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FORENOTE (2007): The remarkable conjecture of Langlands and Rapoport (1987) gives a purely
group-theoretic description of the points on a Shimura variety modulo a prime of good reduction.
In an article in the proceedings of the 1991 Motives conference (Milne 1994, §4), I gave a heuristic
derivation of the conjecture assuming a sufficiently good theory of motives in mixed characteristic.
I wrote the present article in order to examine what was needed to turn the heuristic argument into a
proof, and I distributed it to a few mathematicians (including Vasiu). Briefly, for Shimura varieties
of Hodge type (i.e., those embeddable into Siegel modular varieties) I showed that the conjecture is
a consquence of three statements:

(a) a good theory of rational Tate classes (see statements (a,b,c,d) in §3 below);
(b) existence of an isomorphism between integral étale and de Rham cohomology for an abelian

scheme over the Witt vectors (see 0.1, 5.4 below);
(c) every point in Shp(F) lifts to a special point in Sh(Qal).

At the time I wrote the article, I erroneously believed that my work on Lefschetz classes etc.
(Milne 1999a,b, 2002, 2005) implied (a). This work does show that (a) (and much more) follows
from the Hodge conjecture for complex abelian varieties of CM-type, and in Milne 2007, I discuss
some (apparently) much more accessible statements that imply (a). Also, it is possible to prove a
variant of (a), which should suffice (in the presence of (b) and (c)) to prove a variant of the conjecture
of Langlands and Rapoport, which becomes the true conjecture in the presence of (a).

The situation concerning (b) and (c) is better since Vasiu (2003b) and Kisin (2007) have an-
nounced proofs of (b), and Vasiu (2003a) has announced a proof of (c).

Finally, I mention that Pfau (1993, 1996b,a) has shown that the conjecture of Langlands and
Rapoport for Shimura varieties of Hodge type implies that it holds for all Shimura varieties of
abelian type (i.e., except for those defined by groups of type E6, E7, and mixed type D). Thus, the
case of Shimura varieties of Hodge type is the crucial one.

It should be clear from what I have already written, that the present manuscript is only a rough
working draft, and not a polished work — everything in it should be taken with a grain of salt.
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Introduction

In (Langlands and Rapoport 1987) there is stated a very remarkable conjecture that describes the
points on a Shimura variety modulo a prime of good reduction purely in terms of the initial data
defining the Shimura variety. In (Milne 1991; also Milne 1990b) I sketched a proof of the conjecture
for the case of Siegel modular varieties, and in (Milne 1994b) I gave a heuristic derivation of the
conjecture for Shimura varieties with rational weight based on the assumption of a sufficiently
good theory of motives in mixed characteristic. The purpose of the present paper is to show that
these heuristic arguments can be modified so as to give a proof of the conjecture for many Shimura
varieties.

Let Shp be the quotient of a Shimura variety Sh(G,X) by a hyperspecial subgroup Kp ⊂
G(Qp). It is conjectured that Shp has good reduction at every prime v of the reflex field lying over p,
and so from such a prime we obtain a set Shp(F) together with actions of G(Ap

f ) and Gal(F/k(v)).
Langlands and Rapoport construct a second set L(F) directly in terms of the initial data (G,X,Kp),
and the conjecture asserts that there is a bijection L(F) → Shp(F) of G(Ap

f ) × Gal(F/k(v))-sets.
The main result of this article is that for Shimura varieties of Hodge type, i.e., sub Shimura varieties
of Siegel modular varieties, there is a canonical equivariant map Llift(F)→ Shp(F), where Llift(F)
is the subset of “liftable” elements of L(F). The map is always injective. If the derived group of
G is simply connected, then the map is defined on the whole of L(F), and we give a description of
its image (see Section 6). The problem of proving that the map is surjective leads to the following
conjecture:

CONJECTURE 0.1. Let A be an abelian scheme over the ring W of Witt vectors with entries in the
algebraic closure of a finite field, and let K0 be the field of fractions of W . Let s = (si)i∈I be a
family of Hodge tensors on A including a polarization, and, for some fixed inclusion τ : W ↪→ C,
let G be the subgroup of GL(H1((τA)(C),Q)) fixing the si. Assume that G is reductive, and
that the Zariski closure of G in GL(H1(A/K0

,Zp)) is hyperspecial. Then, for some faithfully flat
Zp-algebra R, there exists an isomorphism of W -modules

R⊗Zp H
1(A/K0

,Zp)→ R⊗W H1
dR(A)
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mapping the étale component of each si to the de Rham component (except possibly for some small
p).

REMARK 0.2. (a) If there exists such an isomorphism for some faithfully flat Zp-algebraR, then
there exists an isomorphism with R = W ; moreover, there will then be an isomorphism of
Zp-modules

H1(A/K0
,Zp)→ H1

dR(A)f=1

mapping the étale component of each si to the de Rham component. Here f is as in (Winten-
berger 1984, p512).

(b) In (Fontaine and Messing 1987), it is shown that there is a canonical isomorphism

Bcrys ⊗Qp H
1(A/K0

,Qp)→ Bcrys ⊗K0 H
1
dR(A/K0

),

and (Blasius 1994) shows that it maps the étale component of each Hodge class to its de Rham
class. One may hope (and the author did hope), that the map sends Acrys ⊗Zp H

1(A/K0
,Zp)

onto Acrys ⊗W H1
dR(A), but Fontaine assures me that this is not so.

(c) For many pairs (A, s), for example, if s consists only of a polarization and endomorphisms,
the conjecture is known.

The mapLlift(F)→ Shp(F) constructed is functorial in (G,X,Kp). In particular, whenever it is
bijective, it implies the “refined version of the conjecture of Langlands and Rapoport” (Pfau 1993),
and so the problem of extending the proof from Shimura varieties of Hodge type to all Shimura
varieties of abelian type becomes a problem that can be stated purely in terms of the initial data
used to define the Shimura variety and not involving the arithmetic of the Shimura variety. We
discuss this in the last two sections of the paper.

Apart from the announcement (Milne 1991), the conjecture of Langlands and Rapoport has not
previously been proved for any Shimura variety of dimension greater than zero, although weaker
results have been obtained in special cases in (Ihara 1970; Shimura (unpublished); Milne 1979a,
1979b; Morita 1981; Zink 1983; Reimann and Zink 1991; Kottwitz 1992). In general, the proofs
of these weaker results have been based on the Honda-Tate classification of the isogeny classes of
abelian varieties over finite fields, whereas a proof of the conjecture of Langlands and Rapoport
seems to require some understanding of the category of polarized abelian varieties up to isogeny.1

The results of (Milne 1995b) play an important role in this paper.

Any proof (even statement) of the conjecture of Langlands and Rapoport requires the existence
of a canonical integral model for the Shimura variety. A precise definition of such a model is given
in (Milne 1992), and its existence is proved for all Shimura varieties of abelian type in (Vasiu 1995),
using some recent results of Faltings (which the author has not seen).

Perhaps the most important motivation for the conjecture is the desire to understand the zeta
functions of Shimura varieties. For an explanation of how the conjecture leads to an explicit formula
for the number of points on the Shimura variety with coordinates in a finite field, and from there
(following Kottwitz and Langlands) to an expression in terms of twisted orbital integrals for the
trace of the twist of a Hecke operator by a power of the Frobenius endomorphism acting on the
cohomology of a local system on the Shimura variety, see (Milne, 1992).

Warning: In general, the references are to the articles that will be most helpful to the reader;
they should not be assumed to be the original sources.

1In fact, for a few Shimura varieties Sh(G, X) such that G has particularly benign cohomology (there is no L-
indistinguishability), it is possible to possible to prove the conjecture of Langlands and Rapoport using only Honda-Tate
theory; see Reimann 1997.
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Notations and Conventions

We define C to be the algebraic closure of R and Qal to be the algebraic closure of Q in C. The
field with p elements is denoted by Fp and its algebraic closure is denoted by F. The ring Z(p) =
{mn ∈ Q|p - n}. The ring of finite adèles is denoted by Af , and the ring finite adèles omitting the
p-component is denoted by Ap

f . Thus:

Af = Q⊗Z (lim←−
m

Z/mZ), Ap
f = Q⊗Z (lim←−

p-m
Z/mZ).

The dual of an object X in some linear category is denoted by X∨. “Lattice” means “full
lattice”, i.e., a submodule generated by a basis for the vector space.

A bilinear form ψ : V × V → R on a free finitely generated R-module V will be said to be
nondegenerate if det(ψ) 6= 0 and perfect if det(ψ) ∈ R×. A symplectic space (V, ψ) over a ring R
is a free finitely generated R-module V together with a perfect alternating form ψ.

A group scheme G over a scheme S will be said to be reductive if it is affine and smooth over S
and its geometric fibres are connected and reductive (Demazure and Grothendieck 1970, XIX 2.7).

Except in §1, we use the following notations. For a commutative ring R, ModR denotes the
category of finitely generated R-modules and Modproj

R the category of finitely generated projective
R-modules. When R is a field, we write VecR for ModR. For an affine group (or monoid) scheme
G over a ring R, RepR(G) denotes the category of representations of G on finitely generated
projective R-modules. A representation will be denoted by ξ : G → GL(V (ξ)) or ξ : G →
GL(Λ(ξ)), depending on whether R is a field or not, so that the forgetful fibre functor becomes
ξ 7→ V (ξ) or ξ 7→ Λ(ξ).

For a scheme Z over a ring (or scheme) R and an R-algebra (or R-scheme) S, we denote the
base change of Z to S by ZS or Z/S . For a group scheme G over a field k and a subfield k0 of k, we
let (G)k/k0 denote the group scheme over k0 obtained from G by restriction of scalars. When k has
infinite degree over k0, we set (Gm)k/k0 = lim←−(Gm)k′/k0 where k′ runs over the finite extensions
of k0 contained in k. For the standard notations concerning S = (Gm)C/R, see (Milne 1992, p159)
for example.

The flat topology is that for which the covering families are the surjective families of flat
affine maps (the “topologie fidèlement plate quasi-compacte” of (Demazure and Grothendieck 1970,
IV.6.3)). All groupoids will be faithfully flat and affine. (A review of the theory of groupoids can
be found in (Milne 1992, Appendix A).)

