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Abstract. A Lefschetz class on a smooth projective variety is an element of the
Q-algebra generated by divisor classes. We show that it is possible to define Q-linear
Tannakian categories of abelian motives using the Lefschetz classes as correspon-
dences, and we compute the fundamental groups of the categories. As an applica-
tion, we prove that the Hodge conjecture for complex abelian varieties of CM-type
implies the Tate conjecture for all abelian varieties over finite fields, thereby reduc-
ing the latter to a problem in complex analysis.
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Introduction

Grothendieck mainly envisaged constructing categories of motives by using as cor-
respondences all algebraic classes modulo an adequate equivalence relation. Unfor-
tunately, we know little about algebraic classes, and hence even less about these
categories. In our present state of ignorance, categories of motives constructed using
other correspondences, for example, those defined by Hodge classes, have proved to
be more useful, and have played an important role, for example, in the theory of
Shimura varieties.

In this article, we construct categories of motives using the algebraic classes we
do understand, namely, those in the Q-algebra generated by divisor classes, which
I call Lefschetz classes. It is not obvious that there are sufficient of these to define
a category of motives—for example, in general the direct image of a Lefschetz class
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is not Lefschetz—but this is proved in Milne 1999a for Lefschetz classes on abelian
varieties.

In the first section of this paper, I explain how to define a category LMot(k)
of “Lefschetz motives” over any field k. It is generated by the motives of abelian
varieties, and its morphisms are the correspondences defined by Lefschetz classes. It is
a Q-linear semisimple Tannakian category whose fundamental group has a description
in terms of the simple isogeny classes of abelian classes. For abelian varieties of CM-
type overC and for abelian varieties over finite fields there are explicit classifications of
the isogeny classes, which we use to make explicit our description of the fundamental
groups (Sections 2 and 4). We also compute the homomorphisms of fundamental
groups corresponding to the functor taking a Lefschetz motive of CM-type over C

to the corresponding Hodge motive (Section 3) and the functor taking a Lefschetz
motive of CM-type over Qal to its reduction over the algebraic closure F of a finite
field (Section 5).

In the remaining two sections, we apply the theory to the Tate conjecture for
abelian varieties over finite fields. For an abelian variety A over F, there is a cycle
class map into étale cohomology

{algebraic cycles on A of codimension r} → H2r(A,Q�)(r),

� �= char(F). The choice of a model A0 of A over a finite subfield Fq of F determines an
action of Gal(F/Fq) on H

2r(A,Q�(r)). The Tate conjecture (Tate 1965, Conjectures
(a′) and 1) predicts that, for all r,

(0.1) the kernel of the cycle class map is the group of cycles numerically
equivalent to zero, and its image spans the Q�-space

T r
� (A)

df
=

⋃
A0/Fq

H2r(A,Q�(r))
Gal(F/Fq).

Statement (0.1) for A implies the similar statements for any model A0 of A over a
finite field—specifically, it implies the statements denoted E(A0) and T (A0) in Tate
1994, and hence also the injectivity statement I(A0) and the equality of the order of
the pole of the zeta function Z(A0, t) of A0 at t = q−r with the rank of the group
numerical equivalence classes of algebraic cycles of codimension r (ibid. Theorem
2.9).

Tate proved the conjecture for r = 1, and various authors have shown that, in some

cases, T�(A)
df
= ⊕rT�(A) consists of Lefschetz classes. However, Wei (1993) showed

that, for a general simple isogeny class over F, some power of an abelian variety in
the class supports an “exotic” Tate class not in the Q�-algebra generated by divisor
classes. Therefore, to prove Tate’s conjecture, we need a new source of algebraic
cycles. Up to isogeny, every abelian variety over F lifts to an abelian variety of CM-
type in characteristic zero, and one possibility is to use the algebraic classes obtained
by reduction from such a lifting, but without the Hodge conjecture, we know of very
few algebraic classes on an abelian variety of CM-type that are not already Lefschetz.
We prove (Theorem 7.1):

The Hodge conjecture for abelian varieties of CM-type over C implies the
Tate conjecture (0.1) for abelian varieties over F.
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The proof makes use of Jannsen’s theorem that the category of motives for numer-
ical equivalence is semisimple (Jannsen 1992).

Remark. (a) The proof of Theorem 7.1 does not show that every Tate class on an
abelian variety over F lifts to a Hodge class on an abelian variety of CM-type, even
up to isogeny. In fact, as Oort has pointed out, this is false. For a simple abelian
variety A over a field of characteristic zero,

E ⊂ End(A)⊗Q, E a field, [E:Q] = 2dimA =⇒ E is a CM-field,

whereas this is not true for abelian varieties over fields of nonzero characteristic. Let
E ⊂ End(A) ⊗ Q be a counterexample over F, and let α generate E over Q. Then
the graph of α does not lift to any lifting of A to characteristic zero.

Rather, the proof uses the Tannakian formalism to show that there are sufficiently
many algebraic classes conjecturally coming from abelian varieties of CM-type and
divisors to force the Tate conjecture to be true.

(b) For abelian varieties of CM-type, the Hodge conjecture is known to be equivalent
to the Tate conjecture (Pohlmann 1968). Therefore Theorem 7.1 can be restated
as follows: the Tate conjecture for abelian varieties of CM-type over number fields
implies the Tate conjecture for abelian varieties over finite fields.

(c) To prove the Hodge conjecture for an abelian variety A over C, it suffices to
construct enough vector bundles on A so that their Chern classes generate the Q-
algebra of Hodge classes. Because A is projective, it even suffices to construct the
vector bundles analytically. Therefore Theorem 7.1 reduces the proof of the Tate
conjecture for abelian varieties over finite fields to a problem in complex analysis.

Apart from the theory of Lefschetz motives developed in the first five sections, the
proof of Theorem 7.1 uses one further crucial result (Theorem 6.1) concerning the
relationship of the fundamental groups of various categories of motives.

In a later article (Milne 1999b), I shall use Theorem 6.1 to construct a canonical
category of “motives” over F that

– has the “correct” fundamental group, and equals the true category of
motives if the Tate conjecture holds for abelian varieties over F,

– canonically contains the category of abelian varieties up to isogeny as
a polarized subcategory,

thereby resolving a problem that goes back to Grothendieck. The category of motives
plays the same role in describing the points on Shimura varieties with coordinates
in finite fields as Deligne’s category of Hodge motives does for their points with
coordinates in fields of characteristic zero (Milne 1995, 1999b).

Notations and conventions. For a field k, kal denotes an algebraic closure of k. Except
in Section 6, Γ = Gal(Qal/Q).

Complex conjugation on C is denoted by ι. A CM-field is a field E algebraic over
Q admitting a nontrivial involution ιE such that ρ ◦ ιE = ι ◦ ρ for all homomorphisms
ρ:E → C. The fixed field of ιE is called the real subfield of E. The composite of all
CM-subfields of Qal is again a CM-field, which we denote Qcm.

An algebraic variety over a field k is a geometrically reduced (not necessarily con-
nected) scheme of finite type over k.
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In general, groups act on the left. The action of σ ∈ Γ on a map f :X → Y from
one Γ-set to a second (possibly with trivial action on one set), is defined by the rule:

(σf)(x) = σ(f(σ−1x)), x ∈ X, i.e., σf = σ ◦ f ◦ σ−1.

For a set (topological space) X, ZX denotes the set of (locally constant) functions
f :X → Z. When X is finite, we sometimes denote ZX by Z[X] and an element f of
ZX by a sum

∑
x∈X f(x)x.

“Vector space” and “representation” mean “finite-dimensional vector space” and
“finite-dimensional representation”. For a vector space V over k, GL(V ) denotes
either the algebraic group or its k-rational points.

“Algebraic group” means “affine algebraic group”. For such a group G, G(K) is
the set of points on G with coordinates in K, and GK or G/K is G×Speck SpecK.

An algebraic group is of multiplicative type if it is commutative and its identity
component is a torus, and an affine group scheme over a field is of multiplicative

type if all of its algebraic quotients are. For such a group T over a field k, X∗(T ) df
=

Hom(T/kal,Gm/kal) denotes the group of characters of T and X∗(T ) the group of
cocharacters. We often identify X∗(T ) with the dual Hom(X∗(T ),Z) of X∗(T ).
For an algebraic group G over a field K (or product of fields) of finite degree over

a field k, (G)K/k
df
= ResK/k(G) is the algebraic group over k obtained by restriction

of scalars. For example, when K/k is separable, (Gm)K/k is the torus with character

group ZHomk(K,kal).

Let (Gi, ti)i∈I be a family of pairs consisting of an algebraic group Gi and a ho-
momorphism ti:Gi → Gm. We define the product

∏
i∈I(Gi, ti) of the family to be

the pair (G, t) consisting of the largest subgroup of
∏
Gi on which the characters

(gi)i∈I 
→ ti0(gi0) agree and of the common restriction of these characters to G. It is
universal with respect to the maps (G, t)→ (Gi, ti).

For abelian varieties A and B, Hom0(A,B) = Hom(A,B)⊗Q.

In general, our conventions concerning tensor categories are those of Deligne and
Milne 1982. For a field k, a k-linear tensor category is an additive categoryC together
with

(a) a bi-additive functor ⊗:C×C → C and associativity and commutativity con-
straints satisfying the usual axioms (ibid. p104);

(b) an identity object 11 = (U, u) and an isomorphism k → End(U).

A Tannakian subcategory of a k-linear Tannakian category is a k-linear subcategory
that is closed under the formation of sums, tensor products, subobjects, quotient
objects, and duals. It is again a Tannakian category.

To signify that objectsX and Y are isomorphic, we writeX ≈ Y ; when a particular
isomorphism is given (or there is a canonical or preferred isomorphism), we write

X ∼= Y . Also, X
df
= Y means that X is defined to be Y , or that X = Y by definition.

