Hodge classes on abelian varieties

J.S. Milne

July 12, 2022; v1.1

Abstract

We prove, following Deligne and André, that the Hodge classes on abelian
varieties of CM-type can be expressed in terms of divisor classes and split Weil classes,
and we describe some consequences. In particular, we show that Grothendieck’s
standard conjecture of Lefschetz type implies the Hodge conjecture for abelian
varieties (Abdulali, André, ...). No new results, but the proofs are shorter.
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1 Review of abelian varieties of CM-type

1.1. A complex abelian variety is said to be of CM-type if EndO(A) contains a CM-
algebral E such that H1(A, Q) is free of rank 1 as an E-module. Let S = Hom(E, C), and
let H'(A) = H'(A, C). Then

H'(A) ~ H(4,Q) ® C = @D H'(4),, H(A); £ HY(A) @, C.

sEeS

Here H'(A), is the (one-dimensional) subspace of H'(A) on which E acts through s. We
have
HY(4) = P HY(A),, HOW(A) = P H (A,
seP seP
where @ is a CM-type on E, i.e., a subset of S such that S = ® I ®. Every pair (E, ®)
consisting of a CM-algebra E and a CM-type ® on E arises in this way from an abelian
variety. Sometimes we identify a CM-type with its characteristic function ¢ : S — {0, 1}.

1.2. Let A be a complex abelian variety of CM-type, and let E be a CM-subalgebra of
EndO(A) such that H'(A, Q) is a free E-module of rank 1. Let K be a Galois extension of

IThat is, a product of CM-fields.
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Q in C splitting? E, and let S = Hom(E, K). We regard the CM-type ® of A as a subset
of S. Let H"(A) = H"(A,Q) ®qg K. Then

HY(A) = EBSGS H(A),,

where H!(4), £ H'(A,Q) ®g s K is the (one-dimensional) K-subspace of H'(A) on
which E acts through s.

(a) We have

H'(A) ~ /\; HY(A) = @A H'(A), (K-vector spaces),

where A runs over the subsets of S of size |A| = r and H"(A)x £ ®S o H 1(A), is
the (one-dimensional) subspace on which a € E acts as HS e S(a).

(b) Let HY = P _, H'(A);and H*' = @ _z H'(A);. Then

¢ AP q
gra /\ HY ® /\ HO = @A HP*(A),  (K-vector spaces),

where A runs over the subsets of S with [AN®| = p and |ANn ®| = q.
(c) (Pohlmann 1968, Theorem 1.) Let B? = H?P(A,Q) n HPP (Q-vector space of
Hodge classes of degree p on A). Then

p — 2p
BP®K = @ A HP(A),,
where A runs over the subsets of S with

|(toA) N ®| = p = |(toA) N ®| for all t € Gal(K/Q). €))

2 Review of Wil classes

2.1. Let A be a complex abelian variety and v a homomorphism from a CM-field E into

End’(A). The pair (A4, v) is said to be of Weil type if H%(A) is a free E ®g C-module.
In this case, d = dimy; H!(A, Q) is even and the subspace W;(4) = /\g H'(A,Q) of
H%(A, Q) consists of Hodge classes (Deligne 1982, 4.4). When E has degree 2 over Q,
these Hodge classes were studied by Weil (1977), and for this reason are called Weil
classes. A polarization of (A, v) is a polarization 4 of A whose Rosati involution stabilizes
v(E) and acts on it as complex conjugation. The Riemann form of such a polarization
can be written

(x,¥) == Trg a(f$(x, )

for some totally imaginary element f of E and E-hermitian form ¢ on H,(A, Q). If A can
be chosen so that ¢ is split (i.e., admits a totally isotropic subspace of dimension d/2),
then (A, v) is said to be of split Weil type. A pair (A, v) of Weil type is split if and only if

disc(¢) = (—1)4mA/IE: Q1 modulo Nm(EX).