Our conventions concerning tensor categories follow those of (Deligne and Milne 1982). Thus,
for R a commutative ring, an R-linear tensor category is an R-linear category C together with an
R-bilinear functor ⊗ : C × C → C and associativity and commutativity constraints satisfying
certain axioms (including the existence of an identity object). An R-linear tensor functor from one
such category C to a second C′ is an R-linear functor F : C → C′ together with isomorphisms
cX,Y : F (X) ⊗ F (Y ) → F (X ⊗ Y ) functorial in X and Y and compatible with the constraints.
These notions correspond to those of a “⊗-catégorie ACU R-linéaire” and a “⊗-foncteur ACU R-
linéaire” in (Saavedra 1972, p12, p39, p65). For k a field, the axioms for a k-linear Tannakian
category include the condition that, for any identity object (U, u), the map k → End(U) is an
isomorphism. A functor from one R-linear tensor category to a second will always be an R-linear
tensor functor, even when this is not explicitly stated. If ω is anR-linear tensor functor C→ModR
and R′ is an R-algebra, then R′ ⊗R ω may denote the functor

X 7→ R′ ⊗R ω(X) : C→ModR′
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or the functor
R′ ⊗R C→ R′ ⊗R ModR = ModR′

which the previous functor induces.

For a field k , AV(p)(k) denotes the category whose objects are the abelian varieties over k
with Mor(A,B) = Hom(A,B) ⊗Z Z(p) as the morphisms, and AV(k) denotes the category with
the same objects but with Mor(A,B) = Hom(A,B)⊗Z Q.

For a field k of characteristic zero, Mot(k) denotes the category of abelian motives over k
defined using Hodge classes. To be precise, the objects of Mot(k) are triples h(A, e,m) where A
is an equidimensional variety each of whose connected components of positive dimension admits a
structure of an abelian variety, e is an (absolute) Hodge class on A of degree dimA (and so defines
endomorphisms of the cohomology groups of A) such that e2 = e, and m ∈ Z. For the structures
that turn Mot(k) into a Q-linear Tannakian category, see (Jannsen 1992) or (Scholl 1994). There
is a fully faithful covariant functor

A 7→ h1(A) : AV(k)→Mot(k).

There are the following functors on Mot(k):

ωτ defined for each homomorphism τ : k ↪→ C; for an abelian variety A,

ωτ (h1(A)) = H1((τA)(C),Q);

we sometimes write ωB for ωτ (B=Betti);
ωpf , ωp defined for a fixed algebraic closure kal of k; for an abelian variety A,

ωpf (h1(A)) = Q⊗Z lim←−
p-m

Am(kal)

ωp(h1(A)) = Q⊗Z lim←−
n

Apn(kal);

ωdR the de Rham homology; for an abelian variety A,

ωdR(h1(A)) = H1
dR(A)∨, H1

dR(A) = H1(A,Ω•A/k).

1 Tannakian Preliminaries

In this section only, ModR denotes the category of all R-modules, and RepR(G) the category
of representations of G on arbitrary R-modules. The superscript “fg” denotes the subcategory
of modules or representations finitely generated over R, and the superscript “proj” denotes the
subcategory of modules or representations that are both finitely generated and projective over R.
The forgetful functor on RepR(G) or one of its subcategories will be denoted by ωG.

Beyond the standard results on tensor categories over fields, we shall need the following theo-
rem.

THEOREM 1.1. Let R be a regular ring of Krull dimension ≤ 1. Let C be an abelian R-linear
tensor category, and let ω : C → Modfg

R be an exact faithful R-linear tensor functor. Let C0 be
the full subcategory of C whose objects are those X for which ω(X) is projective, and assume that
every object of C is a quotient of an object of C0.
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(a) There exists a flat affine monoid G over R and an equivalence of R-linear tensor categories

C→ Repfg
R(G)

whose composite with ωG is ω.
(b) The canonical morphisms (of functors of R-algebras)

G→ End⊗(ω)→ End⊗(ω|C0)

are isomorphisms.
(c) The monoid G is a group scheme if and only if C0 is rigid.
(d) Assume C0 is rigid. If ω′ : C0 →ModR is an R-linear tensor functor with the properties,

(i) ω′ maps sequences in C0 that are exact as sequences in C to exact sequences in ModR,
(ii) ω′(ϕ) an isomorphism =⇒ ϕ an isomorphism,

then Hom⊗R(ω′, ω|C0) is a G-torsor for the flat topology.

By an abuse of language, a functor satisfying the conditions in (d) will said to be exact. Thus
(see Lemma 1.3 below) an exact R-linear tensor functor Repproj

R (G)→ModR is one that extends
(essentially uniquely) to an exact faithful R-linear tensor functor on RepR(G) commuting with
direct limits.

REMARK 1.2. (a) Under the tensor equivalence in (1.1a), C0 corresponds to Repproj
R (G).

(b) Let G be a flat affine monoid over a ring R. When R is regular of dimension ≤ 1, every
object of Repfg

R(G) is a quotient of an object of Repproj
R (G) (Serre 1968, 2.2). Therefore the

condition that every object of C be a quotient of an object of C0 is necessary for (a) to be
true.

(c) Much of the theorem remains true (with the same proof) when R is not regular of dimension
≤ 1, but unless Serre’s result holds for Repfg

R(G), it is vacuous.
(d) Let C0 be as in the statement of the theorem and rigid, and let ω : C0 → ModR be an

R-linear tensor functor. Because ω is a tensor functor, it preserves duals (cf. Deligne 1990,
p120). But every R-module admitting a dual is projective of finite-type (ibid. 2.6), and so ω
takes values in Modproj

R . It follows that if ω is left or right exact, then it is exact. Moreover,
if X 6= 0, then ev : X∨ ⊗X → 11 is surjective, and so ω(X) 6= 0; thus ω is also faithful.

PROOF. For the proofs of (a), (b), (c), see Saavedra (1972), II.4.1.

We prove (d). After (a) and (c), we can assume that C = Repfg(G) where G is a flat
affine group scheme over R, and we have to prove that, for any exact R-linear tensor functor
ω : Repproj

R (G) → ModR, the functor Hom⊗R(ω, ωG) of R-algebras is a G-torsor for the flat
topology. Here ωG denotes the forgetful functor on Repproj

R (G). Because Repproj
R (G) is rigid,

Hom⊗R(ω, ωG) = Isom⊗R(ω, ωG), which (b) shows to be a pseudo-torsor for G. It remains to prove
that it is represented by a faithfully flat R-algebra.

According to the lemma below, ω extends to an exact faithful R-linear tensor functor ω∞ :
RepR(G) → ModR commuting with direct limits. In this situation (Saavedra 1972, II.3.2.2)
shows that Hom⊗R(ω∞, ωG) is represented by the R-algebra ω∞(Bd) where B is the affine algebra
of G and Bd denotes the regular representation of G on B. Since

Hom⊗R(ω∞, ωG) ≈−−−−→ Hom⊗R(ω, ωG),

this shows that the second functor is represented by the R-algebra lim−→Bi
ω(Bi), where the Bi run

through the finitely generated submodules of B stable under the action of G. Each ω(Bi) is a
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projective R-module, hence flat, and therefore their direct limit ω(B) is also flat. It is faithful
because it represents a faithful functor. 2

LEMMA 1.3. Let R be a regular ring of dimension ≤ 1. Every exact R-linear tensor functor ω :
Repproj

R (G) → ModR extends to an exact faithful R-linear tensor functor RepR(G) → ModR
commuting with direct limits.

PROOF. It follows from the result of Serre cited in Remark 1.2(a), that ω has (an essentially unique)
extension to an exact functor Repfg

R(G)→ModR, which is faithful because ϕ is an isomorphism
if ω(ϕ) is an isomorphism. Now ω has a canonical extension to the Ind category of Repfg

R(G), but
this can be identified with RepR(G). 2

COROLLARY 1.4. Let G be a reductive group over a Henselian discrete valuation ring R whose
residue field has dimension ≤ 1 (in the sense of Serre 1964). Every exact R-linear tensor functor
ω : Repproj

R (G)→ModR is isomorphic to the forgetful functor.

PROOF. According to the theorem, Hom⊗(ω, ωG) is a G-torsor, and therefore corresponds to an
element of H1(R,G). Because G is of finite type, this fpqc-group can be interpreted as an fppf-
group (Saavedra 1972, III.3.1.1.1), and because G is smooth

H1(R,G) = H1(k,G/k) (étale cohomology)

where k is the residue field of R (Milne 1980, III.3.1). But G/k is connected, and so H1(k,G) = 0
(Steinberg 1965). Thus Hom⊗(ω, ωG) is the trivial G-torsor. 2

EXAMPLE 1.5. LetG be an affine group scheme over Q, and letGp be a flat model ofGQp over Zp
(by this we mean that Gp is a flat group scheme over Zp equipped with an isomorphism Gp/Qp

→
G/Qp

). Define C to be the category whose objects are the triples (V,Λ, ϕ) consisting of an object V
of Repfg

Q(G), an object Λ of Repfg
Zp

(Gp), and an equivariant map ϕ : Λ → Qp ⊗Q V inducing an
isomorphism Qp ⊗Zp Λ → Qp ⊗Q V . Then C is an abelian category, and it becomes a Z(p)-linear
tensor category when endowed with the obvious structures. Moreover

(V,Λ, ϕ) 7→ ϕ−1(V ),

is an exact faithful Z(p)-linear tensor functor ω : C → ModZ(p)
. The pair (C, ω) satisfies the

conditions of Theorem 1.1, and the flat affine group scheme G(p) = Aut⊗(ω) over Z(p) is simulta-
neously a model of G and a model of Gp.

EXAMPLE 1.6. Suppose we are given a Q-linear Tannakian category C, a Zp-linear abelian tensor
category Cp, and an exact faithful Qp-linear tensor functor I : Qp ⊗Q C → Qp ⊗Zp Cp. Define
C(p) to be the category whose objects are the triples (X,Λ, ϕ) with X an object C, Λ an object of
Cp, and ϕ an isomorphism Qp ⊗Zp Λ→ I(X). Then C is a Z(p)-linear tensor category.

PROPOSITION 1.7. Let G be a reductive group over a Henselian discrete valuation ring R whose
residue field has dimension ≤ 1 (in the sense of Serre 1964), and let K be the field of fractions of
R. Consider a fibre functor ω0 : Repfg

K(G/K)→ VecK . The set of exact R-linear tensor functors
ω : Repproj

R (G) → ModR such that K ⊗ ω = ω0 is in natural one-to-one correspondence with
Hom⊗(ω0, ω

G)/G(R); in particular, no such ω exists unless ω0 ≈ ωG.
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PROOF. Let ω be a functor Repproj
R (G)→ModR such that K ⊗ ω = ω0. According to Corollary

1.4, ω ≈ ωG, and this implies that

ω0 = K ⊗ ω ≈ K ⊗ ωG = ωGK .

