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Introduction.

This article surveys what is known to be true, or is conjectured, con-
cerning the rationality properties over Q of automorphic functions,
holomorphic automorphic forms, and the Fourier-Jacobi series of au-
tomorphic forms.

The first chapter reviews the theory of abelian varieties with poten-
tial complex multiplication over Q and the motives that are built out
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of them. The constructions and results in this chapter are the basis
of the statements in the succeeding chapters.

The second chapter reviews the definition and basic properties of
Shimura varieties, and then states the main results: every Shimura
variety has a canonical model over its reflex field, and the conjugate
of the canonical model by an element of Gal(Q*/Q) is again the
canonical model of a Shimura variety.

Holomorphic automorphic forms can be interpreted as the sections
of certain vector bundles, called automorphic vector bundles, on a
Shimura variety. These bundles are defined in the Chapter III, and the
main theorems for them, which parallel those for Shimura varieties,
are stated. In particular, every automorphic vector bundle has a
canonical model over a specific number field, and we can define a
holomorphic automorphic form to be rational over a field if it is a
section of the canonical model of the vector bundle over that field.

As one approaches the boundary of a Hermitian symmetric domain,
Hodge structures degenerate into mixed Hodge structures, and as one
approaches the boundary of a Shimura variety, abelian varieties de-
generate into one-motives. The theories of mixed Hodge structures
and of one-motives are reviewed in Chapter IV.

In contrast to the Baily-Borel compactification of a Shimura variety,
the method of toroidal compactification provides smooth compactifi-
cations of Shimura varieties. In Chapter V we describe these com-
pactifications, and suggest how the various isomorphisms constructed
in Chapters II and III should extend to the compactified varieties.

The study of the boundary of a Shimura variety suggests the intro-
duction of a new object, generalizing that of a Shimura variety, which
we here call a mixed Shimura variety. These varieties are defined in
Chapter VI, and we indicate there how the results in Chapters II and
III should extend to them. To give the reader some idea of how the
notion of a mixed Shimura variety relates to that of a Shimura vari-
ety, we list some of the objects attached to a Shimura variety and the
corresponding object attached to a mixed Shimura variety:

SHIMURA VARIETY MIXED SHIMURA VARIETY
bounded symmetric domain Siegel domain (of the third kind)
Hodge structure mixed Hodge structure
reductive group algebraic group with a

3-step filtration
abelian variety one-motive

motive mixed motive.
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Roughly speaking, everything that is true for Shimura varieties should
also be true for mixed Shimura varieties. For example, it will probably
turn out to be most natural to study Hasse-Weil zeta functions in
the context of mixed Shimura varieties rather than Shimura, varieties.
Lest the reader fear an unending hierachy, I mention that the study of
the boundary of a mixed Shimura variety leads only to mixed Shimura
varieties, not to some higher order object.

In the last chapter, we give a formal-algebraic definition of Fourier-
Jacobi series, and suggest a theory for them also over Q.

The contents of the second and third chapters will eventually be
part of a book that I am currently writing on Shimura varieties. Once
the theory outlined in the last four chapters is complete, a second book
will be appropriate. Lest the reader think that that will then be the
end of the subject, I point out that the theory for a general Shimura
variety will then be in roughly the same happy state as the theory for
elliptic modular curves was at the time of the publication of Shimura’s
book, Shimura (1971b), and that 1971 was the start of an explosion
of interest in elliptic modular curves that continues to this day.

One of my goals in this article has been to write out the implications
of Deligne’s vision that Shimura varieties should be thought of as
moduli varieties of motives and mixed Shimura varieties as the moduli
varieties of mixed motives. I wish to thank Deligne for his patient
explanation of his ideas to me over the years, and I mention specifically
that the definition of a mixed Shimura variety in Chapter VI and
the formal-algebraic definition of Fourier-J acobi series in Chapter VII
were suggested to me by him.

In this article, I have not attempted to describe in detail the ori-
gins of theorems, but have largely confined myself to listing the most
recent work. Thus it is appropriate to mention that most of the ques-
tions discussed in this article first arose in the work of Shimura, and
were often answered by him (or his students) in key cases. See in
particular his talks to the International Congresses (Shimura 1968,
1971a, 1978a).

Finally I wish to thank Don Blasius and Michael Harris for many
enjoyable and illuminating discussions on these questions; also I would
like to thank them, Greg Anderson, and Pierre Deligne for their cor-
ments on parts of earlier drafts of this manuscript.

Conventions. All vector spaces and locally free sheaves are of finite
rank. We use the same letter for a vector bundle and its associated
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locally free sheaf of sections.

A variety Y is a geometrically reduced scheme of finite-type over a
field (it is not necessarily connected). For a variety Y over a field k and
a homomorphism o : k — k', we write oY for Y Xgpec(k),0 Spec(k’)
(the polynomials defining oY are obtained from those defining Y by
applying o to their coefficients). When it is not necessary to mention
o, we write Yy for Y.

The following construction will be often used: let G be an algebraic
group over @ acting on a variety Y on the left, and let P be a right
principal homogeneous space for G; then P x Y, the variety obtained
from Y “by twisting by P”, is the variety over @ such that, as a

Gal(Q/Q)-set,
(P x“Y)(@Q") = P(@") xY(Q@")/ ~, (pg,y) ~ (»,9y), g € G(Q™).

For an algebraic group G over R, G(R)* is the identity component of
the topological group G(R) and G(R) is the inverse image of G*d(R)*
in G(R); also G(Q)* = G(Q) N G(R)* and G(Q)+ = G(Q) N G(R)4.
An algebraic group is said to be simple when all its proper normal
closed subgroups are finite. When an algebraic group G is defined over
a field k, then all statements are relative to k; for example, “simple”
means “k-simple”, subgroups are defined over k, and representations
take values in k-vector spaces.

When k is a field, k* is an algebraic closure of k, k*°P is a separable
algebraic closure, and k*" is the maximal abelian extension of k. We
always take @* to be the algebraic closure of @ in C.

For a number field E, Ag is the ring of adéles of E and E the ring
of finite adeles. We write A for Ag, Ay for Q, and A’ for C x As.
The reciprocity law recg : A} — Gal(E*"/FE) is normalized so that a
local uniformizing element maps to the inverse of the usual (number-
theorists) Frobenius automorphism. Complex conjugation is denoted
by ¢ or by a + @, and [+ ] is the equivalence class of * .

Except in Chapter V, the symbol TF denotes the restriction of
scalars (in the sense of Weil) of G,, from F to Q.

When V is a vector space over a field k, and k' is an extension of
k, we sometimes denote V @ k' by V(') or Vys.

I. ABELIAN VARIETIES WITH COMPLEX MULTIPLICATION

In this chapter we review the theory of abelian varieties with po-
tential complex multiplication over Q, the category of motives they
generate, and their periods.
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1. Tannakian categories.

The Pontryagin duality theorem allows one to recover a locally com-
pact abelian group from its character group. Tannaka (1938) showed
that a compact group can be recovered from the category of contin-
wous finite-dimensional real representations of the group. The theory
of Tannakian categories allows one to recover an affine group scheme
from its category of finite-dimensional representations, and it gives an
axiomatic characterization of the categories that arise in this fashion.
Tt therefore provides a way of realizing certain abstractly defined cat-
egories as the category of representations of an affine group scheme,

A tensor category (C,®) is a category C together with a functor
® : C x C — C and sufficient constraints so that the tensor product
of any finite unordered set of objects is well-defined up to a unique
isomorphism. In particular, there is an identity object 1, defined to be
the tensor product of the empty set of objects, which has the property
that

X1=X=1®X

for all objects X of C.

A tensor category (C,®) is said to be abelian when C is abelian
and ® is bi-additive. Then k =4¢ End(1) is a commutative ring which
acts on all objects of C in such a way that all morphisms of C are
L-linear and @ is bilinear; we call (C,®) a k-linear abelian tensor
category (in an alternative terminology, (C,®) is called an abelian
tensor category with coefficents in k). For example, Vecy is a k-linear
abelian tensor category.

A tensor category is said to be rigid if every object X of C has a
dual X and these duals have certain natural properties, for example,
Hom(T ® X,Y) = Hom(T, X @Y').

A functor from one tensor category to a second 1s called a tensor
functor if it carries tensor products into tensor products (including
the identity object to the identity object). A morphism of tensoT
functorsc: FF — F ’ is a morphism of functors commuting with tensor
products, i.e., such that the diagrams

v _® L F1)  F(X@Y) — F(X)®F(Y)

” l lcx@)y lcx@)cxf

v &, 1) F(XQY) — F(X)®F(Y)
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commute. (The horizontal isomorphisms are part of the data that F
and F' are tensor functors.)

Let k be a field. A k-linear neutral Tannakian category is a rigid
k-linear abelian tensor category for which there exists an exact k-
linear tensor functor w : C — Veci. Such a functor is called a
fibre functor for (C,®). Since we shall never need to consider non-
neutral Tannakian categories, from now “Tannakian category” means
“neutral Tannakian category”.

Example 1.1. For any affine group scheme G over a field k, the cat-
egory Rep,(G) of finite-dimensional representations of G on k-vector
spaces is a k-linear Tannakian category with an obvious fibre func-
tor, namely (V,¢£) — V. (An affine group scheme over k is an affine
scheme G over k together with morphisms G x G — G (multiplica-
tion), G — G (inverse), Spec k — G (identity element) satisfying the
usual axioms. Thus G is an algebraic group if it is of finite-type. Ev-
ery affine group scheme is a projective limit of algebraic groups, and
conversely every projective system of affine algebraic groups has an
affine group scheme as limit.)

If w is a fibre functor for the k-linear Tannakian category (C, ®) and
Ris a k-algebra, we define wp to be the tensor functor X — w(X)®@xR
from (C,®) to the category of R-modules. When w’ is a second fibre
functor, Isom®(w,w’) denotes the functor from the category of k-
algebras to that of sets,

R Isom®(wp, isomorphisms of tensor functors).
YR P

Also Aut®(w) denotes Isom® (w,w).

THEOREM 1.2. Let (C,®) be a Tannakian category with fibre functor
w. The functor Aut®(w) is represented by an affine group scheme G
over k, and w defines an equivalence of tensor categories

(C,®) — (Rep,(G), ®).

If W' is a second fibre functor, then the functor Isom®(w,w") is repre-
sented by an affine scheme P(w,w’) which is a principal homogeneous
- Space for G. The affine group scheme G’ representing Aut®(w') is the
inner form of G obtained from G by twisting by P(w,w’).

PRrRooF: See for example Deligne and Milne (1982), 2.11, 3.2.
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The picture to keep in mind when thinking of Tannakian categories
is the following. Let X be a connected topological manifold, and let
C be the category of local systems of Q-vector spaces on X (= locally
constant sheaves of Q-vector spaces). When endowed with its usual
tensor structure, this category is Tannakian. The choice of a point
z of X determines a fibre functor w, : V +— Vg (stalk of V at z)
for C, and the fundamental group m (X, r) acts on V;; MOreover wy,
defines an equivalence from (C,®) to the tensor category of rational
representations of the abstract group 71 (X, z). If y is a second point,
then the set P(z,y) of paths from z to y (taken up to homotopy), is
a principal homogeneous space for m1(X, ), and 71 (Y,y) is the inner
form of 7 (X, z) obtained from m; (X, z) by twisting by P(z,y).

Example 1.3. To give a grading on a vector space is the same as to
give a representation of G,, on V: the grading V = @V ™ corresponds
to the representation for which G,, acts on V™ through the character
Yn = (t — t"). The category of graded vector spaces over k has an
obvious k-linear Tannakian structure, and our observation shows that
the associated affine group scheme is G,.

Example 1.4. Let C be the category of continuous representations
of Gal(k*P/k) on vector spaces over Q. This is a Q-linear Tan-
nakian category with the forgetful functor as fibre functor. Write
Gal(k**?/k) as a limit lim Gal(K/k) of finite Galois groups, and give

each group Gal(K/k) the structure of a constant algebraic group of
dimension zero. Then Gal(k*?/k) acquires the structure of a pro-
algebraic group, and this is the affine group scheme attached to C.

Remark 1.5. (a) A homomorphism f : G — G' of affine group
schemes over k defines a tensor functor F' : Rep,.(G') — Rep.(G)-
Conversely, a tensor functor of k-linear Tannakian categories F !
(C,®) — (C',®) carrying a fibre functor w' into a fibre functor W
defines a homomorphism of affine group schemes f o Aut®(W') —
Aut®(w). Moreover, f is injective if and only if the image of F' gen-
erates Rep,(G) as a Tannakian category!, and f is surjective if and
only if F is fully faithful and the essential image is stable under the
formation of subquotients.

1We say that a set of objects Sina Tannakian category C generates C if there is no
full Tannakian subcategory of C containing all objects of § and their subquotients
other than C itself.
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(b) Let (C,®) be a k-linear Tannakian category, and let k' be a
finite separable extension of k. The category Cy is defined to be the
pseudo-abelian envelope? of the category whose objects are those of
C and whose morphisms are given by

Home,, (X,Y) = Homc(X,Y) Q@ k.

It is a k'- linear Tannakian category. Any fibre functor w of C extends
in a natural way to a fibre functor w’ of Cy/, and the affine group
scheme attached to (Cyr,w’) is Gyr.

Graded Tannakian categories.

Definition 1.6. A grading of a k-linear Tannakian category C can
be described as either:

(a) a grading X = ®,,e2X™ on each object of C that depends
functorially on X and is compatible with tensor products in the sense
that (X ® YY) = @rps=m X" QY®; or

(b) a central homomorphism w : G, — G, G = Aut®(w), for some
fibre functor w. Central means that the image is contained in the
centre of G. Note that, by (1.2), the centre of G is independent of
the choice of w. A grading of C defines a grading on w(X) for each
object X and fibre functor w; we have w(X)" = w(X™), which is the
subspace of w(X) on which w(z) acts as 2™.

Filtrations of Rep,(G). Let V be a vector space. A homomorphism
p: Gy — GL(V) defines a filtration

- DFPVOFMYV 5. FPV =@,V

of V, where V = @V is the grading defined by p.

Let G be an algebraic group over a field k of characteristic zero.
A homomorphism p : G,, — G defines a filtration F* on V for each
representation (V, €) of G, namely, that corresponding to £ o ji. These
filtrations are compatible with the formation of tensor products and
duals, and they are exact in the sense that V +— Gry(V) is exact.

2An additive category is pseudo-abelian or (Karoubian) if, for every morphism
P: X — X such that p2 = p, the kernel of p — 1 exists. For any additive category
C, there is a pseudo-abelian category PC and a functor C — PC that is universal
among functors from C into pseudo-abelian categories. The objects of PC are
Pairs (X, p) with p as above, and the morphisms are defined so as to make (X,p)
the image of p in the enlarged category.
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Conversely, any functor (V,§) +— (V,F) from representations of G
to filtered vector spaces compatible with tensor products and duals
which is exact in this sense arises from a (nonunique) homomorphism
1 G,, — G. We call such a functor a filtration F" of Rep,(G), and a
homomorphism i : G, — G defining F" is said to split F". We write
Filt(p) for the filtration defined by p.

For each p, we define FPG to be the subgroup of G of elements
acting as the identity map on @;F iy /FPV for all representations V
of G. Clearly FPG is unipotent for p > 1, and F°G is the semi-direct
product of F'G with the centralizer Z (p) of any p splitting F".

PROPOSITION 1.7. Let G be a reductive group over a field k of char-
acteristic zero, and Iet F" be a filtration of Rep,(G). From the adjoint
action of G on g =ar Lie(G), we acquire a filtration of g.

(a) F°G is the subgroup of G respecting the filtration on cach rep-
resentation of G; it is a parabolic subgroup of G with Lie algebra
FOg.

(b) F'G is the subgroup of FO°G acting trivially on the graded
module &(FPV/FPT1V) associated with each representation of Gj; it
is the unipotent radical of F°G, and Lie(F1G) = F'g.

(¢) The centralizer Z(p1) of any p splitting F" is a Levi subgroup of

FOG; therefore, Z(y) — F°G/F'G, and the composite ji of jp with
F°G — F°G/F'G is central.

(d) Two cocharacters j and 1! of G define the same filtration of G
if and only if they define the same group FOG and i = ji'; ju and o
are then conjugate under F'G.

PROOF: See Saavedra (1972), especially IV.2.2.5.

Remark 1.8. It is sometimes more convenient to work with ascend-
ing filtrations. To turn a descending filtration F" into an ascending
filtration W., set W; = F~% if pu splits F" then z — pu(z)~" splits W.
With this terminology, we have WoG = W_1G X Z().

Notes. The essentials of the theory of Tannakian categories are due
to Grothendieck. A full account of the theory can be found in Saave-
dra (1972) and a more succinct account in Deligne and Milne (1982)-
The paper Deligne (1989) fills an important gap in the theory of non-
neutral Tannakian categories.

2. Hodge structures.
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A real Hodge structure is a real vector space V together with a de-
composition

VeC=opVr?

such that the complex conjugate of VP?is V&P all p, q. The category
of such structures has a natural Tannakian structure, and the affine
group scheme attached to the category and the forgetful fibre functor
is S =41 Res¢/gGrm. According to Deligne’s convention, z € S(R) =
C* acts on VP9 as multiplication by z7?Z79. A Hodge structure is
said to be of weight n if p+ q¢ = n for all (p,q) with V77 £ 0. The
type of a Hodge structure is the set of pairs (p, q) for which VP9 #£ 0.
The Hodge filtration defined by a Hodge structure is

°°'DFPDFP+1D"', Fp::@rzpvr’s.
If V has weight n, then
Fq _ (@SZQ—V—.S,T) — @quvr’s — ®1‘Sn_qu’s,

and so Vg is the direct sum of FP and F9 whenever p+q = n + 1.
Conversely, if F is a finite descending filtration of V¢ such that Vg =
FP @ F9 whenever p+ g = n + 1, then F’ defines a Hodge structure
of weight n on Vg by the rule VP4 = FP N F9,

From now on, we shall regard a real Hodge structure as being a
pair (V,h) consisting of a real vector space V and a homomorphism
h:S — GL(V). We identify S¢ with G,, x G, in such a way that
S(R) — S(C) becomes z — (z,tz). The Hodge filtration on V is then
the descending filtration defined by pp : G, — GL(Vg), un(z) =
hc(z,1), and the weight grading is defined by wy, : 6, — GL(V),
wp(r) = h(r~1), r € R,

For any k C R, a Hodge k-structure is a vector space V over k
together with a Hodge structure on V @i R such that the weight
grading is defined over k. The category of such structures is a k-
linear Tannakian category Hdgx. A Hodge Q-structure will simply
be called a Hodge structure. The Mumford-Tate group MT(V,h) of
a Hodge structure is the smallest Q-rational algebraic subgroup of
GL(V) x Gy, such that MT(V,h)c contains the image of (yp,1) :
G,, = GL(V) X G,,. It is a connected subgroup of GL(V) x G,,.

Example 2.1. (a) For any smooth projective variety X over C,
Hodge theory provides H™(X(C), Q) with a Hodge structure of weight
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n. Since H,(X(C),Q) is dual to H"(X(C),®), it acquires a Hodge
structure of weight —n.

(b) Giving a Hodge structure of type {(-1,0),(0,—1)} on a real
vector space V corresponds to giving a complex structure on V. given
the complex structure, define h(z) to be multiplication by z; given the
Hodge structure, define the complex structure by the isomorphism
V — Vg /F°.

(¢) For each integer n, @(n) denotes the vector space (271)"Q with
the Hodge structure of type {(—n,—n)}.

A polarization of a Hodge k-structure (V,h) of weight n is a mor-
phism of Hodge structures ¢ : V(R) ® V(R) — R(—n) such that the
real-valued form (z,y) — (27i)"¢(z, h(i)y) is symmetric and positive-
definite. The Mumford-Tate group of a polarizable Hodge structure
is reductive.

Example 2.2. For an abelian variety A over C, H{(A, Q) is a polar-
izable Hodge structure of type {(0,—1),(—=1,0)}, and A — H,(4,Q)
defines an equivalence between the category of abelian varieties over
C, considered up to isogeny, and the category of polarizable Hodge
structures of type {(0,—1),(—1,0)}. The Mumford-Tate group MTA
of A is defined to be the Mumford-Tate group of H;(A, Q).

Hodge structures of CM-type. A Hodge structure is said to be
of C'M -type if it is polarizable and its Mumford-Tate group is com-
mutative (and hence a torus).

Example 2.3. A field E of finite degree over @ is said to be a CM -
field if there is a nontrivial involution ¢ of E that becomes complex
conjugation under every embedding E — C. A finite product of CM-
fields is called a CM-algebra. An abelian variety A is said to have
complez multiplication (or be of CM -type) if there 1s a faithful homo-
morphism E — End(A) ® Q (mapping 1 to 1) with ' a C M -algebra
of degree [E : Q] = 2dim(A), and it is said to have potential complex
multipiication if it acquires complex multiplication over some exten-
sion of the ground field. With these definitions, an abelian variety
over C is of CM-type if and only if the Hodge structure Hi(A,Q) s
of CM-type.

The category of Hodge structures of CM-type is Tannakian. Let
S be the affine group scheme attached to it and the forgetful fibre
functor. The functor sending a Hodge structure (V,h) to the real
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Hodge structure (V ® R, h) defines a homomorphism hc,p : S — Gg,
and hence a cocharacter pc,, of S¢.

PROPOSITION 2.4. (a) The group scheme & is a pro-torus. The map

Errny,  nx(T) = (X Thean)

identifies the character group of & with the group of all functions

n : Gal(Q*/Q) — Z which factor through Gal(F/Q) for some C M-
field F' and which have the property that

n(to) + n(o) = constant.

(b) The pair (S, jican) has the following universal property: for any
torus T over @ and p € X,(T) satisfying

*) (=D +Dp=0= (4 1)(t - 1), all T € Gal(Qal/Q),

there is a unique homomorphism p, : & — T (defined over Q) such
that (pu)c © fean = p-

The pro-torus & is called the Serre group, and the condition (*) is
called the Serre condition.

Remark 2.5. (a) For a field F of finite degree over Q, define SF to
be the quotient of TF =4 Res F)@BGm whose character group X *(GF )
is the subgroup of X*(T'') of elements satisfying the Serre condition.
The norm map induces a homomorphism G¥ " — &F for any F’
containing F', and it is easily seen that & = 1‘£n GF (limit over F C

Q). In fact, it suffices to take the limit over all CM-fields F C Q2.

(b) Let F C Q?! be a finite Galois extension of Q. The action of
Gal(Q*/Q) on TF defined by its action on F induces an action of
Gal(@*/Q) on &F. In the limit we obtain an action of Gal(Q*/Q)
on & (rational over Q). There are therefore two distinct actions of
Gal(Q*/Q) on G(Q*): the first arises from the action of Gal(Q* /Q)

on S, and the second from its action on Q.

Example 2.6. Let E be a CM-algebra. A C M -type for E is a subset
® of Hom(F, C) such that Hom(E,C) = ® U :® (disjoint union). Let
A be an abelian variety over C with complex multiplication ¢ : £ —
End(A) @@ by E. For 0 € Hom(E,C), write C, for C with E acting
through . Then Tgt,(A) =~ -[T‘Peq, C, with & a CM-type for E, and
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(A, i) is said to be of CM -type (E,®). By assumption, V' = H,(A,Q)
is a free E-module of rank one, and we can regard T’ £ as a subtorus
of GL(V). Define po : Gm — (TE)¢ to be the cocharacter such that

{ 1 foced
00l =
fo 0 otherwise,

and let ho be the associated homomorphism he : § — (TE)g. When
regarded as a homomorphism § — GL(Vw), he is the representation
of § defined by the Hodge structure on Hi(4, Q).

Since pg satisfies the Serre condition, it determines a homomor-
phism pg : & — T¥ € GL(V); pe is the representation of & defined
by the CM-Hodge structure Hi(A, Q).

The field of definition of i (contained in C) is called the reflez
field E*(®) of (E,®). For any number field F' D E*(®), pg defines

a homomorphism Ng

Resp/q(ue) Normp/q
F 5 Respyg(TF) ——— TP

called the reflex norm.

For any isomorphism o : E — E' of CM-fields and automor-
phism 7 of @2, 7®5~! denotes the CM-type {r¢o1|p € B} of E;
for any CM-ficld E/ D E, ® extends to a CM-type @' = {¢ €
Hom(E', Q)| ¢|E € ®}. We shall need the following formulas:

PO OT = Pr=1p, TO Py = Ppo—1 NE’/EOP‘I)'ZP‘I"

Hodge tensors. Let V be a Hodge structure. A Hodge element 1n
V is an element of type (0,0) in V. For example, the Hodge elements
in VW are precisely the elements corresponding to homomorphisms
V — W that are morphisms of Hodge structures. According to the
Hodge conjecture, the Hodge elements of H?P(X,Q(p)) should be lin-
ear combinations of the classes of algebraic cycles. A Hodge tensor of
V is an element of type (0,0) in

TV =4t Ve @ V¥ @ Q(m) (sum over (r,s,m) € N x N X Z).

We let GL(V) act on TV through its actions on V and V, and we
let G,, act on 7V through its action on Q(1).
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PROPOSITION 2.7. The Mumford-Tate group of a Hodge structure
(V, h) is the subgroup of GL(V) X G, of elements fixing all the Hodge

tensors of V.
PROOF: See Deligne (1982a), pp40-45.

COROLLARY 2.8. Let C be the Tannakian subcategory of Hdgg gen-
erated by V and Q(1). The affine group scheme attached by (1.2) to
C and the forgetful fibre functor is MT(V, h).

PROOF: Since V and Q(1) generate C, the affine group scheme is a
subgroup of GL(V')x G,,, and it consists of those elements of GL(V') x
G, that commute with all morphisms of Hodge structures. But every
morphism of Hodge structures in C can be interpreted as a Hodge
tensor of V.

Notes. The Mumford-Tate group was introduced in Mumford (1966),
and the Serre group in Serre (1968), pII-2. They are discussed in more
detail in Deligne (1982a), §3, and Milne and Shih (1982a).

3. Hodge cycles.

A theorem of Deligne shows that Hodge cycles on an abelian varicty
have some of the properties of algebraic cycles; in particular, it will
enable us to define Hodge cycles on an abelian variety over any field
of characteristic zero.

We review the first homology groups attached to an abelian variety
A over a field k of characteristic zero.

When k = C, we have the usual “Betti” homology group Hg(A) =
H,(A(C),Q). This is a vector space of dimension 2dimA over Q, and,
as we noted in §2, it has a Hodge structure of type {(—1,0),(0,-1)}.
For any field £ and embedding 7 : k < C, we set H,(A) = Hg(TA).
When k is a subficld of C, we sometimes write Hg(A) for Hg(Ac).

For any choice of an algebraic closure k* of k, we define the /-
adic homology group H;(A) to be the dual of the étale cohomology
group H. (A, Q). This is a vector space of dimension 2dimA over
Q¢. In more down-to-earth terms, we could set Hy(A) = Ty(A) @ Q,
where Ty(A) is the Tate module li(_r_n A(kal)gn of A. An embedding

of k¥ into an algebraically closed field K defines an 1somorphism
Hy(Aa) — Hy(Ag); in particular, Gal(kal/k) acts on Hy(A). We set
Qo(1) = T¢(Gm) ® @, and Qu(n) = Q(1)®", n € Z.

We define Hyp (A) to be the dual of the de Rham cohomology group
Hlp(A) =4 HY(A, Q'A/k). It is a vector space of dimension 2dimA
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over k, and if K O k, then Hyp(Ax) = Hyp(A) ®k K. We sometimes 3 c
write Hoo(A) for Hyp (A). W
When k = C, there are canonical comparison isomorphisms E
if
Hp(A)® Qe — He(A),  Hp(A)®C — Hyr(4).

The second of these can be obtained as follows: the map T
T

v (W /w cl

K tc

identifies Hp(A)®C with the dual of the space of differential forms of § St
the first or second kind on A, which equals Hig(A) = Hyg(4). Thus 3 P

the map is defined by the periods of A.

We extend these notations as follows: -
Tp(A)=T(Hp(A)) (case that k = C); d;

3 0

T.(A) =T(Hp(TA)) (where 7 is an embedding of & into C); E ] inf
To(A) = ©H(A)®" ® Ho(A)®° ® Qe(m); -
Too(A) = Tar(A) = ®Hyp (4)®" ® Hyp(A4)®° ] gn
T;(A) = II'T(A) (restricted product over finite primes ). ch}'
When & = C, the comparison isomorphisms extend to canonical iso- f 211
morphisms .
Ts(A)® Q¢ — Te(A),  Tp(A)®C — Tar(A). gf;
Thus, for any abelian variety A over & and inclusion 7 : k* — C, Ch
there are canonical maps e !
g v
To(TA) = To(TA) — To(A) a o
S 19¢

for each ¢ (including £ = o). ,’ | X.
When A is an abelian variety over C, a Hodge tensor s for the .
Hodge structure Hp(A) is called a Hodge cycle on A; thus s is an Sl bra
element of type (0,0) in 75(A). The images of s under the compar- Sl ove
ison isomorphisms are called the local components s¢ of s for each £ rg]&
(including oo). E 3

1

Let A be an abelian variety over an algebraically closed field k. &
A family (s¢)¢ with s¢ € Te(A) (¢ = oo included) is called a Hodge SME of &
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cycle on A relative to 7 : k — C if there is a Hodge cycle s on 74
whose local components are the images of the s, in 7¢(7A) for all ¢.
Equivalently, we can say that (s,) is a Hodge cycle on A relative to 7
if

(a) s0c € F'T;

(b) the image of (s¢) in T7(T7A) X Too(TA) lies in the Q-subspace
TB(TA).

THEOREM 3.1. Let A be an abelian variety over an algebraically
closed field k of characteristic zero. If s is a Hodge cycle on A relative
to one embedding 7 : k — C, then it is a Hodge cycle relative to every
such embedding.

ProOF: This is the main theorem of Deligne (1982a).

Of course, the theorem says nothing if there are no embeddings of k&
into C. When k is an algebraically closed field of finite transcendence
degree over Q, we write Cy(A) for the subspace of T5(A) x T (A)
of elements that are Hodge cycles relative to some embedding of k
into C. It 1s a vector space over Q, and an inclusion & — I of
algebraically closed fields of finite transcendence degree over Q induces
an isomorphism Cy(A) — Cy(Ag). This remark allows us to define
Cx(A) for an abelian variety over any algebraically closed field K of
characteristic zero: choose an algebraically closed subfield k& of K of
finite transcendence degree over ) such that A has a model Ay over
k and set CH(A) = C}{(Ak).
| An embedding k£ < K of algebraically closed fields defines a map

Ch(A) — Cp(Ag). In particular, when A has a model Ay over
subfield ko of k, Gal(k/kg) acts on Cy(A). In this case, we define
C(Ap) to be the subspace of Cy(A) of elements fixed by Gal(k/kq).

Much of the above discussion extends to arbitrary smooth projec-

tive varieties X. In particular, it is possible to define the notion of a
'Hodge cycle on X relative to an embedding 7 : £ — C (see Deligne
1982a, §2), and it is reasonable to expect that (3.1) will hold also for
X.

CONJECTURE 3.2. For any smooth projective variety X over an alge-
braically closed field k of characteristic zero, a cycle s that is a Hodge
cycle relative to one embedding 7 : k — C will be a Hodge cycle
relative to every such embedding.

This conjecture is implied by the Hodge conjecture. In the absence
of a proof of (3.2), Deligne makes the following definition: when X
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is defined over an algebraically closed field k of finite transcendence
degree over Q, an absolute Hodge cycle on X is a cycle that is Hodge
relative to every embedding k — C. The definition is extended to
other ground fields by the same procedure as for Hodge cycles on
abelian varieties. This gives a notion of an absolute Hodge cycle on
any smooth projective variety over a field of characteristic zero, which,
when the variety is an abelian variety, coincides with that of a Hodge
cycle.