2.2. (Deligne 1982, §5.) Let E be a CM-field, let ¢, ..., $2p be CM-types on E, and let
A =[], A;, where 4; is an abelian variety of CM-type (E, ¢;). If 3}, ¢;(s) = p for all

2That is, such that E ®¢ F is isomorphic to a product of copies of F.
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seETE Hom(E, Qal), then A, equipped with the diagonal action of E, is of split Weil
type. LetI = {1,...,2p} and H"(A) = H"(A, Q¥). In this case, there is a diagram

W) ® @ & (AT H(A,0) @@ & () H(A,Q)® 0" = H#(4)

(\ H
D (R ) — D (& H')

teT iel JCIXT (i,tH)el
[71=2p

3 Theorem 1.

THEOREM 1 (ANDRE 1992). Let A be a complex abelian variety of CM-type. There exist
abelian varieties A, of split Weil type and homomorphisms f . A — A, such that every
Hodge class t on A can be written as a sumt = ) f(ty) with t, a Weil class on Ax.

PROOF. Let A be of CM-type and let p € N. After replacing A with an isogenous variety,
we may suppose that it is a product of simple abelian varieties A; (not necessarily distinct).
LetE = []. EndO(Al-). Then E is a CM-algebra, and A is of CM-type (E, ¢) for some
CM-type ¢ on E. Let K be a CM subfield of C, Galois over Q, splitting the centre of
EndO(A). Then K splits E, and we let S = Hom(E, K). We shall show that Theorem 1
holds with each A, of split Weil type relative to K. Let T = Hom(K, Q*), where Q! is
the algebraic closure of @ in C. As K C Q?, we can identify T with Gal(K/Q).

Fix a subset A of S satisfying (1). For s € A, let® A; = A®p (K. Then Ay is an abelian
variety of CM type (K, ¢;), where ¢,(t) = ¢(tos) for t € T. Because A satisfies (1),

S AOEY  $os) = paallteT,

and so we can apply 2.2: the abelian variety A, = H A, equipped with the diagonal
action of K is of split Weil type. There is a homomorphlsm fa: A > Aj such that

fax: Hi(A,Q) > Hy(Ap, Q) = Hy(A, Q) ®; K2

is x ~— x®1. Here K* is a product of copies of K indexed by A. Themap f} : H'(A4,,Q) —
H'(A, Q) is the E-linear dual of f,,.

Note that A, has complex multiplication by K*. According to 1.2(a),

def def
H(A) & HP (A5, Q%) = D) HP(An)y, HPA) E Q) H' (A

where J runs over the subsets of A x T of size 2p. Let Wg(Ap) C H?P(A,, Q) be the
space of Weil classes on A,. Then W (A4,) Q@ Q% = P reT H?P(A,) axisy- Note thata € E
acts on H ZP(AA)AX{,} £ ®s e AH (Ay); as multiplication by H A(tos)(a). Therefore,
i ®1: H?(Ap) —» H?P(A) maps H?P(Ap)axq into HZP(A)tOA C BP(A) @ Q2.

In summary: for every subset A of S satisfying (1), we have a homomorphism

fa: A —> A, from A into an abelian variety A, of split Weil type relative to K; moreover,
fi(Wg(Ap) ® Q% is contained in BP(A) ® Q% and contains H?P(A),. As the subspaces

*Better, let A, = A ®,, ; Ok.
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H?P(A), span BP ® Q% (see 1.2(c)), this implies that the subspaces f 1(Wk(A,)) span
BP4

4 Deligne’s original version of Theorem 1.

Let E be a CM-field Galois over Q, and let S be the set of CM-types on E. For each
® € 8 choose an abelian variety A of CM-type (E, @), and let Ag = ] ves Ao- Define
G (resp. GY) to be the algebraic subgroup of GLg1(4,,0) fixing all Hodge classes (resp.
divisor classes and split Weil classes) on all products of powers of the Ag, ® € S.

THEOREM 2. The algebraic groups G and GY are equal.

PROOF. As divisor classes and Weil classes are Hodge classes, certainly G ¢ G¥. On
the other hand, the graphs of homomorphisms of abelian varieties are in the Q-algebra
generated by divisor classes (Milne 1999, 5.6), and so, with the notation of Theorem 1,
GV fixes the elements of f A(WE(An)). As these span the Hodge classes, we deduce that
GV c G.

REMARK 1. Theorem 2 is Deligne’s original theorem (1982, §5) except that, instead of
requiring GV to fix all divisor classes, he requires it to fix certain specific homomor-
phisms.