Conversely, if there exists an isomorphism ϕ : ω0 → ωGK , then the choice of such an isomorphism
determines a ω, namely, that mapped onto ωG by ϕ. Clearly two isomorphisms determine the same
ω if and only if they differ by an element of G(R). 2

Let G be an affine group scheme (flat) of finite type over a ring R, and let ξ be a representation
of G on a finitely generated projective R-module Λ(ξ). By a tensor on ξ we mean an element
t ∈ Λ(ξ)⊗r ⊗ Λ(ξ)∨⊗s fixed under the action of G. Note that t can regarded as a homomorphism
R→ Λ(ξ)⊗r ⊗ Λ(ξ)∨⊗s of G-modules, and it defines a tensor ω(t) on ω(Λ(ξ)) for every R-linear
tensor functor ω on RepR(G). A representation ξ0 together with a family (ti)i∈I of tensors is said
to defining if, for all (flat) R-algebras S,

G(S) = {g ∈ Aut(S ⊗R Λ(ξ0)) | gti = ti, for all i ∈ I}.

In particular, this implies that ξ0 is faithful. For conditions under which a defining representation
and tensors exist, see (Saavedra 1972, p151).

PROPOSITION 1.8. Let G be an affine group scheme flat over a Henselian discrete valuation ring
R whose residue field has dimension ≤ 1, and assume that (ξ0, (ti)i∈I) is defining for G.

(a) Consider a finitely generated projective R-module Λ and a family (si)i∈I of tensors for
Λ. There exists an exact R-linear tensor functor ω : Repproj

R (G) → ModR such that
(ω(ξ0), (ω(ti)i∈I)) = (Λ, (si)i∈I) if and only if there exists an isomorphism Λ → Λ(ξ0)
mapping each si to ti.

(b) For any exact R-linear tensor functor ω : Repproj
R (G) → ModR, the map α 7→ α(ξ0)

identifies Hom⊗(ω, ωG) with the set of isomorphisms ω(ξ0) → ωG(ξ0) mapping each ω(ti)
to ti.

PROOF. (a) If ω exists, then according to Corollary 1.4 there exists an isomorphism ω → ωG, and
so the condition is necessary. Conversely, suppose there is given an isomorphism ϕ : Λ → Λ(ξ0)
mapping each si to ti. For any flat R-algebra S, G(S) acts on S ⊗R Λ(ξ0), and hence (via ϕ) on
S ⊗R Λ. The si are fixed under this last action, and so it defines a homomorphism G(S)→ G(S),
functorial in S, i.e., an automorphism of G as a group scheme. This automorphism defines a tensor
functor with the correct property.

(b) Both sets are G(R)-torsors, and so any G(R)-equivariant map from one to the other is a
bijection. 2

REMARK 1.9. There are several variants of the above proposition.

(a) In the situation of the proposition, let H be a second affine group scheme flat over R, and let
Λ be a representation of H and (si)i∈I a family of tensors for Λ (as a representation of H). If
there exists an isomorphism Λ→ Λ(ξ0) mapping each si to ti, then there is an exact R-linear
tensor functor ω : Repproj(G) → Repproj(H) such that ω(ξ0) = Λ. Indeed, as in the proof
of the proposition, the isomorphism Λ → Λ(ξ0) defines a homomorphism H → G, and this
induces ω.

(b) There is also a variant of the proposition in which the categories are not assumed to be neutral.
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2 Statement of the Conjecture of Langlands and Rapoport

Let G be a reductive group over Q whose connected centre is split by a CM-field2, let X be a
G(R)-conjugacy class of homomorphisms S→ GR satisfying the axioms (Deligne 1979, 2.1.1.1—
2.1.1.3), and let Kp be a hyperspecial subgroup of G(Qp). According to (Tits 1979, 3.8.1), there is
a reductive model Gp of G over Zp such that Kp = Gp(Zp). We sometimes omit the subscript on
Gp and simply write G(Zp), for example, for Gp(Zp).

The Shimura variety defined by (G,X) has a canonical model Sh(G,X) over its reflex field
E(G,X), and we let Shp(G,X) denote the quotient Sh(G,X)/Kp. It has complex points

Shp(G,X)(C) = G(Q)\X ×G(Af )/Zp ·Kp = G(Z(p))\X ×G(Ap
f )/Zp

where Z is the centre of G, Zp is the closure of Z(Z(p)) =df Z(Q)∩Kp in Z(Ap
f ), and G(Z(p)) =

G(Q) ∩Kp (Milne 1994b, 4.11).

Let v be a prime of E = E(G,X) dividing p, and let Ev be the completion of E at v. Assume
that Shp(G,X) has a canonical integral model (in the sense of Milne 1992, 2.9) over the valuation
ringOv of Ev, and denote the model again by Shp(G,X), or just Shp. The conjecture of Langlands
and Rapoport describes the set Shp(F) together with the actions of G(Ap

f ) and Gal(F/k(v)) on it.
Before stating the conjecture, we need to review some notations and constructions.

Choose an extension of v to a valuation on Qal, and let Cp be the corresponding completion of
Qal; it is algebraically closed. Let K0 be the maximal unramified extension of Qp in Cp, let W be
the valuation ring of K0, and let F be the residue field of W . The existence of the hyperspecial
subgroup Kp implies that v is unramified over p, and so Ev is contained in K0 and Ov and its
residue field k(v) are contained in W and F. Moreover, F is an algebraic closure of k(v) and W is
the ring of Witt vectors with entries in F. Thus:

Qal — Cp

| |

| K0 — W — F

| | | |

E — Ev — Ov — k(v)

| | | |

Q — Qp — Zp — Fp .

Let σ denote the automorphism x 7→ xp of F/Fp and its lifts to W and K0.

By definition, E = E(G,X) is the field of definition of the G(C)-conjugacy class MX of
cocharacters of GC containing the µx for x ∈ X . In particular, MX is defined over Ev. Let Tp be a
maximal Qp-split subtorus of GQp whose apartment contains the hyperspecial vertex fixed by Kp,
and let T0 be a maximal split subtorus of G/K0

containing Tp. We choose a cocharacter µ0 of T0 to
represent MX over K.

For each finite prime ` 6= p, choose an extension of ` to a prime of Qal, and hence an embedding
Qal ↪→ Qal

` of Qal into an algebraic closure of Q`. When G is a Qal/Q-groupoid, G(`) will denote

2This condition is unnecessary, but it makes some statements simpler, and the Shimura varieties that don’t satisfy it
are of no interest.
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the base change of G to a Qal
` /Q`-groupoid and G(p) will denote its base change to a Cp/Qp-

groupoid.

We shall need to consider the following categories:

V∞ the R-linear Tannakian category whose objects are Z-graded complex vector spaces with a
semilinear endomorphism F such that F 2 = (−1)m on the direct summand of weight m;

VecQ`
the Q`-linear Tannakian category of Q`-vector spaces;

Isoc(F) the Qp-linear Tannakian category of isocrystals over F, i.e., finite-dimensional vector
spaces over K0 endowed with a σ-linear automorphism (usually denoted φ).

Each of these categories has a forgetful fibre functor (over C, Q`, and K0 respectively), and on
replacing the last two with their base changes we obtain canonical fibre functors over C, Qal

` , and
Cp. Let G∞, G`, and Gp be the corresponding groupoids.

Recall (Milne 1992, 3.27) that a pseudomotivic groupoid is a system (P, (ζ`)) consisting of
a Qal/Q-groupoid P with kernel the Weil-number torus P , and homomorphisms G` → P(`) for
each ` (including p and ∞) that act on the kernels in a specified fashion; moreover, that there is
a homomorphism ϕS : P → GS , well-defined up to isomorphism, from P to the neutral Qal/Q-
groupoid defined by the Serre group S.

Assume initially that the weight of Sh(G,X) is defined over Q. Then to each special point x
of X there corresponds a homomorphism ρx : S → G uniquely determined by the condition that
(ρx)R ◦ hcan = hx. On composing ρx with ϕS , we obtain a homomorphism ϕx : P → GG. Any
homomorphism P→ GG isomorphic to such a homomorphism is said to be special.

Let ϕ be a homomorphism P→ GG, and define

I(ϕ) = {g ∈ G(Qal) | adg ◦ ϕ = ϕ}.

For each `, ϕ induces a homomorphism ϕ(`) : P(`)→ GG(`), and we set θ` = ϕ(`) ◦ ζ`.
For each ` 6= p,∞, there is a homomorphism ξ` : G` → GG that on points is the obvious

section to
G(Qal

` ) o Gal(Qal
` /Q`) −−−−→ Gal(Qal

` /Q`).

Define
X`(ϕ) = {g ∈ G(Qal

` ) | adg ◦ ξ` = θ`},

and let Xp(ϕ) be the restricted topological product of the X`(ϕ). It is a G(Ap
f )-torsor under the

obvious right action.

A homomorphism θ : Gp → GG defines a σ-conjugacy class [b(θ)] in G(K0) (ibid. 3.36).
Choose b ∈ G(K0) to represent [b(θp)] and define

Xp(ϕ) = {g ∈ G(B)/G(W ) | g−1 · b · σg ∈ G(W ) · µ0(p−1) ·G(W )}.

Define Φ : Xp(ϕ)→ Xp(ϕ) by the rule:

Φg = b · σb · . . . · σ[k(v):Fp]g, g ∈ Xp(ϕ).

The action of this “Frobenius operator” extends to an action of Gal(F/k(v)) on Xp.

The group I(ϕ) acts on both Xp(ϕ) and Xp(ϕ) on the left, and so we can define

L(ϕ) = I(ϕ)\Xp(ϕ)×Xp(ϕ)/Zp.

We let G(Ap
f ) act on L(ϕ) through its action on Xp(ϕ) and we let Gal(F/k(v)) act on it through

its action on Xp(ϕ).
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If ϕ′ : P → GG is isomorphic to ϕ, then the choice of an isomorphism ϕ → ϕ′ defines a
bijection L(ϕ) → L(ϕ′) of G(Ap

f ) × Gal(F/k(v))-sets, which is independent of the choice of the
isomorphism ϕ → ϕ′ (ibid. 4.1). Thus L(ϕ) depends only on the isomorphism class of ϕ, and we
can define

L(G,X) =
∐
L(ϕ)

where the disjoint union is over the set of isomorphism classes of special homomorphisms ϕ : P→
GS .

When the weight of Sh(G,X) is not defined over Q, the definition of L(G,X) is the same
except that the pseudomotivic groupoid P must be replaced with the quasimotivic groupoid

Q =df P×S (Gm)Qcm/Q;

see (Pfau 1993).

CONJECTURE 2.1 (LANGLANDS AND RAPOPORT). There exists a bijection

L(G,X)→ Shp(G,X)(F)

of G(Ap
f )×Gal(F/k(v))-sets.

REMARK 2.2. The conjecture is as stated in (Langlands and Rapoport 1987, 5.1e), except for the
following modifications.

(a) The original conjecture asserts only that there exists a smooth model of Shp(G,X) over Ov
for which there exists such a bijection, but does not attempt to characterize the model.

(b) The original conjecture applied only to Shimura varieties Shp(G,X) for whichGder is simply
connected; this restriction was removed in (Milne 1992, §4).

(c) The quasimotivic groupoid constructed in the original paper did not have the properties
claimed for it; this was corrected in (Pfau 1993).