When x is an element of a set X on which there is an equivalence relation, we
sometimes use [x] to denote the equivalence class containing x.
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1. The Category of Lefschetz Motives

In this section we define the category of Lefschetz motives.

Preliminaries. Let ∼ be an adequate equivalence relation on algebraic cycles, for
example, rational equivalence (rat), homological equivalence with respect to some
Weil cohomology theory (hom), or numerical equivalence (num). For a smooth pro-
jective variety X over a field k, Zr(X) will denote Q-vector space with basis the
irreducible subvarieties of X of codimension r, and

Cr
∼(X) = Zr(X)/∼ .

Then C∼(X) df
= ⊕rCr

∼(X) becomes a graded Q-algebra under intersection product.
A regular map φ:X → Y defines a homomorphism φ∗: C∼(Y ) → C∼(X) of graded
Q-algebras and a homomorphism φ∗: C∼(X) → C∼(Y ) of Q-vector spaces (which is
homogeneous of degree dimY − dimX if X and Y are equidimensional), related by
the projection formula:

φ∗(x) · y = φ∗(x · φ∗y), x ∈ Cr(X), y ∈ Cs(Y ).

We define D∼(X) to be the Q-subalgebra of C∼(X) generated by C1
∼(X), i.e., by

the divisor classes. The elements of D∼(X) are called the Lefschetz classes on X for
the relation ∼. We list some properties of Lefschetz classes.

1.1. For any regular map φ:X → Y , φ∗ maps Lefschetz classes on Y to Lefschetz
classes on X (for any adequate equivalence relation).

Because φ∗ is a homomorphism of graded Q-algebras.

1.2. For any n and any adequate equivalence relation,

D∼(Pn) = Q[t]/(tn+1),

where t denotes the class of any hyperplane in Pn, and for any X,

D∼(X × Pn) ∼= D∼(X) ⊗D∼(Pn).

This follows from the similar statement with D replaced by C.
Now let V(k) be the class of algebraic varieties over k whose connected components

are products of projective spaces and varieties admitting the structure of an abelian
variety.

1.3. For any variety X in V(k), the diagonal ∆X ⊂ X × X is a Lefschetz class
(for any adequate equivalence relation).

It suffices to prove this for the finest adequate equivalence relation, namely, rational
equivalence. For an abelian variety, there is an explicit expression of ∆X as a Lefschetz
class in Scholl 1994, 5.9 (see also Milne 1999a, 5.10). To extend the statement to a
product abelian varieties and projective spaces, use (1.2).

Note that (1.1) and (1.3) imply that the graph Γφ of any regular map φ:X → Y
of varieties in V(k) is Lefschetz, because

Γφ = (φ× idY )
∗(∆Y ).

1.4. For any regular map φ:X → Y of varieties in V(k), φ∗ maps Dnum(X) into
Dnum(Y ).



6 J.S. MILNE

See Milne 1999a, 5.5.

Let X and Y be varieties in V(k), and let X =
∐
Xi be the decomposition of X

into its equidimensional components. Then

D∼(X × Y ) = ⊕iD∼(Xi × Y ),

and we set

LCorrm(X, Y ) = ⊕iDdim Xi+m
num (Xi × Y ).

The map

α, β 
→ β ◦ α df
= pXZ∗(p∗XY α · p∗Y Zβ)

is a pairing

LCorrm(X, Y )× LCorrn(Y, Z)→ LCorrm+n(X,Z).

Define LCV0(k) to be the category whose objects are symbols hX, one for each
X ∈ V(k), and whose morphisms are

Hom(hX, hY ) = LCorr0(X, Y ).

The transpose of the graph of a regular map φ:X → Y defines an element hφ
df
=

[tΓφ] ∈ LCorr0(Y,X), and h is a contravariant functor V(k)→ LCV0(k).

1.5. For an abelian variety A of dimension g, there are unique elements pi ∈
LCorr0(A,A) such that

(a) [∆A] = p0 + · · ·+ pg

(b) pi ◦ pj = 0 if i �= j, and pi ◦ pi = pi;
(c) for any integer n, h(nA) ◦ pi = ni[∆A] ◦ pi, where nA is the endomorphism of A

“multiplication by n”.

This is proved in Scholl 1994, 5.2.

Now let X 
→ H∗(X) be a Weil cohomology theory (cf. the appendix to Milne
1999a), and write H2∗(X)(∗) = ⊕rH2r(X)(r). By assumption, there is given a ho-
momorphism of graded Q-algebras cl: Crat(X)→ ⊕H2∗(X)(∗).

1.6. For a Lefschetz class x on a variety X ∈ V(k), the following are equivalent:

(a) cl(x) · y = 0 for all cohomology classes y;
(b) x · y = 0 for all algebraic classes y;
(c) x · y = 0 for all Lefschetz classes y.

Clearly (a) =⇒ (b) =⇒ (c), but (c) =⇒ (a) is proved in Milne 1999a, 5.2.

In particular, Dhom is independent of the cohomology theory and equals Dnum.
From now on, I drop the subscript. Thus “D(X)” means “Dnum(X)”, and “Lefschetz
class on X” means “element of D(X)”.

The category of Lefschetz motives. The category LMot(k) of Lefschetz motives
is defined as follows. An object is a symbol h(X, e,m) where X is a variety in V(k),
e is an idempotent in LCorr0(X,X), and m ∈ Z. If h(X, e,m) and h(Y, f, n) are two
motives, then

Hom(h(X, e,m), h(Y, f, n)) = {f ◦ α ◦ e | α ∈ LCorrn−m(X, Y )}.
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The composite of two morphisms of motives is their composite as correspondences.

Exactly as in the usual case (Scholl 1994, §1), one shows that LMot(k) is a Q-linear
pseudo-abelian rigid tensor category, with

h(X, e,m)⊕ h(Y, f,m) = h(X
∐
Y, e⊕ f,m);

h(X, e,m)⊗ h(Y, f, n) = h(X × Y, e⊗ f,m+ n);

h(X, e,m)∨ = h(X, te, d−m) if X has pure dimension d.

Moreover,

h(Pn, id, 0) = 1⊕ L⊕ · · · ⊕ L⊗n

where L
df
= (Spec k, id,−1). The proofs of these facts use (1.1–1.5).

Note that hX ↔ h(X, id, 0) identifies LCV0(k) with a full subcategory of LMot(k).
Moreover, every motive is a direct sum of motives of the form h(A, e,m) with A an
abelian variety.

From (1.5), we find that LMot(k) has a canonical Z-grading for which h(A, pi, m)
has weight i−2m. This can be used to modify the commutativity constraint (Saavedra
1972, p365) to obtain the “true” category of Lefschetz motives. The method of
Jannsen 1992 shows that (1.6) implies that LMot(k) is a semisimple abelian category.
Finally, Deligne 1990, 7.1, implies that LMot(k) is Tannakian. In summary:

Theorem 1.7. The category LMot(k) is a semisimple Q-linear Tannakian cat-
egory endowed with a canonical Z-grading w and a canonical (Tate) object T =
(Spec k, id, 1).

The fundamental group of LMot(k). We now assume k to be algebraically closed,
and we fix a Weil cohomology theory X 
→ H∗(X) with coefficient field Q. There is
a unique fibre functor ωH :LMot(k) → VecQ such that ωH(h(A)) = H∗(A) for all
abelian varieties A.

Let H1(A) be the linear dual of H
1(A), and let C(A) be the centralizer of End0(A)

in End(H1(A)). A polarization λ:A→ A∨ of A determines an involution

α 
→ α† df
= H1(λ)

−1 ◦H1(α
∨) ◦H1(λ)

of End(H1(A)) whose restriction to C(A) is independent of the choice of λ. The
Lefschetz group L(A) of A is the algebraic subgroup of GL(H1(A))×Gm such that

L(A)(R) = {(γ, c) ∈ (C(A)⊗ R)× × R× | γ†γ = c}
for allQ-algebrasR (Milne 1999a, 4.3, 4.4). It is reductive (not necessarily connected),
and (γ, c) 
→ c is a homomorphism l(A):L(A)→ Gm rational over Q.

Let h1(A) = h1(A)∨, and let 〈A〉⊗ be the Tannakian subcategory of LMot(k)
generated by h1(A) and T. Because h(Ar) ∼=

∧
h1(Ar) and h1(A

r) ∼= h1(A) ⊕ · · · ⊕
h1(A), 〈A〉⊗ contains h(Ar) for all r. Let π(A) be the fundamental group of the
Tannakian category 〈A〉⊗ (in the sense of Deligne 1990, 8.13).

Proposition 1.8. For every abelian variety A, there is a canonical isomorphism
ωH(π(A)) ∼= L(A).

Proof. We know (ibid. 8.13.1) that

ωH(π(A)) ∼= Aut⊗(ωH |〈A〉⊗).
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Therefore the action of π(A) on h1(A) and T identifies ωH(π(A)) with the subgroup
of GL(H1(A)) × Gm fixing ωH(φ) for all morphisms φ of objects in 〈A〉⊗. On the
other hand, L(A) is the largest subgroup GL(H1(A))×Gm fixing all Lefschetz classes
on Ar for all r (Milne 1999a, 4.3). These two groups are equal.

Let (L, l) =
∏

B(L(B), l(B)), where B runs over a set of representatives for the
simple isogeny classes of abelian varieties over k.

Corollary 1.9. Let π be the fundamental group of LMot(k). Then ωH(π) is
canonically isomorphic to L.

Proof. For any abelian variety A, (L(A), l(A)) ∼=
∏

B(L(B), l(B)) where B runs
over a set of representatives for the simple isogeny factors of A (Milne 1999a, 4.7).
Therefore the corollary follows from the proposition by passing to the limit overA.