5 Applications

5.1. Call a rational cohomology class ¢ on a smooth projective complex variety X acces-
sible if it belongs to the smallest family of rational cohomology classes such that,
(a) the cohomology class of every algebraic cycle is accessible;
(b) the pull-back by a map of varieties of an accessible class is accessible;
(c) if (X,)ses is an algebraic family of smooth projective varieties with S connected and
smooth and (t),es is a family of rational classes (i.e., a global section of R" £, Q...)
such that t, is accessible for one s, then ¢, is accessible for all s.
Accessible classes are automatically Hodge, even absolutely Hodge (Deligne 1982, §§2,3).

THEOREM 3. For abelian varieties, every Hodge class is accessible.

PROOF. This is proved in Deligne 1982 (see its Introduction) except that the statement
there includes an extra “tannakian” condition on the accessible classes (ibid., p. 10, (¢)).
However, this condition is used only in the proof that Hodge classes on CM abelian
varieties are accessible. Conditions (a) and (c) of 5.1 imply that split Weil classes are
accessible (ibid., 4.8), and so this follows from Theorem 1 (using 5.1(b)).

REMARK 2. In particular, we see that the Hodge conjecture holds for abelian varieties if
algebraic classes satisfy the variational Hodge conjecture (i.e., condition 5.1(c)).

“Let W and W' be subspaces of a k-vector space V, and let K be a field containing k. f W ®, K C W' ®,K,
then W C W'. Indeed,

Wi s0 e LOEAWOR Ly o wokew oK.

'
WeW W WK
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REMARK 3. For Theorem 3, it suffices to assume that 5.1(c) holds for families of abelian
varieties over a complete smooth curve S. Indeed, (c) is used in the proof of the theorem
only for families of abelian varieties (Ay),cs With additional structure over a locally
symmetric variety S. More precisely, there is a semisimple algebraic group G over Q, a
bounded symmetric domain X on which G(R) acts transitively with finite kernel, and a
congruence subgroup I' C G(Q) such that S(C) = I'\ X (Deligne 1982, proofs of 4.8, 6.1).
For s € S(C), the points s’ of the orbit G(Q) - s are dense in S and each abelian variety
Ay is isogenous to A. The boundary of S in its minimal (Baily-Borel) compactification
has codimension > 2. After Bertini, for any pair of points s;, s, € S(C), we can find a
smooth linear section of S meeting both orbits G(Q) - s; and G(Q) - s, but not meeting
the boundary. This proves what we want. Cf. André 1996, p. 32.

Let X be an algebraic variety of dimension d, and let L : H*(X,Q) - H*"(X,Q)
be the Lefschetz operator defined by a hyperplane section of X. The strong Lefschetz
theorem says that L4~ : H{(X,Q) — H??~I(X,Q) is an isomorphism for all i < d.
Let aH?(X, Q) denote the Q-subspace of H*(X, Q) spanned by the algebraic classes.
Then L¢~% induces an injective map L4~ : aH%(X, Q) — aH?*?~%(X, Q). The standard
conjecture of Lefschetz type asserts that this map is surjective if 2i < d. It is known to
be true for abelian varieties.

PROPOSITION 1 (ABDULALI 1994, p. 1122). Let f : A — S be an abelian scheme over a
smooth complete complex variety S. Assume that the Lefschetz standard conjecture holds
for A. Let t be a global section of the sheaf R* f.Q(r); if t; € H* (A, Q(r)) is algebraic for
one s € S(C), then it is algebraic for all s.

PROOF. Forn € N, let 6,, denote the endomorphism of A/S acting as multiplication by n
on the fibres. By a standard argument (Kleiman 1968, p. 374), 6 acts as n/ on R/ f, Q. As
6;: commutes with the differentials d, of the Leray spectral sequence H'(S,R/f,Q) =
H*I(A,Q), we see that the spectral sequence degenerates at the E,-term and

HAQ =P,  HERS.Q

with H(S, R/ f, Q) the subspace of H*/(A, Q) on which 6, acts as n/. Let s € S(C) and
7 = m,(S, s). Theinclusion j, : A; < Ainducesanisomorphism j¥ : H°(S,R* f,Q) <
H? (A, Q)™ preserving algebraic classes, and so

dim aH°(S,R* Q) < dim aH? (A, Q)". (2)