We shall need a criterion from (Langlands and Rapoport 1987) for a homomorphism ϕ to be
special.

The set of points of G(∞) can be identified with the real Weil group W (C/R), which is the
extension

1 −−−−→ C× −−−−→ W (C/R) −−−−→ Gal(C/R) −−−−→ 1

defined by the cocycle

d1,1 = d1,ι = dι,1 = 1, dι,ι = −1, ι = complex conjugation.

Let s be the section σ 7→ (1, σ) : Gal(C/R)→W (C/R). For any x ∈ X , the formulas

ξx(z) = wX(z) o id, (z ∈ C×); ξx(s(ι)) = µx(−1)−1 o ι

determine a morphism ξ∞ : G(∞) → GG, whose isomorphism class is independent of the choice
of x.

THEOREM 2.3. In the case thatGder is simply connected, a homomorphism ϕ : P→ GG is special
if (and only if) it satisfies the following conditions:

(a) the homomorphism ζ∞ ◦ ϕ(∞) is isomorphic to ξ∞;
(b) for all ` 6= p,∞, the set X`(ϕ) is nonempty;
(c) the set Xp(ϕ) is nonempty;
(d) for all abelian quotients G→ T of G, the composite P

ϕ−→ GG −→ GT is special.

PROOF. See (Langlands and Rapoport 1987, 5.3). 2
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3 A More Canonical Conjecture

In this section we state a conjecture that gives a description of Shp(F) intermediate between that
provided by the original conjecture and the one arrived at by regarding Shp(G,X) as a moduli
scheme for motives (Milne 1994b). First we need to review some results from (Milne 1995a,b).3

In those papers, the following are constructed:

(a) A canonical Q-linear Tannakian category PMot(F) of “pseudomotives” over F with fun-
damental group the Weil-number torus P ; PMot(F) is endowed with a polarization, a fibre
functor ωpf : PMot(F) → ModAp

f
, and an exact tensor functor ωcrys : PMot(F) →

Isoc(F).
(b) A canonical “reduction functor” R : CM(Qal) → PMot(F) from the category of CM-

motives over Qal to PMot(F); R is an exact Q-linear tensor functor preserving polarizations
and fibre functors.

(c) A Tannakian category LMot(F) of “Lefschetz motives” over F, generated by abelian vari-
eties and defined using the Lefschetz classes (those in the ring generated by divisor classes)
as the correspondences; an “inclusion functor” I : LMot(F)→ PMot(F) which is an exact
Q-linear tensor functor preserving polarizations and fibre functors.

(d) A Tannakian category LCM(Qal) of Lefschetz motives of CM-type over Qal, and a commu-
tative diagram:

LCM(Qal) I−−−−→ CM(Qal)yR yR
LMot(F) I−−−−→ PMot(F).

Let Shp(G,X) be as in the first paragraph of §2, and assume that it has a canonical integral
model so that Shp(F) is defined. We assume initially that its weight is defined over Q.

Let M : RepQ(G) → PMot(F) be an exact Q-linear tensor functor such that ωcrys ◦M ≈
K0 ⊗Q V . (Recall that V denotes the forgetful functor ξ 7→ V (ξ) on RepQ(G), and that K0 ⊗Q V
denotes the functor ξ 7→ K0 ⊗Q V (ξ).) A p-integral structure on M is an exact Zp-linear tensor
functor Λ : RepZp

(Gp)→ModW satisfying the following conditions:

(a) K0 ⊗W Λ = ωcrys ◦M , i.e., the following diagram commutes:

RepQp
(G)

Qp⊗M−−−−→ Qp ⊗PMot(F)
ωcrys−−→ VecK0

↑ ↑

RepZp
(G)

Λ−−−−−−−−→ ModW .

(b) there exists an isomorphism η : W ⊗Zp Λ → Λ of tensor functors such that K0 ⊗W η maps
µ0(p−1) · (W ⊗Zp Λ(ξ)) onto φΛ(ξ) for all ξ in RepZp

(Gp). Here Λ denotes the forgetful
functor on RepZp

(Gp).

REMARK 3.1. Define a filtered K0-module to be an isocrystal (N,φ) over F together with a finite
exhaustive separated decreasing filtration on N , i.e., a family of subspaces

N = Filti0(N) ⊃ · · · ⊃ Filti(N) ⊃ Filti+1(N) ⊃ · · · ⊃ Filti1(N) = 0.

3See the forenote.
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In Fontaine’s terminology, a W -lattice Λ in N is strongly divisible if∑
p−iφ(FiltiN ∩ Λ) = Λ,

and a filtered K0-module admitting a strongly divisible lattice is said to be weakly admissible. If
µ : Gm → GL(Λ) splits the filtration on Λ, i.e.,

FiltjΛ = ⊕i≥jΛi, Λi = {m ∈ Λ | µ(x)m = xim, all x ∈ K×0 }.

then the condition to be strongly divisible is that φΛ = µ(p)Λ. The cocharacter µ−1
0 in §2 defines a

filtration on Q⊗ Λ(ξ) for all ξ, and µ0 has been so chosen that µ−1
0 splits the filtration on Λ(ξ) for

all ξ. Thus the condition (b) for Λ to be a p-integral structure on M can be restated as:

there exists an isomorphism η : W ⊗Zp Λ → Λ of tensor functors such that, for all ξ ∈
RepZp

(G), Λ(ξ) is strongly divisible for the filtration on K0 ⊗W Λ(ξ) defined (via K0 ⊗W η) by
µ−1

0 .

Define Φ : Xp(M)→ Xp(M) by the rule: for all ξ, (ΦΛ)(ξ) = φ[k(v):Fp](Λ(ξ)). The action of
this “Frobenius operator” extends to an action of Gal(F/k(v)) on Xp(M).

Define

I(M) = Aut⊗(M),
Xp(M) = Isom⊗(Ap

f ⊗ V, ω
p
f ◦M),

Xp(M) = {p-integral structures on M}.

The group I(M) acts on both Xp(M) and Xp(M) on the left, and so we can define

M(M) = I(M)\Xp(M)×Xp(M)/Zp.

We letG(Ap
f ) act onM(M) through its action onXp(M), and we let Gal(F/k(v)) act on it through

its action on Xp(M).

If M is isomorphic to M ′, then the choice of an isomorphism M → M ′ defines a bijection
M(M) → M(M ′) of G(Ap

f ) × Gal(F/k(v))-sets, which is independent of the choice of the
isomorphism. ThusM(M) depends only on the isomorphism class of M .

A point x of X defines a tensor functor

Hx : RepQ(G)→ HdgQ, (ξ, V (ξ)) 7→ (V (ξ), ξR ◦ hx).

When x is special, Hx takes values in the full subcategory of HdgQ whose objects are the rational
Hodge structures of CM-type. This subcategory is equivalent (via ωB) with CM(Qal). Fix a tensor
inverse HdgQ → CM(Qal) to ωB . On composing Hx with it, we obtain a tensor functor Mx :
RepQ(G) → CM(Qal) together with an isomorphism ωB ◦Mx ≈ Hx. Any tensor functor M
isomorphic to R ◦Mx for some special x ∈ X will be called special.

LEMMA 3.2. For any special functor M : RepQ(G)→ PMot(F), ωcrys ◦M ≈ K0 ⊗ V.

PROOF. Since the statement depends only on the isomorphism class of M , we may assume that
M = R ◦Mx with x a special point of X .
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The reduction functor R : CM(Qal)→ PMot(F) has the property that Qal ⊗K0 (ωcrys ◦R) =
ωdR. On composing both sides with Mx, we find that

Qal ⊗K0 (ωcrys ◦M) = ωdR ◦Mx.

There is a comparison isomorphism

C⊗Qal (ωdR ◦Mx) = C⊗Q (ωB ◦Mx),

and (from the definition of Mx) there is given an isomorphism

ωB ◦Mx → V.

On combining these isomorphisms, we obtain an isomorphism of tensor functors

C⊗K0 (ωcrys ◦M)→ C⊗Q V.

It remains to show that we can replace C with K0 in this statement.

Consider the functor of K0-algebras

F (R) = Isom⊗(R⊗K0 (ωcrys ◦M), R⊗Q V ).

Since G/K0
= Aut⊗(K0 ⊗Q V ), F is a pseudo-torsor for GK0 , and, in fact, a torsor because F (C)

is nonempty. It therefore defines an element of H1(K0, G). The field K0 has dimension ≤ 1 (Serre
1964, II.3) and G is connected, and so H1(K0, G) = 0 (Steinberg 1965). Hence F is the trivial
torsor: F (K0) 6= ∅. 2

The last lemma shows thatM(M) is defined for any special homomorphism, and we know that
it depends only on the isomorphism class of M . Thus we can define

M(G,X)(F) =
∐
M(M)

whereM runs over the set of isomorphism classes of special homomorphisms RepQ(G)→ PMot(F).

CONJECTURE 3.3. There exists a bijection

M(G,X)(F) −−−−→ Shp(G,X)(F)

of G(Ap
f )×Gal(F/k(v))-sets.

THEOREM 3.4. There exists a bijection

M(G,X)(F)→ L(G,X)

of G(Ap
f )×Gal(F/k(v))-sets.

PROOF. Let ω∞, ω`, and ωp be the fibre functors on the Tannakian categories V∞, VecQ`
, and

Isoc(F) whose groupoids are G∞, G`, and Gp (see the previous section). Choose a fibre functor ω̄
for PMot(F) over Qal and isomorphisms

C⊗Qal ω̄ → ω∞, Qal
` ⊗Qal ω̄ → ω`, Cp ⊗Qal ω̄ → ωp.

14



Then the system consisting of P =df Aut⊗Q(ω̄) together with the homomorphisms ζ` : G` → P(`)
provided by the isomorphisms is a pseudomotivic groupoid. A tensor functor M : RepQ(G) →
PMot(F) induces a homomorphism ϕM : P → GG, well-defined up to isomorphism, and the
theory of Tannakian categories (Deligne 1990) shows that M 7→ ϕM defines a bijection between
the set of isomorphism classes of tensor functors RepQ(G)→ PMot(F) and the set isomorphism
classes of homomorphisms P → GG. Clearly special functors correspond to special homomor-
phisms, and so it remains to show that, for each special functor M , there is an equivariant bijection
M(M)→ L(ϕM ).

Again, it follows directly from the theory of Tannakian categories that I(M) = I(ϕM ) and
Xp(M) = Xp(ϕM ), and so it remains to show that Xp(M) = Xp(ϕM ).

Choose an isomorphism of tensor functors

β : ωcrys ◦M → K0 ⊗ V.