Remark 3.3. Let A be an abelian variety over C. Proposition 2.7
provides the following description of MT#: for any Q-algebra R,
MTA(R) is equal to the group of automorphisms Hp(A) ® R fixing
all elements of C'y(A).

Notes. This section summarizes part of Deligne (1982a).

4. Motives.
Let k be a field of characteristic zero, and let V/k be a category of
smooth projective varieties over k. The aim of the theory of motives
is to attach to V/k a Q-linear Tannakian category Mot /k and a
“universal cohomology functor” h : V/k — Mot /k (see Saavedra
(1972), V1L.4).

Example 4.1. Let Vo/k be the category of varieties of dimension
zero over k. For a variety X = Spec R of dimension zero and 7 : k —
C, we have the (zero'") cohomology groups,

HT(X> = HOIII(X(C), Q)v H@(/Y) = Hom(X(ka])a Qﬁ)a HdR(X) = R.

Fix an algebraic closure k¥ of k, and let Art/k be the Tannakian cat-
egory defined in (1.4). For a representation M = (V,§) of Gal(k* /k),
define

H.(M)=V, H{(M)=V QQq, Hyp(M) = (V® kal)Gal(k“‘/k)

(diagonal action). Set hX = Hom(X (k*),Q) for X in Vo; then
Art/k is generated (as a Tannakian category) by the objects hX,
and H,(hX) = H.(X) for x = 7, ¢, or dR. Thus h: Vo — Art/k
is the universal cohomology functor for Vo /k. The objects of Art/k
are called Artin motives.

Unfortunately, not enough is known about algebraic cycles to con-
struct a Tannakian category of motives for all varieties using them?®.

3Surprisingly, the difficulty is in adjusting the commutativity constraint (the func-
torial isomorphism X ® Y = Y ® X). For this one needs to use Grothendieck’s
“standard conjectures”—see Saavedra (1972), VI.4.
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Instead, we use Hodge cycles. Assume k is algebraically closed,
and let V/k be the category of abelian varieties over k. If A and
B are objects of V/k, define Hom(hA,hB) to the set of families
(fe - Hi(A) — Hy(B)), (£ = oo included) such that, when we re-
gard fp as an element of Hy(A) ® He(B) C To(A x B), then (fo)e is
a Hodge cycle on A x B. Define CV/k to be the category with ob-
jects hA, one for each A € Ob(V/k), and the morphisms just defined.
Adjoin the images of projectors p to the set of objects of CV/k, and
so embed CV /k into its pseudo-abelian envelope CV* [k (cf. 1.5a).
Next adjoin to CVt /k all powers of the Tate motive @(1). Finally
modify the commutativity constraint (the identification of M®N with
N ® M) to obtain the category AV /k of motives of abelian varieties
over k (for the details, see Deligne and Milne 1982, §6).

THEOREM 4.2. The category AV /k is a semisimple Q-linear Tan-
nakian category. It is generated (as a Tannakian category) by the
motives hA with A an abelian variety over K. The functors H,, Hg,
and Hyr on V/k extend to Mot/k, as do the comparison isomor-
phisms.

Variants 4.3. (a) Drop the condition that k is algebraically closed,
and take V/k to be the category of abelian varieties and varieties of
dimension zero over k. We then obtain a semisimple Q-linear Tan-
nakian category AV /k with the properties in (4.2) except that AV /k
is now generated by the motives of abelian varieties and the Artin
motives.

(b) Drop the condition that k is algebraically closed, and take V/k
to be the category of all smooth projective varieties over k. Replace
“Hodge cycle” with “absolute Hodge cycle” in the definition of CV /k.
We then obtain a semisimple Q-linear Tannakian category Mot /k, the
category of motives over k, with the properties in (4.2), except that
it is now generated by the motives of smooth projective varieties.

PROPOSITION 4.4. The functor Hp : AV/C — Hdggq is fully faith-
ful.

PROOF: In this case, Hom(hA, hB) consists of the maps Hp(A) —
Hp(B) given by Hodge tensors. These are morphisms of Hodge struc-
tures.

Motives of CM-type. Define CM/k to be the Tannakian subcate-
gory of AV /k generated by the motives of abelian varieties of poten-
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tial CM-type over k and the Artin motives. Objects of CM/k will
be called motives of CM -type or C M -motives over k.

PROPOSITION 4.5. The functor Hp : CM/C — Hdgg is fully faith-
ful, with essential image the category of Hodge structures of C M -type.
Therefore the affine group scheme attached to the Tannakian category
CM/C and the Betti fibre functor is the Serre group S.

PrROOF: That Hp is fully faithful follows from (4.4). If we let &' be
the affine group scheme attached to CM/C, then (1.5a) shows that
there is a surjective homomorphism & — &’. To prove that this
homomorphism is injective, it suffices to show that the intersection
of the kernels of the homomorphisms p4 : & — GL(Hp(A)), A an
abelian variety A of CM-type over C, is trivial. This follows from the
next lemma.

LEMMA 4.6. Let F C Q* be a CM-field, Galois over Q. The inter-
section of the kernels of the homomorphisms (see 2.6) po GF - T1F
defined by the CM-types ® on F is trivial.

PROOF: It suffices to show that X*(&F) is generated by the im-
ages of the maps X*(po) : XHTF) - X*(6F). But, by defini-
tion, X*(&F) consists of the sums ) n(o)o, g € Hom(F,C), with
n(o) + n(1o) constant, and one sees easily that the image of X*(po)
contains ) g . Thus the proof is an easy combinatorial exercise
(see Lang 1983, p175).

The functor A — Ac defines an equivalence between the category
of abelian varieties of CM-type over @* and the corresponding cat-
egory over C. Thus the base-change functor cM/@* — CM/C is
an equivalence of categories, and the affine group scheme attached to
CMg.: and the Betti fibre functor is again the Serre group 6.

Notes. The concept of a motive is due to Grothendieck. The defini-
tion adopted in this article is a variant of his. Most of the material
in this section is from Deligne and Milne (1982), 86.

5. The main theorem of complex multiplication.

Let (A, 1) be an abelian variety with complex multiplication over Q.
The theorem of Shimura and Taniyama (Lang 1983, p84) describes
how those automorphisms of Q2! fixing the reflex field of (A,1) act on
the torsion points of A. Work of Deligne and Langlands extends the
result to the full Galois group of Q! over Q. In this section, we give
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a statement and proof of this result in terms of abelian varieties, and
in the next section, we re-interpret it in terms of motives.

Definition of the Taniyama element f3(7). Let E be a C M-field.
For each 0 € Hom(E, @), choose an element v, € Hom(E*", @) in
such a way that v,|F = o and v,, = w,. For any 7 € Gal(Q*/Q),
T 0 v, and v,, have the same action on elements of E, and so differ

by an element of Gal(E?*?/E). For a CM-type ® for E, define

Vo(r) = H vl Towv, € Gal(E**/E).

T
wed

It is easily checked that Vg (7) is independent of the choice of the
elements v,. A
The cyclotomic character Xeye : Gal(Q* /@) — Z* is defined by the

condition that o = (Xv<(?) for every root of unity ¢ in Q. With
our conventions, recq(Xeyc(0)) = o|Q3P.

PROPOSITION 5.1. There is a unique element Fy(7) € E*/E* such
that

(a) rece(fo(1)) = Vo(7), and
(b) fo(7) - tfa(T) = Xeyc(T)EX.

PROOF: See Tate (1981) (also Lang 1983, p168).
We call fo(r) the Taniyama element for (E,®) and 7. With the

notations of (2.6), we we have the following result.

PROPOSITION 5.2. (a) fo(07) = fro(0) - fo(7), 0,7 € Gal(Q*/Q).

(b) ofe(7) = foo-1(7), 0 an isomorphism E — E'l 7 €
Gal(Q*/Q).

(c) fo(t) = 1.

(d) If ®' is the extension of ® to E' D E, then fo(7) = fo:(7) (in
EIX/EIX).

(e) If T fixes E*, then fo(7) = Ng(s)-E* for any s € E* such that
recg«(s) = 7| E?P,

PROOF: See Tate (1981) (also Lang 1983, VII).

First statement of the main theorem. Let (4,) be an abelian
variety over Q* of CM-type (E,®), and let 7 € Gal(Q*/@). Define
Ti to be the map £ — End(74) ® Q, a — 7(i(a)). Then (74, 7i) is
an abelian variety of CM-type (E, 7®).
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THEOREM 5.3. (Main theorem, first form). Let (A,i) be of CM-
type (E,®). For each f € E* representing fe(7), there is a unique
F-linear isomorphism a : Hp(A) — Hp(TA) such that Tx = affz)
for all x € Hp(A).

PrOOF: We explain in (5.10) below how to obtain a stronger result.

Remark 5.4. (a) It is obvious that o is uniquely determined by
the choice of f representing fo(7), and that if f is replaced by af
(a € EX), then o must be replaced by aa™!.

(b) Let a be as in the theorem, and let ¥ be a polarization of (A, 1),
that is, ¢ is a polarization of Hp(A) such that Y(az,y) = ¥(z,ay)

for @ € E. Then, for x, y € Hs(A)

(1) (ra, 7y) = T(1(2,)) = Xeye(7) - (2, V)

because ¥(x,y) € As(1). Thus if a 1s as in the theorem, then

Xeye(T) - $(2,) = (T¢)(fa(z), faly)) = (r)(f fe(), a(y))

and so

Y(ez,y) = (r)(oz, ay),

with ¢ = Yeye(7)/ff € E*.

Now assume that A has complex multiplication by the full ring
of integers O of E. The choice of a basis element eo for Hp(A)
determines an isomorphism E — Hp(A), and hence an isomorphism
C?=F®@gR— Hp(A)®R = Tgty(A) (see 2.6). On composing this
with the exponential map Tgto(A) — A(C), we obtain an Og-linear
isomorphism 8 : C*/a — A(C) for some ideal a in E. Moreover, the
choice of eq allows us to write a polarization 1 of (A,7) in the form

Y(zen, yeo) = 2mi Trgq(t2y)

for some ¢ € E. The triple (A,14,v) is then said to be of type (E, ®; a, t)
with respect to the parametrization 0. The type determines (A,1, ¥)
up to isomorphism. If eg is replaced by a~legp, then 8 is replaced by

fa~1, and (A,1,1) is of type (E,®;aa,t/aa) with respect to fa~".

COROLLARY 5.5. Let (A,i,¢) be a polarized abelian variety over C
of CM-type (E,®;a,t) with respect to a parametrization 0 : c® —
A(C), and let T be an automorphism of C. For each f € E* represent-
ing fo(7|Q*), there is a unique parametrization 6" : c® — (TA)(C)
of TA such that:
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(a) T(A,i,v) has type (E,T¢; fa,tXcyc(T)/ff) with respect to §';
(b) the diagram

0
Fa —— A(C)tors

Lol
E/fa —— (r4)(C)iors,

commaiites.

PROOF: If 6 is defined by eqg € Hp(A), take 8’ to be the parametriza-
tion of TA defined by afeg) € Hp(TA), where o is the map in the
theorem.

Remark 5.6. If 7 fixes the reflex field and s € F is such that
recp(s) = 7|E*, then Ng(s) € fo(7) by (5.2¢) and (5.5) becomes

the theorem of Shimura and Taniyama referred to earlier.

Definition of the universal Taniyama element f(7). Let T be
a torus over Q. For any Galois splitting field L of T, we set

o(T) = (T(L)/T(L))5H D,
This is easily seen to be independent of the choice of L. Morcover, if

Hl(Q7T) - H Hl(QfaT)

£ finite

is injective, then o(T) = T(Q)/T(Q). In particular, p(T*) =
E* /E*. Define
p(6) = limp(6").

PROPOSITION 5.7. There is a unique element f(7) € p(&) such that
for each CM-field E and type @, po(f(1)) = fao(r) in p(TF) =
EX/E*. The map 7 v f(7) is a continuous reversed one-cocycle for

Gal(Q?/Q) with values in p(&), that is, f¥(o7) = L (o) FE (7).

PROOF: The uniqueness follows from (4.6). It is possible to prove the
existence of f(r) by verifying compatibilities between the fg(7) for
different ®, but I prefer use Langlands’s original construction of f(7).
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Let F be a finite Galois extension of @ contained in Q. The Weil
group Wp g of F fits into an exact commutative diagram,

] —— /:\;»/Fx E— Wrig — Gal(F/Q) — 1

[rer | H

1 — Gal(F**/F) — Gal(F**/Q) — Gal(F/Q) — 1

in which all the vertical arrows are surjective (see Tate 1979). If
we assume further that F is a totally imaginary, then (F ® R)* is
contained in the kernel of recr, and so we can divide out by it and its
image in Wp, g to obtain an exact commutative diagram

1 — FX/FX — Wlg — Gal(F/Q) — 1

Jree l H

1 — Gal(F**/F) — Gal(F**/Q) — Gal(F/Q) — 1.

For each 7 € Gal(Qal/Q), choose an element 7 € WI{:/Q whose image

in Gal(F**/Q) is 7|F. Choose elements w, € W};/Q, one for each
o € Gal(F/®), such that w, — ¢ and w,, = iw,. Then wr, and Twe
have the same image in Gal(F/@), and so w;} - Tws, € F*/FX.

g

LEMMA 5.8. If F is a CM-field and ® is a CM-type for F, then

fo(T) = H w;; CTWp.
p€EP

PrROOF: Write fj(7) for the right hand side of the equation. It is
obvious that the image of fi(7) in Gal(F**/F) is Vg(7). Moreover,
Fi(r)-efy (1) = fo(r)- fb, (1) = Ver(7) where Ver is the transter map
(Wb]:/Q)ab — X /F* defined by the inclusion at top-left of the above
diagram. But Ver(7) = Xeye(7) - FX, and so fg(7) has the properties
characterizing fo(7).

The canonical cocharacter uf of G is defined over F', and therefore
gives rise to a homomorphism R* — GT(R) for any F-algebra R.
Define

fFry= [ (o7'n5)(wifw,) € 67 (F)/ST(F).
c€Gal( F/Q)
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LEMMA 5.9. Let E be a CM-field and ® a CM-type for E. Assume
that F is large enough to contain all conjugates of E in C. Then

po(f¥ (7)) = fo(7) as elements ofTE(F)/TE(F) D TE(Q)/TE(Q) =
EX/E*.

PROOF: Let p: E — F C @Q* be an embedding of E. Then p defines
a character p of TE, and it suffices to show that ppa(fE(r))) =
p(fo(7)) in F'*/F*. First note that, by (5.2),

Pfa(7)) = p(fa(7)) = fop-1(7) = far(7),
where @’ is the CM-type on F extending the CM-type ®p~1 on
pE C F. Next

Ploa(f7(7) = o] ] po(o™ ' u") (w7} Fw,))  (definition of f¥(7))
=p(fI o™ pw o p) (Wi Twe)) (o defined over @)
= P(ﬁ o™ (no)(wry Tws)) (definition of po)
= Hzpo o™ (o)) (w7, Fws)

— ﬁ(w;;%wo)@”“"(“@))

where (, ) is the usual pairing X*(T) x X,(T) — Z. But we have
(p, a‘l,uq)> = (0 0p, o), and from the definition of uy in (2.6), we see
that (0op,p) = 1if op € @, and is 0 otherwise. Therefore the last

product is []_cq w;, Tw,, which (5.8) shows to equal for (7).

We now complete the proof of (5.7). The elements fF(7) have the
following properties:
(a) f¥(7) is independent of all choices;
(b) fF is a reversed one-cocycle;
(c) ofF(1) = fF(7),allo € Gal(F/Q);
(d) if F* > F, then Np/p(fF (1)) = f¥(7).
Statement (a) follows from (4.6). The remainder can be proved by
applying pg to both sides and using (5.2) and the formulas in (2.6).
Statements (a), (c), and (d) show that f(7) =4; (fF(7)) is a well-
defined element of p(&). As pe(f(7)) = fo(r), this completes the
proof of the first statement in (5.7). The second statement follows
from (b).
We call f(7) the (universal) Taniyama element.
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Statement of the main theorem. Let A be an abelian variety of
CM-type over @. On applying the homomorphism p4 : S — MTA
to f(7), we obtain an element f4(7) € p(MTH).

THEOREM 5.10. (Main theorem of complex multiplication) Let F be
a splitting field of MTA. For each f € MTA(I*:’) representing fa(t),
there is a unique F- linear isomorphism o : Hg(A)®F — Hp(TA)QF
such that

(a) a(t) = 7t for all Hodge cycles on A;

(b) Tz = a(fz) for allz € Hf(A) @ F.

Remark 5.11. (a) It is possible to replace A in the theorem with
any CM-motive over Q — it makes sense to speak of Hodge cycles
on a CM-motive, and we can define the Mumford-Tate group of a
C M-motive to be the image of & in GL(Hp(M)) X G,,. The proof
we describe below also applies to this more general case.

(b) Endomorphisms of A are Hodge cycles on A, and so (a) implies
that o commutes with the action of all endomorphisms of A.

(c) It is again obvious that « is uniquely determined by the choice of

f representing f4(7), and that if f is replaced by af (a € MTA(F)),

then o must be replaced with ca™?.

(d) To sec that (5.10) implies (5.3), let (A,7) be as in (5.3), and
let f’ represent fo (7). Note that MT# C TE. The definition of f(7)
shows that there is an element a € TF(F) such that f* = af. Then
o = aoa! satisfies the conditions of (5.3).

Proof of the main theorem of complex multiplication. We first
define an element g(7) such that Theorem 5.10 holds (tautologically)
with f replaced by g.

LEMMA 5.12. Let A be an abelian variety over Q¥ of CM-type,
and let F be a splitting field for MTA. There exists an F-linear
isomorphism « : Hg(A) @ F — Hp(tA) ® F such that o(t) = 7t for
all Hodge cycles t on A.

ProoF: For any Q-algebra R, let
P(R)={a: Hg(A)® R — Hp(7A) @ R|a(t) = 7t, all t € Cu(A)}-

From (3.3) it is obvious that P is a torsor for MT 4 unless it is empty-
The comparison isomorphisms show that P(C) # 0. Because MTA is
a torus split by F, the cohomology class of P in H Q,M T4) becomes
trivial in H(F, MT#), which means that P(F’) is nonempty.
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Let (A,7) be of CM-type (E,®), and choose an element o € P(F).
We can regard « as an isomorphism « : Hf(A) @ F — Hy(tA)®@ F
sending t to 7t, for all Hodge cycles t. The map z + o~ !(7z) is an
automorphism of H;(A)® F fixing all Hodge cycles, and so (3.3) shows
that it is multiplication by an element g € MTA(F). Write g4(7) for
the image of g in MTA(F)/MTA(F). Then g4(7) is independent
of the choice of «, and it is fixed under the action of Gal(F/Q). It
therefore lies in p(MT#). For varying A, the elements g4(7) form a
projective system. As & = lim MT#, they define an element g(7) €

o(MT#). Obviously (5.10) becomes true when f(7) is replace by
g(1), and so, to prove (5.10), it suffices to show that f(7) = g(7). Let
e(1) = g(7)/f(7) and, for each CM-type (E,®), let eq(7) = pg(e(T)).

The next two lemmas prove that eq(7) = 1.

LEMMA 5.13. The elements eg(7) have the following properties:

(a) eg(07T) = €,;9(0) - eq(7), 71, T2 € Gal(Q¥/Q).

(b) cea(T) = ego-1(7), o an isomorphism E — E', 7 €
Gal(Q*/Q).

(c) eg(t) = 1.

(d) If E' D E and @’ is the extension of ® to E', then eq(T) =
G(I)I(T).

(e) If 7® = &, then eq(7) = 1.

(f) If Y n;®; =0, then [[eq, (7)™ = 1.

PRrROOF: Parts (b), (d), and (f) are automatic consequences of the
fact that eq (7) = po(e(r)) for an e(7) in p(&). Part (a) follows from
the fact that f(7) and ¢g(7), and hence e(7), are reversed one-cocycles.
Part (c) holds for both fg and gg. For (e) note that 7® = & if and
only if 7 fixes the reflex field, and so the theorem of Shimura and
Taniyama (see 5.6) shows that in this case go(7) = Ng(s) - EX where
s is such that recg(s) = 7|E*". Therefore (5.2¢) implies (e).

LEMMA 5.14. Let (e¢(7)) be a family of elements satisfying the con-
ditions of (5.13). Then eq(7) =1 for all ® and 7.

PROOF: See Deligne 1981 (also Lang 1983, VIL.4).

Remark 5.15. If f(7) is a reversed one-cocycle, then 7 +— 7 f(7) and
7 — f(771)71 are both one-cocycles. It would have been possible to
work throughout with one-cocycles rather than reversed one-cocycles,
but the reversed one-cocycles are more consistent with the notations
used in the literature.
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Notes. See the end of the next section.

6. CM-motives over Q; the Taniyama group.

In this section we study CM/Q, the category of CM-motives over
Q. It is a semisimple @-linear Tannakian category with additional
structure, to which the Tannakian formalism attaches certain objects.

(6.1a) To CM/Q and the Betti fibre functor Hp, Theorem 1.2
attaches an affine group scheme %.

(6.1b) To the fully faithful tensor functor Art/Q — CM/Q, (1.5a)
attaches a surjective homomorphism 7 : T — Gal(Q*/Q).

(6.1c) Hp is an essentially surjective functor from CM/Q to the
category of Hodge structures of C M-type; it therefore defines a injec-
tive homomorphism i : & — %.

(6.1d) The action of 7 € Gal(Q*/Q) on Hy(M) sends s, to Ts,
for each Hodge cycle s. Therefore, each 7 € Gal(@*/Q) defines
an automorphism sp¢(7) of the fibre functor Hp ® Q; whose im-
age in Gal(Q*/Q) is 7. The map spe is a homomorphism spe :
Gal(@*/Q) — T(Qe) which is continuous for the Krull and {-adic
topologies, and the product of the sp,’s defines a homomorphism

sp: Ga,l(Qal/Q) — T(Ay).

PROPOSITION 6.2. The sequence of affine group schemes

1 56575 Gal(@Y/Q) — 1

is exact. In particular, i identifies & with the identity component of
T. Moreover, the action of Gal(@* /Q) on & defined by the sequence
is that described in (2.5b).

PROOF: See Deligne (1982b).

Symbolically, we have a diagram

1 — 6 ., T Gal(@¥/Q) —— 1.

I s
T(Ay)

The group ¥, together with the structure (7,%,sp), is called the
Taniyama group. A C M-motive M over Q corresponds to a represen-
tation p : T — GL(V); then Hp(M) =V, and its Hodge structure of



CANONICAL MODELS 311

CM-type is determined by poi; the f-adic cohomology group H(M)
is V ® Q¢ with Gal(Q* /@) acting through po sp,; and M is an Artin
motive if and only if p factors through . The Taniyama group does
not enable us to construct Hyr(M) from (V,p) (we discuss what is
needed for this in the next section).

Remark 6.3. (a) It is possible to interpret the exact sequence in
(6.2) in the following way: a representation p of & determines a C M-
motive M over @*; extending p to T corresponds to giving a descent
datum on M, and descent is effective for C M -motives.

(b) For each 7 € Gal(Q*/Q), M — H,(M) = Hg(TM) is a fibre
functor for CM/Q? with values in Vecg. Therefore Isom(Hg, H,)
is a torsor for &. It is represented by "6 =4 7 ~1(7).

An explicit description of (T, 7,7,sp). In this subsection, we let
(%, 7,1, sp) denote any quadruple for which (6.2) is true. Let &’ be
a quotient of & of finite-type over Q, and let T’ be the quotient of T
by the kernel of & — &’;

] —— 6 —— T — Gal(@¥/Q) —— 1

L |

<! !

] —— & —— ¥ 1, Gal(@"/Q) —— 1.

If L is a finite Galois extension of @ (contained in @) splitting &,
then H'(L, &') = 0, and so each of the &’-torsors 7'~ 1(7) has a point
in L. Therefore, we can choose a section a : Gal(Qal/Q) — (L) to
7', Identify ¥'(L) and ¥’ (Q) with subgroups of ¥’ (L) and write

sp(1) = a(7) - K (1), h'(r) in &'(L).

The class of h'(7) in &’(L)/6'(L) is independent of the choice of a(T).
LEMMA 6.4. The map ' : Gal(@"/Q) — &'(L)/&'(L) has the fol-

lowing properties:
(a) b’ is a reversed one-cocycle;

(b) oh'(7) = h'(7) for all o € Gal(L/Q); thus h'(1) € p(&").
PROOF: Straightforward.

Recall that p(&) = lj_r_np(G’). The h'’s therefore define a continu-
ous reversed one-cocycle h : Gal(Q*/Q) — ().
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PROPOSITION 6.5. Every quadruple (%, 7,1, sp) satisfying the condi-
tions of (6.2) defines a continuous reversed one-cocycle

h: Gal(Q@Y/Q) — p(S)

and h determines the quadruple (%, 7,4, sp) uniquely up to a unique
isomorphism; moreover every reversed one-cocycle arises from a quad-
ruple (T, 7,1, sp) satisfying the conditions of (6.2).

PROOF: We have already shown how to derive & from the quadruple.
Obviously h determines the isomorphism class of (%, 7, 1, sp), but such
a quadruple is rigid: any automorphism of T compatible with (7,1, sp)
is the identity map. Finally, it is straightforward to construct the
quadruple out of h (see for example Milne and Shih 1982a, §2).

The next result provides an explicit description of the Taniyama
group.

THEOREM 6.6. The reversed one-cocycle corresponding to the Tani-
yama group is T + f(1), where f(7) is the universal Taniyama ele-
ment defined in §5.

PROOF: Let h be the reversed one-cocycle corresponding to the Tani-
yama group. After the main theorem of complex multiplication (5.10)
(more specifically, 5.14), we know that f = g, and so we have to prove
that h = g. Let A be an abelian variety of CM-type over Q, and let
ha(r) = pa(h(r)). One sees immediately from their constructions
that ha(7) = ga(7) in p(MT?*). Since & = lim MT?#, this proves the
theorem.

Application to the zeta functions of C M-motives. It is possible
to attach an L-series L(p, s) to a complex representation p : Wg —
GL(V) of the Weil group. Moreover, it is known that L(p, s) extends
to a meromorphic function on the whole complex plane and satisfies
a functional equation (see Tate 1979). These L-series generalize both
Hecke L-series and Artin L-series, and so are usually referred to as
Artin-Hecke L-series.

PROPOSITION 6.7. There is a homomorphism Wg — %(C) making
the following diagram commute:

W

!

1 —— &(C) — ¥C) — Gal(Q*/Q) —— 1.
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PROOF: See for example Milne and Shih (1982a), 3.17.

THEOREM 6.8. For any CM-motive M, the system of ¢-adic repre-
sentations H¢(M) is strictly compatible (in the sense of Serre 1968).
Therefore the zeta function of M is defined, and it is an Artin-Hecke
L-series.

PROOF: This follows directly from (6.7) (see Schappacher 1988).

Remark 6.9. There is in fact a one-to-one correspondence between
the set of isomorphism classes of C M-motives with coefficients in Q!
defined over @ and the set of isomorphism classes of representations
of Wq of type Ap.

Algebraic Hecke characters. Let F be a finite extension of @, and
let T be the inverse image of Gal(Q@* /F) in T:

] —— 6 —— 'Y — Gal(Q@/F) —— 1

| [ [

T —— Gal(@¥/Q) —— 1.
Then *% is the affine group scheme attached to the CM/F. A ho-
momorphism y : 3 4 TE is called an algebraic Hecke character for

F with values in E. The restriction of x to & is the infinity type of
X, and for each prime /,

speo x 1 Gal(Q"/Q) = TF(Q,) = (E ® Q)*

is the ¢-adic representation attached to y.

1l — &

Notes. The reversed one-cocycle f (the universal Taniyama element
of §5) was defined by Langlands in order to be able to describe the
conjugate of a Shimura variety (Langlands 1979). Deligne recognized
that it should define the affine group scheme attached to CM/Q, and
proved that this was the case in (Deligne 1982b). The implications of
Langlands’s construction for abelian varieties of CM-type were also
made explicit in Milne and Shih (1981a). Tate gave the construction
of fo(7) described in the first subsection of §5 in (Tate 1981). The
relation between the constructions of Langlands and Tate has not
previously been elucidated in print.

Deligne first proved the main theorem of complex multiplication in
the form (6.6), expressing it in terms of extensions (Deligne 1982b).
He then re-expressed the proof in terms of the functions ep, as we did
in §3 (Deligne 1981). It is also possible to express the proof directly
in terms of the function e (Milne 1981).
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7. Periods of C M-motives.

After the last section, it remains to describe the de Rham fibre functor
on CM/Q. This is again a Q-linear fibre functor, and so (see 1.2)
P = Isom®(Hp, Hqr) is a principal homogeneous space for T — we
call it the period torsor. The comparison isomorphisms H s(M)®C —
Hir(M ® C) preserve Hodge cycles, and so define a canonical point
p € B(C).

When M is the CM-motive corresponding to the representation p :
T — GL(V) of T, P enables us to construct the de Rham cohomology
of M : Hyp(M) = P x®* V. The point p gives us the comparison
isomorphism Hp(M) ® C — Hqr(Mc)-

The next conjecture, which is a variant of a conjecture of Grothen-
dieck, predicts that the only restrictions on the transcendence of the
periods of C M-motives come from Hodge cycles.

CONJECTURE 7.1. The point p is generic in the sense that it 1s not
contained in the set of complex points of any proper Q-rational sub-

scheme of P.

Remark 7.2. Let Q[P] be the affine algebra of B. Then the point
p corresponds to a homomorphism Q[B] — C, and the conjecture is
equivalent to this map being injective (because B is irreducible).

Remark 7.3. Let F C Q¥ be a number field. On CM/F, Hqr is an
F-linear fibre functor, and so the comparison isomorphism gives us a
period torsor I'P for () F =ar F% xgpec @ Spec F'. One sees easily
that FSP is the inverse image of i under Pp — Hom(F, @), where 1
is the given inclusion F' < Q2. The canonical point p of PB(C) lies in
FE(C).

Let y : YT — TF be an algebraic Hecke character for F with
values in E. Then x.(¥P) = B, is a principal homogeneous space
for (TF)F with a distinguished complex point py. As H(F, T¥) =0,
B, will have an F-rational point po, and any two such points differ
by multiplication by an element of T E(F). Write py = po - p(x); then
p(x) is a well-defined element of (E® F)*\(E® C)X called the period
of x. For example, if x is the algebraic Hecke character attached to
an abelian variety A over F with complex multiplication by E, then
p(x) is the family of periods attached to A in the usual sense. The
period p(x) determines (P, py) up to isomorphism.

Since many of the results in the following chapters will be expressed
in terms of the pair (8, p), we would like to have a description of it
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that is as explicit as the description in §6 of the Taniyama group.
Unfortunately, this is probably not possible since such a description
would, in particular, include an explicit description of all periods of
all abelian varieties with potential complex multiplication which, as
(7.1) suggests, tend to be transcendental numbers. Thus the best we
can hope for is an explicit characterization of the pair (B, p) that does
not involve C' M-motives (or abelian varieties).

It is easy to describe the period torsor Q attached to the category
of Artin motives: £ is Spec @* regarded as a principal homogeneous
space for Gal(Q* /@), and its canonical C-valued point g is that de-
fined by the given inclusion of Q' into C. This follows from the
description of Hyr(X) given in (4.1).

This suggests that we should consider the pair (B, ¢), with ¢ the
equivariant map ¢ : P — Q. Blasius has found a description of the
isomorphism class of (3, ). Before explaining his result, we need to
review a little of the theory of a Hodge-Tate modules. Write T, =
T x SpecQ, and P, = P x Spec Q¢ = Isom(Hy, Hap ® Qp).

Fix a prime ¢, and let Dy = Gal(Q¥/Q¢). The £-adic cyclotomic
character is the map Xcyec : D¢ — Z such that o(() = (Xeye(9) for
each root of unity ¢ in Q3 of ¢-power order. The action of D, on
Q¥ extends by continuity to the completion C, of Q3. Let V be a
Q¢-vector space with a continuous action of Dy,. We extend the action

of Dyon V to C, ® V by the rule:
o(c®v) =0cQov, oc€Dy, c€Cy wvevw
For m € Z, write V{m} for the set of v € C, ® V such that

o(v) = x(o)™ - v.