Similarly, the Gysin map j,, : H*%(A,, Q) — H?=2r+2m(A Q), where m = dim(S)
and d = dim(A/S), induces a map H*~%(A,, Q)" — H>™(S,R*~?" £, Q) preserving
algebraic classes, and so

dim aH?4=%"(A,, Q)" < dim aH?>"(S,R*~% £, Q). (3)
Because the Lefschetz standard conjecture holds for Ay,
dim aH? (A, Q)" = dim aH*?~"(A,, Q). 4)

Hence,
. @ . @ .. d
dim aH°(S,R* £, Q) < dim aH? (A, Q)" = dim aH?*~%" (A4, Q)"

®)
< dim aH?>"(S,R**~%" £, Q).
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The Lefschetz standard conjecture for A implies that
dim aH°(S,R* f,Q) = dim aH*"™(S, R*~% f,Q),
and so the inequalities are equalities. Thus
aH? (A, Q)" = aHO(S,R*¥ f,Q),
which is independent of s.

THEOREM 4 (ABDULALI, ANDRE). The Lefschetz standard conjecture for algebraic vari-
eties over C implies the Hodge conjecture for abelian varieties.

PROOF. By Theorem 3, it suffices to show that algebraic classes are accessible. They
obviously satisfy conditions (a) and (b) of 5.1, and it suffices to check (¢) with S a complete
smooth curve (Remark 3). This Proposition 1 does.

REMARK 4. Proposition 1 applies also to absolute Hodge classes and motivated classes.
As these satisfy the Lefschetz standard conjecture, we deduce that Hodge classes on
abelian varieties are absolutely Hodge and motivated.

REMARK 5. Let Hp denote the Betti cohomology theory and Moty (C) the category of
motives over C for homological equivalence generated by the algebraic varieties for
which the Kiinneth projectors are algebraic. If the Betti fibre functor wg on Moty (C) is
conservative, then the Lefschetz standard conjecture holds for the varieties in question.
Indeed, as L4 : H2(X)(i) > HX*%(X,Q)(d — i) is an isomorphism (strong Lef-
schetz theorem), so also is 1972 : h%(X)(i) — h*72(X)(d — i) by our assumption
on wg. When we apply the functor Hom(1, —) to this last isomorphism, it becomes
L4720 aHE(X)(i) » a2~ (X)(d — i), which is therefore an isomorphism. Thus the
standard conjecture A(X, L) is true, and A(X X X,L ® 1 + 1 ® L) implies B(X).
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Notes

For the convenience of the reader, we include proofs of some of the statements used
in the proof of the theorems. Subsection 5.1 is from Pohlmann 1968; 5.3 and 5.4 are
extracted from Deligne 1982.

5.1. Proofof 1.2(c).

Let G = Gal(K/Q). For each s € S, let e, be a nonzero element of H'(A),; then
(ey)ses is a basis for H!(A). The e, can be chosen so that te; = e, for t € Gal(K/Q).°
Once we fix an ordering of S, we can setey = A a & for any subset A of S.

Let A be a subset of S satisfying (1); we shall show thate, € B? ® K. Let {uy, ..., u,}

be a basis for K over Q, and let f; = Z[GG tu; - tey fori = 1,...,n. Astey, = e

and A satisfies (1), f; € HP'P. As it is fixed by all 0 € G, we see that f; € BP. Now
det(t(u;));; # 0, and so we can solve the linear equations f; = ), rec LUi - te to find that
tey € BP @ K. In particular, e, € BP Q K.

Let f € BP, and write f = szzp cp-epwithcy € K. Astf = f € HPP, we have
[tAN®| = pforall t € G and all A with ¢, # 0. Therefore A satisfies (1), and so f is an
K-linear combination of e, with A satisfying (1).