There is a unique b ∈ G(K0) such that

β ◦ φ = b ◦ σ ◦ β

(equality of σ-linear isomorphisms of tensor functors ωcrys ◦ M → K0 ⊗ V ). If β is replaced
with g ◦ β, g ∈ G(K0), then b is replaced by its σ-conjugate gb(σg)−1. On tracing through the
definitions, one finds that b represents the σ-conjugacy class [b(ϕM (p) ◦ ζp)].

Let Λ be an exact Zp-linear tensor functor RepZp
(G) → PMot(F) such that K0 ⊗ Λ =

K0⊗QV . According to (1.4), there exists an isomorphism ηp : W ⊗Λ→ Λ of tensor functors. The
composite g = (K0⊗Qβ)◦ (K0⊗W ηp) lies inG(K0). If ηp is replaced by ηp ◦w with w ∈ G(W ),
then g is replaced by gw. The map Λ 7→ gG(W ) defines a bijection between set of Λ’s and the set
G(K0)/G(W ), and one shows, as in (Milne 1994b, §4), that the Λ’s that are p-integral structures
on M correspond to the cosets gG(W ) such that g−1 · b · σg ∈ G(W ) · µ0(p)−1 ·G(W ). 2

COROLLARY 3.5. Conjecture 2.1 holds for Shp(G,X) if and only if Conjecture 3.3 does.

REMARK 3.6. The conditions (a)–(d) for ϕ to be special translate as follows.

(a) The polarization on PMot(F) defines a tensor functor R ⊗Q PMot(F) → V∞ (Deligne
and Milne 1982, 5.20); the composite of this with R⊗M should be isomorphic to the functor
defined by the homomorphism G∞ → GG. [[Make this more explicit.]]

(b) For all ` 6= p,∞, there exists an isomorphism Q` ⊗ V → ω`(M);
(c) The set Xp(M) is nonempty.
(d) The restriction of M to the full subcategory RepQ(Gab) of RepQ(G) is isomorphic to Hx :

RepQ(Gab)→ PMot(F) for one (hence all) x ∈ X .

REMARK 3.7. The above discussion can be extended to Shimura varieties whose weight is not
defined over Q by replacing PMot(F) with the category of quasimotives over F.

Shimura varieties of Hodge type

DEFINITION 3.8. A Shimura variety Sh(G,X) is of Hodge type if there is a symplectic space
(V, ψ) over Q and an injective homomorphism G ↪→ GSp(V, ψ) such that

(a) for each x ∈ X , the Hodge structure (V, hx) has type {(−1, 0), (0,−1)};
(b) for each x ∈ X , either +2πiψ or −2πiψ is a polarization for (V, hx).
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We say that Shp(G,X) is of Hodge type if Sh(G,X) is of Hodge type and it is possible to
choose the homomorphism G ↪→ GSp(V, ψ) so that, in addition,

(c) there is a Zp-lattice V (Zp) in V such that ψ restricts to a perfect pairing V (Zp)×V (Zp)→ Zp
and Gp is the Zariski closure of G in GSp(V (Zp), ψ).

If Sh(G,X) is of Hodge type, then the choice of a symplectic embedding defines a homomor-
phism t : G→ Gm such that t ◦ wX = −2. Thus Rep(G) is endowed with the structure of a Tate
triple, and it is a matter of indifference whether we work with tensors of the form V ⊗2m → Q(m)
or Q→ V ⊗r ⊗ V ∨⊗s.

Choose a symplectic representation G ↪→ GSp(V, ψ) and a lattice V (Zp) in V (Qp) satisfying
the conditions (3.8a,b,c). Choose also a defining set of tensors t = (ti)i∈I for G in GL(V ) with
ti0 = ψ.

For an abelian varietyA over F, h1(A) is an object of the Tannakian category PMot(F), and we
define a tensor on h1(A) to be a morphism 11→ h1(A)⊗r⊗h1(A)∨⊗s in PMot(F) (equivalently,
a morphism h1(A)⊗2m → Q(m)). Consider pairs M = (A, s) where A is an abelian variety over
F and s = (si)i∈I is a family of tensors on h1(A) indexed by I .

For each special point x ∈ X , we get an abelian variety Ax over Qal of CM-type and a family
of Hodge tensors sx on Ax indexed by I . The reduction functor R : CM(Qal)→ PMot(F) maps
Mx = (Ax, sx) to a pair (A, s) as in the last paragraph, and any pair isomorphic to such a pair is
said to be special.

A p-integral structure on M = (A, s) is a lattice Λ in ωcrys(A) for which there exists an isomor-
phism V (W )→ Λ sending each ti to si and such that µ0(p−1)V (W ) maps onto φΛ.

Let M = (A, s) be a special pair. Define

I(M) = {α ∈ Aut(A) | α(si) = si for all i ∈ I}

Xp(M) = {ηp : V (Ap
f ) ≈−→ ωpf (A) | ηp(ti) = si ∀i ∈ I}

Xp(M) = {p-integral structures on M}.

Then I(M) acts on Xp(M) and Xp(M) on the left, G(Ap
f ) acts on Xp(M) on the right, and

Gal(F/k(v)) acts on Xp(M). We define

M(M) = I(M)\Xp(M)×Xp(M),

regarded as aG(Ap
f )×Gal(F/k(v))-set. An isomorphismM →M ′ induces a bijectionM(M)→

M(M ′) of G(Ap
f )-sets which is independent of the isomorphism. ThereforeM(M) depends only

on the isomorphism class of M , and we can define

M(G,X)(F) =
∐
M

M(M)

where M runs over the isomorphism classes of admissible pairs M .

PROPOSITION 3.9. This definition ofM(G,X)(F) agrees with that preceding Conjecture 3.3.

PROOF. Let ξ0 be the symplectic representation of G fixed above. The functor h1 realizes AV(F)
as a full subcategory of PMot(F), and the functor M 7→ M(ξ0) is fully faithful and takes values
in AV(F). The rest of the proof is straighforward. 2
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The proposition, while a fairly immediate consequence of the results of Milne (1995b), rep-
resents a major step towards our understanding of the conjecture of Langlands and Rapoport for
Shimura varieties of Hodge type, because it allows us to replace the rather mysterious homomor-
phisms of groupoids P→ GG with the more accessible pairs (A, s) consisting of an abelian variety
with tensors.

4 The Etale Description of the Points

Let Shp(G,X) be as in the first paragraph of §2. We assume that Sh(G,X) is of abelian type, that
its weight is defined over Q, and that Z(Q) is discrete in Z(Af ). The last condition holds if and
only if the largest split subtorus of ZR is split over Q, i.e., if (Zsplit)R = (ZR)split. It implies that

Shp(G,X)(C) = G(Q)\X ×G(Af )/Kp = G(Z(p))\X ×G(Ap
f ).

Let k be a field containing E = E(G,X), and let Γ = Gal(kal/k) for some algebraic closure
kal of k. An étale p-integral structure on a functor M : RepQ(G)→Mot(k) is an exact Zp-linear
tensor functor Λp : RepZp

(Gp) → RepZp
(Γ) such that ωp ◦M = Qp ⊗Zp Λp, i.e., such that the

following diagram commutes:

RepQp
(G)

Qp⊗M−−−−→ Qp ⊗Mot(k)
ωp−→ RepQp

(Γ)

↑ ↑

RepZp
(G)

Λp−−−−−−−−−→ RepZp
(Γ)

LEMMA 4.1. For any exact Zp-linear tensor functor Λp : RepZp
(Gp) → RepZp

(Γ) there exists
an isomorphism of Zp-linear tensor functors Λ→ ωforget ◦ Λp.

PROOF. Apply Corollary 1.4. 2

DEFINITION 4.2. Let k be a field containing E, and let τ : k → C be an E-homomorphism. Write
ωτ for the composite of the base change functor Mot(k) → Mot(C) with the Betti fibre functor
ωB . A Q-linear tensor functor M : RepQ(G) → Mot(k) will be said to be admissible with
respect to τ if it satisfies the following conditions:

(a) there exists an isomorphism ωτ ◦M → V (uniquely determined up to an element of G(Q));
(b) the isomorphism in (a) and the Hodge structure on ωτ ◦M define a G(Q)-conjugacy class of

homomorphisms S→ GR; this should be contained in X;
(c) the action of Gal(kal/k) on ωpf ◦M is trivial;
(d) there exists an étale p-integral structure on M .

LEMMA 4.3. IfM is admissible with respect to oneE-homomorphism k → C, then it is admissible
with respect to all.

PROOF. The proof is similar to that of (Milne 1994b, 3.29). 2

An M as in the lemma will simply be called admissible.

DEFINITION 4.4. For any field k containing E(G,X) and admitting a complex embedding, define
Ap(k) to be the set of triples (M,ηp,Λp) consisting of
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• an admissible Q-linear tensor functor M : RepQ(G)→Mot(k);
• an isomorphism of tensor functors ηp : Ap

f ⊗ V → ωpf ◦M ; and
• an étale p-integral structure Λp on M .

An isomorphism from one such triple (M,ηp,Λp) to a second (M ′, ηp′,Λ′p) is an isomorphism
M → M ′ of Q-linear tensor functors mapping ηp to ηp′ and Λp to Λ′p. The group G(Ap

f ) acts on
Ap(k) on the right according to the rule:

(M,ηp,Λp)g = (M,ηp ◦ g,Λp), g ∈ G(Ap
f ).

Because of Lemma 4.3, Ap(k) is a functor on the category whose objects are the fields contain-
ing E(G,X) and admitting a complex embedding and whose morphisms are E-algebra homomor-
phisms.

Let (M,ηp,Λp) ∈ Ap(C), and choose isomorphisms β : ωB ◦M → Hx (some x ∈ X) and
ηp : Λ→ Λ. The composite

Ap
f ⊗ V

ηp

−−−−→ ωpf ◦M
Ap

f⊗β−−−−→ Ap
f ⊗ V

is an element gp ∈ Aut⊗(Ap
f ⊗ V ) = G(Ap

f ), and the composite

Qp ⊗Q V
Qp⊗Zpηp

−−−−−−→ ωp ⊗M
Qp⊗Qβ−−−−→ Qp ⊗ V

is an element gp ∈ Aut⊗(Qp⊗ V ) = G(Qp). The class of (x, gp, gp) in Shp(G,X)(C) is indepen-
dent of the choice of β and ηp, and the map (M,ηp,Λp) 7→ [x, gp, gp] defines a bijection

Ap(C)/≈ → Shp(G,X)(C).

THEOREM 4.5. There is a unique family of bijections

α(k) : Ap(k)/≈ → Shp(k) k a field, k ⊃ E,

functorial in k (considered as an E-algebra), and such that α(C) is the map defined above.

PROOF. The proof is similar to that of (Milne 1994b, 3.31). Alternatively, it can be deduced from
that theorem by choosing a defining representation and tensors. 2

Let k be a field containing E and admitting a complex embedding. For any admissible M :
RepQ(G)→Mot(k), define

I(M) = Aut⊗(M),
Xp(M) = Isom⊗(Ap

f ⊗ V, ω
p
f (M)),

Xp(M) = {étale p-integral structures on M}.