Remark 1.10. Let A be an abelian variety over k. For each Weil cohomology
theory H we have a Lefschetz group L(A)H, which is an algebraic group over the field
of coefficients of H. Proposition 1.8 shows each L(A)H is a realization of π(A), which
should therefore be considered as the archetype for all the Lefschetz groups of A.
Unfortunately, π(A) is only an algebraic group in a Tannakian category, and hence
is a somewhat mysterious object. There are two situations in which π(A) can be
identified with an algebraic group over Q in the usual sense. The first is when k = C.
Here there is a canonical Weil cohomology theory with coefficients in Q, namely, the
Betti cohomology, and so we can identify π(A) with the Betti Lefschetz group of A.
The second is when A has “many endomorphisms”, which we now explain.

For any k-linear Tannakian category T, the category Veck of finite-dimensional
vector spaces over k can be identified with the full subcategory of T of objects on
which π(T) acts trivially. If π(T) = Sp(R) is commutative, then the action of π(T)
on R is trivial, and so π(T) is an affine group scheme in the Tannakian category
Veck ⊂ T, i.e., it is an affine group scheme over k in the usual sense (cf. Milne 1994,
2.37, p428).

A semisimple algebra R of finite degree over Q is a product of simple algebras, say,
R = R1×· · ·×Rm, and the centreKi of each Ri is a field. The reduced degree [R:Q]red

of R over Q is
∑
[Ri:Ki]

1/2 · [Ki:Q]. For an abelian variety A, [End
0(A):Q]red ≤

2dimA, and when equality holds we say that A has many endomorphisms.

Let A be a simple abelian variety with many endomorphisms, and let C0(A) be the
centre of End0(A). A Rosati involution on End0(A) defines an involution on C0(A),
which is independent of the choice of the Rosati involution. For any Weil cohomology
theory H with coefficient field Q, the canonical map

C0(A)⊗Q Q→ C(A)

is an isomorphism—this follows easily from the definition of A having many endo-
morphisms and the fact that H1(A) is a free C0(A)⊗QQ-module (Milne 1999a, 2.1).
Therefore,

L(A) ∼= L0(A)/Q

where L0(A) is the algebraic group over Q such that

L0(A)(R) = {(γ, c) ∈ C0(A)
× ×R× | γ†γ = c}
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for all Q-algebras R. This shows that π(A) is commutative (because its realizations
are), and hence can be regarded as an algebraic group in the usual sense; moreover,
the action of L0(A) on h1(A) identifies L0(A) with π(A).

In Sections 2 and 4, we consider two categories of Lefschetz motives generated by
abelian varieties with many endomorphisms. The remark shows that their funda-
mental groups are affine group schemes of multiplicative type in the usual sense. In
each case, there is a classification of the isogeny classes and a description of the endo-
morphism algebra of each isogeny class, which allow us to compute the fundamental
groups explicitly.

2. Lefschetz Motives of CM-Type

The theory of abelian varieties of CM-type provides a classification of the simple
isogeny classes of such varieties, which allows us to compute the fundamental group
of the category of Lefschetz motives generated by abelian varieties of CM-type.

Throughout this section, C is an algebraically closed field of characteristic zero and ι
is an involution of C restricting to complex conjugation on every CM-subfield, and Qal

is the algebraic closure of Q in C . Recall that Qcm ⊂ Qal and that Γ = Gal(Qal/Q).

Abelian varieties of CM-type. Let E be a CM-field. A CM-type on E is a locally
constant map ϕ: Hom(E,Qal)→ Z such that ϕ(τ ) ≥ 0 and ϕ(τ ) +ϕ(ι ◦ τ ) = 1 for all
τ . A CM-type on E is said to be primitive if it is not the extension τ 
→ ϕ0(τ |E0) of
a CM-type ϕ0 on a proper subfield E0. Every CM-type ϕ on E is the extension of a
unique primitive CM-type.

A simple abelian variety A over C is said to be of CM-type if End0(A) is a field
(necessarily CM) of degree 2 dimA over Q, and an arbitrary abelian variety over C
is said to be of CM-type if all its simple isogeny factors are of CM-type.

Let A be a simple abelian variety over C of CM-type, and let E = End0(A). Let i
be the inclusion Qal ↪→ C . For τ ∈ Hom(E,Qal), define ϕ(τ ) to be 1 or 0 according
as i ◦ τ does, or does not, occur in the representation of E on the tangent space to A
at 0.

Proposition 2.1. With the above notations, ϕ is a primitive CM-type on E, and
the map A 
→ (E,ϕ) defines a bijection from the set of isogeny classes of simple
abelian varieties over C of CM-type to the set of isomorphism classes of pairs (E,ϕ)
consisting of a CM-field of finite degree over Q and a primitive CM-type on the field.

Proof. Suppose first that C = C. Let ϕ be a CM-type on a CM-field E, and
let Σ = {τ | ϕ(τ ) = 1}. Define Aϕ to be the abelian variety over C such that
Aϕ(C) = CΣ/Σ(OE) where CΣ = Hom(Σ,C) and OE , the ring of integers in E, is
embedded in CΣ by a 
→ (σa)σ∈Σ. Then (E,ϕ) 
→ Aϕ provides an inverse to the map
A 
→ (E,ϕ).

To extend the result to fields other than C, use the following observation: let
C ↪→ C ′ be an inclusion of algebraically closed fields of characteristic zero, and let
(A, i) be an abelian variety of CM-type (E,ϕ) over C ′; then any specialization of
(A, i) to C is again of CM-type (E,ϕ), and hence becomes isogenous to (A, i) over
C ′.
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Let ϕ be a CM-type on a CM-field E. For each τ :E → Qal and σ ∈ Γ, define

ψτ(σ) = ϕ(σ−1 ◦ τ ).

Then ψτ depends only on the restriction of σ to Qcm, and ψτ , when regarded as a
map Hom(Qcm,Qal)→ Z, is a CM-type on Qcm. Moreover, for any ρ ∈ Γ, ψρ◦τ(σ) =
ψτ(ρ

−1 ◦ σ) = (ρψτ )(σ), and so, as τ runs over the embeddings E ↪→ Qal, ψτ runs
over a Γ-orbit of CM-types on Qcm.

Proposition 2.2. The map (E,ϕ) 
→ {ψτ} defines a bijection from the set of
isomorphism classes of pairs (E,ϕ) consisting of a CM-field of finite degree over Q

and a primitive CM-type on the field to the set of Γ-orbits of CM-types on Qcm.

Proof. We construct an inverse. For a CM-type ψ on Qcm, define Γψ to be the
stabilizer of ψ in Γ and Eψ to be the fixed field of Γψ. Let τ0:Eψ ↪→ Qal be the given
embedding. Then any embedding τ :Eψ → Qal can be written τ = σ ◦ τ0 with σ ∈ Γ,
and we define

ϕψ(τ ) = ψ(σ−1).

Then ϕψ is a CM-type on Eψ, and the map ψ 
→ (Eψ, ϕψ) gives the required inverse.

The reflex field K of (E,ϕ) is defined to be the fixed field of the stabilizer of ϕ in
Γ. Thus σ ∈ Γ fixes K if and only if ϕ(σ−1 ◦ τ ) = ϕ(τ ) for all τ :E → Qal. For any
τ :E ↪→ C , ψτ is the extension to Qcm of a primitive CM-type on K.

The reflex field of a simple abelian variety over C of CM-type is defined to be the
reflex field of its associated CM-type.

Proposition 2.3. Let K be a CM-subfield of C. There is a natural one-to-one
correspondence between the set of isogeny classes of simple abelian varieties over C
of CM-type whose reflex field is contained in K and the set of Γ-orbits of CM-types
on K.

Proof. When K = Qcm, this is an immediate consequence of the preceding two
propositions. The remark following the definition of the reflex field of a CM-type
allows one to extend it to an arbitrary CM-subfield of C .

Remark 2.4. Let E be a CM-subfield of Qal, and let ϕ be a CM-type on E. Let
K be the reflex field of (E,ϕ), and let ψ = ψτ0 where τ0 is the given inclusion of E
into Qal. Then ψ(σ|K) = ϕ(σ−1|E) for any σ ∈ Γ, and (K,ψ) is the reflex of (E,ϕ)
in the classical sense (Shimura 1971, p126).

The fundamental group of the category of Lefschetz motives of CM-type.
Fix a CM-field K ⊂ Qal and define LCMK(C) to be the Tannakian subcategory of
LMot(C) generated by the motives of simple abelian varieties over C of CM-type
with reflex field contained in K. When K = Qcm, we omit the superscript. We fix a
Weil cohomology theory X 
→ H∗(X) with coefficient field Q, and write ωH for the
corresponding fibre functor on LMot(C) or its Tannakian subcategories.
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For a Γ-orbit Ψ of CM-types on Qcm, define TΨ to be the torus overQ with character
group

X∗(TΨ) =
{f : Ψ→ Z}

{f | f = ιf and
∑

ψ f(ψ) = 0}
.

The element ψ + ιψ of X∗(TΨ) is independent of the choice of ψ ∈ Ψ and is fixed
by Γ. It therefore defines a homomorphism tΨ:TΨ → Gm rational over Q. Let AΨ

be a simple abelian variety corresponding (as in Proposition 2.3) to the orbit Ψ.
Although AΨ is defined only up to isogeny, its Lefschetz group L(AΨ) with respect
to X 
→ H∗(X) is well-defined up to a unique isomorphism.

Proposition 2.5. For any Ψ, (L(AΨ), l(AΨ)) = (TΨ, tΨ).