5.2. Some linear algebra; the diagram in 2.2.

Let Q be a field, E an étale Q-algebra, and V a free E-module of finite rank. Let
T = Homg(E, Q*) and set V Qo Q¥ = @teT ViwithV, =V Qg Q¥. Letn € N. There

is a unique inclusion /\g Vo /\g V that, when tensored with Qal, becomes

(/\Z V) ®o Q) —— (/\2 V) ®0 Q"
| |
@(/\Zal Vt) % @ (®/\Qal )

teT > n=n teT

Now suppose that V = @ V; with V; free of rank 1 as an E-module, and let n = |I|.
ThenV; ®q Q=0 rer Vit w1th Viira Q%-vector space of dimension 1, and the diagram

becomes
(/\Z V) ®Q Qal SN (/\g V) ®Q Qal

D(®7) s D (D Vi)

teT i€l JCIXT (i,t)e]
[J|=n

The equality at right follows directly from the decomposition V' ® Q¥ =
dll’l’l Vi,t = 1

®(i,t)e1xT Vit

SThe choice of a nonzero element of H; (A, Q) allows us to identify H,(A, Q) with E, H'(A, Q) with
Homg.jjnear(E, Q), and H'(A) with Homg jipeqr(E, F). According to Dedekind’s theorem on the independence
of characters, the set S is an F-basis for this last space.
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Let E be a CM-field, let ¢4, ..., ¢2p be CM-types on E, and let A = Hl. A;, where A; is

an abelian variety of CM-type (E, ¢;). LetI = {1, ...,2p}and T = Hom(E, Qal). Assume
that . o i = p- Set H'(A) = H'(A, Q). The last diagram becomes the diagram in 2.2.

5.3. Review of hermitian forms

Recall that a CM-field is a number field E such that, for every embedding E < C,
complex conjugation induces a nontrivial automorphism e —— € on E that is indepen-
dent of the embedding. The fixed field of the automorphism is then a totally real field F
over which E has degree two.

A bi-additive form

¢: VXV —>E

on a vector space V over a CM-field E is Hermitian if
plev,w) = ep(v,w), ¢, w)=4¢(w,v), aleecE,v,weV.

For an embedding 7 : F < R we obtain a Hermitian form ¢, in the usual sense on the
vector space V. = V ®p ; R, and we let a; and b, denote the dimensions of the maximal
subspaces of V; on which ¢, is positive definite and negative definite respectively. If
d = dimV, then ¢ defines a Hermitian form on /\d V that, relative to some basis vector,
is of the form (x,y) ~— fxJy. The element f isin F, and is independent of the choice
of the basis vector up to multiplication by an element of Nmg r EX. It is called the
discriminant of ¢. Let (vy,...,v4) be an orthogonal basis for ¢, and let ¢(v;,v;) = ¢;;
then a, is the number of i for which z¢; > 0, b; the number of i for which 7¢; < 0, and
f =11 ¢ (mod Nmg,r EX). If ¢ is nondegenerate, then f € F*/Nm E*, and

a,+b. =d, sign(tf)=(=1),allz. (5)

PROPOSITION 2. Suppose given nonnegative integers (a,,b;); . pre,c and an element f €
F*/Nm E* satisfying (5). Then there exists a non-degenerate Hermitian form ¢ on an
E-vector space V of dimension d with invariants (a,, b;) and f; moreover, (V, ¢) is unique
up to isomorphism.

PROOF. The result is due to Landherr (1936).6

COROLLARY 1. Let (V, ¢) be a non-degenerate Hermitian space, and letd = dim V. The
following conditions are equivalent:

(@) a, = b, forall r and disc(f) = (-1)¥/?;

(b) there exists a totally isotropic subspace of V' of dimension d /2 (i.e., ¢ is split).

PROOF. Let W be a totally isotropic subspace of V of dimension d/2. The map v +—
¢(—,v): V. — WY induces an antilinear isomorphism V/W — WV. Thus, a basis
ey, ...,€q/, of W can be extended to a basis {e;} of V such that

ple,ea, ) =1, 1<i<d/2,
2

plej,e;) =0, j#ixd/2

®Landherr, Walther, Aquivalenz Hermitescher Formen {iber einem beliebigen algebraischen Zahlkorper.
Abh. Math. Semin. Hamb. Univ. 11, 245-248 (1936).
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It is now easy to check that (V, ¢) satisfies (a). Conversely, (E%, ¢), where

¢((a), (b)) = D, aba,, +aa b,

1<i<d/2 2
is, up to isomorphism, the only Hermitian space satisfying (a), and it also satisfies (b).
5.4. Proofof 2.2.