It is a Qp-subspace of C,® V. The inclusions of the V{m} into C,@V

define a Cy-linear map

Ce® (BmezV{m}) - Ce RV,

which a theorem of Tate (Serre 1967) shows to be injective. When this

map is an isomorphism, the Dy,-module V is said to be Hodge-Tate.
Let Byt be the ring C,[T,T~!] with D, acting according to the

rule o(T) = x(o)T. It is an immediate consequence of the definitions

that @V {m} = (V ®q, Bur)?".
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The De-module Hy(A) is known to be Hodge-Tate for all abelian
varieties, and it follows that H,(M) is Hodge-Tate for all C'M-motives
over Q. Therefore we can define a new fibre functor H, on CM/Q
with values in Vecg, by setting

H{(M) = (Hl(M) ® Bur)"".
Let P}, be the Ty-torsor Isom®(Hy, Hy). 1t is represented by
Spec(Qe[Te] ® Bur)™* (diagonal action of Dy).

These definitions can be extended to £ = oo by replacing Byt with
C and D, with D, = Gal(C/R).

THEOREM 7.4. (a) B¢ is (canonically) isomorphic to B}, for each
prime £ (including o).

(b) The isomorphisms in (a) uniquely determine the isomorphism
class of (B, ¢).

ProOOF: (a) Let Hy (M) = Gr(Hyr(M)). A Hodge cycle s on an
abelian variety A has components s, in Hy(A) and spg in Hug(A),
and Blasius shows that the isomorphism of Tate-Faltings Hy(A) —
Hyg(A) ® Q¢ maps one component to the other, and so defines an
isomorphism of fibre functors H, — Hyg. Since there is a canonical
isomorphism of fibre functors Hgr @ Q¢ — Hug ® Qy, this shows that
there is a canonical isomorphism

Isom®(Hy, H)) = Isom®(Hg, Har ® Qe),

as required.

(b) Let &' be the affine group scheme obtained from S by twist-
ing by Q according to the action of Gal(Q@*/Q) on & defined in
(2.5b). Thus &'(Q) = S(Q¥) with Gal(Q*/Q) acting through
its action on both & and Q?'. There is a natural action of &’ on
(B, ): if s € &'(Q™) is represented by (s,q), then s’ acts on the fi-
bre over ¢ by multiplication by s. Moreover, for a second pair (B¢
Isom®((B, ¢), (P, ¢’)) is a principal homogeneous space for &’. Thus
the set of isomorphism classes of pairs (', ¢) is a principal homoge-
neous space for H'(Q, &), and Blasius shows that H'(Q, &') satisfies
the Hasse principle.

Theorem 7.4 satisfactorily characterizes (B, ¢). It remains to char-
acterize the canonical complex point p. This can be done in terms of
the periods of Hecke characters.
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PROPOSITION 7.5. Let p’ be a point of B(C) mapping to q. If p’ maps
to py in *Py(C) for all algebraic Hecke characters x, then p’' = p.

PROOF: We can write p’ = p- s with s € G(C), and the condition
implies that x(s) =1 for all characters y of &.

Remark 7.6. (a) It suffices to assume that the condition in (7.5)
holds for enough Hecke characters x so that their infinity types gen-
erate X*(&); for example, it suffices to take the Hecke characters
arising from abelian varieties with complex multiplication. Thus the
combination of (7.4) and (7.5) characterizes the periods of abelian va-
rieties over Q of potential C' M-type in terms of the periods of abelian
varieties defined over a number field and with complex multiplication
defined over that field.

(b) Blasius (1986) shows that certain products of the periods of the
motives attached to Hecke characters are equal to critical values of
the L-series of the Hecke character. If it could be shown that (%3, p) is
characterized by the property in (7.4) and the critical values of Hecke
L-series, this would be the characterization sought.

Notes. Theorem 7.4 is proved in Blasius (1989). The monograph
(Schappacher 1988) provides a detailed introduction to the periods of
motives of C' M-type.

II. SHIMURA VARIETIES

In this chapter, we define Shimura varieties and state the main
theorems on canonical models: every Shimura variety Sh(G, X) has
a (unique) canonical model Sh(G, X)g over its reflex field E(G, X);
for each 7 € Gal(Q*/Q), 7Sh(G,X)g is the canonical model over
TE(G, X) of an explicitly determined Shimura variety Sh("G, ™ X).

1. Connected Shimura varieties over C.

A bounded symmetric domain is a bounded open connected subset
D of C™, some m, that is symmetric in the sense that, for each point
T € D, there is an involutive automorphism s, of D (the symmetry
with respect to z) having x as an isolated fixed point. The simplest
bounded symmetric domain is the open unit disk {z € C| |z| < 1}.

A complex manifold isomorphic to a bounded symmetric domain
will be called a symmetric Hermitian domain. The simplest example
of a symmetric Hermitian domain is the complex upper-half-plane,
H* = {z € C | [Im(z) > 0}. The Bergmann metric on a bounded
symmetric domain provides it with a natural structure of a Hermi-
tian manifold. Thus every symmetric Hermitian domain D has a
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Hermitian structure which is invariant under all automorphisms; in
particular, D is symmetric as a Hermitian manifold.

Let D be a symmetric Hermitian domain. The group Aut(D) of
automorphisms of D (as a complex manifold) is a real semisimple
Lie group with only finitely many connected components, and trivial
centre. If G is a connected simple real algebraic group with trivial
centre such that D = G(R)* /K for some maximal compact subgroup
K of G(R)*, then Aut(D)NG(R) = G(R)*, and G(R) has either one

or two connected components.

Locally symmetric varieties. Let D be a symmetric Hermitian
domain, and let G be a semisimple algebraic group over Q such that
D = G(R)* /K with K a maximal compact subgroup of G(R)*. Let T
be an arithmetic subgroup in G(Q), which we suppose to be torsion-
free. Then S =qf [\D will again be a complex manifold.

THEOREM 1.1. The complex manifold S has a canonical structure
of an algebraic variety. With this structure, every holomorphic map
Van _, S from a complex algebraic variety V ( viewed as an analytic
space) to S is a morphism of algebraic varieties.

PROOF: The first statement is the theorem of Baily and Borel (1966).
It can also be regarded as a special case of the more general theorem
of Nadel and Tsuji (1988). The second statement is proved in Borel
(1972), 3.10.

The second statement shows that the algebraic structure on S is
not only canonical but is also unique. With this structure, S is called
a locally symmetric variety.

Remark 1.2. If D is has no factors isomorphic to the unit disk, then
the algebraic structure on S can be described as follows. Let Q' be
the sheaf of holomorphic differentials on S (regarded as a complex
manifold), and let w = AQL d = dim S. Then A = EBnZOI’(S,w@")
is a graded ring, and there is a canonical map S — Proj 4, which
identifies S with an open subvariety of Proj A. Since ProjA is a
projective algebraic variety, this shows that S is a quasi-projective
algebraic variety.

This description extends to the case where D has factors isomorphic
to the unit disk provided T'(S,w®") is replaced with the group of
sections of w®" having at worst logarithmic poles along the boundary
in some smooth compactification of S (see Iitaka 1982, XI, for the
definitions).
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Let S be the closure of S in Proj A. Then Borel (1972) shows that
S has the following property: for any nonsingular algebraic variety V
containing .S as an open subvariety and such that the complement of
S in V has only normal crossings as singularities, there is a unique
morphism V' — S whose restriction to S is the identity map. For this
reason, S is called the minimal compactification of S (alternatively,
the Satake-Baily-Borel compactification of S).

The axioms for a connected Shimura variety. A connected
Shimura variety is a projective system of locally symmetric varieties.
The datum needed to define it is a pair (G, X*) comprising a semisim-
ple group G over Q and a G*(R)* conjugacy class X+t of homomor-
phisms § — G3! satisfying the following conditions:

(1.3.1) when composed with G — GL(g), each h in Xt defines a
Hodge structure on g; this Hodge structure is required to be of type
{(—1’ 1)? (0’ O)a (1’ _1)};

(1.3.2) for each h in Xt ad h(7) is a Cartan involution of Gg;

(1.3.3) G*! has no factor defined over @ whose real points form a
compact group.

Remark 1.4. (a) It suffices to check the conditions in (1.3.1) and
(1.3.2) for a single h € Xt.

(b) Axiom (1.3.1) implies that the Hodge structure on g defined by
h has weight zero. Hence the weight map wy, (see 1.2) is trivial, and
so h factors through § — §/6G,,.

(c) Since h(i)? = h(—1) = 1, ad k(i) is an involution of Gg. To say
that it is a Cartan involution means that the corresponding real form
G’ of G, with complex conjugation g — h(i) - g - h(i)~!, is compact.
Equivalently, for every representation (V, §) of G, the Hodge structure
(V,€ o h) admits a G-invariant polarization (see Deligne 1972, 2.8).

(d) Axiom (1.3.3) is included for the sake of convenience. It has
the following consequence: let H be a simple factor of the simply
connected covering group G*¢ of G; then H(R) is not compact, and so
the strong approximation theorem shows that H(R) - H(Q) is dense
in H(A). This implies that H(Q) is dense in H(A;). Thus G*¢(Q) is
dense in G*¢(Ay).

Example 1.5. Let G = SL,, and let X% be the set of PGLy(R)*
conjugates of

a

ho : S — G, a+ibr—>(z _b>.
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+ ; : : abl _ _ aztb
Then (G, X 1) satisfies the axioms (1.3). If we write (C d) z = c—z_'t—d,

then ad(g) o ho — ¢ - i identifies X + with H*, the complex upper-
half-plane.

The complex structure on X*. Let (G,X ) satisfy the axioms
(1.3). Fix a point 0 € X%, and let K, be the subgroup of G(R)*
fixing 0. Then the action of G(R)* on X defines a bijection

(*) G(R)T /Ko, — X¥

Since I, is fixed by ad ho(4), axiom (1.3.2) implies that it is compact;
moreover

=Eo+po’ g:LleG, EozLieI(07

where £, and po are the +1 and -1 eigenspaces for ad h(i) acting on g.
When we use (*) to endow Xt with a real analytic structure, then (¥)
identifies p, with Tgt (X *). There is a unique homogencous complex
structure on Xt such that the action of i on Tgt,(X*) corresponds
to the action of h(e?"/8) on p,, and relative to this structure, X7
becomes a symmetric Hermitian domain.

Since I prefer to regard Xt as a symmetric Hermitian domain rather
than a conjugacy class of homomorphisms, I write x for a point of X+
(thought of as a domain) and h, for the corresponding homomorphism
§ — Gad: thus hy., = ad(g) o h, for g € G*(R)* and z € XT. Also
i1, denotes the cocharacter z — h c(2, 1) attached to h, (see 1.2).

The connected Shimura variety. We now construct the connected
Shimura variety associated with a pair (G,Xt). A congruence sub-
group of G(Q) is a subgroup of the form I' = K N G(Q) with K a
compact open subgroup of G(Ay). Endow G*4(Q) with the topology
for which the images of the congruence subgroups in G(Q) form a
fundamental system of neighbourhoods of the identity element, and
let Gad(Q)‘*'Abe the completion of G*4(Q)* relative to this topology-
The connected Shimura variety Sh°(G, X+) will be a scheme with a
continuous right action of Gad(Q)JfAin the sense of §10 below.

Let ©(G) be the set of torsion-free arithmetic subgroups of G*4(Q)*
that contain the image of a congruence subgroup of G(Q). For
T € B(G), T\X* is a locally symmetric algebraic variety. The group
G?*4(Q)* acts on the projective system (T\X T)rex(q) as follows: for
each I' € ¥(G) and g € G*(Q)*, g defines a map

MNXxt — g"lI‘g\X'*', [z] — (g7 x].
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This map is holomorphic, and hence algebraic by (1.1). The action of
G*4(@)* on (DM\X*)rex(g) extends by continuity to G*4(Q)*t". The
connected Shimura variety Sh°(G, X) is defined to be the projective
system (I\X*)rex(q) (or its limit) together with the continuous right

action of G24(Q)* ™ just defined.

When G is simply connected, some simplifications occur. Then
G(R) is connected, and (1.4d) shows that G(Q)- K = G(Ay). For any
congruence subgroup I' = G(Q) N K of G(Q),

[z] = [2,1], T\Xt — G@\XT x G(R;)/K

is an isomorphism (on the right, [qz,qak] = [z,a], for ¢ € G(Q),
keK).

In the limt,

Sh?(G, X)(C) = imT\X* = G(@\X* x G(Aj),

(apply 10.1 below). The semi-direct product G(Af) x G*4(Q)* acts
on this scheme:

[#,al(g,9) = [g7"2,ad(g"")(ag)],z € X*,a,9 € G(Af),q € G*(Q)*.

The homomorphism g +— (¢~ !, ad q) identifies G(Q) with a normal
subgroup G(Ay) x G*(Q)*, and the quotient group G(Ay) *G(Q)
G*(Q)* continues to act on Sh°(G, X1). In this case

G(Af) xqg) G*(Q)Y =G(Q)t

(Deligne 1979, 2.1.6.2), and the action just described agrees with that
defined in the preceding paragraph.

Example 1.6. If " is an arithmetic subgroup of PGL>(Q) contain-
ing the image of a congruence subgroup in SL2(Q), then T\H? is (by
definition) an elliptic modular curve . Thus Sh®(SLy, HT) is the pro-
jective system of elliptic modular curves equipped with a continuous
right action of PGLo(Q)% . This is the object of study of Shimura
(1971b).

Etale coverings and automorphisms of connected Shimura
varieties. Connected Shimura varieties behave as though they are
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simply connected: a finite étale equivariant morphism from one con-
nected Shimura variety to a second is an isomorphism (Milne 1983,
2.1). It is possible to compute the group of G*4(Q)* -equivariant au-
tomorphisms of Sh®(G, X +); for example, if G = G?¢, then this group
is zero (ib., 2.4). The full group of (not necessarily equivariant) auto-
morphisms of Sh’(G, X*) contains Gad(Q)+Aas a subgroup of finite
index (Milne and Shih 1981b, 1.3).

Notes. The axioms for a connected Shimura variety are those of

Deligne (1979), 2.1.8.

2 Shimura varieties over C. For many reasons, for example, in
order to have models over number fields of finite degree, it is neces-
sary to consider nonconnected Shimura varieties. They are defined
by reductive groups rather than semisimple groups. The connected
Shimura varieties occur as the connected components of Shimura va-
rieties.

The axioms for a Shimura variety. The datum needed to define
a Shimura variety is a pair (G, X) comprising a reductive group G
over @ and a G(R)-conjugacy class X of homomorphisms $§ — Ggr
satisfying the following conditions:

(2.1.1) for each # € X, the Hodge structure on g defined by h; is
of type {(~1,1), (0,0), (1,~ 1)}

(2.1.2) for each z € X, ad h,(i) is a Cartan involution on Gj';

(2.1.3) G4 has no factor defined over @ whose real points form a
compact group;

(2.1.4) the identity component Z(G)° of the centre of Z(G) of G
splits over a C'M-field.
Simplifications occur when (2.1.2) is replaced by a stronger axiom:

(2.1.2%) let Zo(G) be the maximal subtorus of Z(G) split over @;
then ad h,(i) is a Cartan involution on G/Zo(G)-

We say that (G, X) satisfies (2.1) when it satisfies (2.1.1) - (2.1.4);
when it also satisfies (2.1.2%), we say that it satisfies (2.1%).

Remark 2.2. (a) Again it suffices to check (2.1.1) and (2.1.2) for 2
single z € X.

(b) Let X+ be a connected component of X, and for each z €
X+, let B, be the composite of b, with Gr — Gad. Then z +— hz
identifies X+ with a G*4(R)T-conjugacy class of homomorphisms $ —
G, which satisfies the axioms (1.3). Therefore X * acquires from §1
a natural structure of a symmetric Hermitian domain, and so X 18
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a finite disjoint union of symmetric Hermitian domains (indexed by
G(R)/G(R)4).

(c) Axiom (2.1.1) implies that the Hodge structure on g defined by
ad o h, has weight zero. Hence the weight map w, is central, and so
it is independent of z — we write it wx.

(d) Axiom (2.1.4) is not in Deligne’s list of axioms (Deligne (1979),
2.1.1), but it is harmless to impose it since, in practice, all examples
satisfy it, and it allows some simplifications; for example, it implies
that wx is defined over a totally real field.

(e) Axiom (2.1.2*%) is very restrictive; it excludes many important
Shimura varieties, for example, all Hilbert modular varieties of dimen-
sion greater than one.

Example 2.3. Let V be a vector space of dimension 2 over Q. Let
G = GL(V), and let X be the set of complex structures on V ® R.
With each z € X we associate the homomorphism h, : § — Gg such
that h.(z) acts on VQR as z for all z € S(R) = CX. Then z — h,
identifies X with a G(R)-conjugacy class of homomorphisms § — Gg,
and the pair (G, X) satisfies the axioms (2.1). The choice of a basis
for V identifies G with GL, and X with C—R = {z € C | R(z) # 0},
the union of the upper and lower half-planes.

The Shimura variety. Let (G, X) satisfy the conditions (2.1). For
K a compact open subgroup in G(Ay), consider the double coset space

Shi(G, X) = G@\X x G(A)/E,
where
q(z,a)k = (qz,qak), q€G(Q),r€ X,ae€ G(Af), ke K.

Let C be a set of representatives for the finite set G(Q)+\G(Ay)/K,
and, for each g € C, let T'y be the image in G*4(R)* of the subgroup
I =9gKg ' NG(Q)s of G(Q)4. Then

Shg (G, X) =UlZ\X* (disjoint union over g € C)

for any connected component X+ of X. When K is sufficiently small,
Iy will be torsion-free, and we conclude from (1.1) that Shx (G, X)
will then be a finite disjoint union of locally symmetric varieties. It
therefore has a unique structure of an algebraic variety. Let

Sh(G, X) = lim Shx (G, X).
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This is a scheme over C whose complex points are
Sh(G, X) = G(Q\X x G(A;)/Z(Q)",

where Z(Q)~ is the closure of Z(Q) in Z(A) (to prove this, apply
(10.1) below with E = G(Q)\X x G(Af)/Z(Q)~). When the maximal
R-split subtorus of Z(G) is Q-split, Z(Q) is closed in Z(Ay), and so

Sh(G, X) = G(@)\X X G(Ay).
There is a continuous action of G(Af) on Sh(G, X), given by
[m,a]gz[x,ag], HTGX,GEG(Af),gEG(Af)

The scheme Sh(G, X) together with this continuous action of G(Ay)
is called the Shimura variety defined by (G, X). We write (g) or T(g)
for the operation of g € G(Ay) on Sh(G, X) -— it is often called the
Hecke operator defined by g.

Example 2.4. (a) A symplectic space over Q is a vector space V over
Q together with a nondegenerate skew-symmetric form ¢y on V. The
group G = GSp(V,¥) of symplectic similitudes of (V, 1) has rational

points
G(Q)={aeGL(V)|3q€ Q%s.t.(aw, aw) = qiP(v,w), Vo, w € V}.

Let S be the set of all Hodge structures of type {(—1,0), (0,—1)} on
V for which £27it is a polarization. Then S* is a G(R)-conjugacy
class of homomorphisms § — Gg, and the pair (G,S ) satisfies the
conditions (2.1). The space 5% regarded as a disjoint union of two
Hermitian symmetric domain, is the Siegel double space , and the
variety Sh(G, S*) is the Siegel modular vartety .

(b) Let F be a totally real number field, and let G = GLa,F, SO that
G(R) = HHom(F,R) GLy(R). Let X be the set of G(R)-conjugates of

) a —b a —b a —b
ho!S—)GR, a+1b+——>((b a)’(b a),...,(b a))

Then X is a product of [E : Q] copies of C — R, and (G, X) satisfies
the axioms (2.1). The variety Sh(G, X) is the Hilbert modular variety:



CANONICAL MODELS 325

Remark 2.5. The semi-direct product G(A;)/Z(Q)~xG*(Q)* acts
on Sh(G, X). Moreover, the quotient

G(G) =ar (G(AP)/Z(Q)7) *a(@), /2@ G (Q)F

of this group by its normal subgroup

{(g7",adq) | g € G(Q)+/2(Q)}

continues to act. The Shimura variety Sh(G, X) is a scheme with a
continuous action of G(G) in the sense of §10 below.

The reflex field. The reflex field is the natural field of definition of
the Shimura variety. It is defined purely in terms of G and X.

For any field k of characteristic zero, let M (k) be the set of G(k)-
conjugacy classes of homomorphisms G, — Gk. The map M(k;) —
M (ks) defined by an inclusion k; < ko of algebraically closed fields
is bijective. In particular, M(Q¥) ~ M(C).

The cocharacters jt, for z in X lie in a single class Mx € M(C),
which we can regard as an element of M(Q?¥). The reflez field
E(G,X) is the fixed field of the subgroup {o | oMx = Mx} of
Gal(Q@¥/Q); it is therefore the field of definition of the conjugacy
class My. With our axiom (2.1.4), E(G,X) will be contained in a
CM-field (sce Deligne 1971c, 3.8), which means that it is either a
C M-field or a totally real field.

Special points. A point z € X is special if there is a maximal Q-
rational torus T C G such that h, factors through T (equivalently,
T(R) fixes x). Then

12 =4t (60— T = T/2Z(G) € G™)

satisfies the Serre condition, and so there is a unique homomorphism
pd . & — G* such that pican 0 (p2d)e = p2d (see 1.2.4b). There
always exist many special points in X (Deligne 1971c, 5.1).

When p, itself satisfies the Serre condition, we call x a C'M -point.
In this case there exists a unique Q-rational homomorphism p, : & —
G such that prean © (pz)c = ptz. A Q-linear representation (V,€) of
G attaches a C M-motive over Q2 to each C M-point z, namely, that
corresponding to the representation (V,€ o p,) of & (see 1.4). The
existence of a single C M-point implies that the weight wx is defined



326 J. S. MILNE

over Q, and conversely, if wx is defined over Q, then every special
point is CM (under our axiom (2.1.4); see Milne (1988), A.3).

A pair (T, ) comprising a point = of X (necessarily special) and a
maximal torus T' C G such that h; factors through Tg will be called a
special pair in (G, X). When z is a C M-point, we refer to a C M -pair.

A point [z,g] of Sh(G,X) is said to be special (or CM) if z is
special (or CM) in X. There is always a special point in X, and for
any special point z, [z,1]-G(Ay) is dense in Sh(G, X) for the Zariski
topology (Deligne 1971c, 5.1).

Shimura varieties defined by tori. Let T be a torus over Q split
by a CM-field. A pair (T, z), h, : § — Tr, automatically satisfies the
axioms (2.1). The associated Shimura variety

SI(T, «) = lim T(@\T(Af)/K = T(Ay)/T(Q)"

has dimension zero. The reflex field E(T,z) of (T, z) is the field of
definition of ..

For example, let F be a CM-field and ® a CM-type for E. Then
(TE,hg) defines a Shimura variety whose reflex field is E*(®), the
reflex field of (F,®). (Notations as in 1.2.6.)

Morphisms of Shimura varieties. Let (G,X) and (G’,X’) be
pairs satisfying (2.1). By a morphism f : (G,X) — (G',X'), we
mean a homomorphism f : G — G’ mapping X into X’. Such an f
defines a morphism of schemes

Sh(f) : Sh(G,X) — Sh(G', X"), |[z,a]— [f(z), f(a)]
which is equivariant for f : G(Ry) — G'(Ay), that is,

Sh(f) o T(g) =T(f(g)) oSh(f), forge G(Ay).

If f:G — G'is a closed immersion, then so also is Sh(f) (Deligne
1971c, 1.15).

PROPOSITION 2.6. Let (G,X) and (G',X') be two pairs satisfying
(2.1), and suppose given

(i) a morphism f; : (G, X) — (G', X');

(i) a continuous homomorphism f, : G(Ay) — G'(Ay);

(iii) an element a € G1(Ay) such that fj oada™' = f.
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Then the morphism ¢ = Sh(f1) o T(a) : Sh(G1, X;) — Sh(G», X5)
maps [z,a™'] to [fi(z), 1] for all z € X, and is equivariant:

v0T(g9) =T(f2(9)) o for all g € G, (Ay).

Moreover, ¢ is unchanged when f, is replaced with fioadq, q € G(Q),
and a with aq.

PROOF: Straightforward.

The relation between connected and nonconnected Shimura
varieties. Let X+ be a connected component of X , and let Sh(G, X)°
be the connected component of Sh(G, X) containing the image of
X*. As we observed in (2.2b), X* can be identified with a G*4(R)*-
conjugacy class of homomorphisms § — G, It is an important ob-
servation of Deligne that Sh(G, X)° can be described solely in terms
of G and X+, in particular, it is independent of the centre of &
(except for Z(G) N Gder),

PROPOSITION 2.7. Let (G, X) be a pair satisfying (2.1), and let X+
be a connected component of X. When X+ js regarded as a conjugacy
class of maps § — G*(R)*, the pair (Gder, X+) satisfies the axioms
(1.3), and

[z] = [z,1] : Sh%(G, X ) — Sh(G, X)

defines an equivariant isomorphism of Sh’(G, X*) onto Sh(G, X)° .
The stabilizer of Sh°(G, X) in G(G) is G*(Q)t.

PROOF: Deligne (1979), 2.1.16.

In the language of §10 below, the proposition says that Sh(G, X) is
obtained from Sh®(G¥°", X+) by induction from (¢ (@) to G(G).
This result will enable us to relate statements about connected
Shimura varieties to statements about nonconnected Shimura vari-
eties. To this end, the following result, which shows that each con-
nected Shimura variety occurs as a connected component of a partic-
ularly good Shimura variety, is useful.

PROPOSITION 2.8. For any pair (G, X%) defining a connected Shim-
ura variety, there is a pair (G1,X;) defining a Shimura variety and
such that:

(a) (GI=r, X}) = (G, X*+);

(b) the weight wy, is defined over Q.
Moreover, Gy can be chosen so that either:
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(c) H (k, Z(G1)) = 0 for all fields k D Q; or
(d) ad h(i) is a Cartan involution on Gy /wy,(Gn,) (hence (2.1.2%)
holds).

PROOF: See the Appendix to Milune (1988).

The minimal compactification of Sh(G,X). Assume that G4
has no factors of dimension 3, and let

A= B, (Sh(G, X),w®"), w=A%' d=dimX.

There is a canonical inclusion Sh(G,X) — Proj A, the closure of
whose image, Sh(G, X), is called the minimal (or Satake-Baily-Borel)
compactification of Sh(G,X). When G*! has factors of dimension
3, we must replace T'(S,w®") with the group of sections having at

worst logarithmic singularities along the boundary of some smooth
compactification of Sh(G, X) (cf. 1.2).

Automorphisms of Shimura varieties. It is possible to use the
results in §1 on automorphisms of connected Shimura varieties to
compute the group of G(A)-equivariant automorphisms of a Shimura
varicty. Clearly the Hecke operator 7(g) associated with any g €
Z(Ay) is such an automorphism of Sh(G, X), and conversely one can
show that when Z(G) satisfies the Hasse principle for finite primes,

that is, HY(Q, Z(G)) <= [linie primes HY(Q¢, Z(G)), then all G(Ay)-

automorphisms of Sh(G, X)) are of this form. Thus, in this case,
Autga,)Sh(G, X) = Z(Rf)/Z(Q)".

See Milne (1983), 2.7.

Notes. The axioms for a Shimura variety were introduced in Deligne
(1971c¢) and, in slightly revised form, in Deligne (1979). They were
suggested by the work of Shimura. This section summarizes parts of
the two articles of Deligne.

3. Shimura varieties as moduli varieties for motives.

In this section, we explain how the choice of a representation £ : G —
GL(V), V a @-vector space, endows Sh(G, X) with all the additional
structure that a family of motives over Sh(G, X) would give. This
suggests that, under some restrictions on (G, X), Sh(G, X') should be
a fine moduli space for motives.
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Review of local systems and flat vector bundles. Let S be
an algebraic variety over k, and let V be a vector bundle on S. A
connection on V is a k-linear homomorphism

ViV-oQiey (V regarded as a sheaf )
satisfying the Leibniz identity,
V(fv)=df v+ f-Vo

for all local sections f of Og and v of V. A vector ficld Z on S defines
amapping Vy: )V — VY by the rule: for a section v of V on an open
subset U of S,

Vz(v) =(Vv,2) € ru,v).

A connection is said to be flat (or integrable ) if its curvature tensor
is zero, that is,

VY'VZ*VZ‘VY:V[Y,Z], aIlYand Z.

A local section v of V is said to be horizontal for V if Vo = 0. A
vector bundle with a flat connection can be regarded as a D-module,
where D is the ring of differential operators — see Borel et al. (1987),
Chapter VI.

These definition carry over mutatis mutandis to a complex manifold
S. Let m1(S, s) be the fundamenta] group of S regarded as the group of
covering transformations of the universal covering space S of S (acting
on the right). A complex representation £ :m1(S,8) = GL(V) defines
a vector bundle on S

VI =8 xV/~, (s7,v) = (s,90), s € §, 7 € (S, s), v eV,

having a canonical flat connection V(&). Conversely, if V is a vector
bundle on S with a flat connection V, then V =4 V'V is a local system
of C-vector spaces on S, and for any such system, there is an natural
representation of 7(S, s) on the stalk Viof Vatse S,

We refer to Borel et al. (1987), Chapter IV, for the notion of a flat

connection being regular at infinity.

PROPOSITION 3.1. Let S be a complex manifold. The above con-
structions define equivalences between:
(a) the category of vector bundles with flat connection (V,V) on S;
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(b) the category of local systems of C-vector spaces;

(c) the category of complex representations of m1(S, s).
When X is a smooth algebraic variety, the functor (V,V ) — (V" V")
is an equivalence from the category of algebraic vector bundles with
a flat connection regular at infinity to that of analytic vector bundles
with a flat connection.

PRrROOF: Except for the last statement, this is a standard result. The
last statement can be found in (Deligne 1970) and (Borel et al. 1987,
Chapter IV).

Variations of Hodge structures. A wvariation of Hodge structures
on a complex manifold S is a local system of Q-vector spaces V' on
S together with a continuously varying family of Hodge structures on
the stalks V, of V such that
(a) the Hodge filtration on (C ®g V') varies holomorphically with
s, that is, it defines a filtration of the vector bundle ¥V =41 Os ®g V;
(b) (axiom of transversality): V(FPV) C Q} ® FP~1Y.
When Q is replaced by k& C R, we speak of a variation of Hodge
k-structures. All families of Hodge structures arising naturally in
algebraic geometry are variations of Hodge structures.

X as a parameter space for Hodge structures. As a first step
to realizing Sh(G, X) as a moduli varicty for motives, we show how
to realize X as a parameter space for Hodge structures; in fact, the
axioms (2.1) are virtually forced on us by our wish that this be so.

Let G be a connected algebraic group over R, and let Xt be a
connected component of the space of homomorphisms § — Ggr. Then
Xt is a G(R)*-conjugacy class of homomorphisms. Choose a faithful
representation (V,€) of G. For each z € X+, we obtain a real Hodge
structure £ o hy, on V. We assume that the corresponding weight
gradation is independent of z (equivalently, £ o h,(R*) is contained
in the centre of G(R)* for all z).

PROPOSITION 3.2. Let V(&) be the constant sheaf of R-vector spaces
on X1 defined by V.

(a) There is a unique complex structure on X ¥ such that the Hodge
filtrations on the stalks of C @ V(§) vary holomorphically.

(b) The Hodge structures £ o h, make V() into a variation of real
Hodge structures if and only if the Hodge structure on g defined by
h. is of type {(=1,1),(0,0),(1,-1)} for all z € X+,
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(c) Let Gy be the smallest algebraic subgroup of G through which
all the h,, x € Xt factor, and let V,, be the component of V of
weight n. There exists a bilinear form Y:Va®Vy — R(—n) that is a
polarization of (V,,, §oh,) forallx € X+ if and only if G is reductive
and ad h,(i) is a Cartan involution on G4, all z.