Proof. Choose a ψ ∈ Ψ. Let (Eψ, ϕψ) be as in the proof of Proposition 2.2, and
let AΨ be the abelian variety Aϕψ defined in the proof of Proposition 2.1. Then L(A

Ψ)
is the subtorus of (Gm)Eψ/Q such that

L(AΨ)(Q) = {α ∈ E×
ψ | α · ια ∈ Q×}

and its canonical character l(AΨ) sends α to α · ια. Therefore, X∗(L(AΨ)) is the

quotient of ZHom(Eψ,Qal) by the subgroup of f such that f(τ ) = f(ιτ ) for all τ :Eψ →
Qal and

∑
f(τ ) = 0, and l(AΨ) is represented by ι+1. By definition, Hom(Eψ,Q

al) =
Γ/Γψ where Γψ is the group fixing ψ, and σ 
→ σψ is a bijection from Γ/Γψ onto Ψ.
This map identifies X∗(L(AΨ)) with X∗(TΨ) and l(AΨ) with tΨ.

An abelian variety of CM-type has many endomorphisms in the sense of 1.10, and
so the fundamental group of LCMK(C) can be identified with an affine group scheme
over Q in the usual sense.

Theorem 2.6. For any CM-subfield K of Qal, the fundamental group (TK, tK) of
LCMK(C) is

∏
Ψ(T

Ψ, tΨ), where the product is over the set of Γ-orbits of CM-types
on K.

Proof. For any abelian variety A over C of CM-type, the fundamental group of
〈A〉⊗ is equal to the Lefschetz group of A, which is

∏
B(L(B), l(B)) where B runs

over a set of representatives for the simple isogeny factors of A. When [K:Q] < ∞,
LCMK(C) = 〈

∏
Ψ A

Ψ〉⊗ where Ψ runs through the Γ-orbits of CM-types on K, and
so

(TK, tK) = (L(
∏
AΨ), l(

∏
AΨ)) =

∏
(L(AΨ), l(AΨ)) =

∏
(TΨ, tΨ).

The case when [K:Q] is infinite follows by passing to the limit over the CM-subfields
of K finite over Q.

3. The Functor from Lefschetz Motives of CM-Type to Hodge

Motives

Certainly, a Lefschetz class on an abelian variety over C is a Hodge class, and so there
is a natural functor from the category of Lefschetz motives of CM-type to the category
of Hodge motives of CM-type. We shall describe the homomorphism of fundamental
groups defined by this functor.

In this section, Qal is the algebraic closure of Q in C.
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Hodge structures of CM-type. Let S = (Gm)C/R. A rational Hodge structure is a
vector space V overQ together with a homomorphism h: S→ GL(V ⊗R) such that the
resulting weight gradation is defined over Q. We always assume our Hodge structures
are polarizable. Let µh:Gm → GL(V ⊗ C), µh(z) = hC(z, 1), be the cocharacter
associated with h. A Hodge structure (V, h) is said to be of CM-type if µh factors
through T/C for some subtorus T of GL(V ). In this case the field of definition of µh

is a finite extension of Q contained in Qcm called the reflex field of (V, h).

Let K be a CM-subfield of Qal. The Hodge structures of CM-type with reflex field
contained in K form a Q-linear Tannakian category HodK

cm. The forgetful functor
(V, h) 
→ V is a fibre functor for HodK

cm whose automorphism group is the Serre
group SK . This is the (pro-)torus over Q with character group X∗(SK) equal to
the set of locally constant functions f : Hom(K,Qal) → Z such that f(τ ) + f(ιτ )
is independent of τ . Denote the given embedding K ↪→ Qal by τ0, and define µ

K

to be the cocharacter f 
→ f(τ0):X
∗(SK) → Z of SK . For any Hodge structure

(V, h) of CM-type with reflex field contained in K, there is a unique representation
ρh:S

K → GL(V ) such that ρhC ◦ µK = µh. The functor (V, h) 
→ (V, ρh) is a tensor
equivalence HodK

cm → RepQ(S
K).

The function sK : Hom(K,Qal)→ Z sending each element to 1 is a character of SK

rational over Q.

Here (and elsewhere), when K = Qcm, we drop the superscript.

Example 3.1. Let A be a simple abelian variety over C of CM-type, and let
E = End0(A). The Betti homology group H1(A) is a rational Hodge structure,
and its cocharacter µA factors through (Gm)E/Q ⊂ GL(H1(A)). Therefore, H1(A)
is of CM-type. We can regard µA as a cocharacter of (Gm)E/Q, and hence as a
homomorphism X∗((Gm)E/Q) → Z, in which guise it is the Z-linear extension of the
CM-type ϕ of A. Therefore the reflex field K of the rational Hodge structure H1(A)
is equal to the reflex field of A, and so Hom(K,Qal) = Γ/Γϕ where Γϕ is the stabilizer
of ϕ in Γ.

The homomorphism ρh factors through (Gm)E/Q, and we shall describe ρh:S
K →

(Gm)E/Q by giving its action on characters. For τ : Hom(E,Q
al) → Z, let ψτ be the

homomorphism Γ → Z defined in Section 2. Then ψτ factors through Γ/Γϕ and lies
in X∗(SK). The map X∗(ρh) is f 
→

∑
τ :E↪→Qal f(τ )ψτ . The characters of S

K acting
on H1(A) are the ψτ .

CM-Motives. We refer the reader to Deligne and Milne, 1982, §6, for the definition
of the category of Hodge motives over a field of characteristic zero. Fix a CM-subfield
K of Qal, and let CMK(C) be the Tannakian subcategory of the category of Hodge
motives over C generated by the motives of abelian varieties of CM-type with reflex
field contained in K.

The Betti cohomology theory X 
→ H∗
B(X) defines a tensor functor

ωB:CMK(C)→ HodK
cm.

Theorem 3.2. For any CM-field K ⊂ C, ωB defines an equivalence of tensor
categories CMK(C)→ HodK

cm.

Proof. As we noted in (3.1), the reflex field of a simple abelian variety A of CM-
type is equal to the reflex field of the Hodge structure ωB(h1(A)) = H1(A), and so
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ωB does map CMK(C) into HodK
cm. The functor is obviously fully faithful, and so

it remains to prove that it is essentially surjective. It suffices to do this when K has
finite degree over Q. If A is a simple abelian variety corresponding to the Γ-orbit Ψ
of CM-types on K (as in 2.3), then the representation of SK on H1(A) is a multiple of
the simple representation of SK with characters the elements of Ψ (3.1, last sentence),
and the next lemma implies that the CM-types on K generate SK , which completes
the proof.

Lemma 3.3. Let K be a CM-field of degree 2g over Q, and let ϕ = τ1+ · · ·+ τg be
a CM-type on K. Define CM-types

ϕi = τi +
∑
j �=i

ιτj , ϕ̄ =

g∑
j=1

ιτj.

Then {ϕ1, . . . , ϕg, ϕ̄} is a basis for the Z-module X∗(SK).

Proof. The elements of X∗(SK) are of the form
∑g

i=1 miτi +
∑g

i=1 niιτi with
mi + ni = c, where c is independent of i. But such an element equals

∑g
i=1 miϕi +

(c −
∑g

i=1 mi)ϕ̄. This shows that {ϕ1, . . . , ϕg, ϕ̄} spans X∗(SK), and it is obvious
that it is linearly independent.

For any field k, let Isab(k) be the category of abelian varieties up to isogeny over
k. Its objects are the abelian varieties over k, and Mor(A,B) = Hom0(A,B).

Corollary 3.4. The functor A 
→ H1(A) defines an equivalence from the full
subcategory of Isab(C) whose objects are abelian varieties of CM-type with reflex field
contained in K to the full subcategory of Rep(S) whose characters are CM-types on
K.

Proof. The two subcategories correspond under the equivalence in the theorem.

The functor from Lefschetz motives of CM-type to Hodge motives of CM-
type. Fix a CM-fieldK ⊂ C. Since a Lefschetz class is a Hodge class, there is a tensor
functor LCMK(C) → CMK(C) sending h(A, e,m) to h(A, e,m) (e now regarded as
a Hodge class). We describe the homomorphism SK → TK of fundamental groups
that it defines.

For any Γ-orbit Ψ of CM-types on K, the map

f 
→
∑
ψ∈Ψ

f(ψ)ψ:ZΨ → X∗(SK)

factors through X∗(TΨ), and hence defines a homomorphism γΨ:SK → TΨ. Its
composite with tΨ is sK , and so the tΨ define a homomorphism γK : (SK , sK) →∏

Ψ(T
Ψ, tΨ).

Proposition 3.5. The homomorphism (SK , sK) → (TK , tK) defined by the ten-
sor functor LCM(C)→ CM(C) is γK.

Proof. As we noted above, if A is a simple abelian variety corresponding to the Γ-
orbit Ψ of CM-types onK, then the representation of SK onH1(A) has the elements of
Ψ as its characters. The shows that the homomorphism (SK , sK)→ (TΨ, tΨ) defined
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by the tensor functor 〈A〉⊗ → CMK(C) is γΨ. Therefore, the two homomorphisms
(SK , sK)→ (TK, tK) agree when composed with the projections (TK , tK)→ (TΨ, tΨ),
which implies that they are equal.

Remark 3.6. The homomorphism γK :SK → T K is injective. Indeed, its kernel
is killed by every CM-type on K, but these generate X∗(SK).

Remark 3.7. The observation in the proof of Proposition 2.1 allows one to extend
the results of this section from C to any algebraically closed field of characteristic zero.

4. Lefschetz Motives over F

The theorems of Honda and Tate classify the isogeny classes of simple abelian varieties
over the algebraic closure F of a finite field, and the theorem of Tate shows that
every abelian variety over F has many endomorphisms and allows us to compute the
Lefschetz group of each isogeny class. Thus we are able to compute the fundamental
group of the category of Lefschetz motives over F.

In this section, Qal is the algebraic closure of Q in C.

Weil numbers and abelian varieties. Let p be a prime number. An element π of
a field algebraic over Q is said to be a Weil pn-number of weight −m if
(a) for all embeddings ρ:Q[π] ↪→ C, ρ(π) · ιρ(π) = (pn)m;
(b) for some N , pNπ is an algebraic integer.

