves on all varieties over k. We show that
M.V / 2 Dbc .R/ by using induction on the dimension of V . Resolution of singularities gives
us a proper map V 0! V inducing an isomorphism from an open subvariety U 0 of the smooth
variety V 0 onto an open subvariety U of V . Moreover, U 0 is the complement in V 0 of a
divisor with normal crossings, and so we can define M.U 0/ 2 Dbc .R/ as above (using the eh-
topology). NowM.V /2Dbc .R/ becauseM.U / def

DM.U 0/2Dbc .R/ andM.V XU/2Dbc .R/
(by induction).

To define Mc.V / for an arbitrary V , choose a compactification V 0 of V , and let

Mc.V /D Cone.M.V 0/!M.Z//Œ�1�; Z
def
D V 0XV .

Clearly, Mc.V / 2 Dbc .R/. The eh-topology is crucial for proving that this definition is
independent of the compactification (ibid. 3.4). Given Mc.V /, we define

H i
c .V;Zp.r//D HomDbc .R/

.W;Mc.V /.r/Œi �/:

This agrees with Geisser’s group tensored with Zp, because the two agree for smooth
complete varieties and satisfy the same functorial properties.
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Deligne-Mumford Stacks
Olsson (2007, first three chapters) extends the theory of crystalline cohomology to certain
algebraic stacks. He also shows (ibid. Chapter 4) that the crystalline definition (Illusie
1983, 1.1(iv)) of the de Rham-Witt complex can be extended to stacks. Let S=W be a flat
algebraic stack equipped with a lift of the Frobenius endomorphism from S0 compatible
with the action of � in W . Let X ! S be a smooth morphism of algebraic stacks with X a
Deligne-Mumford stack. Then W˝�X=S is a complex of sheaves of R-modules on X , and
there is a canonical isomorphism

H j .s.R� .W˝�X=S ///Q 'H
j
crys.X=W /Q (52)

(Olsson 2007, 4.4.17). Under certain hypotheses on S and X (ibid. 4.5.1), Ekedahl’s criterion
(see 1.5) can be used to show that R� .W˝�X=S / 2 Dbc .R/ (ibid. 4.5.19) and that (52) is an
isomorphism of F -isocrystals.

Now assume that k D Fq , q D pa. The zeta function Z.X ; t / of a stack X over k is
defined by (49), but with

Nm D
X

x2ŒX .Fqm /�

1

#Autx Fqm

(see Sun 2012, p.49). Assume that X is a Deligne-Mumford stack over S satisfying Olsson’s
conditions, and let M.X /DR� .W˝�X=S / 2 Dbc .R/. From (52), we see that

Z.M.X /; t/D
Y

j
det.1�F at jH j

crys.X=W /Q/.�1/
jC1

.

We expect that the two zeta functions agree (see ibid. 1.1 for the `-version of this). Then
Theorem 6.10 will hold for X with

H j .X ;Zp.r//
def
D HomDbc .R/

.W;M.X /.r/Œj �/.

Crystals
Let X be a smooth scheme over S , and let E be a crystal on X . Etesse (1988a, II, 1.2.5)
defines a de Rham-Witt complex E˝W˝�

X=S
on X , and, under some hypotheses on X

and E, he proves that M.X;E/ 2 Dbc .R/ (ibid., II, 1.2.7) and that there is a canonical
isomorphism

H j .R� .E˝W˝�X=S //'H
j
crys.X=S;E/

(ibid. II, 2.7.1). Let
M.X;E/DR� .E˝W˝�X=S /:

When k is finite, Theorem 0.2 for M.X;E/ becomes Theorem (0.1)0 of Étesse 1988b.
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