PROOF: This is proved in Deligne (1979), 1.1.14. We merely note
that the Hodge filtrations on the stalks of C®V(£) define a map from
X into a Grassman manifold, and (a) is equivalent to this map being
holomorphic. Moreover, that if Z is a vector field on X corresponding
to an element of F7(LieG) then Vz(F*V,) C F™**V,: the condition
implies that Lie G = F!(Lie G) . Finally, the result noted in (1.4¢)
implies the existence of Y.

Now assume that (G, X ) is a pair satisfying (2.1). The structure
on X that we defined in §2 is the unique complex structure such
that every real representation (V,€) of G defines a variation of real
polarizable Hodge structures on X. If the weight wy is defined over
Q, then every rational representation (V,€) of G defines a rational
polarizable variation of Hodge structures on X. We can extend V(¢)
to X x G(Ay), and when (2.1.2*) holds we can pass to the quotient to
obtain a polarizable variation of Hodge structures (rational or real)
on Sh(G, X). In the rational case, this variation of Hodge structures
is a candidate to be the family of Betti cohomology groups of a family
of motives over Sh(G, X).

Local systems of Q,-adic vector spaces. Let S be a scheme. By a
local system of Q,-vector spaces on Sey I mean a twisted-constant con-
structible (or smooth) @-sheaf: see for example Milne (1980), p165.
When S is connected and s is a geometric point of S, the map V +— V,
(stalk of V at s) defines an equivalence from the category of local Sys-
tems of Qe-vector spaces on S to that of continuous representations
of 7{*(S, 5) on Q,-vector spaces. More generally, if X — § is a Galois
covering of S with Galois group G (see 10.2), then

V= ImV(X™)  (limit over the open subgroups H of G),

defines an equivalence from the category of local systems of Q,-vector
spaces on S whose pull-back to X is constant to that of continuous
representations of G.

Now take S to be a smooth connected variety over C, and let s €
S{C). In this case, s is also a geometric point of S, and (S, s)



332 J.S. MILNE

is the profinite completion of 71(S,s). A local system of Q-vector
spaces V on S(C) defines a representation £ : m1(S,s) — GL(V}),
which extends to a representation & : 7$*(S,s) — GL(V, ® Q) if and
only if it is continuous relative to the f-adic topology on V and the
profinite topology on (S, s). In this case, we abuse notation, and
write V@ Qy for the local system of Qg-vector spaces on Sey associated

with &,.
The systems attached to a rational representation of G.

PROPOSITION 3.3. Assume that (G, X) satisfies (2.1%). A represen-
tation (V,&) of G defines (in a natural way):
(a) a local system of Q-vector spaces V(§) on Sh(G, X);
(b) a local system of Qg-vector spaces V¢(€) on Sh(G,X),,, each ¢;
(c) a vector bundle V(§) on Sh(G, X) together with a (regular) flat
connection V (£).
These are related by canonical isomorphisms:
(1) V(§) © Qe — Vi(£);
(i) V(E)aC — (e,
When the weight wy is defined over Q, the maps £oh, dcfine on V (€)
the structure of a variation of polarizable Hodge structures.

PRrROOF: Let K be compact open subgroup of G(Af). Then (sece
§2) Shy (G, X) is a finite union UI',)\ X+, where Iy is the image of
I, = gKg~' N G(Q)y in G*(Q)4+. When K is sufficiently small,
I', will be the fundamental group of I'y)\X*. The condition (2.1.2%)
implies that Z(Q) is discrete in Z(Ay), and so we can take I to be
sufficiently small so that KNZ(Q) = {1}. Since the kernel of I';, — T’
is contained in Z(Q), this shows that we can assume that ', = I'y.
Now cach of V(£) and (V(£),V(£)) is defined on Tg\X* by the re-
striction of £ to I'). The sheaf V() can be defined to be V() ® Qs
or, better, we can proceed as follows. The above discussion shows
that when K is sufficiently small, I'; will act without fixed points on
X*. Under the same hypothesis, K will act without fixed points on
Sh(G, X) = G(Q)\X x G(Ay). Then Sh(G, X) will be a Galois cover-
ing of Shx (G, X), and we can take V¢(€) to be sheaf associated with
the representation of K on V ® Q; defined by §.

The motives attached to the points of Sh(G,X). Our discus-
sion in this and the next subsection is predicated on the assumption
of (1.3.2), so that there is a theory of motives over any field of char-
acteristic zero, and the Betti fibre functor Mot/C — Hdgg is fully
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faithful (see 1.4). Let (G, X) be a pair satisfying (2.1%), and assume
that wy is defined over Q. To simplify the discussion, we assume
there is a homomorphism ¢ : G — G, such that towy(z) = =2, Fix
a faithful representation (V,€) of G.

HoPE 3.4. Each (V, §oh,) is the rational Hodge structure attached to
a motive M, over C (uniquely determined, because of our assumption

of 1.3.2).

As we noted in §2, when z is a CM-point we know that M, exists,
and it is a motive of CM-type. Let t = (to)acr be a family of tensors
for V' such that G is the subgroup of GL(V) x G,, fixing the ¢,

Consider the set of triples (M, s, n) consisting of a motive M over
C, a family s = (Sa)aer Of Hodge cycles on M, and an isomorphism
n:V(Ry) — Hp(M) such that:

(3.5a) there exists an isomorphism ¢ : Hp(M) -V mapping each
Sa to ty and such that (z — j o hyu(z)oi~1) e X,

(3.5b) » maps each Sq to t,.

An isomorphism from one such triple (M, s,7) to a second (M',s' 5
Is an isomorphism v : M — g’ sending each s, to s/, and such that
yon =mn". Write M(G, X, §) for the set of isomorphism classes of
such triples.

PROPOSITION 3.6. Under the above assumptions, there js a canonical
bijection

B¢ : M(G, X,€) — Sh(G, X).

PROOF: Given (M, s, 1), choose an isomorphism i : Hp(M) -V as
in (3.5a), and let 2 € X be such that ha(2) =i0hp(2)0i~!. Because
ta,0n: V(Af) — V(Ry) preserves Hodge cycles, it is mubltiplication
by &(a), some a € G(Ay). The map i is uniquely determined up to an
element of G(Q), and so the class of (z,a) in Sh(G, X) is well-defined:
we set O¢(M,s,n) = [z, a]. Conversely, given (z,a) € X x G(Ay), let
M be the motive determined by (3.4), and define t,, to be Sq and n
to be multiplication by &(a).

Remark 3.7. It is possible to recover (G, X) from the triple (M, s,n)
attached to a single point of Sh(G, X): by definition G is the subgroup
of GL(Hp(M))xG,, fixing the s,; because s, is a Hodge cycle, hat(S)
fixes it, and so h,, factors through Ggr; X is the G(R)-conjugacy class
of hM.
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Families of motives. We define a family of motives over a scheme
S to be a motive over the generic point “with good reduction every-
where”.

Definition 3.8. Let S be a smooth connected variety over C with
generic point 7, and let 77 be a geometric point lying over n. A meo-
tive M over S is a motive M, over C(n) such that the action of
Gal(C(n)*/C(n)) on He(M,,) factors through 7¢*(S,7), all £.

Write H¢(M) for the local system of Q,-vector spaces on S defined
by the representation of 7$'(S,7) on Hy(M,). Let Sy be a model of
S over a subfield kg of C of finite transcendence degree over @, and
let 79 be the generic point of Sp; assume kg is sufficiently large that
M,, has a model My over ny. For any sufficiently general closed point
t of S, there will be a k-morphism 79 — S with image ¢, and M,
will define a motive M; over t. There is a local system of Q-vector
spaces Hp(M) on S such that Hg(M), = Hg(M;) C H¢(M); for
every such t. From (3.1) we then obtain a pair (Hqr(M), V) such
that HdR(M)V =C® HB(M)

A motive on a nonconnected smooth scheme S over C is defined to
be a motive on each of the connected components of S.

HoPE 3.9. For any representation (V,€) of G, there exists a motive
M on Sh(G, X) such that

Hp(M)=V(£), He(M)=Vy(§) each ¢, Har(M) = V().

Take £ to be faithful, and let M be the family of motives given by
(3.9). There will be a family t = (t,) of tensors for V such that G is
the subgroup of GL(V) x G,,, fixing the t,. For each a, ¢, defines a
global section s, of Hp(M), and we let s = (s,). By construction,
there is an isomorphism 7 : V;(§) — H (M) sending ¢, to s,.

Hore 3.10. The triple (M, s,n) is universal: let S be a smooth C-
scheme with a continuous action of G(Ay), and let (M’,s’,n’) be a
triple over S such that (M',s',n"), € M(G, X, &) for all closed points
s of S; then there is a unique G(A;)-morphism ¥ : S — Sh(G,X)
such that ¥*(M,s,n) = (M',s',n’).

Shimura varieties as moduli varieties for abelian varieties.

We now drop all assumptions on motives. Let (G, X) be a pair sat-
isfying (2.1), and assume that there is an inclusion £ : (G, X) —
(GSp,S*), where GSp and S are as in (2.4a). In this case, (3.4) is
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true; in fact, (V,€oh,) is the Hodge structure of an abelian variety A
over C, uniquely determined up isogeny. Thus M(G, X, ¢ ) consists of
1sogeny classes of triples (A, s, n) satisfying (3.5), with A an abelian
variety. (We say (A, s,n) and (A',8',n') are isogenous if there is an
isogeny v : A — A’ sending s,, to Sa» €ach a, and such that yon = n'.)

THEOREM 3.11. (a) The map D¢ 1 M(G,X,£) — Sh(G, X) real-
izes Sh(G, X) as the coarse moduli scheme for the set M(G, X, €) of
Isogeny classes of triples (A, s, 7).

(b) When (G, X) satisfies (2.1.2%), Sh(G,X) is a fine moduli

scheme; in particular, it carries a universal family (A, s, 7).

PROOF: This follows from the main theorem of Mumford (1965).

A Shimura variety Sh(G, X ) is said to be of Hodge type when there
is an embedding (G, X) < (GSp(V,4), 5%). As we have just seen,
every such Shimura variety is a (coarse) moduli scheme for abelian
varieties with Hodge-cycle and level structure. When each of the
Hodge cycles defining the moduli problem is an endomorphism or a
polarization then the Shimura variety is said to be of PEL-type.

Notes. This section makes more explicit the philosophy underlying
Deligne (1979).

4. Conjugates of Shimura varieties.
Let 7 be an automorphism of C. We want to identify 7Sh(G, X) with
the Shimura variety defined by a possibly different pair (G',X"). Fixa
faithful representation (V,€) of G, and assume (3.4), so that attached
to each point s of Sh(G, X), there is a triple (M, s,7), satisfying the
conditions (3.5). The triple attached to s € 7Sh(G, X) = Sh(G’, X)
should be 7(M, s, 1),. As we noted in (3.7) it is possible to recover
(G',X") from 7(M, s, n),- This gives us a description of (G, X'"), but
only in terms of a conjectural theory of motives. A key observation in
Langlands (1979) is that, when we take s to be a CM-point, M, be-
comes a C'M-motive, and so we can apply the theory of the Taniyama
group to define (G’, X").

Now drop all assumptions, and choose a special point x € X. Then
T defines a homomorphism pd . & - G (see §2), and hence an
action of & on G. Write ™G for the inner twist of G defined by S :
"*G =76 x ®G. The point sp(7) € "6(A;) defines an 1somorphism

G(Ry) = ""G(Ay), g "Tg =4 sp(r) - g.
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Let T' C G be a maximal torus such that T(R) fixes z. The action of
Son T is trivial, and so T = "*T C ™*G. Thus 74, can be regarded
as a homomorphism

G, =T =""T — %G,

Since Ty, commutes with its complex conjugate, it defines a homo-
morphism h., : § — T*G, and when we take X to be the set
of G(R)-conjugates of "*h, the pair ("*G, ™* X) satisfies the axioms
(2.1).

Remark 4.1. (a) If x is a CM-point and (V,€§) is a faithful repre-
sentation of G, then, as we observed in §2, (V,h, 0 &) is Hg(M) for
a well-defined C'M-motive M over C. Let t be a family of Hodge
tensors for V' such that G is the subgroup of GL(V) x G,, fixing the
elements of t. Then ™*G is the subgroup of GL(Hp(7M)) x G, fixing
7t for each t € t. Morcover, hr, = h.p, and g +— "%g is defined by
Hf(M) —T—> Hf(TM)

(b) The group ™*G is obtained from G by twisting at infinity. For
example, if G = GL,(B) with B a quaternion algebra over a totally
real field F', then ™*G = GL,(B’) where B’ ®g Qe =~ B @g Qo, all ¢,
and B' @p o R~ B®p 00 R, all 0 : F — R.

The next result is the main theorem of the chapter: it shows that
the choice of a special point = determines a realization of 7Sh(G, X)
as the Shimura variety of (7*G, * X); the following Theorem 4.4 then
shows that the realization is essentially independent of the choice of
x.

THEOREM 4.2. For cach 7 € Aut(C) and special point x € X, there
I1s a unique isomorphism

¢re : TSh(G, X) - Sh(™*G, " X)

such that
(a) T[z,1] — [z, 1], and
(b) Prz © TT(Q) = T(T’xg) O Pr,xs all g c G(Af)'

PROOF: The uniqueness is obvious from the fact that [2,1]- G(Ay) is
dense in Sh(G, X). We discuss the proof of the existence in §9 below.
(If we knew (3.10), ¢,, would be the map given by the family of
motives TM over 7Sh(G, X) and the universality of Sh(™*G, 7% X).)
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Let z and 2’ be C M points of X (supposed to exist). A calculation
shows that Pz+(T6) and P'+(" &) have the same class in HY(Q,G).
The choice of an isomorphism f : Pes(T6) — Pz'+(TS) determines an
isomorphism f; : TrG "*'G, and there is an g € ™G(Ay) such
that fy(a=1. Tg) =g If fis replaced by fogq, g € "*G(Q), then
f1 is replaced by froadq and a with aq. Therefore (sece 2.6), there is
a well-defined isomorphism

p(r;2' 2) Sh™G, ™ X) — Sh(™*'q, X)),

PROPOSITION 4.3. Lot 7 ¢ Aut(C). For each pair (G, X) defining a
Shimura varicty and special points ¥ and x' of X there s an i1somor-
phism
p(r;a', ) : Sh(™*G, T X) — Sh(™v'G, mrX)
such that o(r;2’,2) 0 T(T%g) = T(™"g) 0 (r; 2’ x), all g € G(Aj).
These isomorphisms are uniquely determined by the following prop-
crties:
(a) when z and 2’ are C'M-points, p(; z',z) is as defined above;

(h) if (G, X)+ = (G, X)* and z and 2’ € X+ (= X'*), then
(12", 2)|Sh(G, X)) = o(T; x',:z:)[Sh(G',/’)O.

PROOF: When the weight wy is defined over Q, every special point is
C'M and the map is as above. Next check that o(7; 2/, z)|Sh(G, X)0 =
o(T; 2’ 2)[Sh(G’, X')° when (Glr, X+) = (G”d”,X’Jr), x and z’ both
lie in Xt and wyx and wy: are defined over Q. In the general case,
after possibly replacing z’ by ga’ with 9 € G(Q), we can assume that
¢ and 2’ lic in the same connected component Xt of X. Now (2.8)
provides us with a pair (G', X") such that (G, X" = (G, X)* and
wxr is defined over Q. Take ©(7;2’,2) to be the unique equivariant
map whose restriction to Sh(G, X)° is (7 z',2)[Sh(G’, X9,
THEOREM 4.4. For any pair of special points r and z’', we have
(s 2, z) o Pre = Qrar !
Sh(™*G,"* X)
Pre
TSh(G, X) Lo(r; 2’ 2)
Prae! \
Sh(™*'G, "' ).

PROOF: We discuss the proof in §9.



338 J.S. MILNE

Remark 4.5. Let I be an index set. To give a family of objects
(Si)ier and isomorphisms ¢j; : S; — S, one for each pair (,j),
such that ¢x; 0 ;i = @i for all 7, j, k, is essentially the same as
to give a single object: the inverse limit of the family is an object
S together with isomorphisms ¢; : § — 5; such that ¢;; o p; = ¢;.
From this point of view, Theorems 4.2 and 4.4 realize 7Sh(G, X) as
the inverse limit of the Shimura varieties Sh(™*G,™*X), z running
over the special points of X.

Remark 4.6. Let K be a compact open subgroup of G(Ay), and let
K’ be the image of K in "*G(Ay) under g — "*g. Then ¢, , induces
an isomorphism

TSh]((G, X) — ShKI(T’IG, T‘IX).

Let f be a rational function on Shg (G, X) that is defined at the
special point [z,1]. Then (4.2) associates with f a function 7f =4
Tofor loprl on Sg/("*G,"*X) such that

(1) Tf([rxv 1]) = T(f([xv 1]))

(i) f — 7 f commutes with the Hecke operators.
This leads to a reciprocity law, which can be made more explicit (see
Milne and Shih 1981b, §5).

Notes. Theorems (4.2) and (4.4) were conjectured by Langlands .
(Langlands 1979), who was motivated by the problem of comput-
ing the zeta function of a Shimura variety. For Shimura varieties of 3
abelian type (see §9 for a definition of this class), they were proved in S
Milne and Shih (1982b), where also the proof of the general case was & |
reduced to a statement about connected Shimura varieties defined by il
simply-connected simple groups. This statement was proved in Milne
(1983) using a theorem of Kazhdan (1982) (whose proof is completed
in Clozel (1986)) and theorems of Margulis (1977). See also Borovoi
(1983/4) (completed in Borovoi (1987)) and the notes to §9 below.

5. Canonical models.
By a model of Sh(G, X) over a subfield F of C, we mean a scheme
S over E endowed with an action of G(A;) (defined over E) and an 3
equivariant isomorphism (over C) 9 : Sh(G, X) — S®Eg C. Note that ¥
1 can also be regarded as morphism Sh(G, X) — S over E inducing 4
an isomorphism Sh(G, X) —» S ®fg C.
Let (T,z) be a special pair in (G, X). The field of definition of the ¥
cocharacter i, of T is the reflex field E(T,z). Asin (1.2.6), p, defines 4§

'O B T W o -
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a Q-rational homomorphism N, : TE — T for any field £ O E(T, z).
The reciprocity map

re(T,z) : Gal(E*®/E) = T(A;)/T(Q)~

is defined as follows: let 7 € Gal(E*®/E), and let s € A% be such
that recg(s) = 771; write § = So0 * S5 With soo € Eo and sy € E;

then 7 (T, z)(7) = Ny(sy) (mod T(Q)7).
Definition 5.1. A model Sh(G, X)g of Sh(G, X) over E = E(G, X)

is said to be canonical if each special point [z,a] is rational over
E(T,aP") and Gal(E(T,z)*®/E(T,z)) acts on [z,a] according to the
rule:

T[z,a] = [z,r(7) -a], wherer =rg(T,z).

ProposITION 5.2. Consider a morphism f : (G,X) — (G', X'). If
Sh(G, X) and Sh(G’, X') have canonical models, then the morphism
Sh(f) : Sh(G, X) — Sh(G’, X') is defined over any field E containing
the reflex fields of (G, X) and (G’, X'), that is, there exists a (unique)
morphism Sh(f)g : Sh(G, X)g — Sh(G’, X') g making the following

diagram commute:

Sh(f): Sh(G,X) —— Sh(G',X")

| L

Sh(f)g : Sh(G,X)g —— Sh(G', X')E.

ProOOF: See Deligne (1971c), 5.4.

COROLLARY 5.3. The canonical model of Sh(G,X) (if it exists) is
uniquely determined up to a unique isomorphism.

ProOF: This is an immediate consequence of the proposition.

Example 5.4. (a) Let T be a torus. Since Sh(7,z) is of dimen-
sion zero, it is completely described by its set of points (with the
profinite topology), and so it has a unique model over Q. Giving a
model of Sh(T, z) over E = E(T,z) corresponds to giving an action
of Gal(Q*/E) on Sh(T,z)(Q*) = T(A;)/T(Q)~. If the model is to
be the canonical model, this action must be that given by r(T), z).

(b) When (G, X) is of Hodge type, it follows from the theorem
of Shimura and Taniyama (see 1.5.6) that a solution to the moduli
problem over E(G, X ) will be a canonical model.
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THEOREM 5.5. Let (G, X) be a pair satisfying (2.1), and write E =
E(G,X).
(a) The Shimura variety Sh(G, X) has a canonical model Sh(G, X ).
(b) For any 7 € Gal(Q*/Q), 7E(G,X) = E("*G,™*X), and
7Sh(G, X) g is the canonical model of Sh(™*G, ™" X).
ProoF: This follows from (4.2) and (4.4). Suppose first that wx is
defined over Q. A calculation shows that if 7 fixes E(G,.X), then
the class of p..("6) in HY(Q,G) is trivial. The choice of a point
P € pri(TS) determines an isomorphism f; : G — TG, Write p =
sp(7) - B. Then (2.6) give us a well-defined equivariant isomorphism

¢z : Sh(G, X) — Sh(™*G, " X).

A similar argument to that in the proof of (4.3) allows us to extend
the definition of ¢, to any Shimura variety. For each 7, let

fr=97 o, 7Sh(G, X) — Sh(G, X).

Then for = fo 0 0(f;), and so the f, define a descent datum for
Sh(G, X') which givesus a model Sh(G, X)g over E(G,X). When
applied to a pair (T, z), this procedure leads directly to the canonical
model of Sh(T, x); thus [z, a] is rational over E(T, z)*", and the action
of the Galois group on it is as required. Now (4.4) can be used to show
that the model obtained is independent of the special point 2, and so
it fulfills the condition for every special point. This completes the
proof of (a). The statement in (b) about the reflex fields is obvious
from the definitions. Moreover, it is straightforward to check that

(rSh(G, X)) @r5 C = 7Sh(G, X) — Sh(™*G, ™ X))
realizes 7Sh(G, X ) g as the canonical model of Sh(™*G, ™" X).
COROLLARY 5.6. Let E = E(G,X). Then

[[ Sh(*G,7X)
T€Hom( E,C)
has a canonical model over Q.

ProoF: In fact, the maps ¢, , define an isomorphism
(Resg;@Sh(G, X) g)c — | [ Sh(™*G, ™ X).

For any field L containing E(G, X), Sh(G, X)E gives rise to a model
Sh(G, X) of Sh(G, X) over L. This model will be referred to as the
canonical model of Sh(G, X) over L.
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Notes. Canonical models (in the above sense) were introduced, and
shown to be unique in Deligne (1971c). Again, the notion was sug-
gested by a similar notion introduced by Shimura (sce the next sec-
tion). They were shown to exist for Shimura varieties of abelian type
(see §9) in Deligne (1979). That (4.2) and (4.4) imply the existence
of canonical models was already noted in Langlands (1979).

6. Canonical models in the sense of Shimura.

According to Shimura’s original definition, the canonical model of 4
Shimura variety should be a projective system of connected varieties.
We explain how such models can be constructed from the canonical
models of the preceding section.

Let (G, X) be a pair satisfying (2.1), and choose a connected com-
ponent Xt of X. The canonical model (in the sense of Shimura) will
be defined in terms of the pair (G, X*) — note that this is not a pair
satisfying (1.3) — G is a reductive group. Write Sh(G, X)? for the
connected component of Sh(G, X) containing the image of Xt and let
£ be the reflex field of (G, X). Since Sh(G, X) has a canonical model
over £, there is a homomorphism ¢ - Gal(@"/E) — my(Sh(G, X)) giv-
ing the action of the Galois group on the set of connected components
of Sh(G, X) (sce Deligne (1979), 2.6.2.1, for an explicit description of
{). According to (2.7), there is an exact sequence

L= G*(@)Y = G(G) — m(S(G, X)) — 1.
On pulling back by ¢, we obtain a sequence
1= G*(Q*Y = £6,X) S Gal(e/B) — 1

with Gal(t/FE) the image of Gal(@*/E) in 7o (Sh(G, X)) and £(G, X)
the subgroup of G(G) of elements mapping to Gal(¢/E)). From
Sh(G, X) g we obtain a canonical model Sh(G, X), of Sh(G, X)° over
£

Let 3 be the set of compact open subgroups of £(G, X). For any S
in 3, set .

I's =5nG*(Q)*;

ks = the subfield of £ fixed by o(S);

Vg = S\Sh(G,X)O; it is defined over kg, and there is an Isomor-
phism pg5 : T\ X+ — (Vs)c. Let o € E(G,X); if aSa~! ¢ T, then
the action of & on Sh(G, X)° induces a map Jrs(a) : Vs — o(a)~ 1V,
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THEOREM 6.1. (a) For each S € 3, (Vs,ps) is a model of T's\ X+
over kg.
(b) Let o € £(G,X); for any S, T € ¢ such that aSa~! C T,
Jrs(a) : Ts\X* — o(a)"'T'7\ X is defined over kg. Moreover
Jss(a) is the identity map if « € S;
(o(a)™ Jrs(B)) o Jsr(a) = Jrr(Ba);
Jrs(a)ops = proa for all o € G(Q), such that aSa~! C T.
(c) Let x € X* be special; for each S € 3, @vs(z) Is rational over
E(z)*® and for every v € E(m)x,

reci(v)(¢s(2)) = Jsr(Ne()pr(x), T=No()™' - Ny(v)

where N, : T*(®) — @ is defined by ty.

PROOF: This can be deduced from (5.5a), using results about the
automorphism groups of Sh(G, X) and its function field. See Milne
and Shih (1981b).

Notes. Theorem 6.1 says that canonical models exist in the sense of
Shimura (1971a). It was proved in various cases in Shimura (1970),
Miyake (1971), and Shih (1978). It was shown to follow from Theorem
9.9 iIn Milne and Shih (1981b) (the restriction to classical groups in
that paper is unnecessary).

7. The action of complex conjugation on a Shimura variety
with a real canonical model.

Let Sh(G, X) be a Shimura variety whose reflex E(G, X) is real. Then
Sh(G, X) has a canonical model Sh(G, X)g over R, and so complex
conjugation defines an involution of Sh(G,X). In order to be able
to compute the factor of the zeta function of Sh(G, X) corresponding
to the (given) infinite prime of E(G,X), it is necessary to have an
explicit description of this involution.

LEMMA 7.1. Let z be a special point of X. There is a unique G(R)-
equivariant antiholomorphic map X — X such that n(z) = ‘x, where
‘z 1s the point in X such that p., = tp,.

PROOF: The uniqueness is obvious. Let T be a maximal torus in G
such that T'(R) fixes z, and let N be the normalizer of T in G. There
is an n € N(R) such that n -z = ‘z (Milne and Shih 1982b, 4.3), and

we can define 17 to be gz — gn - .
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THEOREM 7.2. Let Sh(G, X) be a Shimura varlety whose reflex field
is real. The involution of Sh(G, X) defined by complex conjugation is

[z, 9] = [n(2), g].

PROOF: Since both maps are continuous and equivariant, it suffices
to show that they agree at the single point [z,1]. The action of ¢ on
Sh(G, X) (relative to Sh(G, X)E is

Sh(G, X) — 1Sh(G, X) =5 Sh(w2G, 5= x) 2, gn(a, X).

From §5 and §6, we see that [z, 1] = oz, 1] - ['2,1] - [n(2), 1] under
these maps.

Notes. Theorem 7.2 was conjectured in Langlands (1979). An equiv-
alent statement for connected Shimura varieties defined by groups G
of type C was proved in Shih (1976), and this result was extended
to all Shimura varieties of abelian type in Milne and Shih (1981a).
That Theorem 7.2 follows from Theorems 4.2 and 4.4 was noted in
Langlands (1979).

8. The minimal compactification.

Let Sh(G, X)~ be the minimal compactification of Sh(G,X). Be-
cause Sh(G, X)~ can be constructed out of Sh(G, X) by a canonical
algebraic method (see §2), all the maps ¢, ,, @(7;2',2) and ¢, have
unique extensions to Sh(G,X)~. In particular, we see that all the
theorems in this chapter remain valid when the Shimura varieties are
replaced by their minimal compactifications. (We shall discuss the
boundary components of Sh(G, X)~in more detail in Chapter V.)

9. The strategy for proving the main theorems.
The proofs of Theorems 4.2 and 4.4 are too long to describe in detail.
Instead I outline the strategy for proving them, and other theorems,
on Shimura varieties. Recall that in 83 we defined the notion of a
Shimura variety of Hodge type and noted that the chojce of a faithful
representation of G realizes such a variety as a moduli variety (over
C) for abelian varieties with Hodge cycle and level structure.

The class of connected Shimura varieties of abelian type is the small-
est containing:

(a) the connected component of every Shimura variety of Hodge
type;

(b) a product of connected Shimura varieties if it contains the fac-
tors;
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(c) Sh(G, X*) if it contains Sh(G’, X1) with G’ a finite covering

group of G.
Deligne (1979) gives a classification of connected Shimura varicties of
abelian type based on Satake’s classification of symplectic embeddings
(Satake 1965). A (nonconnected) Shimura variety is of abelian type if
a connected component of it is of abelian type. Note that a Shimura
variety of abclian type will not in general be a moduli variety for
abelian varicties, contrary to some assertions in the litcrature.

Let P(G,X) be a statement about the Shimura variety Sh(G, X).
The first step in proving I for all Shimura varietics is to prove it for
those of Hodge type by identifying the Shimura variety with a moduli
variety for abelian varieties. The second step is to find a statement
P*(G,X") for connected Shimura varictics, and to prove that

P(G,X) is true & PT(G", X+) is true.

As a consequence, one finds that if P(G’, X') is true and (Gder, X)) =
(G'er, X'T), then P(G,X) is true. The third step (usually easy) is
to prove:

PG, X}) true for all i = PH(]G;, [TXF) true;

P*(G', X1) truc for G’ a finite covering of G = P+ (G, X)is true.
This then implies that P* is true for all connected Shimura varieties
of abelian type, and hence (by the previous step) that P is true for all
Shimura varictics of abelian type. Moreover, it shows that in order
to prove P for all Shimura varieties, it suffices to prove PHG,XT)
in the case that G is a simply connected Q-simple group. Then G
is of the form G' = RespygG’ for some absolutely simple group G’
over a totally real field F. For a totally real field F’ containing F,
set Gy = Resprj@G and define X} so that (G, X1) C (G,,X}).
When F' is chosen sufficiently large, there will be many embeddings
(Ga, XF) — (G, XT) with G, a group of type A4, (thus G is an
algebraic group associated with a quaternion algebra, possibly split,
over a totally real field). We have

Sh(G, X*) < Sh(G,, X}) « Sh(G., X1).

The final step is to exploit these inclusions, and the fact that the
statement P+ (G, X)) is known (the associated Shimura variety is
of abelian type), to prove P+(G, X ).

One final note: several authors have criticized the above approach
for its dependence on abelian varieties and their moduli. In defence
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I point out that, in the case that the weight is defined over @, all
of the results in this and the next chapter would be an immediate
consquence of the existence of a sufficiently strong theory of motives
and their moduli; moreover, this is the only heuristic argument I
know for them. Also, the approach does not use the classification
of semisimple algebraic groups (at present, the only place where this
is used is in Kazhdan (1982), but the author has shown that it is
unnecessary there). Finally, this is the only approach that gives strong
results.

Notes. For the existence of canonical models, the first three steps
were carried out in Deligne (1979). For Langlands’s conjecture (the-
orems 4.2 and 4.4) they were carried out in Milne and Shih (1982b).
The embedding of Sh(G, X) into Sh(G., X,) was used in Piatetski-
Shapiro (1971) in the case the group G is of type A,, to obtain a pair
(G, X.) for which G+ (Q¢) has no compact factors. Borovoi suggested
(in 1981) using the embeddings (G, Xa) = (G4, X,) to prove the ex-
istence of canonical models for Shimura varieties not of abelian type.
(Obtaining canonical models using embeddings of Shimura varieties
of type A} was also an unstated object of Garrett (1982, 1984).)