Condition (a) implies that π 
→ pnm/π defines an involution (possibly trivial) ι′ of
Q[π] such that ρ ◦ ι′ = ι ◦ ρ for all embeddings ρ:Q[π] ↪→ C. Therefore Q[π] is either
a CM-field or is totally real.

Let W (pn) be the group of Weil pn-numbers in Qal. If n|n′, then π 
→ π
n′
n maps

W (pn) intoW (pn′
), and we define W (p∞) = lim−→ nW (p

n). Thus an element of W (p∞)
is represented by an element of W (pn) for some n, and elements π ∈ W (pn) and
π′ ∈W (pn′

) represent the same element of W (p∞) if and only πn′
and π′n differ by a

root of unity. We let [π] denote the element of W (p∞) represented by π.
There is a natural action of Γ on W (p∞), and the Weil-number torus P is defined

to be the pro-torus over Q with X∗(P ) = W (p∞).
Let W1,+(p

n) be the subset of W (pn) consisting of those π that are of weight −1
and are algebraic integers, and let W1,+(p

∞) = lim−→W1,+(p
n).

Let A be a simple abelian variety over F. Choose a model A0 of A over a finite
field Fpn such that all endomorphisms of A are rational over Fpn , and let π be the
Frobenius endomorphism of A0/Fpn . According to Tate 1966, Theorem 2, Q[π] is the
centre Z(A) of End0(A). For any embedding ρ:Z(A) ↪→ Qal, ρ(π) ∈ WK

1,+(p
n). The

class [ρ(π)] of ρ(π) in WK
1,+(p

∞) is independent of the choice of the model A0, and as

ρ runs over the embeddings of Z(A) into Qal, [ρ(π)] runs over a Γ-orbit in WK
1,+(p

∞).

Proposition 4.1. The map A 
→ {[ρ(π)] | ρ ∈ Hom(Z(A),Qal)} defines a bijec-
tion from the set of isogeny classes of simple abelian varieties over F to Γ\W1,+(p

∞).

Proof. The injectivity follows from Tate 1966, Theorem 1, and the surjectivity
from Honda 1968.
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The fundamental group of LMot(F). For a Γ-orbit Π in WK
1,+(p

∞), define LΠ to
be the torus over Q with character group

X∗(LΠ) =
{f :Π → Z}

{f | f = ιf and
∑

π∈Π f(π) = 0} .

The element π + ιπ of X∗(LΠ) is independent of the choice of π ∈ Π and is fixed by
Γ. It therefore defines a homomorphism lΠ:LΠ → Gm rational over Q. Let AΠ be
a simple abelian variety over F corresponding (as in Proposition 4.1) to the orbit Π.
Although AΠ is defined only up to isogeny, its Lefschetz group L(AΠ) is well-defined
up to a unique isomorphism.

Lemma 4.2. For any Γ-orbit Π of Weil numbers of weight −1, (L(AΠ), l(AΠ)) =
(LΠ , lΠ).

Proof. The Lefschetz group L(AΠ) of AΠ is the subtorus of (Gm)Z(AΠ )/Q such
that

L(AΠ)(Q) = {α ∈ Z(AΠ) | α · ια ∈ Q×},
and l(AΠ) sends α to α ·ια (cf. 1.10). Choose a model for AΠ over a finite field whose
Frobenius endomorphism π0 generates Z(A

Π) as a Q-algebra. Then the bijection
ρ 
→ [ρ(π0)]: Hom(Z(A

Π),Qal)→ Π induces an isomorphism X∗(LΠ)→ X∗(L(AΠ)),
which is independent of the choice of the model and maps lΠ to l(AΠ).

Because the Lefschetz group of an abelian variety over F is commutative, so also is
the fundamental group of LMot(F), which therefore may be identified with an affine
group scheme over Q in the usual sense.

Theorem 4.3. The fundamental group of LMot(F) is
∏

Π∈Γ\W1,+(p∞)(L
Π , lΠ).

Proof. Combine Lemma 4.2 with Proposition 4.1 and Proposition 1.8.

The fundamental group of LMotK(F). For a Weil pn-number π in a field K finite
over Q and a prime w of K lying over p, define

fπ(w) =
ordw(π)

ordw(pn)
[Kw:Qp].

Now let K be a CM-subfield of C, finite and Galois over Q. Define WK(pn) to be
the set of Weil pn-numbers π in K such that fπ(w) ∈ Z for all w|p, and setWK(p∞) =
lim−→WK(pn). It is a Γ-submodule ofW (p∞), and we define PK to be the corresponding

quotient of P . Let Y be the set of primes of K lying over p. The number fπ(w)
depends only on the class [π] of π in WK(p∞), and so [π] 
→ fπ is a homomorphism
from WK(p∞) to the set of functions f :Y → Z. This homomorphism is obviously
injective, and the functions in the image have the property that f(w) + f(ιw) is an
integer independent of w ∈ Y and divisible by [Kw:Qp]. Later (5.1) we shall see that
every f with this property is in the image.

Define WK
1,+(p

n) and WK
1,+(p

∞) similarly. Then [π] 
→ fπ defines an isomorphism

WK
1,+(p

∞)
≈−→ {f :Y → Z | f(w) + f(ιw) = [Kw:Qp], f(w) ≥ 0}.
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Let A be a simple abelian variety over F. According to Tate 1968/69, Théorème 1,
the invariant of End0(A) at a prime v of its centre Z(A) is given by

invv(End
0(A)) =

ordv(π)

ordv(pn)
[Z(A)v:Qp] (= fπ(v))

where π ∈ Z(A) is the Frobenius endomorphism of a model A0/Fpn of A with the
property that End0(A0) = End(A). Therefore, for any embedding ρ:Z(A) ↪→ K and
w ∈ Y ,

invw(End
0(A)⊗Z(A),ρ K) = fρ(π)(w).

Consequently, fρ(π)(w) is an integer for all w|p if and only ifK splits End0(A). There-
fore, under the bijection in Proposition 4.1, Γ\WK

1,+(p
∞) corresponds to the set of

isogeny classes of A’s having the following property:

(*) for all ρ:Z(A) ↪→ Qal, ρ(Z(A)) ⊂ K and End0(A)⊗Z(A),ρK is a matrix
algebra over K.

For a fixed CM-field K ⊂ Qal of finite degree and Galois over Q, let LMotK(F)
be the full subcategory of LMot(F) whose objects are direct sums of motives of the
form h(A, p,m) with A satisfying the condition (*). It is a Tannakian subcategory of
LMot(F), whose fundamental group is

∏
Π∈Γ\WK

1,+(p∞)(L
Π, tΠ).

The map βK:PK → LK . The element p ∈ K is a Weil p-number of weight −2. Its
class [p] in WK(p∞) is fixed under the action of Γ, and so defines homomorphism
pK :PK → Gm rational over Q.

Let Π be a Γ-orbit in WK
1,+(p

∞). The map

f 
→
∏
π∈Π

πf(π):ZΠ → WK(p∞)

factors through X∗(LΠ), and hence defines a homomorphism

βΠ:PK → LΠ.

This map sends pK to lΠ, and hence the family (βΠ)Π∈W1,+(p∞) defines a homomor-
phism

βK : (PK , pK)→ (LK , lK),

which is injective because it corresponds to a surjective map on the character groups.
On passing to the inverse limit over all K ⊂ Qcm finite and Galois over Q, we obtain
an injective homomorphism

β: (P, p)→ (L, l).

5. The Reduction Functor on Lefschetz Motives of CM-Type

Because an abelian variety of CM-type has potential good reduction, for each prime
w0 of Qal there is a “reduction” functor from the category of Lefschetz motives of
CM-type over Qal to the category of Lefschetz motives over the algebraic closure F of
Fp. Using the theorem of Shimura and Taniyama, we shall compute the map of the
fundamental groups it defines.
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Throughout this section Qal is the algebraic closure of Q in C. We fix a prime w0

of Qal lying over p, and denote its residue field by F.

The map P → S. We review the construction of the map P → S that is conjec-
turally associated with the reduction of motives of CM-type.

Fix a CM-subfield K of Qal of finite degree and Galois over Q and a prime w0 of K
lying over p. Recall that X∗(SK) consists of the homomorphisms g: Hom(K,Qal)→ Z

such that g + ιg is constant, and that the weight of g is −g − ιg.

For g ∈ X∗(SK) and a ∈ K, define

g(a) =
∏

τ :K→Qal

(τg)g(τ ) ∈ Qal.

Then g(a) · ιg(a) = NmK/Q a
−wt(g). If a lies in the real subfield F of K, then g(a) =

NmF/Q(a)
-wt(g). Because the group of units of F has finite index in the group of units

of K, this shows that g maps units in K to roots of unity.

Let D generate the ideal Ph
w0
, where h is the order of the prime ideal Pw0 corre-

sponding to w0 in the class group of K. According to the above remarks, g(D) is

independent of the choice of D up to a root of unity, and it is a Weil pf(
w0
p

)h-number
of weight wt(g). Moreover, for any prime w of K lying over p,

ordw(g(D)) = h
∑

τ,τw0=w

g(τ ).

Therefore, with the notation of Section 4,

fg(*)(w) =
∑

τw0=w

g(τ ) ∈ Z,(5.1)

and so g(D) ∈WK(pf(
w0
p

)). The class it represents in WK(p∞) is independent of the
choice of D, and so we have a homomorphism

g 
→ [g(D)]:X∗(SK)→WK(p∞).

We sometimes denote this map as g 
→ π(g). It commutes with the action of Γ, and
so defines a homomorphism

αK :PK → SK .