Then I(M) acts on Xp(M) and Xp(M) on the left, and G(Ap
f ) acts on Xp(M) on the right. We

define
M(M) = I(M)\Xp(M)×Xp(M),

regarded as a G(Ap
f )-set. An isomorphism M → M ′ induces a bijection M(M) → M(M ′)

of G(Ap
f )-sets which is independent of the isomorphism. Therefore M(M) depends only on the

isomorphism class of M , and we can define

M(G,X)(k) =
∐
M

M(M)

where M runs over the isomorphism classes of admissible M ’s.
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COROLLARY 4.6. There is a canonical bijection

M(G,X)(k)→ Shp(G,X)(k)

of G(Ap
f )-sets, functorial in k (considered as an E-algebra).

PROOF. This is a restatement of Theorem 4.5. 2

REMARK 4.7. Define Mot(p)(k) to be the category whose objects are the triples (M,Λ, ϕ) with
M in Mot(k), Λ in RepZp

(Γ), and ϕ : Λ → ωp(M) a homomorphism inducing an isomorphism
Qp⊗Λ→ ωp(M). It is a Z(p)-linear tensor category. We say that an exact Z(p)-linear tensor functor
N : RepZ(p)

(G)→Mot(p)(k) is admissible if Gal(kal/k) acts trivially on ωpf ◦N and there exists
an isomorphism ωB ◦N → Λ sending hN to hx for some x ∈ X . With the analogous definitions,

Shp(k) =
∐

I(N)\Xp(N)

where N runs over the isomorphism classes of admissible functors RepZ(p)
(G)→Mot(p)(k).

REMARK 4.8. (a) Without the condition that Z(Q) is discrete in Z(Af ), the moduli problem
will not be fine. However, the description of Shp(k) given in Theorem 4.5 will still be valid,
with appropriate changes to take account of the fact that Zp 6= Z(Z(p)), provided k is alge-
braically closed or (perhaps) a field of dimension ≤ 1 in the sense of (Serre 1962), for ex-
ample, if it is algebraically closed or is Henselian with respect to a discrete valuation whose
residue field is algebraically closed.

(b) For an algebraically closed field k of characteristic zero, define the category QMot(k) of
quasi-motives to be the “largest” Tannakian category fitting into the diagram:

QMot(k) ←−−−− RepQ(Gm)Qcm/Qx x
Mot(k) ←−−−− CM(k).

Thus, relative to the Betti fibre functors,

GQMot(k) = GMot(k) ×S (Gm)Qcm/Q.

The description of Shp(k), k algebraically closed, given in Theorem 4.5 remains valid for
Shimura varieties whose weight is not defined over Q provided one replaces Mot(k) with
QMot(k).

Shimura varieties of Hodge type

Choose a symplectic representation G ↪→ GSp(V, ψ) and a lattice V (Zp) in V (Qp) satisfying the
conditions (3.8a,b,c). Choose also a defining set of tensors t = (ti)i∈I forG in GL(V ) with ti0 = ψ.
Using the dictionary provided by Proposition 1.8, we obtain the following translation of the above.

Let k be a field containing E, and let τ be an E-homomorphism k → C. A pair M = (A, s)
consisting of an abelian variety A over k together with a family s = (si)i∈I of Hodge tensors is
admissible respect to τ if it satisfies the following conditions:

(a) there exists an isomorphism ωτ (A)→ V (Q) mapping each ti to si;
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(b) under the isomorphism in (a), hA corresponds to hx for some x ∈ X;
(c) the action of Gal(kal/k) on ωpf (A) is trivial;
(d) there exists a Γ-stable lattice Λ in ωp(A) and an isomorphism V (Zp)→ Λ sending each ti to

si.

If M = (A, s) is admissible with respect to one E-homomorphism E → C, then it admissible
with respect to all, and so we can drop the τ from the terminology.

LetM = (A, s) be admissible. We define a p-integral structure onM to be a lattice Λ in ωp(M),
stable under Γ, for which there exists an isomorphism V (Zp)→ Λ sending each ti to si. Define

I(M) = {α ∈ Aut(A) | α(si) = si ∀i ∈ I}

Xp(M) = {ηp : V (Ap
f ) ≈−→ ωpf (A) | ηp(ti) = si ∀i ∈ I}

Xp(M) = {p-integral structures on M}.

Then I(M) acts on Xp(M) and Xp(M) on the left, and G(Ap
f ) acts on Xp(M) on the right. We

define
M(M) = I(M)\Xp(M)×Xp(M),

regarded as a G(Ap
f )-set. As before,M(M) depends only on the isomorphism class of M , and we

can define
M(G,X)(k) =

∐
M

M(M)

where M runs over the isomorphism classes of admissible pairs M . Corollary 4.6 shows that there
is a canonical bijection

M(G,X)(k)→ Shp(G,X)(k)

of G(Ap
f )-sets, functorial in k (considered as an E-algebra).

REMARK 4.9. Let A be an abelian variety regarded as an object of AV(p)(k), and let AQ be the
same abelian variety regarded as an object of AV(k). Now ωp(A) and ωB(A) are lattices in ωp(AQ)
and ωB(AQ) respectively. A pair N = (A, s) consisting of an A ∈ ob(AV(p)(k)) and a family
s = (si)i∈I of tensors on A (meaning on h1(AQ)) is said to an integral admissible pair if it satisfies
the following condition:

(*) there exists an isomorphism ωB(A) → V (Z(p)) of Z(p)-modules carrying each si to ti and
hA to hx for some x ∈ X .

The map (A, s) 7→ (AQ, s, ωp(A)) defines an equivalence between the category of integral
admissible pairs and the category of triples (AQ, s,Λ) consisting of an admissible pair (AQ, s) and
an étale p-integral Λ structure on AQ. Indeed, it is clear that this is a fully faithful functor, and so
it remains to show that it is essentially surjective. Consider a triple (AQ, s,Λ). There exists an A′

in AV(p)(K0) for which there is an isomorphism A′ → A sending ωp(A′) onto Λ. We may replace
AQ with A′Q, and hence assume that, if A denotes AQ regarded as an object of AV(p)(K0), then
ωp(A) = Λ. We are given isomorphisms

β : ωB(AQ)→ V (Q), βp : ωp(A)→ V (Zp)

with certain properties. The maps Qp⊗Q β and Qp⊗Zp βp differ by an element g of G(Qp). But by
(Milne 1995b, 4.9), G(Qp) = G(Q) ·Gp(Zp), and so g = q · z. When we replace β with q ◦ β and
βp with z−1 ◦ βp we find that Qp ⊗Q β and Qp ⊗Zp βp now agree. This means that β maps ωB(A)
onto V (Z(p)), and it satisfies (*).
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5 Crystalline p-integral Structures

Let Shp(G,X) be as in the first paragraph of §4. We extend the homomorphism Qal → Cp (see §2)
to an isomorphism C→ Cp.

As we explained in (Milne 1994b), because étale p-integral structures do not reduce well, to
pass from the points on the Shimura variety with coordinates in K0 to the those with coordinates in
F, we need to replace étale p-integral structures with crystalline p-integral structures. After stating
a conjecture that would make this possible in the general case, we discuss the case of Shimura
varieties of Hodge type.

LEMMA 5.1. For any admissible tensor functor M : RepQ(G) → Mot(K0), there exists an
isomorphism

K0 ⊗ V → ωdR ◦M

carrying the filtration defined by µ−1
0 into the Hodge filtration.

PROOF. For each K0-algebra R, define F (R) to be the set of isomorphisms of R-linear tensor
functorsR⊗QV → R⊗(ωdR◦M) carrying Filt(µ−1

0 ) into the Hodge filtration. Then F is a pseudo-
torsor for the subgroup P of GK0 respecting the filtration defined by µ−1

0 on each representation of
G. This group P is a parabolic subgroup of G (Saavedra 1972, IV.2.2.5), and hence is connected
(Borel 1991, p155, 11.16). Once we show F (C) 6= ∅, so that F is a torsor, it will follow from
(Steinberg 1965) that F (K0) 6= ∅.

There is a canonical comparison isomorphism

C⊗Q (ωB ◦M)→ C⊗K0 (ωdR ◦M)

which carries the Hodge filtration on the left to the de Rham filtration on the right. By assumption,
for some x ∈ X , there exists an isomorphism

ωB ◦M ≈ Hx

preserving Hodge structures. On combining these isomorphisms, we obtain an isomorphism

C⊗Hx ≈ C⊗K0 (ωdR ◦M)

carrying Filt(µ−1
x ) to the Hodge filtration. But µ0 and µx are in the same G(C)-conjugacy class,

and so there exists an isomorphism of tensor functors

C⊗ V ≈ C⊗Hx

carrying Filt(µ−1
0 ) to Filt(µ−1

x ). 2

Let MFK0 denote the category of weakly admissible filtered K0-modules (see 3.1), and we let
MFW denote the category MF tf of (Fontaine 1983). Thus an object of MFW is a finitely gener-
ated W -module M together with a descending filtration FiltiM and σ-linear maps ϕi : FiltiM →
M satisfying certain conditions (ibid. 2.1). To give an object M of MFW that is a free W -module
is the same as to give a filtered K0-module N together with a strongly divisible lattice in N .

The functor ωdR : Mot(K0)→ModK0 has a canonical factorization into

Mot(K0)
ωcrys−−−−→ MFK0

forget−−−−→ ModK0 ;
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in fact, it factors through the category of admissible filtered modules (Fontaine 1983).

A crystalline p-integral structure on a functor M : RepQ(G) → Mot(K0) is an exact Zp-
linear tensor functor Λcrys : RepZp

(Gp) → MFW such that K0 ⊗W Λcrys = ωdR ◦M , i.e., such
that the following diagram commutes:

RepK0
(G)

K0⊗M−−−−→ K0 ⊗Mot(K0)
ωcrys−−→ MFK0

↑ ↑

RepZp
(G)

Λcrys−−−−−−−−−−→ MFW

Recall (Wintenberger 1984) that for any filtered module M , there is a canonical splitting µW of
the filtration on M , and that µW splits the filtration on any strongly divisible submodule of M .

LEMMA 5.2. Let Λcrys be a p-integral crystalline structure on an admissible tensor functor M :
RepQ(G) → Mot(K0). Then there exists an isomorphism of tensor functors W ⊗Zp Λ → Λcrys

carrying µ−1
0 into µW .

PROOF. It follows from Corollary 1.4 that there exists an isomorphism α : W ⊗Zp Λ → Λcrys,
uniquely determined up to composition with an element of Gp(W ). Let µ′ be the cocharacter of
Gp/W mapped by α to µW . We have to show that µ′ is Gp(W )-conjugate to µ−1

0 .