10. Appendix: Schemes with a continuous action of a locally
profinite group.

A locally profinite group is a locally compact totally disconnected
group. In such a group G, the compact open subgroups K form a
fundamental system of neighbourhoods of the identity element, and
NK = 1.

LEMMA 10.1. Let G be a locally profinite group, and let E be a
separated topological space with a continuous action E x G — FE of
G. For each compact open subgroup K in G, set Ey = E/K. Then
(Ex) is a projective system, and E = lim E/K.

PROOF: Apply Bourbaki (1960), 111.7.2, Cor 1 to the groups K acting
on F, and observe that lim K = NK = 1.

To give E' together with the action of G is the same as to give the
family (Ex) together with the maps

t—zrg:Ex - E, L>g 'Ky

These remarks motivate the following definitions.
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For the remainder of this section, “scheme” will mean “quasi-pro-
jective scheme over a field k7, or a projective limit of such schemes,

Let G be a locally profinite group, and consider a family (Sk) of
schemes, indexed by the open compact subgroups K of G. Suppose
that for each g € G and each K and L with L D ¢g='Kg, there is given
a morphism

pr.k(g): Sk — Sy,

satisfying the conditions:

(1) ,OK,K(k) =idif k € I(;

(ii) par,e(g) 0 pr, i (h) = pa,L(gh);

(i) whenever K is normal in L, so that pk, K defines an action of
the finite group L/K on Sk, S is isomorphic to the quotient of Sy
by the finite group L/K.

We then call the family (Sk, pr k) a scheme with a continuous right
action of G.

For each K C L, there is amap pp k(1) : Sk — S. In this way we
get a projective system of schemes whose limit S has a right action
by G such that Sg = S/K for all compact open subgroups K of G.
We shall also refer to S as a scheme with a continuous right action of

g.

Example 10.2. Suppose G is compact and S is smooth. If ¢ acts
continuously on S in such a way that the isotropy group of each
geometric point of S is trivial, then S — S/G is a Galois covering
with Galois group G. Conversely, if S — Sy is a Galois covering with
Galois group G, then G acts on S in such a way that the isotropy
group of each geometric point is trivial.

For example, let Sy be a connected scheme, and fix a geometric
point s — Sg. Take S to be the projective system of commutative
triangles

s —— 9
N
So

with 7 finite and étale. Then S is a Galois covering of Sy with Galois
group the étale fundamental group 7$*(.So, s).

Let S be a scheme over £ with a continuous action of G. For a
scheme Y over k, we set Hom(Y,S) = limHom(Y,Sk). To give a
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scheme Y over S is the same as to give a scheme Yx over S K, each
K sufficiently small, such that Yy = Y} xs, Sk, for K C L.

Fix a locally profinite group G and a profinite set 7 with a contin-
uous right action of G. Assume that the action is transitive, and that
the orbits of a compact open subgroup are open: for any e € 7, the
bijection G/G, — 7 (G, = isotropy group at e) is a homeomorphism.
Consider systems consisting of a scheme S with a continuous right
action of G together with a continuous equivariant map S — w. For
e € 7, the fibre S, over e is endowed with a continuous action of Ge.

PROPOSITION 10.3. The functor S +— S, is an equivalence from the
category of schemes S, endowed with a continuous action of G and
a continuous equivariant map S — w, to the category of schemes Se
endowed with a continuous action of G..

PROOF: See Deligne 1979, 2.7.3.

In particular, there is a reverse functor, S, — S. The scheme S will
be said to have been obtained from Se by induction from G, to G.

III. AUTOMORPHIC VECTOR BUNDLES

Just as automorphic functions are sections of the sheaf of germs of
functions on a Shimura variety, holomorphic automorphic forms are
sections of certain vector bundles, called automorphic vector bundles,
on a Shimura variety. The main theorems for automorphic vector
bundles parallel those for Shimura varieties: every automorphic vector
bundle V(7) has a canonical model V(J)E over its reflex field E, and
for each 7 € Gal(Q*/Q), 7V(J)k is the canonical model over 7E
of an explicitly determined automorphic vector bundle V('T). In
particular, this allows us to define, in complete generality, the notion
of a holomorphic automorphic form being rational over a number field.

Throughout this chapter (G, X) is a pair satisfying (I1.2.1). We
write Z,(G) for the maximal subtorus of Z(@) that is split over R but
which has no subtorus split over @; thus Zs(G) is the largest subtorus
of Z(G) such that

{ X, (Z,)5=N@/Q — g
¢ acts as +1 on X,(Z,).

We write G° for G/Z,(G). Note that (G, X) satisfies (I1.2.1.2%) if and
only if G = G°“.
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1. The compact dual symmetric Hermitian space X.
Foreachz € X, p, defines a decreasing filtration Filt (s, ) of Rep(G)
(see I.1), and we define X to be the G(C)-conjugacy class of filtrations
of Rep¢(G) containing Filt(u, ). If (V,§) is a faithful representation of
G, then X can be identified with a G (C)-conjugacy class of filtrations
of V.

Fix a point o of X, and let P, be the subgroup of G¢ fixing Filt(p,).
Then P, is a parabolic subgroup of Ge (see I.1.7) and there is a
bijection

G(C)/F(C) — X,

which endows X with the structure of a smooth projective variety
over C. We call X the compact dual symmetric Hermitian space of
X. For any connected component X+ of X, X is the dual of X+ in
the sense of Helgason (1978), V.2.

Interpretation of X as a classifying space. Let V be a vector
bundle on a connected complex variety S. The type of a filtration

V352328, =0

is the sequence of numbers, d; = rank S;. Fix a vector space V over
C and a filtration Fj; of V of type d = (dy,...,d,). Then the functor
of complex varieties

F(S) = {filtrations of Vg =q; S x V of type d}

is represented by the Grassman variety GL(V')/Qq, where Qg is the
subgroup of GL(V) stabilizing Fj;. When V is defined over Q, so also
is the Grassman variety.

Fix a family of tensors t = (t4)aey for V, and let G be the subgroup
of GL(V) fixing the t,. Then each t, defines a global tensor of Vg,
and the functor

Fo(S) = {filtrations F" of Vg s.t. (V,, Fi,t) ~ (V,F,,t) all s € S}

is represented by the subvariety G/Py of the Grassman variety, where
P is now the stabilizer of F; in G.

We apply these remarks to (G, X). Choose a faithful representation
{:G— GL(V) of G, and let t = () be a family of tensors of V such
that G is the subgroup of GL(V) fixing the to. Choose a point o € X,
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and let F be the corresponding Hodge filtration of V(C). Then X
represents the functor F; described above: the F . for z € X define a
filtration of the vector bundle V =ar X x V(C) and the triple (V, F", t)
is universal.

In particular, we see that X is realized as a subvariety of a Grassman
variety GL(V(C))/Q,. Asin (I1.2), we let Mx be the G(C)-conjugacy
class of homomorphisms G, — G¢ containing y, for z € X , and we
let E(G, X) be the field of definition of Mx. The map

po = Filt(p,) : My — X

is surjective, from which it is clear that X , Tegarded as a subvariety of
GL(V)/Qo, is stable under the action of any automorphism 7 fixing
E(G, X). Therefore X is defined over E(G, X).

The Borel embedding.

PROPOSITION 1.1. The map
B:X—-X, zw Filt(p, )

embeds X as an open complex submanifold of X. For o € X , let I,
be the isotropy group at o in G(R), and let P, be the isotropy group
ato € X in G(C); then K, = P, N G(R), and the inclusion of K, into
P, identifies (K,)c with a Levi subgroup of P,; we have

GR)/K, — G(C)/P,(C)

;

PROOF: The fact that 3 is holomorphic is a restatement of (I1.3.2a).
For the rest, we merely note that the injectivity of X — X follows
from the fact that the Hodge filtration determines the Hodge decom-
position (I.2). (See Helgason 1978, VIIL7 for the details.)

The map 3 is the Borel embedding of X into X.

Example 1.2. Let (V,¥) be a symplectic space, and let (G,S%)
be as in (I.2.4a). Thus G = GSp(V,¢) and S* is the space of
Hodge structures on V of type {(-=1,0),(0,-1)} for which +(27i)y
is a polarization. In this case, X can be identified with the set of
maximal isotropic subspaces of V(C) and 3 with the map z — FOV.

~

&

~

— X.
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Conjugates of X. As X is an algebraic variety, 7X is defined for
any 7 € Aut(C). Recall from (1.7) that the period torsor B is a torsor
for % having a canonical point p € P(C). Define 2,,(7) € T(C) by:

TP =P Zoo(T).
Then z5,(7) € "6(C), and so it defines an isomorphism
g+ 779 =41 [200(7) - g] : G(C) — T*G(C).

PROPOSITION 1.3. (a) Let z be a special point of X, and let %X
be the dual Hermitian symmetric space associated with (MG, T X).
There is a unique isomorphism

~

Drz:TX = TTX

b

such that
(1) the point Tz is mapped to "z, and
(ii) ¢rz 0 (19) = (""g) 0 ; ., for all g in G(C).
(b) Let x" be a second special point; then the isomorphism

T‘,.’L'g — ‘r,:clg . T,(DG(C) N T,:L"G(C)
induces an isomorphism @(7;x',2) : "*X — ™*'X such that

95(7_; xl7 :E) o 95r,:1: = 951',:1:’-

PROOF: Straightforward.

Remark 1.4. Let z be a CM-point of X, and let (V,£) be a faithful
representation of G. Then (V,€ o p,) defines a CM-motive M over
Q* with V = Hp(M). There are Hodge cycles t,, on M such that
G is the subgroup of GL(V) x G,, fixing the t,, and we noted in
(I1.4.1) that ™*G is the subgroup of GL(Hp(7M)) x G,, fixing the
tensors 7t,. The comparison isomorphisms between Betti and de
Rham cohomology allow us to interprete G¢ and »*G¢ as subgroups
of GL(Hqr(Mc¢)) x G,, and GL(H4r(tMc)) x G,, respectively. If
we regard 7 as an embedding of Q* into C, then the map G(C) —
"*G(C) is induced by the isomorphism

HdR(M) ®Qal,r C— HdR(TM).




CANONICAL MODELS 351

2. Automorphic vector bundles.
Let S be an algebraic variety over a field k with an action Gx S — §
of an algebraic group. By a G-vector bundle on S we mean a vector
bundle (V, p) on S together with an action of G on V (as an algebraic
variety) such that

(a) p(g-v) =g-p(v) for all g € G, v € V;

(b) the maps g: V, — Vys are linear for all s € S.
We shall be interested in G¢ vector bundles 7 on X. As we saw in
(1.1), the map B : X < X embeds X as an open submanifold of X,
and the action of G(C) on X extends that of G(R) on X. Therefore
such a vector bundle J restricts to a G(R)-vector bundle 3~1(7) on
X. If the action of G¢ on J factors through G, and K is sufficiently
small, then, as in the proof of (I1.3.3), we can pass to the quotient
and obtain a vector bundle

Vi(J) = G@\A™(J) x G(A;)/K

on Sh(G,X). (In §8 we discuss what happens when we no longer
require that the action factors through G.) For each ¢ € G(A 3
and pair of open compact subgroups K and L of G(Ay) such that
L > g='Kg, there is a morphism

pLi(9) 1 Vi(T) = Vi(T), [z,a] — [z, ag].

ProrosITION 2.1. (a) The vector bundles Vi (J), and the maps
PL.k(9): Vi(T) = Vi(T), are algebraic.,

(b) If Xt has no factors 1somorphic to the unit disk, then every
analytic section of Vy:(J ) Is algebraic, and the space of such sections
is finite-dimensional over C.

PROOF: (a) When the boundary of Sh(G, X) in its minimal compact-
ification has codimension 2 3, the proposition is a consequence of the
following general lemma. We omit the proof in the remaining case
(but see (3.6) below).

(b) The hypothesis implies that the codimension of the boundary
Is > 2, and so the next lemma applies.

LEMMA 2.2. Let S be a nonsingular algebraic variety over C, em-
bedded as an open subvariety of a complete algebraic variety S. If
S — S has codimension > 2, then the functor V s Yan taking an
algebraic vector bundle on S to its associated analytic vector bundle
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is fully faithful; moreover I'(S,V) = I'(S,V?") and these spaces are
finite-dimensional. If S — S has codimension > 3, then V — V" is an
equivalence of categories.

PRrRoOF: This follows from theorems of Serre, Grothendieck, Siu, and
Trautmann; see Hartshorne (1970), p222.

The family V(J) = (Vk(J))k is a scheme with a right action of
G(Ay), in the sense of (I1.10). A vector bundle of the form Vi (7), J
a Ge-vector bundle on X, will be called an automorphic vector bundle,
and a section f of V(J)k over Shg(G, X) will be called a (holomor-
phic) automorphic form of type J and level K. (When the boundary
of Sh(G, X) in its minimal compactification has codimension one we
must also require that f be “holomorphic at infinity”.)

Remark 2.3. (a) Fix a point o € X, and let P, be the (parabolic)
subgroup of G¢ fixing 0. For any G¢-vector bundle 7 on X, P, acts
on the fibre J,, and the map J — J, defines an equivalence from the
category of G¢-vector bundles on X to Repg(F%).

(b) From (a) we see that, in particular, every complex represen-
tation (V,&) of G defines a G°-vector bundle on X, and hence an
automorphic vector bundle V(£). There is a local system V(&) of C-
vector spaces underlying V(£), which can be described as follows: for
K sufficiently small, the fundamental group of I';\X T is the image
I of ghg™ ' NG(Q)y in G(Q)+ (notation as in I1.2); the restriction
of V(&) to T,2\X7 is defined by the representation of I'; on V' given
by £. It follows from (11.3.1) that V() in this case has a natural flat
connection and that it is algebraic. (Note that a representation (V,§)
of G¢ defined over a subfield L of C gives rise, in the same way, to an
L-local system on Sh(G, X) contained in V(£)V(®).)

(c) There is an infinite-dimensional version of the above construc-
tion: (g, P,)-modules (not necessarily finite-dimensional) correspond
to Gc-equivariant quasi-coherent D-modules on X, and the same
construction as above defines a functor from the category of Gg-
equivariant quasi-coherent D-modules on X to the category of G(Ay)-
equivariant quasi-coherent D-modules on Sh(G, X). Recall that a
(g, P,)-module is a P,-module with an action of g whose restriction
to p, coincides with the differential of the P,-action. In the case that
the module is finite-dimensional, the action of g can be integrated to
an action of G extending that of P, and the corresponding D-module
is coherent; it is therefore locally free (Borel et al. 1987, p211), and
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the D-module structure on the module corresponds to a flat connec-
tion. Thus this case reverts to that discussed in (b).

Example 2.4. Let (G, X) be the pair, as in (I1.2.4), associated with a
symplectic space (V,40). There is a naturally defined abelian scheme A
over Sh(G, X) (cf. 11.3.11). A point o0 € X corresponds to a maximal
isotropic subspace W of V(C), and P, is the subgroup of G stabilizing
W. Write S for Sh(G, X), and 2g for the dimension of V.

(a) The automorphic vector bundle associated with the natural rep-
resentation of P, on V/W is the tangent space of A4/S.

(b) The line bundle w(.A/S) is the dual of the automorphic vector
bundle associated with the determinant of the natural representation
of P, on V/W.

(c¢) The canonical line bundle on S is the automorphic vector bundle
associated with the (g 4 1)**-power of the determinant of the natural
representation of I, on V/W.

(d) The automorphic vector bundle associated with the standard
represcentation of G on V is Hyr(A), and the flat connection on it is
the Gauss-Manin connection.

Relation to automorphic forms in the classical sense. The
above discussion also makes sense for connected Shimura varieties
ShO(G,X+): B defines an embedding X+ < X, and a Gc¢-vector
bundle J on X defines an automorphic vector bundle V°(J) on
Sh%(G, Xt). We now explain how to interprete sections of such bun-
dles as holomorphic automorphic forms in the classical sense.

Let I be a discrete subgroup of Aut(X*). Classically, one defines
an automorphy factor for (I'; X+) with values in a complex vector
space V' to be a mapping j : I' x Xt — GL(V) such that:

(a) for each v € T, z — j(v,2) is holomorphic on X ;

(b) 5(vy's2) = j(v,7'2) - j(v',2), all 4, ¥ €T,z € X,

An automorphic form for T of type j is then a function f : Xt — V
such that
(a) f is holomorphic;

(b) flvz) = j(v,2) f(z);

(¢) f is “holomorphic at infinity”.

Let J be a Ge-vector bundle on X; choose a point 0o € X1, and
let V.= Jj(6). Because Xt is simply connected, the isomorphism
V — B~1J), extends to an isomorphism X+ x V ~ B=HT), and we
can transfer the action of G(R)* on 871(J) to X+ x V. Write

¥(z,v) = (yz,j(v,x)v) for y € GR)Y, z € XT, andv e V.
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Then j : G(R)t x V — V satisfies the conditions (a) and (b), and
so its restriction to I'gr x V' is an automorphy factor. A section of
VO(J)k on Sh% (G, X*) can then be identified with an automorphic
form for I'x of type j.

Example 2.5. Let G = SL,, and let X* be the complex upper-half-
plane (see II.1.5). The map z ;;; is an isomorphism from X+
to D = {z € C| |z| < 1}. In this case X is the Riemann sphere,
and X — X is an isomorphism of X with the upper hemisphere. If

we take o = i (in the upper-half-plane), then Py = {(coso —sin 6 ) }

sin® cos@
If vk is the 2k*® power of the obvious character of Py and Vj is the
corresponding automorphic vector bundle, then the sections of Vi
holomorphic at infinity are elliptic modular forms of weight k.

3. The standard principal bundle.

The functor J +— V(J) takes one algebraic object to a second, but
passes through the intermediary of the non-algebraic object X. In or-
der to understand the rationality properties of the functor, we need to
replace X by an algebraic object — this we call the standard principal
bundle.

Review of principal bundles. Let S a complex manifold, and let
G be a complex Lie group. A flat structure on a principal G-bundle
P is given by a covering U, of S for which the transition maps are
constant.

Assume S is connected, and let S be the universal covering space
of S. A homomorphism & : (S, s) — G defines a principal G-bundle

P(f) =S x G/ ™~ (87’9) ~ (376(’)’)9), 5€ S~', 7 E 71'1(5,5), g € G,

on S, and there is a canonical flat structure on P(§). Every principal
G-bundle P over S admitting a flat structure arises in this way. In the
case that G = GL(V), V a C-vector space, P(£) is the frame bundle
of V(€): the sections of P(£) over an open subset U of S can be

identified with the isomorphisms a : U x V — V|U (trivializations of
VY over U). Now suppose that & factors through a reductive algebraic
subgroup G of GL(V). Then P(£) can be interpreted as the bundle
of frames of V(&) respecting certain tensors. When S is a complex
algebraic variety and V(£) and the tensors are algebraic, then P(£) is
also algebraic: it is a G-torsor over S.




CANONICAL MODELS 355

LEMMA 3.1. Let G be an algebraic group over a field k, and let
7w : P — S be a torsor for G over an algebraic k-variety S.

(a) The functor V +— n~1V defines an equivalence between the
category of vector bundles on S and the category of G-vector bundles
on P.

(b) If P has a flat structure, then to give a (flat) connection on V
is the same as to give a (flat) connection in 7~(V).

PRrRooOF: This is a standard consequence of descent theory.
Define

P(G,X) = G(Q\X x G°(C) x G(A()/Z(])7,

Then P(G, X) is a principal G°(C)-bundle on Sh(G, X)2", which we
call the standard principal bundle. The group G(R') =41 G(C)xG(Ay)
acts on P(G, X) according to the rule

[xvz’a](ca g) - [:L',zc,ag], reX, z,c€ G(C), a,g e G(Af)'

Write 7 for the projection map P(G, X) — Sh(G, X).

PROPOSITION 3.2. The bundle P(G, X) is algebraic, and the action
of G(A’) is algebraic.

PROOF: For any faithful representation (V,¢) of G¢, P(G, X) is the
bundle of frames, respecting certain tensors, of the vector bundle V().
Now apply (11.3.1).

Remark 3.3. Let £ be as in the above proof. The functor represented
by P(G,X) can be described as follows: for any morphism v : T —
Sh(G, X), the liftings of 4 to P(G, X) correspond to the trivializations
T xV =471 V(E)) of y~1(V(€)) respecting certain tensors.

For example, suppose (G, X) satisfies (I1.2.1*) and is of Hodge type.
Corresponding to a symplectic representation & : G — GSp(V, )
there is an abelian scheme A over Sh(G, X) such that H g(A) = V(£).
'For any point s € Sh(G, X), n~1(s) is equal to the set of morphisms
Hp(As) @ C — Hyr(As) respecting certain Hodge cycles on A,.

PROPOSITION 3.4. There is a canonical G(C)-equivariant map 7 :
P(G,X) — X.

PROOF: Choose a faithful representation € : G¢ — GL(V), as before.
The last remark shows that a complex point p of P(G, X) corresponds
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to an isomorphism V' — V(&).(,) Tespecting certain tensors. The
Hodge filtration on V(§).(,) pulls back to a filtration on V', and we

can map p to the corresponding point of X. That this is a morphism of
algebraic varieties follows from the universal property of X described
in §1.

PROPOSITION 3.5. Let J be a Gg- vector bundle on X. Then V() is
the unique vector bundle on Sh(G, X) such that x = (V(J)) = v~ (J)
(as a G°-vector bundle).

ProoOF: This follows directly from (3.3) and the definitions.

The following diagram summarizes the situation:

V) — «'vI)=+"'J) — J
i PG, X) —— X
A

~_ T

X

Remark 3.6. Proposition 3.5 provides an alternative proof that the
vector bundles V(J) are algebraic.

4. Canonical models of standard principal bundles. The key
result that allows us to construct canonical models is the following.

THEOREM 4.1. Let 7 € Aut(C).
(a) For any special point € X, ¢r, lifts canonically to an equiv-
ariant morphism

ef . TP(G,X)— P(™*G,T"X).

(b) If 2' is a second special point, then o(7; 2, x) lifts canonically
to an equivariant morphism

(pP(T;:c',:r:) : P(T"G, 7" X) — P(T’x,G,T’”IX),
and
pl(mia!,x) ool = 97 -

ProOF: The strategy is that outlined in (I1.9); see the notes at the
end of the Chapter.
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Example 4.2. (a) Suppose that (G, X) is of Hodge type, and that
it satisfies (I11.2.1.2*). Then the choice of a faithful representation
(V,€) of G defines an abelian scheme A (with additional struc-
ture) on Sh(G,X). From a C'M-point z, we obtain a representa-
tion of (T*V,™%¢) of ™*G, and therefore an abelian scheme (with
additional structure) ™A on Sh(™*G,™*X). Under our hypothe-
ses, Sh(T*G, ™" X) is a fine moduli variety and ™% A is the universal
abelian scheme over it. The universality implies the existence of a
commutative diagram:

A — e A

| |

7Sh(G, X) —— Sh(™*G,"" X).

Since V(§) = Hqr(A) and V(7€) = Hgr(7"A), and P(G,X) and
P(™*G, 7" X) are the frame bundles of V(£) and V(7*¢), the diagram
gives gof, -

(b) For the Shimura variety defined by a CM-pair (T, z), it is pos-
sible to give an explicit description of gpf’ , 1 terms of the period
torsor.

THEOREM 4.3. (a) The standard principal bundle P(G,X) has a
canonical model P(G, X)g over E = E(G, X).

(b) For any 7 € Gal(Q*/Q), 7P(G,X)E is a canonical model of
P(T,IG,T,IX).

PROOF: This can be deduced from (4.1) in the same way as (I1.5.5)
is deduced from (I1.4.2) and (I1.4.4).

Example 4.4. (a) In the situation of (4.2a), A is defined over the
canonical model Sh(G, X);, and for any point s € Sh(G, X), 77 (s)
is equal to the set of morphisms Hg(A,)QF — Hyr(As/E) respecting
- certain Hodge cycles on Aj;.

(b) In the situation of (4.2b), it is possible to give an explicit de-
scription of P(T, z)g in terms of the period torsor.

Remark 4.5. The following properties of 992 . provide justification
for calling it canonical.
(i) A morphism (G, X) — (G', X') and a special point z € X give
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rise to a commutative diagram,

907}'),:0 - TP(GaX) - P(T’va T’xX)

l !

(pf’x . TP(G,,X’) - P(T’x,G/,T’z,X).

Here 2’ is the image of z in X”.

(i) Consider two pairs (G, X) and (G’, X’) together with an iden-
tification (G4er, X+) = (G'd°r, X'+). Let z be a special point of X+,
and let 2’ be the corresponding point of X’*. Then there is an equiv-
ariant commutative diagram:

TP(G,X) «—— 7P%GY XYy —— TP(G',X')

P P
Jv‘pr,:c l lgor’z'

P(T,QTG’ T,:vX) : PO(r,deer’ r,a:X—}-) P(r,z'Gl, T,x'X/)

where P°(Gder, X 1) is a principal bundle for G¢°* on Sh®(Gder, X1)
and P°(m2Gder, m*Xt) is a certain principal bundle for TeGder on
Sho(‘r,deer’ T,IX-*—)-

The family of maps (¢f,) is uniquely determined by the properties
(1) and (ii) and that mentioned in (4.2b).

So far as the canonical model of P(G, X) is concerned all one can
say in general is that it is constructed in a canonical fashion using
the (canonical) maps gof’ .. However, if one is prepared to confine
one’s attention to Shimura varieties whose weight is defined over Q,
it is possible to give a characterization similar to that for canonical
models of Shimura varieties: the map P(G,X) — P(G’, X') defined
by a morphism (G, X) — (G, X’) is defined over any field containing
the reflex fields of (G, X) and (G’, X'); for a pair (T, z) as in (4.2b),
there is an explicit description of the canonical model of P(T,z) in
terms of the period torsor; the canonical model of P(G, X) is uniquely
determined by the condition that, for each C M-pair (T,z) C (G, X),
P(T,z) — P(G, X) is defined over E(T, x).

THEOREM 4.6. (a) The map v : P(G,X) — X is rational over
E(G,X).
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(b) For any T € Gal(Q*/Q), the diagram
TP(G,X) g —— 71XE

l l

P(r,a:G,‘r,:cX)TE _— T,fXTE
comimutes.

PROOF: See the notes at the end of the Chapter.

5. Canonical models of automorphic vector bundles.
From the results in §4 on the standard principal bundle, it is possible
to read off similar results for automorphic bundles.

THEOREM 5.1. Let J be a G¢-vector bundle on X, and assume that
J is defined over a number field E D E(G, X).

(a) The automorphic vector bundle V(J) has a canonical model
V(J)E over E.

(b) Let 7 be an automorphism of C, and let ™*J be the vector
bundle on ™* X corresponding to 7J under the isomorphism of (1.3).
There is a canonical commutative diagram

V(N —— V(" T )rE

l l

7Sh(G, X)), —— Sh(™7G, X)), g

that is, TV(J ) is isomorphic to the canonical model of V(™* 7).
When J is defined by a representation (V,&) of G, then the flat

connection V(£) descends to the canonical model V(§)g, and the

isomorphism in (b) respects the flat connections on 7V(J)g and

V(T’xj)TE-
PrROOF: According to (4.3) and (4.5), the maps

Sh(G, X)  P(G,X) — X
are defined over E. We define V(J)Eg to be the vector bundle on
- Sh(G, X)  such that 771 (V(T)g) = v~ (TE) (see 4.4). Part (b) can

be proved using the diagram:
Sh(G,X), +——— TP(G,X)g —— 7Xg

l l l

Sh(r,:cG, ‘r,xX)TE -— P(T,zG’ T,.rX)TE T,(L‘XTE.
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Remark 5.2. Any equivariant differential operator D : J — J' be-
tween Gg-vector bundles on X induces a differential operator V(D) :
V(J) — V(J') between the G(Ay)-vector bundles on Sh(G, X). If D,
J, and J' arc defined over E D E(G, X), then so also is V(D).

Remark 5.3. It would be of interest to re-interprete the above results
in the context of (I1.6), and to extend (I1.7.2) to the standard principal
bundle.

6. The local systems defined by a rational representation. We
examine in more detail the various local systems defined by a represen-
tation (V) of G¢. As is explained above and in Chapter II, attached
to such a representation we have:

(a) a local system of Q-vector spaces V(&) on Sh(G, X);

(b) a local system of Qg-vector spaces Vy(€) on Sh(G, X);

(¢) a vector bundle V(&) with a flat connection V(&) on Sh(G,.X).

These are related by canonical comparison isomorphisms:

(1) V(&) @ Qe — Vi(&);

(i) V() @ C — V(E)VE,
All these objects have an action of G(Ay), and the comparison iso-
morphisms are compatible with the actions.

Remark 6.1. It is an elementary result that Vp(£) has a canonical
model over E(G, X). For K sufficiently small, Sh(G, X') is Galois over
Sh (G, X) with Galois group the image K¢ of I in G“(Ay), and V¢(§)
is the sheaf on Shy (G, X) corresponding to the representation of K¢
on V @ Q, defined by £. This construction works over E(G, X), and
gives us the canonical model of V(). Moreover, when the weight
wy is defined over Q, the local system 7V¢(£) on 7Sh(G, X) corre-
sponds under ¢, to Ve(7*€), where ™*¢ is the representation of ™G
obtained from & by twisting by TG.

The objects in (b) and (c) are algebraic, and we can think of V() as
providing a rational structure to the family (V¢(€), (V(€),V(€)). The
next result shows that the family (7V,(€), 7(V(£), V(£)) on 7Sh(G, X)

also has a canonical rational structure.

THEOREM 6.2. Let 7 be an automorphism of C, and let (V,£) be a
representation of G°. Assume that the composite of the weight map
wy with G — G¢ is defined over Q. Then there is a canonical local
system "V (&) of Q-vector spaces on TSh(G, X)) such that

(a) "V (&) @ Qe = TVi(£), for all primes ¢;
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(b) V() ® C = (rV(£))TV .

PROOF: We can use "6 and the map p, : & — G° to twist the rep-
resentation (V,€), and so obtain a representation (™*V, "*¢) of "*G°.
Define "V (£) to be the local system of Q-vector spaces on 7Sh(G, X)
corresponding to V(7€) under the isomorphism ¢, . Theorem 4.4
implies that "V () is independent of the choice of z, and it follows
directly from its construction that 7V satisfies (a) and (b).

If we assume (I1.3.9, 3.10), then (V,€) defines a family of motives
M on Sh(G, X)), and we should have

V(&) =Hp(tM) (M on 7Sh(G, X));

Ve(€)E = He(ME), ME the canonical model of M over Sh(G, X)g;

(V(&),V(§)) e = Har(MEg) with its Gauss-Manin connection.

7. Automorphic forms rational over a subfield of C.

Definition 7.1. Let J be a G¢-vector bundle on X, rational over
a number ficld E, with E(G,X) C F C C. An automorphic form f
of type J and level K is rational over E if it arises from a section of

Vi (J)E over Shy (G, X)E.

Write Ax(J)E = Ar(G, X, J)E for the space of such forms; it is
a vector space over E.

ProprosITION 7.2. With the above notations:

Ap(J)E®EC= Ak (J)c.

ProOOF: In general, if V is a vector bundle on a variety S over a field
E, and C is an extension field of E, then I'(S,V) @ C = T'(S¢, Vo).

COROLLARY 7.3. The vector space Ar(J ) is finite-dimensional over
E.

ProoF: This follows from (2.1b).

We now discuss rationality criteria in terms of special values. As-
sume that the weight wy is defined over @ and that (G, X) satisfies
(I1.2.1%*). Consider the automorphic vector bundle V(£) defined by a
representation (V&) of G. For each CM-pair (T, z) C (G, X), there
is a unique homomorphism p, : & — T such that tean © Pz = fz
(see 11.2.4). From the representation (£|T) o p, we obtain a CM-
motive M over Q¥ with Hg(M) =V, and from the model Mg of M
over the canonical model of Sh(T, z), we obtain an E(T,z)-structure
Ve =df Har(MEg) on V(C). It is also possible to construct Vg,
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directly from the period torsor. There is a canonical identification of
VE,. with the fibre V(§) g ,. Thus, if an automorphic form f is defined
over E(G, X), then f(z), regarded as an element of V(£), = V(C)
lies in the subspace Vg ,; conversely, when this condition holds for all

CM-points, then f is defined over E(G, X).