Lemma 5.1. The maps

X∗(SK)
g �→[g(*)]−−−−−→WK(p∞)

[π] �→fπ−−−−→ {f :Y → Z | f + ιf ∈ [Kw0 :Qp]Z}
are surjective.

Proof. We know (Section 4) that the second map is injective, and so it suffices
to prove that the composite map is surjective. But it sends g ∈ X∗(SK) to the
map f :Y → Z such that f(w) =

∑
τw=w0

g(τ ). Choose a section s to the map
τ 
→ τw0: Gal(K/Q) → Y such that s(ιw) = ιs(w), and define g so that g(τ ) is
f(τw0) or 0 according as τ is in the image of s or not. Then g 
→ f .

Remark 5.2. (a) The lemma shows that the homomorphism αK :PK → SK is
injective. On passing to the limit over all K, we obtain an injective homomor-
phism α:P → S.
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(b) The lemma shows that

[π] 
→ fπ:X
∗(PK)→ {f :Y → Z | f + ιf ∈ [Kw0 :Qp]Z}

is an isomorphism.
(c) The homomorphism αK :PK → SK sends pK to sK .

The reduction of abelian varieties. Let A be an abelian variety over Qal of
CM-type, and let A′ be a model of A over a subfield L of Qal finite over Q. After
possibly replacing L by a larger field, A′ will have good reduction at w0 (Serre and

Tate 1968, Theorem 6). Let A′
0 be the reduction of A

′. Then A0
df
= A′

0 ×Spec k(w0) F

is independent of all choices (up to a well-defined isomorphism) and A 
→ A0 is a
functor Isabcm(Qal)→ Isab(F).

Now assume A to be simple, and let E = End0(A). It is a CM-field, and the action
of E on Tgt0(A) defines a CM-type ϕ: Hom(E,Q

al)→ Z.

The centre Z(A0) of End
0(A0) is a subfield of E. Let π ∈ E be the Frobenius

endomorphism of some model of A0 over a finite subfield, say Fpn, of F. Any two
such π’s represent the same class in W (p∞). For any ρ:E ↪→ Qal, let ρ−1w0 be the
valuation on E such that |c|ρ−1w0

= |ρc|w0. According to the Theorem of Shimura
and Taniyama (Tate 1968/69, Lemme 5), for any prime w|p of E,

fπ(w)
df
=
ordw(π)

ordw(pn)
[Ew:Qp] =

∑
ρ,ρ−1w0=w

ϕ(ρ).

Let K be a CM-subfield of Qal, finite and Galois over Q, and large enough to
contain all conjugates of E (and hence also the reflex field of (E,ϕ)). The choice
of an embedding ρ0:E ↪→ Qal determines a Weil q-integer ρ(π) of weight −1 in K
and a CM-type ψρ0 on K (see Section 2). From the inclusion K ⊂ Qal, K acquires

a valuation w0|p, and we choose an D ∈ K such that (D) = Ph
w0
. Then ψρ0(D)

df
=∏

τ :K→Qal(τD)ψρ0(τ ) is a Weil pf(
w0
p

)h-integer of weight −1 in K.

Proposition 5.3. The Weil numbers ρ0(π) and ψρ0(D) represent the same ele-
ment of WK(p∞).

Proof. Because of the injectivity of the map [π] 
→ fπ, it suffices to show that
fρ0(π) = fψρ0(*). From the Theorem of Shimura and Taniyama, we find that

fρ0(π)(w) = [Kw: (ρ0E)v]fρ0(π)(v)
S-T
= [Kw: (ρ0E)v]

∑
σ−1w0=v

ϕ(σ ◦ ρ0)

where v is the restriction of w to ρE and the sum is over the embeddings σ: ρE → K.

On the other hand, we know (5.1) that

fψρ0 (*) =
∑

τw0=w

ψρ0(τ )

where τ runs over the elements of Gal(K/Q). As ψρ0(τ )
df
= ϕ(τ−1 ◦ ρ0), the two sums

are equal.
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The reduction functor. The functor A 
→ A0 extends to a functor

R:LCM(Qal)→ LMot(F), h(A, e,m) 
→ h(A0, e0, m).

Above, we defined a surjective homomorphism f 
→ π(f):X∗(SK)→WK(p∞) which
sends CM-types on K to Weil integers of weight −1. Since the map is Γ-equivariant,
to each Γ-orbit Ψ of CM-types it attaches a Γ-orbit Π(Ψ) of Weil integers of weight
−1 and a surjective Γ-equivariant homomorphism Ψ→ Π(Ψ). This last map induces
a surjective homomorphism∑

ψ∈Ψ

f(ψ)ψ 
→
∑
ψ∈Ψ

f(ψ)π(ψ):X∗(TΨ)→ X∗(LΠ)

sending tΨ to lΠ, and hence an injective homomorphism

α′Ψ: (LΠ(Ψ), lΠ(Ψ))→ (TΨ, tΨ).

On combining these maps for all Ψ, we obtain a injective homomorphism
α′K : (LK , lK)→ (TK , tK).

Theorem 5.4. The homomorphism (LK , lK) → (TK, tK) of fundamental groups
defined by the reduction functor LCMK(Qal)→ LMotK(F) is α′.

Proof. It suffices to check this on 〈A〉⊗ for A a simple abelian variety of CM-type,
but here it follows from Proposition 5.3.

6. The Serre and Lefschetz Groups Intersect in the Weil-Number

Torus

In this section, Qal is the algebraic closure of Q in C and w0 is a fixed prime of Qal

lying over p.

Recall that we have defined affine group schemes of multiplicative type:

T : LCM(Qal): (abelian varieties of CM-type over Qal; Lefschetz classes)
S: CM(Qal): (abelian varieties of CM-type over Qal; Hodge classes)
L: LMot(F): (abelian varieties over F; Lefschetz classes)
P : ?Mot(F)? (abelian varieties over F; algebraic classes).

Each of T , S, L has been shown to be the fundamental group of the Tannakian
category to its right, and it is conjectured that the same is true of P . We have defined
injective homomorphisms as in the left-hand square and have shown that α′ and γ
correspond to the natural functors in the right hand square (conjecturally, the same
is true of α and β):

T
γ←−−− S�α′

�α

L
β←−−− P

LCM(Qal) −−−→ CM(Qal)
R


R

LMot(F) −−−→ ?Mot(F)?

This section is devoted to proving the following result.

Theorem 6.1. The diagram at left commutes, and identifies P with L∩S (inter-
section in T ).
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Start of the proof of Theorem 6.1. Fix a CM-field K ⊂ Qal finite and Galois
over Q.

Lemma 6.2. The diagram

TK γK←−−− SK�α′K
�αK

LK βK←−−− PK

commutes.

Proof. We check this on the character groups. Let Ψ be a Γ-orbit of CM-types
on K, and let f ∈ ZΨ. Then f represents an element of X∗(TK), and its image in

X∗(PK)
df
= WK(p∞) under either map in the diagram is

∏
ψ∈Ψ π(ψ)

f(ψ).

On passing to the limit over all K ⊂ Qcm, we find that the diagram referred to in
Theorem 6.1 commutes. To complete the proof of Theorem 6.1 we shall show that

PK = SK ∩ LK (inside TK),

or, equivalently, that

PK

(
βK

−αK

)

−−−−−→ LK × SK ( α′K γK )−−−−−→ TK

is exact, for all sufficiently large K ⊂ Qcm.

Almost cartesian squares. We say that a commutative square of abelian groups

N ′ γ−−−→ N
α′

α

M ′ β−−−→ M

(6.1)

is almost cartesian if all the maps are surjective and the map N ′
(

α′
γ

)
−−−→ M ′ ×M N is

surjective, i.e., if

N ′
(

α′
γ

)
−−−→ M ′ ⊕N

( β −α )−−−−→M

is exact.

Lemma 6.3. For a square (6.1) in which all the maps are surjective, the following
conditions are equivalent:

(a) the square is almost cartesian;
(b) the map Ker γ → Kerβ induced by α′ is surjective;
(c) the map Kerα′ → Kerα induced by γ is surjective.

Proof. Assume (a). If β(m′) = 0, then the pair (m′, 0) maps to 0 in M , and
therefore is the image of an n′ ∈ N ′, i.e., m′ is the image of an element n′ ∈ Ker(γ).
Hence (b) holds.
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Assume (b). Suppose β(m′) = α(n). Choose n′ such that γ(n′) = n. Then
α′(n′)−m′ ∈ Ker(β), and so there exists an x ∈ Ker(γ) such that α′(x) = α′(n′)−m′.
Now

α′(n′ − x) = m′

γ(n′ − x) = n.

Hence (a) holds.

This proves the equivalence of (a) and (b), and the equivalence of (a) and (c) is
proved symmetrically.

Lemma 6.4. (a) Suppose the square (6.1) is almost cartesian, and let N ′′ ⊂
Ker(γ) and M ′′ ⊂ Ker(β) be such that α′(N ′′) ⊂M ′′. Then

N ′/N ′′ γ̄−−−→ N
ᾱ′

α

M ′/M ′′ β̄−−−→ M

is almost cartesian.
(b) If both inner squares in the diagram

N ′′ γ′
−−−→ N ′ γ−−−→ N
α′′


α′

α

M ′′ β′
−−−→ M ′ β−−−→ M

are almost cartesian, then so also is the outer square.

Proof. (a) The composite Ker(α′) → Ker(ᾱ′) → Ker(α) is surjective, and so
therefore is Ker(ᾱ′)→ Ker(α).

(b) Both maps Ker(α′′) → Ker(α′) → Ker(α) are surjective, and so therefore is
their composite.

Some linear algebra. For n ≥ 1 and d ∈ Z, let A(n, d) be the 2n× 2n matrix(
In dEn − In

dEn − In In

)
where In is the n×n identity matrix and En is the n×n matrix with all entries equal
to 1.