Let E be a CM field and ¢, ..., ¢4 CM-types on E such that Zl. ¢; is the constant
function. Let A = @?:1 A;, where A; is of CM-type (E, ¢;). Then E acts diagonally on A

and H'(A,Q) = @?:1 H'(A;, Q) has dimension d over E. For each i, there is an E-linear
isomorphism
H'(A.@) ®0 C ~ P _ H' (A,

where H!(A;), is the (one-dimensional) C-vector space on which E acts through s. To
say that A; is of CM-type ¢; means that

HY(A) =D, H'(A):

Now H'(A), has dimension };, ¢;(s), which, being constant, implies that H'-* is a free

E ® C-module. Therefore W;(A) S /\; H'(A,Q) c HY(A, Q) consists of Hodge classes.

For each i, choose a polarization 6; for A; whose Rosati involution stabilizes E, and
let 1; be the corresponding Riemann form. For any totally positive elements f; in F (the
maximal totally real subfield of E) 8 = EBi fi6; is a polarization for A. Choose v; # 0,
v; € H (A;, Q); then {v;} is a basis for H;(A;, Q) over E. There exist {; € E* such that
¢i = —¢; and P;(xv;, yv;) = Trg/q(¢;xp) for all x,y € E. Thus ¢;, where ¢;(xv;, yv;) =
?xy, is an E-Hermitian form on H,(A;, Q) such that ¥;(v, w) = Trg/g({1$:(v, w)). The

1
E-Hermitian form on H,(A, Q)

(X xiv;, 2L yivy) = Zi Ji#i(x;v5, yiv;)

has the property that ¢(v, w) = Trg,q($14(v, w)) and is the Riemann form of 6. The
discriminant of ¢ is [ [, f l—(g—"). On the other hand, if s € S restricts to 7 on F, then
1

sign(rdisc(¢)) = (—1)Ps = (=1)/2.
Thus,
disc(¢) = (-1)¥/2f

for some totally positive element f of F. After replacing one f; with f;/f, we have that
disc(¢) = (—1)%/2, and therefore ¢ is split.

5.5. The degeneration of the Leray spectral sequence

THEOREM 5. (Blanchard, Deligne) If f : X — S is smooth projective, then the Leray
spectral sequence,
HP(S,R1f,Q) = HPH(X,Q),

degenerates at E,.
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PROOF. The relative Lefschetz operator L = ¢;(£)U- acts on the whole spectral sequence,
and induces a Lefschetz decomposition

RIf, Q= ®r Lr(Rq_zrf*@)prim-

It suffices to prove that dya = 0 for « € HP(S, (R f,,Q)prim)- In the diagram,

HP(S, (Rf,Q)prim) —2— HP*(S,RI-1£,Q)

OlL"—q“ zan—qH

HP(S,RZ"_q”@) L Hp+2(S,R2n_q+1Q),

the map at left is zero because L"~9*! is zero on (RIf +Q@)prim and the map at right is
an isomorphism because L"~9*! : RI71f Q — R?"~9*1f Q is an isomorphism. Hence
dza =0.

Grothendieck conjectured the degeneration of the Leray spectral sequence by consid-
eration of weights. Blanchard proved the result (1956) when the base is simply connected,
and Deligne (1968)7 proved it in general. See also Griffiths and Harris, 1978, p. 466.

Now consider an abelian scheme f : A — S. In this case, we get a diagram

HP(S,RIf,Q) —2— HPH(S,RILf,0Q)

nd l@n nd-t len

HP(S,RIf,Q) —2 HPY(S,RI'f,Q),

which proves our claims in the proof of Proposition 1.

5.6. Proof of Proposition 1

Abdulali (1994) states his results for Kuga fibre varieties, but notes that they hold
more generally. In his original manuscript, he refers to Kuga 19648, Theorem I1-3-12,
p.~94, for the decomposition of the cohomology of A4, and to Kuga 1966°, 1.3.5, p. 17, for
a proof that j¥ induces an isomorphism of H°(S, R¥ f,Q) with H*" (A, Q)".

"Deligne, P. Théoreme de Lefschetz et critéres de dégénérescence de suites spectrales. Inst. Hautes
Etudes Sci. Publ. Math. No. 35 1968 259-278.

8Kuga, Michio, Fiber varieties over a symmetric space whose fibers are abelian varieties, Vol. I, Lecture
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