8. Automorphic stacks. Throughout this chapter we have insisted
that the action of G¢ on a vector bundle J on X factor through G§,
and that a representation £ of G factor through G¢ . We now explain
why we have made these assumptions, and why it would be better to
avoid them. Then we explain how to do this.

Consider the case of a representation £ : G — GL(V), and let K
be a compact open subgroup of G(Ay). The connected components
of Shy (G, X) are of the form I')\ X+ where Iy is the image of I',, =4
gKg ' NG(Q)4+ in G*(Q)T; here g € G(A;) and X7 is a connected
component of X. When ¢ factors through G¢ we define V(§) to be the
vector bundle whose restriction to T\ X ¥ is T5\ X+ x V(C) where I'
is the image of I') in G°(Q). This makes sense because, when K is
is sufficiently small, the map 'y — Iy is an isomorphism, the fibre
of T{\X* x V(C) — Ig\X™* over any point is isomorphic to V(C),
and V(£) is a vector bundle. When we drop this condition, V(&) will
no longer be a vector bundle. Consider for example the pair (G, X)
in (II.2.4b) defining the Hilbert modular varicty, and assume F' # Q.
The centre Z of G is F'*. For g = 1, the kernel of T, — T’y is
K NZ(Q), which is equal to the set of elements of F'* congruent to 1
modulo some ideal. This will be of finite index in the group of units
of F*, and so is never trivial. The fibre of I'/\X x V(C) — T['j\X
will be the quotient of V(C) by the action of this kernel, and so we do
not get a vector bundle by this construction. This same problem also
occurs when trying to define the universal family of abelian varieties
over Sh(G, X) (van der Geer 1988, Chapter X).

So why not simply do as have done in this chapter and exclude this
them? Classically, one defines automorphic forms as functions on the
universal covering space X transforming in certain ways relative to
the group ['. The reason we wish to consider them as sections of a
vector bundle on Sh(G, X) is so that we can apply the methods of
algebraic geometry. From the classical point of view, it is unnatural
to exclude them.

So how do we handle them? Just as in the case of the universal
abelian scheme over the Hilbert moduli variety, we should use stacks.
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Briefly, the idea is to pass to a partial quotient of X which makes sense
algebraically, and on which V(£) is an equivariant vector bundle. In
this way we obtain the notion of an automorphic stack.

In the case that,weight is defined over @, it is possible to consider
a concrete realization of the stack. Let G’ be the smallest subgroup

of G such that all h factor through Gg. Then Z,(G') = 0. Consider

SW'(G, X) =4r G(Q\X x G(Af) = im G'(@)\X x G(A/)/K.

It is a covering of Sh(G, X), and every G¢-vector bundle on X defines
a vector bundle on Sh'(G, X).

All results in the chapter continue to hold mutandis mutatis for
automorphic stacks. In fact, since the proofs proceed via connected
Shimura varieties, where this problem doesn’t arise, there is little
extra difficulty in working with stacks rather than vector bundles.

Notes. The principal theme of this chapter has been the problem
of making sense of what it means for an automorphic form to be
defined over a number field. In the case of elliptic modular functions,
there is no difficulty: a modular form is defined over a number field
if and only if its Fourier coefficients lie in the field. Unfortunately,
in higher dimension, Fourier-Jacobi series are much more difficult to
work with (see Chapter VII); moreover this method can only apply
to noncompact Shimura varieties.

There are basically four approaches to defining rationality of auto-
morphic forms:

(a) using Fourier-Jacobi series (or their null-values...)

(b) in terms of the special values of the forms (that is, values at the
special points);

(c) pulling-back to sub-Shimura varieties of type A;;

(d) directly defining a canonical model of the automorphic vector
bundle.

Of course these approaches are not independent, and all should give
the same answer when they apply.

Shimura used special values (and periods) to define the notion of
an automorphic form being rational over Q*—see Shimura (1979).
For applications of his results, see Shimura (1980), (1981). He stud-
ies Fourier-Jacobi series in Shimura (1978a), (1978b). For certain
Shimura varieties Garrett (1983) shows that (a), (b), and (c) lead to
consistent notions of rationality.
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Under the hypothesis that the weight wx is defined over @ and
(G, X) satisfies (2.1.2*%), Harris (1985) defined a functor J +— V(J)g
from G¢-vector bundles on X to vector bundles on Sh(G, X) g, but
did not show that the functor was canonical. This result was the
inspiration for Milne (1988), which proves the major statements in
this section in the context of connected Shimura varieties. They can
be extended to (nonconnected) Shimura varieties by “induction” (in
the sense of (I1.10)). Full details will be given in the book mentioned
in the introduction. See also Harris (1986) where the relation between
(a) and (d) is investigated.

IV. ONE-MOTIVES

A mixed Hodge structure on a vector space is an increasing filtration
of the vector space together with a Hodge structure on each of the
quotients. Hodge structures degenerate into mixed Hodge structures.
The cohomology groups of a complex algebraic variety (not necessarily
smooth or complete) carry mixed Hodge structures.

Just as abelian varieties provide an algebro-geometric realization of
certain Hodge structures, one-motives provide an algebro-geometric
realization of certain mixed Hodge structures.

1. Mixed Hodge structures. A mized Hodge structure is

(a) a finite-dimensional vector space V over Q,

(b) a finite increasing (weight) filtration W. on V, and

(c) a finite decreasing (Hodge) filtration F" on V @ C such that, for
each n, F" induces a Hodge structure of weight n on

Gr?

n

(V) =4t W,,V/W, 1 V.

When @ in the definition is replaced by & C R, we obtain the notion
of a mized k-Hodge structure.

Example 1.1. (a) A Hodge structure (V, F"') of weight n can be made
into a mixed Hodge structure by setting W,V =V and W,_;V = 0.

(b) The cohomology groups H"(X,Q) of any variety X over C
(not necessarily nonsingular or complete) have natural mixed Hodge
structures. This is the main theorem in Deligne (1975).

(c) Let (V, 1)) be a symplectic space over Q, and endow V ® R with
a Hodge structure of type {(—1,0), (0,—1)} for which 1 is a Riemann
form (i.e., such that (27i)% is a polarization of the Hodge structure).
Write F for the corresponding filtration of V®C. Let W be a totally
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isotropic subspace of V, and let W+ be the orthogonal complement,
of W in V. Then we have a filtration

LT T
W_sV W_,V W_,V WLV,

and one can check that (V,W.,F") is a mixed Hodge structure (see
Brylinski 1983, 4.2.1).

The level of a mixed Hodge structure is the length of the shortest
interval [c,d] such that FP/FP*t! £ 0 = ¢ < p < d. A morphism
of mixed Hodge structures F : V. — V' is a linear map V — V'’
respecting the weight filtrations on V and V'’ and the Hodge filtrations
on V®C and V' ® C. The category of mixed Hodge structures has a
natural structure of a Tannakian category. The Mumford-Tate group
MT (V) of a mixed Hodge structure V is defined to be the affine group
scheme attached to the sub-Tannakian category gencrated by V' and

Q(1).
The canonical bigrading. Let V be a mixed Hodge structure. For
integers p and ¢, set VP9 equal to

(Wa(V)NFP(V) N (W (V)N FIV) 4 Y (Wai(V) N FHY(Y)),
2<i

where n = —p —g.
Then
(2) V =@, g VP
(b) the projection of W, (V) onto Gr) (V) induces an isomorphism

VP HPGEY (V)

for all p, ¢ with p+¢q = n;

(C) Wn(V) = ZP+QS1‘ "/p,q;
(d) FP(V) =3 s, VPOL.

(e) If W is a second mixed Hodge structure, then

(VéW)m’n —= ®P+P’=m‘7p’q ® Wpl,ql_

q+q'=n

(f) A morphism of mixed Hodge structures respects the bigrading.
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For the proof, see Deligne (1971a), 1.2.10, 1.2.11. We may visualize
(c) and (d) as:

P=p

Clearly, an element of V(R) is in Vo0 if and and only if it is in both
WoV and FV. An element of a space T = VO™ @ VO g Q(r) lying
in H%° (or a sum of such elements) will be called a Hodge tensor of
V. As before, we let G, act on T through its action on @(1). Define

h:S¢ — GL(V(C)), h(zi,29) v =27P2;% v, v € VP4,

and define A’ : S$¢ — GL(V(C))xG, tobe (21, 23) — (ﬁ(zl, 22~), z122).
Then t € T is a Hodge tensor if and only if it is fixed by Im(h’).

PROPOSITION 1.2. (a) The Mumford-Tate group of V is the subgroup
of GL(V) x Gy, of elements fixing all Hodge tensors of V.
(b) The Mumford-Tate group of V is the smallest subgroup of

GL(V) x G, whose complex points contain the image of h'.

PROOF: (a) With any t € V®™ g Vo g Q(r) we can associate
an «a(t) € Hom(V®" V®™(r)), and t will be a Hodge cycle if and
only if a(t) is a morphism of Hodge structures. From this it fol-
lows that Hodge tensors are fixed by GL(V) x G,,, and that Im(h’) C
MT(V)(C). Thus the tensors fixed by MT (V) are precisely the Hodge
tensors.

Let M’ be the subgroup of GL(V) x G,, fixing the Hodge tensors.
According to Deligne (1982a), 3.1c, in order to prove that M’ =
MT(V), it suffices to show that every Q-rational character of MT(V)
extends to GL(V) x G,,. Let x : MT(V) — GL(W) be such a
character. Then W acquires a mixed Hodge structure, and since it
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has dimension one, we must have W ~ Q(r) for some r. It is now
obvious that x extends to GL(V) x G,»,.

(b) Let H be the smallest subgroup of GL(V) x G, such that H(C)
contains the image of A’. Then an element of some subquotient S of
VO™ @ Ver @ Q(r) is in §O° if and only if it is fixed by H. Thus
MT(V) and H fix the same tensors in all such subquotients, and this
shows that the two groups are equal (see Deligne (1982a), 3.2a).

PROPOSITION 1.3. Let G be an algebraic group over R, and let W.
and F" be filtrations of Rep(G). Suppose that for some family (V;, &;)
of representations of G such that NKer(¢;) is finite, (W., F") defines a
mixed Hodge structure on V; for all i; then (W.,V") defines a mixed
Hodge structure on V for all representations (V,€) of G.

PROOF: See Deligne (1973), 111.1.11.

Variations of mixed Hodge structures. A variation of mized
Hodge structures on a complex manifold S is

(a) a local system of @-vector spaces V on S ,

(b) a filtration W. of V' by local systems W;V.

(c) a holomorphic filtration F" of V =it Os®V

such that

(Hy) V(FPV) c Q! @ Fr-1y

(Hz) for all s € S, (V,, W.,, F) is a mixed Hodge structure.
When @ in the definition is replaced by k C R, then we obtain the
notion of a wvariation of mized k-Hodge structures. The families of
mixed Hodge structures arising naturally in algebraic geometry are
variations of mixed Hodge structures.

Notes. Mixed Hodge structures were introduced by Deligne in order
to be able to state the theorem quoted in (1.1b). See Deligne (1971a),
(1971b), (1975).

2. One-motives.
A semi-abelian variety over a field k is an extension of an abelian
variety by a torus:

02T -G > A4—50.

When £ is algebraically closed, a character x of T then defines (by
pushout) an element of Ext'(A, G.n) = A(k); conversely, a homomor-
phism X*(T) — A(k) defines an extension of A by T.
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A one-motive M over an algebraically closed field k i1s a triple
(Gm, X m,u) comprising a semi-abelian variety Gy over k, a finitely
generated torsion-free abelian group Xs, and a homomorphism wu :
Xy — Gp(k). The definition when k is not algebraically closed is
the same except that X, is a Gal(k? /k)-module and u is required
to be an equivariant homomorphism Xy — G (k™). We often drop

the subscripts M, and write M = (X = G). We regard 1t as a com-
plex of length one. Thus a morphism of one-motives is a commutative
square:

X — G

[ b

!
u

X — G
A morphism («,8 ) is an isogeny if the cokernel of o and the kernel
of 3 are both finite. A one-motive has a filtration:

W()M = (X — G)

U U GI‘()(M) =X
W_lM = (O — G)

U U GI'_l(M) =A
W_oM= (0 — T)

U U GI'_Q(M) =T

0o — 0

Betti homology. The Betti homology group of a one-motive M over
C is a mixed Hodge structure (Hp(M), F'W.) of type {(0,0); (0, -1),
(—1,0);(—=1,—1)} such that
GroHp(M)=X®Q
GI‘_lHB(M) = Hl(AM, Q)
GI‘_QHB(M) = H1 (TM, Q) ~ X*(T) ® Q

To construct it, pull-back the top row of the following diagram by
X — G,

exp

0 —— H;(G) —— Lie(G) » G » 0
H T T
0 —— H{(G) —— Hp(M,Z) — X > 0

and define Hg(M) = Hp(M,Z) ® Q.
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THEOREM 2.1. The functor M — Hp(M) defines an equivalence
between the category of one-motives over C, considered up to isogeny,
and the category of mixed Hodge structures of level < 1 for which
Gr_1Hg(M) is polarizable.

PRroOF: Deligne (1975), 10.1.3.

COROLLARY 2.2. Let (V,h) be a Hodge structure of type {(—1,0),
(0,-1)}, and let v be a polarization for (V,h). Let W C V be a
totally isotropic subspace. There is a unique one-motive M (up to
isogeny) such that Hg(M) is the mixed Hodge structure defined in

(1.1c).

Remark 2.3. The theorem explains the one in “one-motive”. Note
that one-motives are not motives but mixed motives (the Betti ho-
mology of a motive is a sum of (pure) Hodge structures).

The Mumford- Tate group MT™ of M is defined to be the Mumford-
Tate group of the mixed Hodge structure Hg(M).

de Rham homology. Let M = (X — @) be a one-motive over a
field k. The exact sequence

0—->X—->G—> M —0,
gives rise to an exact sequence of vector groups,
0 — Hom(X,6,) — Ext'(G,6,) — Ext'(M,6,) — 0.

There is an extension M* = (X — G*) of M by Ext'(M,G,)Y, which

fits into a diagram,

X
0 —— Ext'(M,G,)Y - G" » G » 0,

~and which is universal among extensions of M by vector groups (De-
ligne 1975, 10.1.7). Define Hyr(M) = Lie(G"). The map M —
Har(M) is functorial in M, and so the weight filtration on M defines
a filtration W. on Hyr(M ). The Hodge filtration is defined by

F_lHdR(M) = HdR(M),

FOH4r(M) = Ext'(M,6,)Y = Ker(Lie G* — Lie G),

FHap(M) = 0.
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PROPOSITION 2.4. When k = C, there is a canonical isomorphism
(Har(M), F',W.) — (Hp(M) ® C, F",W.).

PRrOOF: See Deligne (1975), 10.1.8.

¢-adic homology. Let M = (X 5 G) be a one-motive over an
algebraically closed field k, which, for simplicity, we take to be of
characteristic zero. Define

M,, = H*(M @" (Z/mZ)).

Thus M,, is the zero* cohomology group of the simple complex as-
sociated with the double complex:

X — G
X — G,
so that
M, = {(z,9) € X x G(k) | u(g) = mg}/{(mz,u(z)) |z € X}.

Define

Hg(M) = (EiﬂMgn) Xz, Qev

HiM) = H, He(M) (restricted product).

When k is not algebraically closed, we set Hy(M) = Ho(M @y k™).

PROPOSITION 2.5. When k = C there is a canonical isomorphism
HB(M) @ Qe - Hg(M)

ProoF: This amounts to checking that Hg(M,Z) ® (Z/mZ) = Mpn.

The dual one-motive. There is a functor sending a one-motive M
to its dual M. Set X = X*(T) = Hom(T, G,),

A = the dual abelian variety of A, Ext'(4,Gm),

T = Hom(X, G,,).
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Define G to be Ext'(M/W_, M, G,n). The sequence
0—=X—->A—>M/W_oM—0
gives rise to an exact sequence
0—-T—-G—A-0.

As M is an extension of M/W_oM by T, from each x € X we get an
extension of M/W_sM by G,,, and hence an element (k) of G(k).
This defines the map @, and completes the construction of M. There
are the following formulas:

Hp (M) = Hom(Hp(M),Q(1)),

Hy(M) = Hom(He(M), Q,(1)),
HdR(M) == Hom(HdR(M),k)

Symmetric one-motives. A polarization of a one-motive M is an
isogeny A : M — M such that Gr_;()\) : A — A is a polarization of
A. A one-motive together with a polarization, is called a symmetric
one-motive.

PROPOSITION 2.6. Giving a symmetric one-motive over k is equiva-
lent to giving the following data:

(a) a polarized abelian variety (A, \) over k;

(b) a finitely generated torsion-free abelian group X with an action
of Gal(k® /k);

(¢) a Gal(k* /k)-homorphism v : X — A(k™); let © = X o v;

(d) a trivialization v of the inverse image by (v, %) of the Poincaré
biextension of A; v is required to be symmetric, i.e., invariant under

(z, ") (2",2) : X x X = X x X.

Proor: In fact, (M, ) — (Gr_;1(M),Gr_1(A),v) can be made into
an equivalence of categories; cf. (Deligne 1975, 10.2.14).

We explain (d). The Poincaré line bundle is the line bundle on
A x A which expresses the duality between A and A (Mumford 1970,
§ 13). The Poincaré biextension is the G,, torsor on A x A obtained by
removing the zero section from the Poincaré line bundle. Its inverse
image by (v,?) is a G,,-torsor L on X x X regarded as a scheme of
dimension zero. If ¢ is one trivialization, then any other is of the form
Y og, with g an element of G,,,(X x X) invariant under the symmetry
X x X — X x X. Consequently, we have the following result.
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COROLLARY 2.7. The symmetric one-motives with (A, A\,v: X — A)
fixed form a torsor under Homgym(X x X,6,,) = Hom(S§*(X),G ).

Hodge cycles. When M is a one-motive over C, we define a H. odge
cycle on M to be a Hodge tensor for the mixed Hodge structure
Hpg(M). Propositions 2.4 and 2.5 show that such a cycle has real-
izations in the de Rham and f-adic homology groups of M. When
M is defined over an algebraically closed field k, we say that a family
s = (sdr, (se)) is a Hodge cycle relative to an embedding 7 : k — C if
the components of s become the components of a Hodge cycle s on

™.

PROPOSITION 2.8. Let M be a one-motive over an algebraically
closed field k. If s is a Hodge cycle on M relative to one embed-
ding of k in C, then it is a Hodge cycle for every embedding.

ProoF: The proof of (1.3.1) can be extended to one-motives; see
Brylinski (1983), 2.2.5.

The procedure of (1.3) now allows us to define the notion of a Hodge
cycle for a one-motive over any field of characteristic zero.

One-motives of CM-type. A one-motive M = (X = G) over a
field k is said to be rationally decomposed if the image of w is finite and
the class of G in Ext'(A,T) is of finite order. It is then isogenous to

the one motive X -2» Tx A. When k = C, M is rationally decomposed
if and only if the mixed Hodge structure Hp(M) is isomorphic to
the direct sum of the pure Hodge structures Hg(T), Hp(A), and
X @ (these are of types {(~1,~ 1)}, {(—1,0), (0,~1)}, and {(0,0)}

respectively. To such a one-motive M, we attach a motive
hM = h(X.(T)® Q) ® h(A) (X ®Q)

in AV/k (the first and last summands are elements of Art/k; see
1.4.1).

A one-motive M is said to be of CM-type if it is rationally decom-
posed and Ay is of CM-type. Then kM lies in CM/k. In particular,
when M is defined over C, its Mumford-Tate group is a quotient of
S, and when M is defined over Q, 1t corresponds to a representation
of the Taniyama group.

Moduli of one-motives. Let M be a one-motive over C, and write
(H,W., F") for Hg(M) with its mixed Hodge structure. As in (L.1),
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the Mumford-Tate group P of M acquires a filtration
1=W_3PCW_,PCW_PCWyP=P
from the weight filtration on H:
W_;P={peP|(id-p)(W,Hpg(M)) CW,,—;Hg(M), all m}.

The group W_, P is unipotent, and the quotient P/W_;P is the

Mumford-Tate group of Gr_;(M) = A. Therefore P/W_, P is re-
ductive, and W_1 P is the unipotent radical of P.

LEMMA 2.9. (a) For all p € P(R) - W_, P(C), the filtration p - F* of
H ® C defines a mixed Hodge structure on (H, W).

(b) There exists a p € W_{P(C) such that the mixed Hodge struc-
ture (H,W.,p - F") is rationally decomposed.

PROOF: Brylinski (1983), 2.2.8 (see also VIL.1).

LEMMA 2.10. The mixed Hodge structure on Lie P defined by (W., p-
F) 1s of type {(—13 '—1); (_170)) (07 '—1); ('—1, 1)’ (O, O)a (1’ _1)}
1

—1

It follows that FOP N W_, P is commutative, because,
[F°PNW_,P,F'PNW_,P]C F°PNW_,P =0.

Choose a lattice H(Z) in H. The family of one-motives p- M, p €
P(R) - W_; P(C) is parametrized by the space

V =T\P(R)-W_,P(C)/F°P(C)
where I is the subgroup of P(Q) respecting the lattice.

THEOREM 2.11. When I is replaced by a sufficiently small congru-
ence subgroup, the variety V has a natural structure of an algebraic
variety, and the analytic family of one-motives over it also has a nat-
ural structure of an algebraic variety.

PRrOOF: Brylinski (1983), 2.3.2.1 (see also Chapter VI).

By introducing level structures and Hodge cycles, it is possible to
strengthen the theorem in order to obtain a universal family of one-
motives.
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Notes. The concept of a one-motive is due to Deligne (1975).

3. Degenerating families of symmetric one-motives.
Understanding the boundaries of Shimura varieties of Hodge type is
closely related to understanding the degeneration of abelian varieties
and one-motives. The degeneration theorem we state below is an
algebraic analogue of the following analytic statements. Let D be the
unit disk and let D' = D — {0}. Counsider functions f; : D — C such
that fi(2) #0for z # 0 and f;(0)=0for 1 <:<r. Let 7, G, and A
to be the complex manifolds over D whose fibres over z € D are:

T, = CXT,

G, = me/ (f’"+1(z)’ - ’fm(z))’

A, = CX7 [ (frp1(2),. . -, fm(2)).
Here (fr4+1(2),...,fm(2)) is the abelian subgroup generated by
fr41(2), ..., fm(z). There is an exact sequence

0—-T7T oG- A—1.

The functions fy,..., f, define a map v : X — G where X is the
constant local system Z" on D. Let A = G/u(X). Then A is the
complex-analytic analogue of a semi-abelian variety, the map ¢ — 4
is a local isomorphism, and the fibre of A4 over 0 is equal to the fibre
of G over 0.

Let R a Noetherian, excellent, normal ring that is complete with
respect to a radical ideal J; let

S = Spec R;
n = generic point of S = SpeckK;
So = Spec A/7.

Intuitively, a degenerating one-motive over S is a one-motive over
S — So whose period group degnerates totally along Sy. It is most
convenient to state the definition in terms of the quadruple considered

in (2.6).

Definition 3.1. A degenerating family of symmetric one-motives
over S is:

(a) an abelian scheme p : A — S and a polarization )\ : A — A;

(b) a morphism v : X — A(S), where X is a free Z-module of finite
rank; let ¥ = X o v;

(c) a symmetric trivialisation 1 of the inverse image by (v, ¥) of the
Poincaré biextension of Ax and Ag by G,,.

There is also a degeneracy condition for whose statement we refer
to Brylinski (1983), 3.1.1.
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From the data in (a) and (b), we can construct a semi-abelian vari-
ety G over S: let 7 be the constant split torus over S with X*(7') = X;
then G is an extension of A by 7, such that, for all characters y of T,
x+(G) is an element of Ext'(A, G,,) representing #(x).

THEOREM 3.2. There exists a semi-abelian scheme A over S, arising
in a natural way from a degenerating one-motive, such that

(a) the formal completion of A is the quotient of the formal com-
pletion of G by the group of periods u(X);

(b) the restrictions to Sy of the semi-abelian schemes A and G are
canonically isomorphic.

PROOF: In the case that G = T this was proved by Mumford (1972).
Apparently, he also proved the general case, but never published it.
There is a sketch of a proof in Brylinski (1983) and a detailed proof
in Chai (1985).

Remark 3.3. In Faltings (1985) there is an important converse to
(3.2).

Notes. The theorems in this section are due to Mumford (1972),
Brylinski (1983), Faltings (1985), and Chai (1985). The most com-
plete account is in Chai and Faltings (1989).

V. TOROIDAL COMPACTIFICATION

We explain the how to construct (smooth) toroidal compactifications
of Shimura varieties, and suggest how the isomorphisms of Chapters
IT and III extend to these compactifications.

1. Torus embeddings. We review (without proofs) the construc-
tion in algebraic geometry on which the method of toroidal compacti-
fications is based. Throughout this section, k will be an algebraically
closed field, and “variety” will mean a reduced irreducible separated
scheme locally of finite-type over k. All semigroups have zero elements
and a subsemigroup of a (semi-) group contains the zero element of
- the (semi-) group.

Definitions. Let T be an d-dimensional torus over a field k. Write
M = X*(T) c I(T,Or) and N = X,(T). For r € M let X" be the
corresponding element of I'(T,Or), and for a € N, let pg : G,,, » T
be the corresponding cocharacter. We have a pairing

(V:MxN—=Z, x (1)) =1t"o,
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As a k-algebra, I'(T, Or) is generated by {x" | r € M}. Moreover, if

r1,...,7rq is a basis for M, then

F(Ta OT) = k[Xﬁﬁx:lla <. 7X1‘,1’X:dl]'

A torus embedding of T is an open immersion T < X of varieties
together with an action of T on X whose restriction to 7' is the multi-
plication map. A morphism of torus embeddings is a homomorphism
f: X — X’ whose restriction to T is a homomorphism T — T’ and

which makes
TxX — X

(FIT)Xfl lf

T'x X! — X'
commute. The torus embedding is said to be affine if X is affine.

Affine torus embeddings. Let S C M be a finitely generated
semigroup, and let k[S] be the subalgebra of I'(T, Or) generated by
{x" | r € S}. It is a finitely gencrated k-subalgebra of I'(T, Or), and
its field of fractions is k(T') if and only if S generates M (as a group).
In this case, T acts on Xg =4r Speck[S], and T — Xg is an affine
torus embedding. We have

Xs(k) = Hom, (S, k) =qr {2z : S = k | z(0) = 1, z(s+s") = z(s)x(s") }.

Example 1.1. Let T = G¢ | so that M = Z¢ and the coordinate ring
of T, k[T) = k[x1,x7",...]. Let

S={(mi,...,mq) | mi >0,i=1,...,s}.

Then Speck[S] = k% x (k*)4~s,

Let ¢ be a morphism A! — {0} — X; when ¢ extends to a morphism
¢ : Al — X, we say that lim;_¢ ¢(t) exists and equals ¢(a). With
this definition, it is possible to describe Xg as the variety obtained
from T by adding certain limit points: for each a € N, limy_g pta(?)
exists in Xg if and only if (a,S) > 0.

PROPOSITION 1.2. (a) The map S — (T — Xg) defines a one-to-one
correspondence between the set of finitely generated semigroups S in
M generating M as a group and the set of isomorphism classes of
affine torus embeddings of T.
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(b) An inclusion S C S’ defines a morphism Xgr — Xg
(c) Xs Is a normal variety if and only if S is a saturated in M, i.e.,
m € S whenever rm € S for some r € N, r # 0.

We want to patch affine torus embeddings together; for this it is
convenient use different combinatorial data, so that the functor at-
taching a torus embedding to the data is covariant. A subset 0 C Ng
is called a convex polyhedral cone if there exist vectors ny,...,n, in
Ng such that

o= {Z(lini | a; €R, a; > 0}
i>1
It is rational if the n; can be chosen in N, and it is strongly convex
if further o N (—o) = 0 (equivalently, o contains no nonzero subspace
of Ng). The dimension of the subspace generated by o is called the
dimension of o.

Let 0 = ) R>on; be a strongly convex rational polyhedral cone. If
we remove redundant n;’s and require cach to be primitive (that is,
such that rn; ¢ N, r € Z, r > 1), then the set {ny,...,n,} is uniquely
determined. These n; are called the fundamental generators of o.

The dual of o is the convex rational polyhedral cone ¢ in Mg:

6’:{7’:MRI(T’(I,>ZO, allaEO}

PropPoOSITION 1.3. The map o — & N M defines a one-to-one cor-
respondence between the set of strongly convex rational polyhedral
cones in Ng and the sct of finitely generated semigroups S C M
generating M and saturated in M.

For a convex rational polyhedral cone ¢ in Ng, write X, for
Speck[d N M]. Note that for the cone o9 = {0}, X,, = T. On

combining the last two propositions, we obtain the following result.

COROLLARY 1.4. The map o — X, defines a one-to-one correspon-
dence between the set of strongly convex rational polyhedral cones in
Ngr and the set of affine normal torus embeddings of T.

" Remark 1.5. The following criterion allows us to reconstruct ¢ from
X, an element a of N lies in 0 & lim,_,¢ p1,(?) exists in X,.

PRrROPOSITION 1.6. The variety X, is nonsingular if and only if the
fundamental generators of o form part of a Z-basis of N.

A strongly convex rational polyhedral cone satisfying the condition
in the proposition is said to be nonsingular.
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The intersection of a strongly convex rational polyhedral cone ¢
with a hyperplane that does not meet the interior of o is called a face,
7 < g, of g. There is then an r¢ in § N M such that

T={z €0 | (rg,z) = 0},

and 7 is again a strongly convex rational polyhedral cone. The semi-
group 7N M associated with 7 is & N M + N(—ro).

PROPOSITION 1.7. If T and o are strictly convex rational polyhedral
cones and 7 C o, then there is a natural morphism X, — X, of torus
embeddings; the morphism is an open immersion if and only if T is a
face of 0.

On points, the map is the natural inclusion Hom, (7 N M, k) —
Hom, (6 N M, k) induced by 6 " M — 7N M.

General torus embeddings. The last result suggests how to patch
together X, for different o.

Definition 1.8. A fan (formerly, rational partial polyhedral decom-
position) of Ng is a nonempty collection A = {5} of strongly convex
rational polyhedral cones such that:

(i) every face of a cone in A is also in A;

(ii) if o and o' are in A, then o N o' is a face of both o and o' .
The set |A| = Uyeao is called the support of A, and A is said to be
complete if |A] = Ng.

For example, the set of all faces of a strongly convex rational poly-
hedral cone is a fan. Let A be a fan in Ng, and let

Xa ={(o,7) |0 € A, m € Hom,(6 N M, k)}/ ~,

where (o,7) ~ (¢/,n') if and only if # and 7’ are restrictions of a
single element of Hom,((c N o’)¥ N M, k).

PROPOSITION 1.9. The space Xa has a unique structure of an al-
gebraic variety for which the maps X, — X are open immersions
for all o € A. In particular, T = X,, — X, Is an open immersion.
There is a unique action of T on X extending its action on each X,.

To summarize: we have attached to each fan in Ng a normal torus
embedding T' C Xa.

Example 1.10. Let N =7, 0 = R>o C Ng, A = {0, ~0,{0}}; then
Xa =Pl
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THEOREM 1.11. (a) XA is of finite-type if and only if A is finite.
(b) Xa is nonsingular if and only each X, is nonsingular.
(c) Xa is complete if and only if A is a finite and complete fan.
(d) Xa is quasi-projective if and only if A is finite and there is a
continuous real-valued convex function on the convex hull of |A| such
that
(i) flo is R-linear, all 0 € A;
(ii) f takes integer values on N N |Al;
(iii) for each o € A, there is an r, € M and an n, > 0 such that
nef > ro on |A| and

o ={a€ Ng|(rs,a) =nsf(a)}.