Proposition 6.5. The matrix A(n, d) is row equivalent over Z to

(
In dEn − In

0 B

)
, B =



2d − nd2 2d − nd2 · · · 2d− nd2

0 0 · · · 0
...

...
...

0 0 · · · 0


 .

Proof. After a set of row operations to reduce the block at lower-left to zero,
A(n, d) becomes (

In dEn − In

0 (2d − nd2)En

)
,
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which is obviously row-equivalent to the desired matrix.

Corollary 6.6. Assume d(2 − nd) �= 0. Then the kernel of the map x 
→
A(n, d)x:Z2n→ Z2n is the set of vectors of the form

(a1, . . . , an, b1, . . . , bn), ai = bi for 1 ≤ i ≤ n,
∑

ai = 0.

Proof. For an element (x1, . . . , x2n) of the kernel, we may assign arbitrary values,
say b2, . . . , bn to xn+2, . . . , x2n. Then the (n+1)

st equation becomes xn+1+
∑n

i=2 bi =
0, and so b1 is determined by the equation

∑n
i=1 bi = 0. Now the first n equations

show that

xi = −
2n∑

j=n+1

dxj+n + xi+n = bi, 1 ≤ i ≤ n.

This proves the statement.

Completion of the proof of the Theorem 6.1. It suffices to prove that

X∗(TK) → X∗(SK)
↓ ↓

X∗(LK) → X∗(PK)

is almost cartesian for all sufficiently large CM-fields K ⊂ Qal of finite degree over Q.
We shall in fact prove it under the assumption that K

– is finite and Galois over Q,
– contains a quadratic imaginary extension Q of Q in which (p) splits,
– and is not equal to Q.

Thus K = Q · F with F totally real, and

Γ = Γ0 × 〈ι〉,
{
Γ

df
= Gal(K/Q)

Γ0
df
= Gal(K/Q) ∼= Gal(F/Q).

As a subfield of Qal,K acquires a prime w0. LetD = D(w0) ⊂ Γ be the decomposition
group of w0. Because p splits in Q, D ⊂ Γ0.

Write

Γ0 = {τ0 = 1, . . . , τn−1},
so that

Γ = {τ0, . . . , τn−1, ιτ0, . . . , ιτn−1}.
Let d = (D: 1). We can assume that the τi have been numbered so that D =
{τ0, . . . , τd−1} and τiD = τd[ i

d
]D, i.e., τ0D = · · · = τd−1D, τdD = · · · = τ2d−1D,

etc.. In particular, {τ0, τd, . . .} is a set of representatives for the cosets of D in Γ.
We shall use the map τ 
→ τw0 to identify Γ/D with the set of primes of K lying

over p. We have a commutative diagram (Lemma 5.1):

X∗(SK)
natural inclusion−−−−−−−−−→ Z[Γ]

↓ ↓
X∗(PK)

π �→fπ−−−→ Z[Γ/D].
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The first vertical map isX∗(αK), which maps f to π(f), and the second is
∑

f(τ )τ 
→∑
f(τ )(τD).

Let

ψi = τi +
∑
j �=i

ιτi

ψ̄ =
∑

ιτi.

Then ψ0, . . . , ψn−1, ψ̄ form a basis for X
∗(SK) (Lemma 3.3). As

τiψ0 = ψi

(ιτi)ψ0 = ιψi

we see that

Ψ
df
= {ψ0, . . . , ψn−1, ιψ0, . . . , ιψn−1}

is a Γ-orbit in X∗(SK). Let πi = π(ψid) ∈WK
1,+(p

∞). Then

Π
df
= {π0, . . . , πn

d
−1, ιπ0, . . . , ιπn

d
−1}

is a Γ-orbit in X∗(PK).

Lemma 6.7. The diagram

X∗(TΨ)
X∗(γ)−−−→ X∗(SK)
X∗(α′)


X∗(α)

X∗(LΠ)
X∗(β)−−−→ X∗(PK)

becomes almost cartesian when the two groups at right are replaced by the images of
the horizontal arrows.

Proof. We shall prove this by showing that the bottom map is injective. The map
τ 
→ τπ0 defines a bijection Γ/D → Π, and hence an isomorphism Z[Γ/D] → Z[Π].
On combining this with the natural map Z[Π] → X∗(LΠ), we get the first map in
the sequence

Z[Γ/D] → X∗(LΠ)
X∗(β)−−−→ X∗(PK)→ Z[Γ/D].

The map at right sends π to the map σ 
→ fπ(σw0)—it is injective (Section 4). Let
σi = τdiD, i = 0, . . . ,

n
d
− 1, and let

Di = σi + dισ0 + · · · + dισi−1 + (d − 1)ισi + dισi+1 + · · · + dισn
d
−1 ∈ Z[Γ/D].

Then the composite of the three maps in the sequence is ε 
→ εD0:Z[Γ/D] → Z[Γ/D].
Since

σiD0 = Di

ισiD0 = ιDi,

this composite map has matrix A(n
d
, d)

relative to the basis {σ0, . . . , σn
d
−1, ισ0, . . . , ισn

d
−1} of Z[Γ/D]. Now Corollary 6.6

implies that the kernel of the composite map is {
∑

ai(σi + ισi) |
∑

ai = 0}, but this
is also the kernel of the map Z[Γ/D] → X∗(LΠ).
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As τiψ̄ = ψ̄ and ιτiψ̄ = ιψ̄, Ψ̄
df
= {ψ̄, ιψ̄} is a Γ-orbit. Let π̄ = ψ̄, and let Π̄ =

{π̄, ιπ̄}.

Lemma 6.8. The diagram

X∗(T Ψ̄)
X∗(γ)−−−→ X∗(SK)
X∗(α′)


X∗(α)

X∗(LΠ̄)
X∗(β)−−−→ X∗(PK)

becomes almost cartesian when the two groups at right are replaced by the images of
the horizontal arrows.

Proof. As in the preceding lemma, one shows that the bottom arrow is injective.

Lemma 6.9. The square

X∗(TΨ)⊕X∗(T Ψ̄) → X∗(SK)
↓ ↓

X∗(TΠ)⊕X∗(T Π̄) → X∗(PK)

is almost cartesian.

Proof. Consider

X∗(TΨ)⊕X∗(T Ψ̄) → Z[Γ]ψ0 ⊕ Z[Γ]ψ̄ → X∗(SK)
↓ ↓ ↓

X∗(TΠ)⊕X∗(T Π̄) → Z[Γ/D]π0 ⊕ Z[Γ/D]π̄ → X∗(PK)

The left hand square is almost cartesian because it is a direct sum of almost cartesian
squares, and so it remains to show that the right hand square is almost cartesian.
The image of the top-right map contains ψ0, . . . , ψn−1, ψ̄, and hence is onto. Since
the vertical maps are both onto, this shows that all the maps in the square are onto.
The elements π0, π1, . . . , πn−1, π̄ of X

∗(PK) are linearly independent. Therefore, an
element ψ =

∑
aiψi+aψ̄ of X

∗(SK) maps to zero in X∗(PK) if and only if a = 0 and∑
dj≤i<d(j+1) ai = 0 for j = 0, . . . ,

n
d
− 1. The first condition implies that ψ ∈ Z[Γ]ψ0,

and the second condition implies that it lies in the kernel of Z[Γ]ψ0 → Z[Γ/D]π0. We
can now apply Lemma 6.3.

Let I = Γ\{CM-types on K} and let I ′ = Γ\WK
1,+(p

∞).

Lemma 6.10. The square⊕
Φ∈I X

∗(TΦ)
γ−−−→ X∗(SK)
α′′


α⊕
Π∈I′ X

∗(TΠ)
β−−−→ X∗(PK)

is almost cartesian.

Proof. Since the maps are all surjective, it suffices to prove that the map
Ker(α′′)→ Ker(α) is surjective, but this is obvious from the previous lemma.
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Consider the diagram:⊕
Φ∈I X

∗(TΦ) −−−→ X∗(TK) −−−→ X∗(SK)
α′′

α′


α⊕
Π∈I′ X

∗(LΠ) −−−→ X∗(LK) −−−→ X∗(PK).

The last lemma shows that the composite of the maps

Ker(α′′)→ Ker(α′)→ Ker(α)

is surjective, which implies that Ker(α′)→ Ker(α) is surjective. Therefore the right-
hand square is almost cartesian, which completes the proof of Theorem 6.1.

7. The Hodge Conjecture Implies the Tate Conjecture

Let X be a smooth projective variety over C. We say that the Hodge conjecture
holds for X if, for all r, the Q-vector space H2r(X(C),Q) ∩ Hr,r is spanned by the
classes of algebraic cycles. This section will be occupied with proving the following
theorem.

Theorem 7.1. If the Hodge conjecture holds for all abelian varieties of CM-type
over C, then the Tate conjecture (0.1) holds for all abelian varieties over the algebraic
closure F of a finite field.

We shall derive Theorem 7.1 from two further propositions. Before stating them,
it will be useful to review some of the theory of characteristic polynomials.

Let T be a pseudo-abelian rigid tensor category over a field k (in particular, this
means that k = End(11)). Then, for any X in T, End(X) = Hom(11, X∨ ⊗ X), and
the trace Tr(α|X) of an endomorphism α of X is its composite with ev:X∨⊗X → 11
(regarded as an element of k). For any integer r,

ar
df
=
1

r!

∑
sgn(σ) · σ:X⊗r → X⊗r

(sum over the elements of the symmetric group on r letters) is an idempotent in

End(X⊗r), and we define
∧r

X to be its image. Assume that d
df
= Tr(1|X) ∈ N. The

characteristic polynomial fα(t) of an endomorphism α of X is defined to be

c0 + c1t+ c2t
2 + · · · + cdt

d, cd−i = (−1)iTr(α | ΛiX).