According to Lemma 5.1, there exists an isomorphism β : K0 ⊗Zp Λ → K0 ⊗W Λcrys carry-
ing Filt(µ−1

0 ) into Filt(µW ). After possibly replacing β with its composite with an element of (a
unipotent subgroup) of G(K0), we may assume that β maps µ−1

0 to µW . Since β can differ from
K0 ⊗W α only by an element of G(K0), this shows that µ′ is G(K0)-conjugate to µ−1

0 .

Let T ′ be a maximal (split) torus of Gp/W containing the image of µ′. From its definition, we
know µ0 factors through a specific torus T ⊂ Gp/W . According to (Demazure and Grothendieck
1970, XII.7.1), T ′ and T will be conjugate locally for the étale topology on SpecW , which in
our case means that they are conjugate by an element of Gp(W ). We may therefore suppose that
they both factor through T . But two characters of T are G(K0)-conjugate if and only if they are
conjugate by an element of the Weyl group—see for example (Milne 1992, 1.7)—and, because the
hyperspecial point fixed by Gp(W ) lies in the apartment corresponding T , Gp(W ) contains a set of
representatives for the Weyl group. Thus µ′ is conjugate to µ−1

0 by an element of Gp(W ). 2

Let N : Rep(p)(G) →Mot(p)(K0) be an admissible functor, and let π1 and π2 be the funda-
mental groups of the two categories in the sense of (Deligne 1990). Then N defines a morphism
π2 → N(π1), and we let MotN(p)(K0) denote the category of objects of Mot(p)(K0) endowed with
an action of N(π1) extending the natural action of π2. The functor N defines an equivalence of
tensor categories Rep(p)(G)→MotN(p)(K0) (ibid. 8.17).

CONJECTURE 5.3. For any admissible functorN and sufficiently large prime p (depending only on
G) there exists an exact Z(p)-linear tensor functor ω : MotN(p)(K0)→MFW such thatK0⊗W ω =
ωcrys.

The functor ω should also be compatible with the functor Vcris of (Fontaine 1990, p305).

For an admissible functor M , we let Xcrys(M) be the subset of Xp(M) consisting of the étale
p-integral structures Λ on M for which N = (M,Λ) satisfies the conjecture, and we let

Mcrys(M) = I(M)\Xp(M)×Xcrys(M).

ThusMcrys(M) ⊂ M(M), and the conjecture says that the two should be equal except possibly
for some small p.
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Shimura varieties of Hodge type

Now assume that Shp(G,X) is of Hodge type, and choose a symplectic representation G ↪→
GSp(V, ψ), a lattice V (Zp) in V (Qp), and a defining family of tensors t = (ti)i∈I as in Sec-
tion 4. Let M = (A, s) be an admissible pair. A crystalline p-integral structure on A is a strongly
divisible lattice Λ ⊂ ωcrys(A) for which there exists an isomorphism V (W ) → Λ mapping each ti
to si. The proof of Lemma 5.2 then shows that the isomorphism can be chosen so that Filt(µ−1

0 )
maps to the Hodge filtration.

Let M = (AQ, s) be admissible, and let Λ be an étale p-integral structure on M . According
to Remark 4.9, (AQ, s,Λ) defines an integral admissible pair N = (A, s) with A an object of
AV(p)(K0). The Néron criterion shows that A has good reduction, and so can be regarded as an
abelian scheme over W . Thus ωdR(A) is a W -module—denote it as ωcrys(A) when considered a
lattice in ωcrys(AQ). According to (Fontaine 1983, p91), ωcrys(A) is a strongly divisible lattice in
ωcrys(AQ).

CONJECTURE 5.4. For all integral admissible pairs N = (A, f), ωcrys(A) is a crystalline p-integral
structure on (AQ, f), i.e., there exists an isomorphism of W -modules V (W ) → ωcrys(B) mapping
each ti to si, except possibly for some small p.

REMARK 5.5. The conjecture is true for the Siegel modular variety or, more generally, a Shimura
variety of PEL-type. Note that in order to prove it for N = (A, s), it suffices to show that, for some
ring R faithfully flat over W , there is an isomorphism

V (R)→ R⊗W ωcrys(A)

mapping each ti to si (same proof as Corollary 1.4), or even that for some such R, there is an
isomorphism

R⊗Zp Vcris(ωcrys(A))→ R⊗W ωcrys(A)

mapping each ti to si. I had hoped that, in analogy with the published proofs of similar theorems,
the proposition stated in (Fontaine 1990, p305) was derived by showing that the base change map

Acrys ⊗Zp Vcris(D)→ Acrys ⊗W D,

is an isomorphism, but Fontaine assures me that this is not the case.

For an admissible pair M = (AQ, s), we let Xcrys(M) be the subset of Xp(M) consisting of
étale p-integral structures Λ on M for which the corresponding pair (A, s) satisfies the conjecture,
and we let

Mcrys(M) = I(M)\Xp(M)×Xcrys(M) ⊂M(M).

6 The Conjecture of Langlands and Rapoport

Let Shp(G,X) be as in the first paragraph of Section 4. Throughout this section, K will be a finite
extension of K0 contained in Cp, and OK will be its ring of integers.

Let s be a Hodge class on an abelian variety over K, and assume that A has good reduction to
A0 over F. We say that s has good reduction if there exists a tensor s0 on h1(A) in PMot(F) such
that s0(`) = s(`) for all ` (including p). Then s0 is uniquely determined by s, and is called the
reduction of s. An abelian motive M = h(A, e,m) has good reduction if both A and e have good
reduction, to A0 and e0 say, in which case we set M0 = h(A0, e0,m). Potential good reduction can
be defined similarly.
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DEFINITION 6.1. An exact Q-linear tensor functor M : RepQ(G) → Mot(K) has good reduc-
tion ifM(ξ) has good reduction for all ξ in RepQ(G) and there exists a functorM0 : RepQ(G)→
PMot(F) such that M(ξ)0 = M0(ξ) for all ξ.

Clearly M0 is uniquely determined by M (if it exists).

PROPOSITION 6.2. If M : RepQ(G) → PMot(F) has good reduction to M0, then there is a
canonical G(Ap

f )-equivariant mapMcrys(M)→M(M0).

PROOF. Since ωpf ◦M = ωpf ◦M0, it is clear that Xp(M) = Xp(M0). Similarly, ωcrys(M) =
ωcrys(M0), and so it follows from the definitions that there is a map Xcrys(M)→ Xp(M0). Finally,
an automorphism of M induces an automorphism of M0. 2

EXAMPLE 6.3. (a) For any special x ∈ X , there exists a functor Mx : RepQ(G)→ CM(Qal),
which will be defined over some K ⊂ Qal finite over K0. Call a functor M : RepQ(G) →
Mot(K) special if it becomes isomorphic to such an Mx over some (possibly larger) K.
Every special functor has good reduction: if M ≈Mx, then M0 = R ◦Mx.

(b) If M factors through LMot(K), then M has good reduction.
(c) Suppose Shp(G,X) is of Hodge type, and let M correspond to (A, s). Then M has good

reduction if and only if each si in s has good reduction.
(d) Consider an admissible pair N = (A, s). Suppose that there exists an admissible pair N ′ =

(A′, s′) for which there exists an isomorphism A0 → A′0 carrying si(`) to s′i(`) for all `
(including ` = p). If N ′ has good reduction, then so also does N .

PROPOSITION 6.4. Every M0 arising by reduction from an admissible M is special in each of the
following two cases:

(a) the derived group of G is simply connected;
(b) every M0 arising by reduction from an admissible M also arises by reduction from a special

admissible M (not necessarily defined over K0).

PROOF. (a) It is possible to check the criterion (3.6).

(b) This is obvious. 2

Define
M(G,X)(W ) =

∐
Mcrys(M)

where M runs over the isomorphism classes of admissible M ’s having good reduction.

COROLLARY 6.5. If Shp(G,X) satisfies at least one of the two conditions in 6.4, then there is a
canonical mapM(G,X)(W )→M(G,X)(F) of G(Ap

f )×Gal(K0/Ev)-sets.

We now suppose that Shp(G,X) has a canonical integral model. In particular, this means that
there is a surjective reduction map

Shp(K0) = Shp(W ) −−−−→ Shp(F)

of G(Ap
f ) × Gal(K0/Ev)-sets. When Shp(G,X) satisfies the at least one of the two conditions in

6.4, then we get a diagram
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M(W ) ⊂M(K0) ≈−−−−→ Shp(G,X) = Shp(W )y y
M(F) Shp(F)

in which the second vertical map is surjective. We would like to prove that the upper mapM(W )→
Shp(W ) induces an isomorphismM(F)→ Shp(F).

The Siegel modular variety

In this case, the canonical integral model is the moduli variety constructed by Mumford, and it is
now straightforward to verify that the mapM(W ) → Shp(W ) induces an isomorphismM(F) →
Shp(F), i.e., that the conjecture of Langlands and Rapoport holds for Shp(G,X).

The conjecture for a subvariety

We now consider the case that there is an inclusion (G,X,Kp) ↪→ (G′, X ′,K ′p), inducing an inclu-
sion Shp(G,X) ⊂ Shp(G′, X ′), and that the conjecture is known for Shp(G′, X ′). More explicitly,
we assume that Shp(G′, X ′) has a canonical integral model, and that there is a commutative diagram

M′(W ) ≈−−−−→ Sh′p(W )y y
M′(F) ≈−−−−→ Sh′p(F)

ofG(Ap
f )×Gal(F/k(v))-sets. Here, and throughout this subsection, we abbreviateM(G′, X ′) and

Shp(G′, X ′) toM′ and Sh′p.
Let Shp(G,X) denote the integral closure of Shp(G,X)/Ev

in Shp(G′, X ′)/Ov
. We obtain a

commutative diagram:

Shp(W ) ↪→ Sh′p(W )

↓ ↓

Shp(F) ↪→ Sh′p(F).

Moreover, we have a commutative diagram:

Shp(W ) ↪→ Sh′p(W )

↑ inj ↑≈

M(W ) → M′(W ).

The mapM(W )→ Shp(W ) is injective, and so therefore isM(W )→M′(W ).

Finally, we have a commutative diagram:

Mcrys(W ) → M′(W )

↓ ↓

M(F) → M′(F).
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LEMMA 6.6. The canonical mapM(F)→M′(F) is injective.

PROOF. Straightforward. 2

The above four commutative squares form the four complete sides of the following cube:

Shp(W ) ——→ Sh′p(W )

↗ | ↗ |

M(W ) — ——→ M′(W ) |

| ↓ | ↓

| Shp(F) | —→ Sh′p(F)

↓ ↓ ↗

M(F) — ——→ M′(F)

PROPOSITION 6.7. LetMlift(F) be the image ofM(W ) → M(F). Then there is a unique map
Mlift(F) → Shp(F) making the bottom face (and hence the whole cube) commute. It is injective,
and its image is the image ofM(W )→ Shp(F).