The function f in (iii) is called a polar function. It defines a T-
equivariant ample invertible sheaf on X4.

Remark 1.12. (a) The X, for 0 € A are the T-stable affine open
subsets of X5. In particular, XA is affine if and only if there is a
o € A such that A coincides with the set of faces of .

(b) The description given above for the k-points of XA extends to
a description of the functor of k-schemes defined by X (see Ash et
al. 1975, p10, except note that they forget to pass to the equivalence
classes).

PROPOSITION 1.13. FEach torus embedding T C X with X normal is
isomorphic to the torus embedding defined by a fan A in X,(T)® R,
and A is uniquely determined.

Equivariant maps. A map of fans ¢ : (N'; A’) — (N, A) is a homo-
morphism ¢ : N — N such that the image under pg of each ¢’ € A’
1s contained in a 0 € A.

PROPOSITION 1.14. Let ¢ : (N'JA’) — (N,A) be a map of fans;
the map T+ — T defined by ¢ extends uniquely to a morphism
@« : Xar = Xa, and ¢, is equivariant. FEach morphism of torus
embeddings X+ — Xa arises in this way from a unique map of fans.

PROPOSITION 1.15. The morphism ¢, is proper and birational if and
only if ¢ : N' — N is an isomorphism and A’ is a locally finite
subdivision of A.
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Rationality of torus embeddings over subfields. Let 7: k — £’
be an inclusion of k into a second algebraically closed field k’. Then 7
defines an isomorphism X,(T) — X,(7T), and a fan A in X.(T)®R
is mapped to a fan 7A in X,(7T) ® R. Clearly, 7(Xa) = XA as
torus embeddings of 7T.

Now suppose that T is defined over a subfield k¢ of k& over which k
is Galois. Then Gal(k/kg) acts on N (through its action on T'), and
descent theory shows that a quasi-projective normal torus embedding
T — X, is defined over kg if and only if A is stable under the action
of Gal(k/ko) on Ng.

Toroidal embeddings. Let Y be a normal variety, and let U be a
smooth open subset of Y. We say that U C Y is a toroidal embedding
if it is a torus embedding locally for the étale topology. We mean by
this that for every closed point y of Y there is an open neighbourhood
Y’ of y, a normal affine torus embedding 7" C X, and an étale map
7m:Y’ — X such that 7=/ (T)=UnNY"

open étale
Yy 5 Y’ —t—> X
U U U
U « UnY’ — T.

Compactification of torsors. Let V be a variety, and let P be a
T-torsor over V. For any torus embedding 7' < X we can define:

PxTX=(PxX)/~, (pt,x)~ (p,tz),pe P,z € X, teT.

This is a variety over X. The choice of a point p in the fibre P, of P
over a closed point v € V' defines an isomorphism

-7 ]
P, — (PxTX),.
A similar construction can be made when V is a complex manifold.

In this case, P x TX is a fibre bundle over V with standard fibre X
(see Kobayashi and Nomizu, 1963).

Notes. Detailed proofs of the results in this section can be found in
Kempf et al. (1972) and Oda (1978), (1987).
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2. Study of the boundary of symmetric Hermitian domains.
There is a very elaborate theory concerning the boundaries of Hermi-
tian symmetric domains. We can include only a very brief sketch.

Rational boundary components. Let D be a symmetric Hermi-
tian domain. Since we are interested in its boundary, we assume D to
be noncompact. There then exists a semisimple group G over @ such
that G(R)* = Aut(D)*.

As was explained in (II1.1), there is a canonical embedding 3 : D —
D of D into its compact dual. The closure D of D in D is called the
natural compactification of D. The action of G(R)™ on D extends to a
continuous action on D. The space D can be decomposed according to
the equivalence relation generated by the following relation: x ~ y if
there is a holomorphic map A : D; — D from the unit disk D, into D
such that {z,y} C A(D;) C D. The equivalence classes are called the
boundary components of D. Note that this definition allows D itself
to be an boundary component of D (called the improper boundary
component).

The normalizer of a boundary component F is the subgroup A of
G(R)* containing those g such that gF = F. The component F is
said to be rational if there is a subgroup N¥ C G (defined over Q
such that Nt = NF(R)*.

PROPOSITION 2.1. (a) When G is simple, the map F +— NF is a
bijection from the set of proper rational boundary components of D
to the set of maximal parabolic subgroups of G

(b) Suppose G = G1 X --- X G,, with each G; simple, and let
D =D, x---x D, be the corresponding decomposition of X. The
rational boundary components F' of D are products Fy x - - - x Fy,, with
each F; a rational boundary component of D;, and the normalizer of
such an F' is the product of the normalizers of the F;

PROOF: See Baily and Borel (1966), 3.7,

From now on, we assume G to be simple (over Q).

Example 2.2. Let (V,1) be a symplectic space, let G = Sp(V, ),
and let D be the corresponding Siegel upper-half-space. For any to-
tally isotropic subspace W of V, the stabilizer N of W in V is a
maximal parabolic subgroup of GG, and all such subgroups are of this
form. The boundary component F' corresponding to N is isomor-
phic to the Siegel upper-half-space defined by the symplectic space
(WL /W, ).
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For example, if dimV = 2, then the totally isotropic subspaces are
the (rational) lines in V. They are in one-to-one correspondence with
the points of P!(@). When D is realized as the open unit disk, then
the rational boundary components are the points on the circle that
lie on a line through the origin with rational slope.

Cayley filtrations. For each point z € D, there is homomorphism
hz : § — Gg such that h;(2) fixes  and acts on Tgt, (D) as multipli-
cation by 2%2. The map z — h, identifies D with a G(R)*-conjugacy
class of maps. For a representation (V, ) of Gg, £oh, defines a Hodge
structure on V and a (decreasing) Hodge filtration F), on V(C).

Definition 2.3. A filtration W. of Repg(G) is said to be Cayley if
for all z € D and all representations  : G — GL(V), the filtrations
W. and F, of V define a mixed Hodge structure on V.

PRrRoOPOSITION 2.4. IfW. is a Cayley filtration, then WG is a maximal
parabolic subgroup of G, and every maximal parabolic subgroup of G
1s associated in this way with a unique Cayley filtration.

PROOF: See Deligne (1973), 3.1.13.

Thus each rational boundary component F' defines a Cayley filtra-
tion W. of Repg(G). Deligne (ibid. 3.1.14) shows that for each F,

there is a unique cocharacter wp of G splitting the corresponding

Cayley filtration and such that (ad h(3)) o wp = w}'.

THEOREM 2.5. Fix a base point o € D and a rational boundary
component F of D. Then there exists a unique homomorphism
or:U' x SL(2,R) — G(R)
such that _
(i) @ r(e,7(8)) = ho(), () = (g om0,
(i) r(1, () 2 ) =wr(}), Ae U
PRrRoOOF: Deligne (1973), 3.1.14.

Remark 2.6. (a) Let H be the upper-half-plane. There is a holo-
morphic map fgp : H — D that is equivariant for pr and such that
fr(i) =0 and fp(oo) € F (Ash et al. 1975, p199).

(b) Since G is simple it can be written G = Resg/@G’ with G’ an
absolutely simple group over a totally real field F'. Choose a point
o € D such that h, factors through T(R) with T' a maximal torus
in G. If E is a CM-field splitting T”, then ¢r is defined over the
maximal totally real subfield of E (because both ho and wp are).
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The structure of N¥. Fix a base point o € D and a rational bound-

ary component F. The Hodge structure on g defined by hg is of

type {(—1,1),(0,0),(1,-1)} (cf. II.1). It follows that the nonzero

Hodge numbers hP? of the mixed Hodge structure (g, W., F,) satisfy

Ip|, l¢] < 1. The action of wg therefore defines a grading:
g=9g"0g  ®g" g Dy’

There are attached to F' the following algebraic groups over Q:

NF =WyG; LieNF =g 2@ g~ @ g¢°.

WF = W_,G = unipotent radical of N¥; LieWF = g—2 ¢ gt

UF = W_,G = centre of W this is an abelian group, which we
can identify with its Lie algebra g=2.

Z(wr) = centralizer of wr in N¥; Lie(wr) = g°, and N = W x
Z(wp).

VE = WF¥/UF: this is an abelian group, which we can identify
with its Lie algebra g='. Write g, = [g?, g7 2], and g, = orthogonal
complement [g%,g7?] in g°. The decomposition g°= g, + g, can be
integrated to an isogeny G, x Gy — Z(wp). In summary:

W¥ x Z(wp) =NF
| ~ Gh X Gg
WF
| v
UF
|
{1}
PROPOSITION 2.7. (a) F is a symmetric Hermitian domain; Gy, is
semisimple, and
Gx(R)* /(maximal compact subgroup) = Aut(F)*.

(b) The morphism ¢w sends U' into G}, and it sends SLy(R) into
G'¢; moreover, pyw|U' : Ul — Gr(R) defines the complex structure on
F.

(¢) Gy is reductive without cempact factors.

(d) The centralizer of F, Z = {g € G(R) | gz = z all € F}, has

identity component G, x WF.
(e) Gy - W centralizes UF.

PROOF: Ash et al. (1975), II1.3.
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Example 2.8. With the notations of (2.2), G, = Sp(W+/W,v),
G¢ = GL(W), and M = 0. Moreover, U¥ is the space of symmetric
bilinear forms on V(R).

The canonical self-dual open cone in UF(R). In addition to the
closed cones of §1, we shall need to consider open cones in real vector
spaces. Such a cone C in a real space V is said to be self-dual if
there exists a positive-definite inner form (,) on V with the property
that z € C if and only if (x,y) > 0 whenever 0 # y € C (closure of
C). The cone is said to be homogeneous if the group Aut(V,C) of
automorphisms of V stabilizing C' acts transitively on C.

Example 2.9. Every homogeneous self-adjoint cone can be written
as a product of indecomposable cones. Apart from one family of
semi-classical cones and one exceptional cone, every indecomposable
homogeneous self-adjoint cone is isomorphic to a cone in the following
list:

(i) the cone of positive-definite real symmetric matrices;

(ii) the cone of positive-definite Hermitian complex matrices;

(iii) the cone of positive-definite Hermitian quaternion matrices.

The Killing form B defines a Hermitian form on gc¢,
B,(‘T’y):_B('TaLy)a z,Y € 8¢,

which restricts to a positive-definite form on uf. The isomorphism
exp : uf' — UF allows us to transfer this to U¥".

Define QF to be the point ¢ p(1, ((1) i)) of UY. Then the orbit of
Qp in UF(R) under G¢(R),

C(F) ={g%rg™" | g € G«(R)},
is a homogeneous open cone in Up(R), which is self-dual relative to
B’.
Example 2.10. In the situation of (2.2), C(F) is the cone of all
positive-definite bilinear forms on W.
Definition of Siegel domains.

Definition 2.11. Let U be a real vector space and let C' be an open
convex cone in U whose closure does not contain an entire straight

line. Then
S={zeU(C)|Im(z) e C} =U+1iC
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is a tube domain (or Siegel domain of the first kind).

Let U be a real vector space and V' a complex vector space; a real-
bilinear map V x V. — U(C) is said to be semi-Hermitian if it can
be written as the sum of a symmetric complex-bilinear map and a
Hermitian map.

Definition 2.12. Let U be a real vector space, let V be a complex
vector space, and let D be a bounded domain in some space C*: let
C C U be a cone satisfying the conditions of (2.11). Suppose that for
each t € D there is given a nondegenerate semi-Hermitian form L; on

V with values in U. Then
S={w=(z,v,t) e UxV xD|Im(z2) — Re(L(v,v)) € C}

is a Stegel domain (of the third kind). Thus a Siegel domain can be
thought of as a family of tube domains parametrized by V x D.

Realization of D as a Siegel domain. We now describe the re-
alization of D as a Siegel domain of the third kind, attached to the
component F'. Let :

D(F)=U"(C)- D = U,eyrcygD C D.

Example 2.13. In the situation of 2.2, D(F’) is the set of maximal
isotropic subspaces F° C V such that (V.,W., F") is a mixed Hodge
structure and 1 is a polarization of W/W<L. Here W. and F" are the
filtrations:

OocwWcecwtcVv, V=FlvoF'>Fv=o0.

There is a N¥(R) - UF(C)-equivariant map &5 : D(F) — UF(C)
such that D = ®3'(C). The space D(F) can be decomposed by means
of two successive fibrations:

D(F)
T
TF | D(F)' = U"(C)\D(F)

[

2

Moreover,
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D(F) is a fibre bundle over D(F)’ for the complex group U (C);
D(F) — F is a principal C*®-fibration for the group VI'(R).
Both fibrations can be trivialized,

D(F) = UF(C) x D(F) =~ U¥(C) x VF(C) x F,
and with the choice of such a decomposition, ® r can be expressed
®p(z,v,t) = Im(z) — hy(v,v), z € UF(C),v e VF(C),z€ F

with h; a real bilinear form VF(R) x V¥(R) — U¥ depending real-
analytically on t. Thus D is equal to

{(z,v,t) | z € UF(C), v E VF(C), t € F,Im(z) — hy(v,v) € C(F)},

which realizes it as a Siegel domain.

Algebraicity of the quotient of D(F) by a discrete group. An
arithmetic subgroup I' of G(R) is said to be neat if it consists of
elements g such that, for one (hence every) faithful complex repre-
sentation ¢ of GG, the subgroup of C* generated by the eigenvalues of
£(g) is torsion-free. In particular, a neat subgroup is torsion-free.

Choose a neat arithmetic subgroup I' of G(R) (every arithmetic
subgroup contains a subgroup of finite index that is neat), and define:

[(F) =T NN; it is a discrete subgroup of N*’;

I'V(F) = subgroup of I'(F) of elements acting trivially (by conjuga-
tion) on U

[',(F) = image of ['(F) in G,(Q); it is a neat subgroup of G(Q),
and so 'y (F)\F is a locally symmetric variety.
The quotient UF(C)/(U¥(C)NT) is compact, and UF(C)NT is discrete
in UF(C); therefore UF(C) N T is a lattice in U¥(C), and TF =
UF(C)/(UF(C)NT) is a complex torus.

THEOREM 2.14. The quotient I''(F)\D(F') has a canonical structure
of an algebraic variety for which the map I'(F)\D(F) — T',(F)\F 1s
a morphism of algebraic varieties. In fact, I'"\D¥ is a torus bundle
(with fibres T (C)) over an abelian scheme over I'j,(F)\F.

ProoF: This is proved in Brylinski (1979). (See also Brylinski (1983),
2.3.2.5, and Chapter VI below.)

Remark 2.15. The algebraic structure in (2.14) is canonical, but it
is not unique: there is no analogue of the Borel extension theorem (cf.
I1.1.1).
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Example: the Siegel case. We return to the situation of (2.2).
Choose a lattice V(Z) in V such that 1 takes integral values and has
discriminant one on V(Z), and let Sp(Z) be the subgroup of Sp(V, ¢)
preserving V(Z).The quotient Sp(Z)\D is the moduli variety for po-
larized abelian varieties in the principal series. Fix an isotropic sub-
space W of V, and define the filtration W. as in (2.13). The form ¥
induces on Gr_;(V(Z)) a skew-symmetric form 1 of discriminant 1.
Set dim Gr_1V = 2¢9. We have:

(a) F is the space of Hodge structures of type {(—1,0),(0,—1)} on
Gr_;(V) for which % is a polarization.

(b) D(F) is the space of maximal isotropic subspaces F° of V(C)
such that (V,W., F"') is a mixed Hodge structure and v is a polariza-
tion of Gr_1(V).

Let I be the subgroup of Sp(Z) of elements that respect the filtration
and act trivially on Gro(V).

(c) The quotient I"\D(F) is the (coarse) moduli variety for sym-
metric one-motives (A4, A, X, v,6) with (A, \) a principally polarized
abelian variety of dimension 2gy, X the abelian group Gro(V(Z)), v
a homomorphism X — A(C), and § a symmetric trivialization of the
Poincaré biextension (see IV.2.6).

(d) The quotient IY\D(F')" is the (coarse) moduli variety for the
quadruples (A, A, X, v).

(e) The quotient I\ F' is the (coarse) moduli variety for principally
polarized abelian varieties of dimension gg.

The maps
I'"\D(F) - T'\D'(F) - T'\F

correspond to
(A, A X, v,6) — (AN X, v) — (4, ).

Notes. Piatetski-Shapiro (1966) showed how to realize all the clas-
sical symmetric Hermitian domains as Siegel domains of the third
kind. Wolf and Kordnyi (1965) gave a more uniform treatment that
includes the nonclassical domains. There are expositions of (parts of)
the material in this section in Baily and Borel (1966), Deligne (1973),
Ash et al. (1975), Satake (1980), and Brylinski (1983).

3. Toroidal compactification of locally symmetric vari-
eties. The results of the last two sections, allow us to construct
toroidal compactifications of locally symmetric varieties.
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We use the same notations as in §2 (except that we no longer require
G to be Q-simple). Thus D is a symmetric Hermitian domain, G is
an algebraic group over Q with G(R)* = Aut(D)*, F is a rational
boundary component of D, and N¥', W¥ and UF are certain sub-
groups of G attached to F'. Recall that we have a canonical self-adjoint
open cone C(F) in UY(R). We choose a neat arithmetic subgroup I
of G(R)*, and define ['(F) to be the image of I'(F) in Aut(U"). As
in §2, TF is the torus over C with X,(T) = UF(Z) =4 U¥(C)NT.
Finally, we write S for the locally symmetric variety I'\ D.

Definition 3.1. A fan A in U (R) is said to be I'(F)-admissible if

(a) vy ET(F), 0 € A= yo € A; )

(b) the number of classes of cones mod I'(F) is finite;

(c) C(F) C |A] Cc C(F)~ (closure of C(F)).

Note that X,.(T) ® R = UF(R). Therefore a I'(F)-admissible fan
gives a torus embedding TF c XL. As UF(Z)\D(F) is a principal
bundle for T over D(F)' , we can construct a partial compactifica-
tion,

(UT@\D(F))a = (UT(@\D(F)) x"" XZ,
as at the end of §1. This is a fibre bundle over D(F)’ with fibres X .
Define (UF(Z)\D)a to be the interior of the closure of U (Z)\D
in (UF(Z)\D(F))a. Because A is invariant under ['(F), T'(F) acts
n (UF(Z)\D(F))a, and it can be shown that I'(F) acts properly
discontinuously on (U¥(Z)\D)a.

Definition 3.2. A family of fans A = (Af), F running over the
rational boundary components of D, is I'-admissible if

(a) each Af is T'(F)-admissible;

(b) for v € T, yA¥ = A'F (note that v defines an isomorphism
7:C(F) = C(vF));

(c)if F O F', AF' = {snC(F') | ¢ € A} (note that C(F')~ =
C(F)" nU(F")).

THEOREM 3.3. For every I-admissible family of fans A = (AF),
there is a unique normal separated complex analytic variety (I'\D)a
containing T\ D as an open dense set and such that:

(a) for every rational boundary component F of D, there is an open
analytic morphism 7 making the following diagram commute:

UF(@\D — (U (Z)\D)ar
mF
D =  (T\D)a;

|
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(b) (I'\D)a = UIm(wp). Moreover, (I'\D)a has a unique structure
of a complete algebraic space compatible with its analytic structure,
and there is a natural morphism (I'\D)a — (I'\D)~ that restricts to
the identity map on I'\D.

PRroOF: This is the main theorem of Ash et al. (1975) (ibid. p253).

The algebraic space (I'\D)a in the theorem is called the toroidal
compactification of I'\D defined by A.

An algebraic space is the quotient of a scheme by an étale equiv-
alence relation (see Knutson (1971) for a full account of the theory
of algebraic spaces). In this article, the distinction between a scheme
and an algebraic space will not be important, and we shall ignore it.
The next two results show that A can be chosen so that the toroidal
compactification is in fact a projective variety.

Let U = UUY and C = UC(F) (unions over the rational boundary
components of D).

Definition 3.4. Let A = (Af)f be a I'-admissible family of fans.
(a) A is nonsingular if every cone in every A is nonsingular (see
1.6);
(b) A is projective if there exists a [-invariant continuous convex
piecewise linear function f : C — R such that f|U¥ is a polar function
for each F' (see 1.11).

THEOREM 3.5. (a) If A is nonsingular, then (I'\D)a is nonsingular.

(b) If A is projective, then(I'\D)a — (I'\D)~ is the normalization
of the blowing up of (I'\D) along a sheaf of ideals T such that O/1
has support on (['\D)~ — I'\D. In particular, (I'\D)a is projective.

PRrOOF: The first statement follows from (1.11). The second is a
theorem of Tai (see Ash et al. (1975), IV.2.1).

PROPOSITION 3.6. (a) There exist projective I'-admissible families of
fans.
(b) Every I'-admissible fan has a refinement that is nonsingular.

PROOF: (a) See Ash et al. (1975), p310.

(b) In Kempf et al. (1972), p32, this is proved for torus embeddings
of finite type, but essentially the same proof works in the present
context. ‘

One can show, more precisely, that every toroidal compactifica-
tion is dominated by a nonsingular toroidal compactification whose
boundary is a divisor with normal crossings—we shall refer to such a
compactification as a smooth toroidal compactification.
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Remark 3.7. (a) The sheaf of ideals 7 in (3.5b) has a precise de-
scription in terms of the function f (see Ash et. al. 1975, p312).

(b) In Ash et. al (1975), p287, there is a more intrinsic statement
of the main theorem.

Notes. Toroidal compactification were introduced independently by
Mumford and Satake (see Mumford 1975 and Satake 1973). The
theory was worked out in detail by Mumford and his collaborators,
Ash, Kempf, Knudsen, Rapoport, Saint-Donat, and Tai, in (Kempf
et al. 1972) and (Ash et al. 1975).

4. Toroidal compactification of Shimura varieties. We extend
the results of the last section to Shimura varieties.

Toroidal compactification of connected Shimura varieties. Let
(G, X7T) be a pair satisfying the axioms (II.1.3). The group G*¢ plays
the role of G in the previous section. Let I" be a neat arithmetic sub-
group of G*4(Q)T containing the image of a congruence subgroup of
G(Q)T. A I'-admissible fan A will also be I''-admissible for any arith-
metic subgroup IV C I, and the morphism ["\X*+ — I'\X* extends
to a morphism (I"\Xt)a — (I'\X*)a. We write Sh®(G, X)a for the
projective system (I'\X*)a, where I" runs over the neat arithmetic
subgroups containing the image of a congruence subgroup.

Unfortunately, the action of G*4(Q@)* on Sh°(G, X) does not ex-
tend to ShO(G,X )a. However, we have the following observation of
Faltings and Stuhler.

LEMMA 4.1. Let T and I’ be neat arithmetic subgroups of G*4(Q)*

containing the image of a congruence subgroup, and let y1,...,vn €

G(Q)* be such that v 'Ty; C I’; then for any pair of smooth toroidal

compactifications (I'\X1)a and (I"\X*t)ar of T\XT and I"\X*,

there exists a smooth compactification ([\Xt)an of [\X* and maps:
(T\X*)an — (I\X*+)a restricting to id on T\X*, and
(T\XHt)ar — (I'"\X*ar restricting to y; on T\ X+.

PRrOOF: Stated in Faltings (1984).

Thus, if we define Sh®(G, X)* to be the projective system (F'\X*)a,

where T’ runs over the neat arithmetic subgroups of G4 (@)% contain-
ing the image of a congruence subgroup of G(Q)* and (for each I')
A runs over the I'-admissible families of fans for which (I'\.X*), is
a smooth toroidal compactification, then the action of G24(@)t on
Sh%(G, X) extends to Sh%(G, X)*. By continuity, we obtain an action
of G*4(@)* on Sh°(G, X)*.



CANONICAL MODELS 391

Toroidal compactification of Shimura varieties. Let (G, X) be
a pair defining a Shimura variety, and assume that the weight wyx
is defined over @ (this is true for all naturally occurring Shimura
varieties with boundary). Choose a connected component X+t of X.
Corresponding to a boundary component F' of X1, we obtain a Cayley
filtration w’ of G*. It follows from results in Deligne (1973) that
w? lifts to a filtration w of G¢, and that w can be normalized so that
(wx - w™)(G,,) C G (i.e., w and wx become equal when composed
with G¢ — (G/G%")¢). Because the map G — G*¢ x (G/Gd*r)
has finite kernel, w is uniquely determined, and because wf and wx
are defined over Q, so also is w. Moreover, for any representation
(V,€) of G, the filtrations defined by w and F}, form a mixed Hodge
structure on V' (according to (IV.1.3), this has to be checked only for
representations factoring through G* x (G/G9¢"), and for these it is
obvious). These remarks suggest the following definition.

Definition 4.2. A Cayley filtration W. on G is admissible if the
filtration on G/GY°" is that defined by wy.

Now fix an admissible Cayley filtration W.F of G. Here the F is
simply an index. Set

N' = WOF(G)7 wh = Wfl(G)a Ut = W—Fz(G)-

Note that Z(G) C Z(w) for any w splitting W.F", and so Z(G)NW I =
{1}. Therefore W and U¥ are mapped isomorphically onto their
images in G4,

Choose a connected component X+ of X, and let K be a compact
open subgroup of G(Ay). For any g € G(Ay), let T'y be the image
in G*(Q)* of the group gK¢~! N G(Q)4. As in §3, associated with
'y we have groups ['g(F), I'}(F) and I'y(F'), and we have a canonical
cone C(F) C UF(C). Let C be a set of representatives for the finite
set G(Q)+\G(Af)/K (see I1.2).

Definition 4.3. A fan A C C(F) is said to be I'(F')-admissible if it
is I'g(F')-admissible for all g € C.

From such a fan, we obtain a partial toroidal compactification

Shi (G, X)a = UT N\X)aA
y
Definition/3.9. A family of fans (AF), with w’ running over the
admissible Cayley filtrations of G, is K -admissible if
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(a) each AF is ['(F)-admissible;

(b) for all g € C and all ¥ € Ty, we have yYAF = A" where
WIE =4 ad(y) - W.F;

(c) if NF ¢ NF', then A(F') = {o NC(F') | o € AF}.

A K-admissible family of fans A = (AF") defines a toroidal embed-
ding Sh(G,X) < Sh(G, X)a. We say that Sh(G, X)a is a smooth
toroidal compactification if Sh(G, X)a is smooth and the boundary
is a divisor with normal crossings, and we write Sh(G, X)* for the

projective system of smooth toroidal compactifications of Sh(G, X).
The actions of G(Af) and G(G) on Sh(G, X) extend to Sh(G, X)*.

Notes. There is a more detailed discussion, from a somewhat dif-
ferent point of view, of toroidal compactifications of nonconnected
Shimura varieties in Harris (1989), §2.

5. Canonical models of toroidal compactifications.

Connected Shimura varieties. Let (G, X1) be a pair defining a
connected Shimura variety. Let z be a special point of X1, and let 7
be an automorphism of C. Recall from (11.4.2) that there is a unique
1somorphism

©2, : 7ShY(G, X 1) — Sho ("G, T X )
sending 7[z] to ["z] and such that ¢ 07T (g) = T(""g) o % ,. It
would be very surprising if the following statement were not true:
CONJECTURE 5.1. The isomorphism 992,1. extends uniquely to an iso-
morphism
Pt TShY(G, X )" — Sh(TTG, T X ) .
Moreover, the following diagram commutes:

2% rShY(G, Xty —— ShO(™*G, T Xt

l l

Y7 - Sh%(G, X))~ —— Sho(™*G, X 1),

T,

(The vertical arrows are the natural maps from the toroidal compact-
ification to the minimal compactification.)

Note that, because Sh®("*G, ™ X +)* is separated and Sh®(G, Xt)
is dense in Sh°(G, X+)*, ¢)% will certainly be unique if it exists. It
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appears likely that the following argument will suffice to prove the
existence of <p2j;. For connected Shimura varieties of Hodge type, the

existence of ¥ . follows from the description of Sh’(G, X*)s as a
moduli space of degenerating abelian varieties (see Chai and Faltings
(1989) and Brylinski (1983), §4). To apply the strategy of IL9, the

following statement will be needed:

(*) an inclusion (G, X1) < (G’, X'*) induces a closed immersion
Sh%(G, X)* < Sh®(G’, X'*)*.

Note that we already know that the map Sh®(G, X*) — Sho(G’, X'+)
is a closed immersion (cf. Deligne 1971c, 1.15), and so (*) comes down
to a combinatorial question about fans. Let I' C G*(Q)*t and IV C
G'*4(Q)* be such that I\ X+ < I\ X't is a closed immersion; when
A is a I'-admissible fan, we wish to find a I'-admissible fan A’ such
that the preceding map extends to a closed immersion (T'\X ta &
(I'"\X'*)ar (after possibly replacing A by a refinement A'"). For this
we can take A’ to be any I''-admissible fan refining the image of A, and
apply (Harris 1989, §3) to obtain a A” for which (I'\Xt) < (I"\ X'*)
extends to a map (IN\X*+)an — (I'\X't)4r.

Now assume G' = Resy G’ with G’ absolutely simple. After ex-
tending L we can suppose that there is an inclusion (G4, X}) —
(G,X1) with G, of type A; and such that a boundary point
of ShO(Ga,Xa) maps into any particular boundary component of
Sk®(G, X*)~ we choose (see 2.6b). Then the domain of definition
of the rational map

7ShY(G, X*)* - Sh("* @G, X )

includes at least one point of the boundary component in question,
and the Hecke operators then allow us to show that it will contain all
points.

In practice, conjecture (5.1) is probably all one will need—in most
situations where toroidal compactifications are needed, exactly which
toroidal compactification is being used is irrelevant. In fact, the usual
procedure is to choose a toroidal compactification and then show that
the statements or objects one arrives at are independent of the choice.
Nevertheless, it would be interesting to have a more precise result than
(5.1) where, starting from a fan A, one constructs a fan A’ for which
©9 . extends to an isomorphism

7Sh%(G, X)a — Sh(™*G, " X) ..
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It is easy to guess what A’ should be. For simplicity, assume G to be
simply connected. Let F be a rational boundary component of X+,
and let A be a T'(F)-admissible fan. We wish to identify 7Sh°(G, X)4
with a partial compactification of Sh®(™*G, ™* X ). Choose a faithful
representation (V,§) of G*!. Associated with this data, we have a
one-motive M = (Xp — Gy) such that UF = Hom(S%2X,,,C).
The fan A corresponds to a torus embedding T «— XA of T =
Hom(S?X,G,,). Then 7M is the motive attached to "z € ™%X,
and we can choose A’ C Hom(S?X, s, C) to be the fan corresponding
to the torus embedding 7T «— 7XA\.

CONJECTURE 5.2. The isomorphism ¢ . extends uniquely to an iso-
morphism

(SO?-,J;)A : TShO(G,X)A — ShO(T’xG, T’I:X)Ar.

compatible with the maps to the minimal compactification.
Shimura varieties. Let (G, X) be a pair defining a Shimura variety.

THEOREM 5.3. Assume (5.1). For any 7 € Aut(C) and special
point x € X, the isomorphism ., : TSh(G,X) — Sh(™*G,"* X)
of (I1.4.2) extends uniquely to an isomorphism ¢}, : TSh(G,X)* —
Sh(™*G, ™ X *)*; moreover, the diagram

7Sh(G, X)* —— Sh(™*G,™*X)*

l l

7Sh(G, X)~ — Sh(™*G,™ X))~

commutes.
PROOF: This can be obtained by induction from (5.1).

COROLLARY 5.4. (Assuming 5.1.)

(a) Sh(G,X)" has a canonical model over E(G, X).

(b) For any T € Gal(Q?/Q), 7Sh(G, X)* is canonically isomorphic
to the canonical model of Sh(™*G,™*X)" over TE(G, X).