When this definition is applied to an endomorphism of a vector space, it leads to the
usual characteristic polynomial. Clearly, for any k-linear tensor functor F :T → T′

from T to a similar category T′, fα(t) = fF (α)(t).

For a field k and an adequate equivalence relation ∼, letMot∼(k) be the category
of motives generated by the abelian varieties over k with the algebraic cycles modulo
∼ as the correspondences. When ∼ is taken to be numerical equivalence, we obtain
a semisimple Q-linear Tannakian category Motnum(k) (Jannsen 1992).

Let M be the fundamental group of Motnum(F). Since every Lefschetz class is
algebraic, there is a canonical Q-linear tensor functor w:LMot(F) → Motnum(F)
which is faithful (because of (1.6)) and exact. The homomorphism M → w(L) of
fundamental groups defined by w is injective because Motnum(F) is generated by the
image of w. Therefore M is commutative, and so can be regarded as an affine group
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scheme over Q in the usual sense. Because Motnum(F) is semisimple, M is an affine
group scheme of multiplicative type, and the functor w defines an inclusion M ↪→ L.

It is known that the Frobenius maps on projective smooth varieties over a finite field
commute with algebraic correspondences (e.g., Soulé 1984, Proposition 2). Therefore,
any X0 inMotnum(Fq) admits a Frobenius automorphism πX0. The family {πX0} is an
automorphism of the identity functorMotnum(Fq)→Motnum(Fq). The characteristic
polynomial fπX0

of πX0 has coefficients in Q, and its roots in Qal are Weil q-numbers.
To see the second statement, choose a fibre ω:Motnum(Fq)→ VecQal , and note that
fπX0

is also the characteristic polynomial of ω(πX0) acting on ω(X0) and that ω(X0)
occurs a factor of ω(A0) (possibly twisted) for some abelian variety A0 over Fq . Let
MX0 be the fundamental group of the Tannakian subcategory 〈X0〉⊗ generated by X0

and the Tate object. A comparison with the Lefschetz group again shows that MX0

is commutative, and therefore equals Aut⊗(id〈X0〉⊗). Hence

πX0 ∈ Aut⊗(id〈X0〉⊗) =MX0(Q).

Now let X be an object on Motnum(F), and let M
X (quotient of M) be the fun-

damental group of 〈X〉⊗. Let X0 be a model of X over some finite subfield Fpn of
F. As we enlarge Fpn , M

X0 may be replaced by a smaller algebraic group, but after
a certain finite extension it will become constant, and equal to MX . Therefore, for

some N > 1, πX
df
= πN

X0
∈MX(Q). For any character χ of MX , χ(πX) is a Weil p

nN -
number (for any fibre functor ω: 〈X〉⊗ → VecQal , it occurs as an eigenvalue of πX

acting on ω(Y ) for some Y in 〈X〉⊗). Hence, we can apply Proposition 3.3 of Milne
1994 to obtain a well-defined homomorphism P → MX . These homomorphisms are
compatible for varying X, and so define a homomorphism P → M . The composite
of this with the homomorphism M → L defined above is the homomorphism β of
Section 4 (apply ib. 3.3 again). It follows that P → M is injective, and we identify
P with a subgroup scheme of M .

Remark 7.2. The pro-torus P is generated by a certain “germ of an element”
(ib. p435), which (by definition) the homomorphism P → MX “sends to” πX. We
can use this observation to characterize the image of P in MX . Let πX0 be as in the
above discussion. As we observed, for N sufficiently divisible, πN

X0
lies in M(Q). The

smallest algebraic subgroup of MX containing πN
X0
will be independent of N if N is

sufficiently divisible—this smallest algebraic subgroup will then be the image P in
MX . In the following, we shall always use πX to denote an element π

N
X0
of MX(Q)

with N chosen to be sufficiently divisible that πX generates the image of P in M
X .

Theorem 7.1 will follow from the next two propositions.

Proposition 7.3. If the Hodge conjecture holds for all abelian varieties of CM-
type over C, then P =M .

Proposition 7.4. The Tate conjecture (0.1) holds for all abelian varieties over F

if and only if M = P .

Proof of Proposition 7.3. For an abelian variety A over Qal, the map from the
space of absolute Hodge classes on A to that of A/C is bijective (Deligne 1982, 2.9).
Since a similar statement is true for the spaces of algebraic classes1, our assumption

1To show surjectivity, consider a specialization of an algebraic cycle over C.
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implies that every absolute Hodge class on an abelian variety of CM-type over Qal

is algebraic. Therefore, there is a reduction functor R:CM(Qal) → Motnum(F),
and hence a commutative diagram of Tannakian categories and exact Q-linear tensor
functors:

LCM(Qal) −−−→ CM(Qal)
R


R

LMot(F) −−−→ Motnum(F)

From this diagram, we obtain a commutative diagram of fundamental groups:

T
γ←−−− S�α′

�
L ←−−− M

Hence

M ⊂ S ∩ L (in T ).

Because P ⊂M , Theorem 6.1 forces M = P .

Proof of Proposition 7.4. That the Tate conjecture implies M = P is shown in
Milne 1994, Proposition 2.38.

For the converse, suppose initially that the numerical equivalence equals �-adic
homological equivalence on Zr(A) ⊗ Q for all abelian varieties A over F and all r.
Then M acts on H2r(A,Q�(r)), and the classes it fixes are precisely those in the
Q�-subspace generated by the algebraic classes. On the other hand, the classes fixed
by P are precisely those in T r

� (A) (to be fixed by P is to be fixed by some power of
the Frobenius element). Hence P = M implies that T r

� (A) is spanned by algebraic
classes.

It remains to prove that P = M implies that numerical equivalence equals �-adic
homological equivalence. The following elementary statement will be used (Tate 1966,
p138).

Let f(t) ∈ Q[t], and let f(t) =
∏
P (t)m(P ) be the unique factorization of

P into a product of distinct irreducible polynomials over a field k ⊃ Q.
The integer r(f) =

∑
m(P )2 deg(P ) is independent of k. If a semisimple

endomorphism γ of a k-vector space V has characteristic polynomial f(t),
then dimk Endk[γ](V ) = r(f).

For an adequate equivalence relation ∼ we define Mot∼(F)� to be the category of
motives (with the corrected commutativity constraint) generated by abelian varieties
over F and using as correspondences the spaces (Z(A)⊗QQ�)/∼. We shall show that
the natural functor

X 
→ X̄:Mothom(F)� →Motnum(F)�

is faithful (hom= �-adic homological equivalence on Z(A)⊗Q Q�). For this it suffices
to show that the natural map End(X)→ End(X̄) is injective for all X. Note that it
is automatically surjective.
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Let X be in Mothom(F)�. The fibre functor ω� on Mothom(F)� defined by �-adic
étale cohomology is faithful, and so

dimQ� End(X) ≤ dimQ� EndQ�[πX ](ω�(X)).

Because fω�(πX)(t) = fπX (t) and πX acts semisimply on ω�(X),

dimQ� EndQ�[πX ](ω�(X)) = r(fπX ).

Let Y be in Motnum(F)�. For any field k ⊃ Q� and fibre functor ω:Motnum(F)� →
Veck,

End(Y )⊗Q� k ∼= Endk(ω(Y ))
M .

If P =M , so that MY is generated as an algebraic group by πY ∈MY (Q) (see 7.2),
then the dimension of the second space is r(fπY ).

On taking Y = X̄ , we find that

r(fπX̄ ) = dimQ� End(X̄) ≤ dimQ� End(X) ≤ r(fπX ). (∗)

Since fπX (t) = fπX̄ (t), both inequalities must be equalities, and so End(X) → End(X̄)
is an isomorphism.

This completes the proof that the functor Mothom(F)� → Motnum(F)� is faithful.
Since Hom(11, h2r

∼ (A)(r)) = Cr
∼(A), we now know (for all A and r) that the map

Zr(A)⊗Q Q�/hom→ Zr(A)⊗Q Q�/num

is injective, i.e., that if z ∈ Zr(A) ⊗Q Q� has nonzero cohomology class, then there
exists a z′ ∈ Zdim A−r ⊗Q Q� such that z · z′ �= 0. By elementary linear algebra, this
implies the same statement with the “⊗QQ�” removed, i.e., that numerical equivalence
coincides with �-adic homological equivalence on Zr(A). This completes the proof of
Proposition 7.4. �

Remark 7.5. Without the assumption P = M , there seems to be no reason
why both inequalities in (∗) should not be strict. For example, we might (per-
haps) have an X in Mothom(X)� of rank 2 with EndQ�[πX ](ω�(X)) = M2(Q�),

End(X) =

{(
∗ ∗
0 ∗

)}
, and End(X̄) =

{(
∗ 0
0 ∗

)}
.

Remark 7.6. (a) LetK be a CM-field as in the final part of the proof of Theorem
6.1. Then the above argument shows that if the Hodge conjecture holds for all
abelian varieties of CM-type over C with reflex field contained in K, then the
Tate conjecture holds for all abelian varieties over F with endomorphism algebra
split by K.

(b) Once one knows the Tate conjecture for all abelian varieties over F, then one
obtains it for all smooth projective varieties over F whose motive, defined using
algebraic cycles modulo homological equivalence, lies in the Tannakian subcat-
egory generated by abelian varieties, for example, for products of curves.

(c) A similar argument to the above shows that the Hodge conjecture for abelian va-
rieties of CM-type over C implies the crystalline analogue of the Tate conjecture
for abelian varieties over F.



LEFSCHETZ MOTIVES AND THE TATE CONJECTURE 29

References

Deligne, P. 1982. Hodge cycles on abelian varieties (notes by J.S. Milne). In: Hodge
Cycles, Motives, and Shimura Varieties, Lecture Notes in Math. 900, Springer, Hei-
delberg, 9–100.

Deligne., P. 1990. Catégories Tannakiennes. In: The Grothendieck Festschrift,
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