PROOF. Elementary. 2

Shimura varieties of Hodge type

Let Shp(G,X) be of Hodge type, and choose a symplectic embedding G ↪→ GSp(V, ψ), a lattice
V (Zp), and a defining family of tensors t = (ti)i∈I as before. It is known (Vasiu 1995) that
Shp(G,X) has a canonical integral model.

6.8. The points ofM(F) are in natural one-to-one correspondence with the isomorphism classes
of triples (A, s, ηp) with A in AV(p)(F), s a family of tensors on h1(A) indexed by I , and ηp an
isomorphism (V (Ap

f ), t)→ (ωpf (A), s) satisfying the following conditions:

(a) for some special point x ∈ X , (AQ, s) ≈ (Ax, sx)0; (when Gder is simply connected, this is
equivalent to (AQ, s) satisfying the conditions (3.6));

(b) there exists an isomorphism (V (W ), t) → (ωcrys(A), s) such that µ0(p−1)V (W ) maps onto
φωcrys(A).

6.9. The points of Shp(F) are in natural one-to-one correspondence with the isomorphism classes
of triples (A, s, ηp), as in the above paragraph, satisfying the following condition: there exists an
abelian scheme Ã over W and a family s̃ of Hodge tensors on Ã indexed by I such that

(a) the pair (Ã, s̃) has good reduction, and (Ã, s̃)0 ≈ (A, s);
(b) there is an isomorphism (ωB(Ã), s̃)→ (V (Z(p)), s) sending h

Ã
onto hx for some x ∈ X .

Identify both M(F) and Shp(F) with subsets of Shp(G(ψ), X(ψ))(F), and let Mlift(F) =
M(F) ∩ Shp(F).

PROPOSITION 6.10. There is a canonical injection from the subsetMlift ofM(F) to Shp(F) with
image the set of points represented by a triple (A, s, ηp) satisfying the conditions:
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(a) for some special point x ∈ X , (AQ, s) ≈ (Ax, sx)0;
(b) there exists an isomorphism (V (W ), t) → (ωcrys(A), s) such that µ0(p−1)V (W ) maps onto

φωcrys(A).

PROPOSITION 6.11. Assume Gder is simply connected. ThenMlift(F) =M(F).

PROOF. The choice of an ηp defines a lifting Ã of A (Norman 1981, p433), which we want to show
satisfies the conditions of (6.9). Note that for each i, we obtain a tensor si in ωpf (Ã), ωcrys(Ã), and

ω̄(A). For each Q-algebra R, let F (R) be the set of isomorphisms ωB(Ã) → V (Q) sending each
si to ti. Then F is a G-torsor, and hence defines an element of H1(Q, G). This element maps to
zero inH1(Q, Gab), essentially because we know the conjecture for Shimura varieties of dimension
zero, and it also maps to zero in H1(Q`, G) for each ` (including p and∞). Because Gder satisfies
the Hasse principle, this implies that the element is zero in H1(Q, G), and therefore there is a
β ∈ F (Q). Now each of the si on Ã is rational and in the zeroth level of the Hodge filtration, and
so is a Hodge class. Finally Condition (3.6a) implies that the homomorphism β : ωB(Ã) → V (Q)
just constructed satisfies condition (4.2b). 2

COROLLARY 6.12. Assume Gder is simply connected. The conjecture of Langlands and Rapoport
is true for Shp(G,X) if every admissible pair (A, s) satisfies the following conditions:

(a) the elements of s have good reduction (for example, if (AQ, s)0 ≈ (Ax, sx)0 for some special
x ∈ X , or Shp(G,X) is of Lefschetz type);

(b) there exists an isomorphism (V (W ), t)→ (ωcrys(A), s).

REMARK 6.13. The maps L(F) → M(F) → Shp(F) we have defined are very natural, and their
composite is surjective if and only if every p-integral admissible pair (A, s) satisfies the conditions
in the corollary. Conceivably, the conjecture could still be correct without these conditions holding,
but this appears highly improbable.

7 Shimura Varieties of Dimension 0

As was pointed out in (Pink 1989), one should consider a slightly more general notion than that
defined above, namely, a Shimura variety should be defined by

(a) a connected reductive group G over Q whose connected centre is split by a CM-field;
(b) a continuous left homogeneous space X for G(R);
(c) a continuous G(R)-equivariant map x 7→ hx : X → Hom(S, GR) with finite fibres such that

each hx satisfies Deligne’s axioms.

In this paper, we shall allow this extra generality only in the case of a Shimura variety of di-
mension zero. Thus, a Shimura variety of dimension zero is defined by a torus T over Q that is split
by a CM-field, a finite (discrete) set X on which T (R) acts transitively, T (R) × X → X , and a
homomorphism h : S→ TR. The Shimura variety then is the profinite variety with complex points

Sh(T,X, h)(C) = T (Q)−\X ×G(Af ).

It has a canonical model over the field of definition E(T, h) of µh.

EXAMPLE 7.1. (a) Consider (G,X, h) with G = Gm, X equal to the set of isomorphisms Z→
Z(1), and h(z) = zz̄. Then Sh(Gm, X, h) ≈ Gal(Qab/Q).
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(b) Consider the pair (G(ψ), X(ψ)) defining the Siegel modular variety, and let c : G(ψ)→ Gm

be the usual homomorphism. Define X(ψ)→ X to send x to the unique λ such that λ ◦ ψ is
a polarization of V (ψ). Then we get a map Sh(G(ψ), X(ψ)) → Sh(Gm, X, h) that induces
an isomorphism

π0(Sh(G(ψ), X(ψ)))→ Sh(Gm, X, h).

(c) The last example generalizes. Consider a pair (G,X) defining a Shimura variety, and let
c : G → Gab be the maximal commutative quotient of G. The homomorphism hX = c ◦ hx
is independent of x ∈ X . There is a triple (Gab, Xab, hX) defining a Shimura variety of
dimension zero, and a canonical equivariant map

π0(Sh(G,X))→ Sh(Gab, Xab,

which is an isomorphism if Gder is simply connected.

[[Now state and prove a “Langlands-Rapoport” conjecture for Shimura varieties of dimension
zero.]]

8 The Functorial Form of the Conjecture

In this section, all reductive groups will have simply connected derived groups.

We now consider triples (G,X,Kp) where G is a reductive group over Q, X is a homogeneous
G(R)-set equipped with a homomorphism x 7→ hx : X → Hom(S, GR), and Kp is a hyperspecial
subgroup of G(Qp) (which should be thought of as a Zp-model of GQp). We assume that either
(G,X) defines a Shimura variety of dimension zero in the sense of the last section or a Shimura
variety in the usual sense. The set of such triples forms a category with the obvious notion of
morphism, and (G,X,Kp) 7→ Shp(G,X) is a functor on this category.

CONJECTURE 8.1 (FUNCTORIAL FORM OF THE CONJECTURE). There is an isomorphismL(F)→
Shp(F) of functors from the category of triples (G,X,Kp) to the category ofG(Ap

f )×Gal(F/k(v))-
sets.

[[Since k(v) depends on (G,X), this has to be explained.]]

In particular, this implies that, for a given triple (G,X,Kp), the map L(G,X,Kp)(F) →
Shp(G,X)(F) is equivariant for the action of Gad(Z(p))+. Together with the results of the last
section, this shows that the “functorial form of the conjecture” implies the “refined form of the
conjecture” in (Pfau 1993).

Consider a morphism (G,X,Kp) → (G′, X ′,K ′p) inducing an isomorphism Gder → G′der.
Then the diagram

Shp(G′, X ′)(F) ← Shp(G,X)(F)

↓ ↓

Shp(G′ab, X ′ab) ← Shp(Gab, Xab)

is cartesian, i.e., it realizes Shp(G,X)(F) as a fiber product.
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CONJECTURE 8.2. For any morphism (G,X,Kp)→ (G′, X ′,K ′p) inducing an isomorphismGder →
G′der, the diagram

L(G′, X ′) ← L(G,X)

↓ ↓

L(G′ab, X ′ab) ← L(Gab, Xab)

is cartesian.

Once Conjecture 8.2 is acquired, standard arguments (Milne 1990a, II.9) together with (Milne
1992, 4.19) show that, in order to prove the functorial form of the conjecture of Langlands and
Rapoport for all Shimura varieties of type (A,B,C,DR) it suffices to prove it for certain simple
Shimura varieties of Hodge type.

REMARK 8.3. In (Pfau 1993), Conjecture 8.2 is proved when the kernel of G → G′ has trivial
H1. Pfau has announced a proof of the general case of the conjecture in an e-mail message whose
TEX-code the author has not been able to compile, and which he has therefore not been able to read.4
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1987, 113–220.

4See Pfau 1996a

29



Milne, J., Points on Shimura varieties mod p, Proc. Symp. Pure Math. 33, 1979a, part 2,
165–184.

Milne, J., Etude d’une class d’isogénie, in Variéties de Shimura et Fonctions L, Publications
Mathétiques de l’Université Paris 7, 1979b, 73–81.
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Montréal, 1992, 153-255.

Milne, J., Motives over finite fields, in Motives (Eds. U. Jannsen, S. Kleiman, J.-P. Serre), Proc.
Symp. Pure Math., AMS, 55, Part 1, pp401–459, 1994a.

Milne, J., Shimura varieties and motives, in Motives (Eds. U. Jannsen, S. Kleiman, J.-P. Serre),
Proc. Symp. Pure Math., AMS, 55, Part 2, pp447–523, 1994b.

Milne, J., Lefschetz motives. Incomplete preliminary draft, June 24, 1995a, 28pp.5

Milne, J., Hodge and Tate classes, and abelian motives over finite fields. Incomplete preliminary
draft, June 3, 1995b.6

Morita, Y., Reduction modulo P of Shimura curves, Hokkaido Math. J., 10, 1981, 209–238.

Norman, P., Lifting abelian varieties, Invent. Math., 64, 1981, 431–443.

Pfau, M., The reduction of connected Shimura varieties at of good reduction, Thesis, University
of Michigan, 1993, and subsequent papers.7

Pink, R., Arithmetical compactification of mixed Shimura varieties, Dissertation, Bonn 1989.

Reimann, H., and Zink, T., The good reduction of Shimura varieties associated to quaternion
algebras over a totally real field, Preprint 1991.

Saaavedra Rivano, N., Catégories Tannakiennes, Lecture Notes in Math., Vol 265, Springer,
Heidelberg, 1972.

Scholl, A., Classical Motives, Proc. Symp. Pure Math. 55, Part 1, 1994, 163–187.

Serre, J.-P., Cohomologie Galoisienne, 1964.

Serre, J.-P., Groupes de Grothendieck des schémas en groupes réductifs déployés, Publ. Math.
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