Conjecture 5.2 has an obvious analogue for nonconnected Shimura
varieties.
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Remark 5.5. So far we have not mentioned Eisenstein series. Briefly,
Eisenstein series attach an automorphic form on the whole Shimura
variety to a cusp form on a boundary component. This construction
should be compatible with all the isomorphisms in this article. In
particular, an Eisenstein series should be defined over a field E when
the cusp form is.

Notes. As we noted (3.7a) a smooth projective toroidal compactifi-
cation is obtained from the minimal compactification by blowing it up
at certain ideals, described by the polarizing function f, and then nor-
malizing. Brylinski (1983) uses this and Fourier-Jacobi series to prove
the existence of canonical models of projective toroidal compactifica-
tions of Shimura varieties of Hodge type. Harris (1989), 2.8, suggests
that the results in Harris (1986) can be used to generalize this result.
(I understand that Richard Pink will also examine the question of
the existence of canonical models of toroidal compactifications in his
Bonn thesis.)

6. Canonical extensions of automorphic vector bundles. First
we note that automorphic vector bundles extend to toroidal compact-
ifications.

THEOREM 6.1. Let (G,X) be a pair defining a Shimura variety, and
let Sh(G,X), be a smooth toroidal compactification of Sh(G, X).
There is an exact faithful functor J w VA(J) from the category of

&-vector bundles on X to that of vector bundles on Sh(G, X), such
that

(a) V(J)alSh(G,X) = V(J) (notation as in II1.2);

(b) J + V(J)a commutes with tensor products and duals (i.e., it
is a morphism of tensor categories);

(c) equivariant differential operators between the V(J)’s extend to
the VA(J)'s.
Moreover, Va(J) is uniquely determined by the properties (a), (b),
and (c).

PROOF: Let o € X. Then G¢-vector bundles correspond to represen-
tations of P, (see II1.2.3a). For the 7 corresponding to irreducible rep-
resentations of P,, the result is essentially proved in Mumford (1977).

For Siegel modular varieties, the theorem is proved in Chai and
Faltings (1989), VI.4. Briefly, their proof proceeds as follows. Using
the structure of Sh(G, X') near the boundary, it is possible to construct
the extension of V(7 )a locally; the problem is to show that the local
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extensions patch. It is clear that the category of representations of
P, for which this is true is closed under tensor products, duals, and
subquotients. It therefore suffices to construct V(7,)a for a single
faithful representation of P,. Chai and Faltings take J, to be the
standard representation G, and show that V(J,)a can be obtained
from the de Rham cohomology of the universal semi-abelian scheme
that they have already constructed. Harris (1989) shows that by
applying Deligne’s existence theorem (Deligne 1970) it is possible to
avoid using the universal semi-abelian scheme.

THEOREM 6.2. Let Sh(G, X), be a smooth toroidal compactification
of a Shimura variety having a canonical model over E D E(G, X). If
J is defined over F, then so also is V(J)a.

PROOF: The descent datum on V( J) extends to V(7 )a.

Once general results on canonical models have been obtained, es-
sentially all the results in Chapter III will extend to vector bundles
on the toroidal compactifications.

Notes. See the references in the proof of (6.1).

VI. MIXED SHIMURA VARIETIES

In this chapter, we suggest how the results of Chapter II should gen-
eralize to mixed Shimura varieties.

1. Definition of a mixed Shimura variety.

Let P be a connected algebraic group over Q. Recall from (I.1) that we
have the notion of a filtration W. of Repg(P). Moreover, P = W P if
and only if P preserves the filtration on each representation of P, and
W_1 P is the (unipotent) subgroup of Wy P acting trivially on Gr*¥ (V)
for all representations of P. For any cocharacter w of P splitting the
filtration, Wo P = W_; x Z(w), where Z(w) is centralizer of w.

The axioms for a mixed Shimura variety. The datum needed
to define a mixed Shimura variety is a triple (P,W.,Y) comprising
a connected algebraic group P over Q, an ascending filtration W. of
Rep¢(P), and a P(R) - (W_oP(C))-conjugacy class Y of descending
filtrations of Rep¢(P). For y € Y, write F, for the filtration defined
by y € Y. The filtration W. is defined over some totally real number
field, and the filtration it induces on Repg(P/Z(P)) is defined over
Q. The triple is required to satisfy the following conditions:

(1.1.0) for any representation (£, V) of P, W. and F}, define a real
mixed Hodge structure on V(R), all y € Y;
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(1.1.1) Lie(Pg) = WoLie(P¢) = F; 'Lie(Pg) for each y € Y;

(1.1.2) for any p, splitting the filtration F, p1,(i)- p, (i) is a Cartan
involution on (Gry P)2d;

(1.1.3) (Gry' P)* has no Q-rational factors that are anisotropic
over R;

(1.1.4) Z(P)" is a torus, splitting over a C M-field;

(1.1.5) the (adjoint) action of Gry’ P on Gr",Lie P factors through
Gry’ P)¢ (notation as in the introduction to Chapter I1I).
Simplifications occur when we strengthen some of the axioms:

(1.1.0%) the filtration W. is defined over @, and W. and F, define a
rational mixed Hodge structure on V for any representation (V,€) of
P;

(1.1.2*) for any p,, splitting the filtration F,, 11, (3) -4, (1) is a Cartan
involution on P/(W_, P - w(G,));

(1.1.4%) (1.1.4) holds and there is a one-dimensional representation
Vo of P such that (V, W., F,) is the pure Hodge structure Q(1) for
all y.

We usually drop the W from the notation Gr'”'. For each y € Y,
there is a homomorphism izy : G, X G, — Pg such that, for every
representation (V,€) of P, £ o izy provides V(C) with the bigrading
associated with the mixed Hodge structure (see IV.1). It is important
to note, however, that in general h,, # (ad p) o h, unless p € P(R).

Remark 1.2. (a) Axiom (1.1.5) has been imposed only so that the
mixed Shimura variety exists as a scheme rather than a stack. Proba-
bly this condition should be dropped. In any case, the axioms should
be viewed as tentative.

(b) Axiom (1.1.2) implies that (GroP)*! is semisimple, and (1.1.4)
implies that the connected centre of GroP is a torus. Therefore GroP
is a reductive group, W_; P¢ is the unipotent radical of P¢, and, for
any w splitting W., Z(w) is a Levi subgroup of P¢c. Note that if
GroP = 0, then w(G,,) = 0, which implies that W_; P = 0 and that
P=0.

(c) Let Lie(P)c = @HP9 be the decomposition of Lie(P)¢ corre-
sponding to the mixed Hodge structure (W., F};) some y € Y. Then
(1.1.1) implies that HP49 = for p + g > 0 and p < —1. Hence

Gro(Lie P) has a Hodge structure of type {(—1, 1), (0,0), (1, —1)};

Gr_1(Lie P) has a Hodge structure of type {(—1,0),(0,-1)};

Gr_z(Lie P) has a Hodge structure of type {(0,0)};
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(see the picture in IV.2.10). Thus
(1.2.1) Lie Pc = Lie Pg + F,)Lie Pc + W_,Lie Pg.

From the last equality it follows that Y can also be regarded as a
P(R) - W_; P(C)-conjugacy class.

(d) It suffices to check (1.1.0) for a single y € Y (cf. Brylinski 1983,
2.3.1.2), and for a finite family of representations (V;, &) such that
NKer(¢;) is finite (see IV.1.3).

The complex structure on Y.

PROPOSITION 1.3. Let Y be the P(C)-conjugacy class of filtrations
of Rep¢(P) containing F, for ally € Y. Then Y is a Grassman
variety, and the map

B:Y =Y,y F,,

identifies Y with an open complex submanifold of Y. The induced
complex structure on Y is the unique structure such that, for all

representations (V,€) of P, the filtrations F,on V() =4Y x V(C)
vary homolomorphically.

PROOF: Fix a point 0 € Y. Then Y = P(C)/F°P(C), which is a
Grassman variety, and 3 is the map

g-o—g (mod F)P(C)):Y — P(C)/FoP(C).

This is obviously injective, and ( 1.2.1) shows that it identifies Y with
an open (almost) complex submanifold Y.

PROPOSITION 1.4. Let £ : P — GL(V) be a rational representation
of P, and let Vi = @V (i) be the decomposition of Vg under the action
of Z(P)g; then y s (V (i), W., F}) is a variation of real mixed Hodge
structures on Y.

PROOF: On Gr,(V (7)), we have a representation of Gro(P); apply
(I1.3.2) to see that it defines a variation of real Hodge structures. The
transversality axiom (condition (H;) of (IV.1)) follows from the fact
that Lie Pc = F;~!(Lie Pg).

Define Y’ to be the (P/W_2P)(R)-conjugacy class of filtrations of
Rep¢(P/W_,P) containing the image of Y, and define X to be the
(GroP)(R)-conjugacy class of filtrations of Repc(GroP) containing
the image of Y'. Proposition 1.3 shows that both Y’ and X also have
natural complex structures.
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PROPOSITION 1.5. The natural maps Y Ly DBx are both holo-
morphic. Moreover,
X is a symmetric Hermitian domain;
Y’ — X is a fibre bundle with structure group V(R), V = Gr_,(P);
Y — Y is a fibre bundle with structure group U(C), U = Gr_s(P).

PROOF: Straightforward from the definitions (and II.3.2).
Write 7 for the composite Y — X.

The mixed Shimura variety. For any compact open subgroup K
of P(Ay), define

My(P,W.,Y) = P(Q\Y x P(A,)/K.

It is a complex manifold if K is sufficiently small; in fact, it is a disjoint
union of varieties of the form I'\Y'* with Y+ a connected component
of Y and T a discrete subgroup of P(R)*. Each ¢ € P(Ay;) defines a,

holomorphic map,
7(g) : Mx(P,W..Y) — My o(P,W.,Y), [y,p] — [y, pg].

THEOREM 1.6. (a) The complex manifold Mg(P,W.,Y) has a nat-
ural structure as an algebraic variety. More precisely, it is a torus
bundle over a polarizable abelian scheme over a Shimura variety.

(b) For each g € P(Ay), T(g) is algebraic.

PROOF: For any quotient P’ of P by a subgroup of Z (P), we have
a triple (P, W.Y") satisfying the axioms (1.1), and for each pair of
open compact subgroups K C P(Af) and K’ C P'(Ay) such that K’
contains the image of K, there is a morphism

Mg(P,W.Y) — My:(P',W., ¥").

Each connected component of M k(P,W.Y) is a finite covering of a
connected component of My (P',W."Y"'). Thus, if we can prove (a)
for (P',W.,Y"), then the Riemann existence theorem will show that
it is also true for (P,W.,Y). A similar remark applies to (b). This
allows us to assume that conditions (1.1.0%¥) and (1.1.2*%) hold. Later
in this section we outline a proof of the theorem in this case.

We obtain a scheme M (P, W.,Y) with a continuous action of P(Ay),
which we call the mized Shimura variety defined by (P,W.Y).
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Special points. A point y € Y is said to be special if for one faithful
(hence every) representation (V, &) of P!, the mixed Hodge structure
(V,W, F y) decomposes into a sum of pure Hodge structures, each of
CM-type. We say that y is a C' M-point if the same condition holds
for the representations of P itself. A mixed Hodge structure is said to
be rationally decomposed if it is a direct sum of pure Hodge structures.

PROPOSITION 1.7. (a) Let x = w(y); then y is special if and only if x
is special and (V,W., F)) is rationally decomposed for each represen-
tation of P4,

(b) For each special x € X, there is a y € w~'(X) such that
(V,W., F}) is rationally decomposed for each representation of pad,

PROOF: Part (a) is obvious. We outline a proof of (b) later in this
section.

For each special point y, there is a unique homomorhism p, : 6 —
P34 such that py 0 prean = py- When y is a CM-point, p, is a homo-
morphism & — P.

Connected mixed Shimura varieties. Let (P,W.Y) define a
mixed Shimura variety, and let (G,X) = (GroP,Y (mod W_,P)).
The fibres of the map M(P,W.)Y) — Sh(G, X) are connected, and
so the inverse image of Sh(G, X)° is connected. Let P’ be the inverse
image of G4°* in P, let W.! be the filtration of Rep(P??) defined by
W., and let Yt be a connected component of Y. Assume G4°T to be
simply connected. Then

M(P,W.,Y)" =lm P(Q\Y™ x P'(ARs)/K".

In particular, M (P, W.,Y)? depends only on (P',W.,Y*). Just as in
the case of (pure) Shimura varieties, there is a theory of connected
mixed Shimura varieties, which we will not discuss this further.

Examples. Mixed Shimura varieties abound.
Example 1.8. (W_; P = 0; Shimura varieties). Let (G, X) be a pair
satisfying (I1.2.1). Set

P=G; W.=Filt(wx); Y ={Filt(u) |z € X}.

The triple (P, W.,Y) satisfies the axioms (1.1) (use I1.3.2), and the
variety M(P,W.,Y) = Sh(G, X). Conversely, if (P,W.,Y) satisfies
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(1.1) and W_, P = 0, then P is a reductive group and the pair (P, X),
X ={z+ hy(z,%) | y € Y} satisfies the axioms (II.2.1). Thus mixed
Shimura varieties defined by triples (P,W.,Y) with W_1 P = 0 are

Shimura varieties, and every Shimura variety is of this form.

Example 1.9. (Gr_; P = 0; automorphic vector bundles). Con-
sider a triple (P, W.,Y) satisfying (1.1) and (1.1.0*), and assume that
Gr_;P = 0. Write U = W_,P. It is commutative, and so the ex-
ponential map allows us to identify it with its Lie algebra. The ad-
joint action defines a representation £ of P on U, factoring through
G =41 GroP. Then Mg (P,W.,Y) = Vg(£)/(lattice), where Vg (§) is
the automorphic vector bundle on Shg (G, X) defined by (V,£). The
fibre of Mg (P,W.,Y) over a point of Shg (G, X) is V(C)/A for some
lattice A in V', and the exponential map shows that this is isomorphic
to a product of copies of C*. In particular, M (P, W.,Y) is algebraic
(by I11.2.1).

Conversely, let (G, X) be a pair satisfying (I1.2.1*), and let (U, )

be a faithful representation of G. Define P =U x G = {(i (g))}, and
let 1t act on V =4 U ® U 1n the obvious way. Dcfine a filtration of V
by

0=W_3VCUB0=W_VCV =WV,

and give P the induced filtration W.. Define Y to be the set of filtra-
tions of Rep¢(P) inducing on Rep¢(G) the Hodge filtration corre-
sponding to some z € X. Then (P,W.,Y) defines a mixed Shimura
variety, which is a quotient of the automorphic vector bundle V() on

Sh(G, X).

Example 1.10. (W_,P = 0; Kuga varieties). Consider a triple
(P, W.,Y) satisfying (1.1) and (1.1.0%), and assume that Gr_,P = 0.
Write V = W_, P. It is a commutative algebraic group over @, and
so the exponential map allows us to regard it as a vector space. The
adjoint action defines a representation £ of P on V', factoring through
G =qr GroP. Each y € Y defines a Hodge structure on V of type
{(-1,0),(0,-1)}, which, according to (I1.3.2), is polarizable. The
choice of a compact open subgroup K’ of P(Ay) defines a lattice in
V, and consequently we obtain a family of abelian varieties A over
Shg(G,X), where K is the image of K’ in G(Ay) (cf. 11.3.11). We
have Mg (P,W.,Y) = A. In particular, M (P,W.,Y) is algebraic.
The simplest example of such a mixed Shimura variety is the uni-
versal elliptic curve over Sh(G L2, X). This (rather, a connected com-
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ponent of it) has been extensively studied; see for example Eichler
and Zagier (1985) and Berndt (1983).

A more interesting case is that where the base Shimura variety is
defined by a quaternion algebra over a totally real field (not necessarily
totally indefinite, so the Shimura variety is not a moduli variety; see
Deligne 1979, §6, Modeles étranges). These mixed Shimura varieties
(rather, their connected components) have been extensively studied
by students of Kuga; see for example Addington (1987) and Petri
(1989).

We have noted that a connected component of a mixed Shimura
varieties with W_,P = 0 is a Kuga fibre variety, but the converse
is not true: there are “nonrigid” Kuga fibre varieties that move in
families and do not have models over number fields.

Example 1.11. (Mixed Shimura varieties arising from boundary
components). Consider a Shimura variety Sh(G, X), and let W. be
an admissible Cayley filtration of G (see V.4.2). Define P to be the
subgroup of WG acting trivially on U =4 W_oG. Then there is a
natural way to attach to W. a family YV of filtrations of Repg(P) so
that (P,W.)Y) defines a mixed Shimura variety. The base Shimura
variety is Sh(Gro(P), F'), where F is the rational boundary component
of X corresponding to W..

Example 1.12. (Mixed Shimura varieties of Hodge type). Let M be
a one-motive over Q, and let P be the Mumford-Tate group of M.
The weight and Hodge filtrations on Hg(M ) define filtrations W. and
F; on Repg(P). Let Y be the P(R)-W_,P(C)-conjugacy class of F..
Then (P,W.,Y) satisfies the stronger axioms (1.1*) (see IV.2.9). A
mixed Shimura variety M (P, W., Y') will be said to be of Hodge type
if there is a one-motive M and a representation (V, &) of P such that

(a) for some 0 € Y, (Hg(M),W.,F') = (V,W.,F});

(b) P is the subgroup of GL(Hp(M))x G,,, fixing a family of Hodge
tensors.

Such a mixed Shimura variety is a (coarse) moduli variety for a
family of one-motives with Hodge cycle and level structures. Note
that the total space of a fine moduli variety for abelian varieties is a
moduli variety for one-motives of the form (Z — A).

Outline for proofs of 1.6 and 1.7. Since it suffices to prove both
statements for a triple (P, W.,Y’) satisfying (1.1.0%) and (1.1.2%), we
henceforth assume this. We have already verified the statements
when:
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(i) P = Gro(P); then M(P,W., Y) is a Shimura variety;

(ii) W_oP = 0; then M(P, W.,Y) is the total space of an abelian
scheme over Sh(G, X);

(iii) Gr—1(P) = 0; then both statements reduce to statements about
automorphic vector bundles.

The next lemma is slightly stronger than ( 1.7b).

LEMMA 1.13. Let (P,W.,Y) be as above, and let x € X. For every
representation (V,§) of P, there exists a y € 7~ 1(x) such that the
mixed Hodge structure (V, W., F;) is rationally decomposed.

PROOF: Fix a y € 7~!(x). We have to show that there is a p E
W_1P(C) such that (V,W., pF,) is rationally decomposed. The proof
proceeds by induction on the length of the filtration W, of V (see
Brylinski 1983, 2.3.1.5).

Under our assumptions, a representation (V, &) of P defines a vari-
ation of mixed Hodge structures V on M(P, W., Y). Let K be a com-
pact open subgroup of P(A;), and write K also for its image in G(Ay),
G = GI‘()P.

LEMMA 1.14. There exists a section s : Shp(G,X) - My (P,W.)Y)
tow such that s*(V) is rationally decomposed (after possibly replacing
K by a subgroup).

PROOF: See Brylinksi (1983), 2.3.1.7.

Thus we get a canonical section s : Sh(G, X) — M(P,W.Y) to =.

We now come to the proof of (1.6). First, the sheaf Rr{,Z is con-
stant. Thus it splits up (analytically) under the characters of T, where
T is the algebraic torus W_o P(C)/W_,I", W_,T' = K N (W_oP(C)).
Let p be such a character.

LEMMA 1.15. There exists on each L, a unique algebraic structure
such that

(1) L2, is isomorphic (algebraically) to 0*(Ly,) (0 is the map x +—
—z on A);

(ii) The restriction of L, to the zero section of A is trivial.
Moreover, £,|(zero section) is canonically trivial.

PROOF: Brylinski (1983), 2.3.2.4.

LEMMA 1.16. M(P,W.,Y) has a unique algebraic structure such that
(i) o: A—A is algebraic;
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(ii) the section s : Sh(G, X ) — M(P,W.,Y) is algebraic.
PROOF: See Brylinski (1983), 2.3.2.5.

Remark 1.17. If M(P,W.,Y) is of Hodge type, then a representa-
tion of P defines an algebraic family of one-motives over M (P, W.,Y),
except that the family may only exist as a stack (cf. IIL.8).

Notes. The general notion of a mixed Shimura variety is due to
Deligne. A slightly restricted form can be found in Brylinski’s thesis
(Brylinski 1983), where the varieties are called generalized Shimura
varieties. The proofs of (1.6) and (1.7) are adapted from this source.

2. Canonical models of mixed Shimura varieties. Let y be a
special point of Y. Then we get a homomorphism p, : & — P4,
Thus the G-torsor 7S can be used to twist P to give a group ™Y P,
and the canonical element sp(7) defines an isomorphism g + ™¥g :
P(Af) — Y P(Ay). Define ™YY to be the conjugacy class containing
TF, for y a special point of Y. Then the triple (™Y P, "YW, "¥Y)
satisfies the axioms for a mixed Shimura variety.

CONJECTURE 2.1. For each 7 € Aut(C), there exists a unique iso-
morphism

Ory  TM(P,W.,Y) — M(TYP,"YW.,"¥Y")

such that

(i) pry(Tly, 1)) = [Ty, 1];

(i) pry 0 TT(g) = T("¥g) 0 4 for all g € G(Ay).
Moreover, when y' is a second special point in Y, then there is a
canonical map

e(r;y',y) : M(TYP, YW, YY) - M(TY' P, TYW.,TY'Y),
and we have the identity

(739, y) 0 ry = Pr oy

Remark 2.2. We know the above result in several cases:
(i) W_1 P = 0. Here the mixed Shimura variety is a (pure) Shimura

variety, and the conjecture is (I1.4.2) and (11.4.4).
(i1) Gr_; P = 0. Here the conjecture follows from the results on

automorphic vector bundles in Chapter III.
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(iii) W_o P = 0; assume (1.1.0*). Here the mixed Shimura variety is
an abelian scheme over a Shimura variety. To give an abelian scheme
over Sh(G, X) is the same as to give a polarizable variation of integral
Hodge structures on Sh(G, X). In this case the conjecture follows from
(I11.6.2).

(iv) Mixed Shimura varieties of Hodge type. Here the conjecture
follows from the fact that the mixed Shimura variety is a moduli
variety for one-motives (see Brylinski 1983, 2.3.3.1).

Thus to complete the proof of the conjecture, it remains

(1) to lift the isomorphism

TM(P/W_yP,W..Y') > M(TY(P/W_sP,™VW.,™¥Y")

to the covering 7M(P,W.,Y) (equivalently, to the sheaves 7L, on
TM(P,W.,Y)) in the case that (1.1.0*) holds, and

(ii) to remove the condition (1.1.0%).

Probably the best approach to (i) will be to deduce it from an exten-
sion of the theorems in Chapter III to automorphic vector bundles on
mixed Shimura varieties (see §4 below). It should be possible to prove
(ii) by using connected mixed Shimura varieties.

Just as for Shimura varieties, the conjecture will imply that a mixed
Shimura variety has a canonical model over a reflex field (suitably de-
fined), and that the conjugate of a canonical model by 7 € Gal(Q* /Q)
is the canonical model of the mixed Shimura variety defined by the
conjugate data.

3. Partial compactification of mixed Shimura varieties.
Consider a mixed Shimura variety Mg (P,W.,Y). Let U = W_,P,
and let T" be the torus U(C)/U(Z), where U(Z) = U(Q) N K. For
a fan A C X.(T) ® R = U(R) satisfying suitable conditions, the
construction in Chapter V can be mimicked to give a partial com-
pactification

Tia : M(P,W.,Y), - M(P/W_yP,W..Y")

of the map m; : Mg(P,W.,Y) — M(P/W_,P,W.,Y"’) (cf. Brylinski
(1983), §4)). The isomorphism in (2.1) should extend to an isomor-
phism

rM(P,W.,Y), — M(™¥P,"VW., "VY) A,

for a suitable fan A’ in "YU(R).
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4. Automorphic vector bundles.

As we saw in (1.3), there is an embedding 8:Y — Y from Y into a
variety of filtrations of Rep(Pc), and the action of P¢ on Y extends
that of P(R)-W_yP(C) on Y. Let J be an Pg-vector bundle on Y. If
B*(J) defines a vector bundle Vg (J) on the quotient My (P, W.,Y) of
Y, then we call Vg (J) an automorphic vector bundle . The theorems
in Chapter III for automorphic vector bundles on Shimura varieties
should extend to mixed Shimura varieties.

5. Toroidal compactification of mixed Shimura varieties.
Consider a mixed Shimura variety,

M(P,W.,Y) =5 M(P/W_,P,W.,Y") 2 Sh(G, X).

Form a toroidal compactification Sh(G, X), of Sh(G, X). It should
be possible to compactify successively the morphisms 75 and ;. The
compactifications of the total space of the Siegel modular variety by
Namikawa over C (Namikawa 1976, 1979) and Chai over Z (Chai and
Faltings 1989), should serve as models for the compactification 7.

VII. FOURIER-JACOBI SERIES

Fourier-Jacobi series play a central role in the theory of holomorphic
automorphic forms. In this chapter, we briefly indicate how they fit
into the schema described in the first six chapters.

For elliptic modular forms, there are three different approaches to
defining Fourier series: the (classical) analytic approach; the modular
approach, based on the moduli of elliptic curves; and the formal-
algebraic approach, based on analyzing the structure of the elliptic
modular curve at its cusps. The first is available for a general Shimura
variety, but is badly adapted for studying rationality questions. The
second applies only to Shimura varieties of Hodge type. Therefore, it
is the third approach that will be most important.

The g-expansion principal asserts that an automorphic form is de-
termined by (certain of) its Fourier-Jacobi series. Since there should
be the notion of the conjugate of a Fourier-Jacobi series by an auto-
morphism of C, and hence the notion of a Fourier-Jacobi series being
rational over a field, this means that it will be possible to read off the
field of rationality of an automorphic form from the coefficients of its
Fourier-Jacobi series. Since these live on lower dimensional (mixed
Shimura) varieties, this will be a useful tool.
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1. Elliptic modular forms.
An elliptic modular function f of level N satisfies

f(z+N)=f(z), 2€ H*.

It therefore has a Fourier expansion

f(z)=) angl, qn =€V

corresponding to the cusp at infinity, and a similar expansion at the
other cusps. It is known that f is rational over a subfield L ¢ C (in
the sense of Chapter III) if and only if the coeflicients of these series
lie in L.

We next explain the moduli definition (for details, see Katz 1973).
Let

Ky = {a € GLy(Z) | a = I(modN)}.

Write Sy for the corresponding modular curve Shg(n)(GLy, H),
and A for the universal elliptic curve over Sy. On Sy we have the
line bundle w = w 475, and a modular form of weight k and level N is
a section of w®* holomorphic at the cusps. It is possible to re-write
this definition so that it makes sense over any ring R containing 1/N.
Briefly, a modular form f of weight k£ and level V over R is a rule
assigning to each triple (4,7, k) consisting of an elliptic curve A over
Spec R/, a basis i for w4 /r'» and a level structure s, an element of R';
here R’ is an R-algebra. When we apply f to the Tate curve and its
canonical differential over R[[¢]], then the element of R[[g]] that we
obtain is the Fourier series of f.

For the final approach, one computes the formal completion at a
cusp of the compactification of Sy. It is the formal spectrum of a
power series ring over C in one variable. By extending the modu-
lar form f to the compactification, and using the computation, one
obtains the Fourier series of f.

2. The analytic definition of Fourier-Jacobi series.

Piatetski-Shapiro (1966) (especially §12, §15) associates a Fourier-
Jacobi series with any automorphic form (or function) on a Siegel
domain. In order to apply the construction to an automorphic form f
on a bounded symmetric domain D, we use the realization of D as a
Siegel domain of the third kind corresponding to a rational boundary
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component F' of X (see V.2). The Fourier-Jacobi series attached to
f and the boundary component F' is then of the form

FJE(f) = pr(u,t)e%i(”’z).
p

Here p runs over a finitely generated abelian group, ¢ runs over the
symmetric Hermitian domain F', and, for a fixed p and t, ¥,(u,t) is
a theta function. Recall that a theta function can be regarded as a
section of a line bundle on an abelian variety. Since a mixed Shimura
variety is, roughly speaking, a sum of line bundles (with the zero
sections removed) over an abelian scheme over a Shimura variety, a
function on it can be written (¢,(u,t)), where ¢ is a point of the
Shimura variety and v,(u,t) is a section of the line bundle indexed
by p on the abelian variety over t. The similarity of two expressions
1s not a coincidence.

3. The modular definition of Fourier-Jacobi series.

There is a very complete discussion of Fourier-Jacobi series for Siegel
modular forms in Chai and Faltings (1989), and a briefer discussion
for automorphic forms on a Shimura variety of Hodge type in Brylinski

(1983), §5.

4. A formal-algebraic definition of Fourier-Jacobi series.

Let (G, X) be a pair defining a Shimura variety, and let W be a
Cayley filtration on G. In (VI.1.11) above, we derived from these
data a triple (P,W.)Y) defining a mixed Shimura variety. Let K
be a compact open subgroup of G(Af), and let I' = G(Q) N K and
IF'p = P(@Q NK. Then W_oP(C) contains a canonical self-adjoint
homogeneous cone C. Choose a ['(F)-admissible fan A in C. Then
we can form the partial compactification Shy (G, X)a of Shg (G, X)
along F. Assume that Shg (G, X)a is smooth, and that the boundary
of Shx(G,X) in it is a divisor with normal crossings. We then write
Shk (G, X); for the formal completion of Shg (G, X) along the bound-
ary. We can also form the partial compactification Mg, (P,W.,Y)a
of Mk,(P,W.,Y), and the formal completion Mg, (P,W.,Y); of
Mg, (P,W.,Y) along its boundary in Mg, (P,W.,Y)a.

CONJECTURE 4.1.. There is a canonical isomorphism

Shi(G, X)) — Ge(L)\Mi, . (P,W.,Y)}
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The isomorphism should correspond to the isomorphism on the level
of analytic spaces.

The statement should be regarded as giving a precise description of
the structure of Sh(G, X) near the boundary component F'. For Siegel
modular varieties, it is proved in Chai and Faltings (1989), IV.

A G¢-equivariant vector bundle J on X, defines automorphic vec-
tor bundles V(J) and Vi (J) on Sh(G,X) and M(P,W.,Y) respec-
tively; extend the vector bundles to the partial compactifications; the
isomorphism in (3.1) will give an isomorphism of the formal comple-
tions: V(j)Z P~ VM(])K. A section f of V(J) will extend to a
section of V(J)a, and map to a section of FJF(f) of Vm(J)x— this
is the Fourier-Jacobi series of f along F.

5. Conjugates of Fourier-Jacobi series.

The map f — FJF(f) should be compatible with the various maps
+ z (see V.5.1 and VI.4). The g-expansion principle should then allow

us to deduce that an automorphic form is rational over a field L if

and only if its Fourier-Jacobi series are.

Note that for noncompact Shimura varieties, this will give another
description of the canonical model of minimal compactification: it is
the Proj of the graded ring generated by automorphic forms whose
Fourier-Jacobi series have coefficients in the reflex field. We mention
that Baily and Karel have been attempting to give a totally different
approach to some of the results in this article by directly construct-
ing automorphic forms whose Fourier-Jacobi series are rational (in a
suitable sense) over F(G,X) and then showing that the Proj of the
graded ring they define is the canonical model of the Shimura variety
(see for example Baily (1985) and Karel (1986)).

6. Automorphic forms of half-integral weight.

Just as modular forms of half-integral weight for GLs correspond in
a natural way to automorphic forms of integral weight on the mixed
Shimura variety defined in (2.3) (see Eichler and Zagier 1985), so
should all automorphic forms of half-integral weight on a Shimura
variety correspond to automorphic forms of integral weight on a mixed
Shimura variety.

Notes. There is an enormous literature on Fourier-Jacobi series.
Apart from those referred to in the text, the following papers are
most closely related to the main theme of this Chapter: Shimura
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(1978b), (1978c); Garrett (1981), (1983); and Harris (1986). I under-
stand that Richard Pink’s Bonn thesis will examine the question of
the formal-algebraic definition of Fourier-Jacobi series.
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