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On a conjecture of Artin and Tate

By J. S. MILNE*

Introduction

Let X be a projective smooth surface over the finite field & of ¢ = »*
elements. It is known [6] that the zeta function of X has the form

P(X, t)Py(X, t)

2% = TTYPX, 0 - 9

where P,(X, t) is a polynomial with integer coefficients whose reciprocal
roots have absolute value ¢?. Let o(X) be the rank of the Néron-Severi
group NS(X) of X. Tate [19, p. 104] has conjectured the following:

(T) o(X) is equal to the multiplicity of ¢ as a reciprocal root of P,(t).

The following refinement of (T) has been conjectured by Artin and Tate
[20, (C)]:

(A-T) the Brauer group Br(X) of X is finite and

—1)°*~[Br(X)] det (Di-Dy) ,
q*“(NS(X): BY’ )

where [S]denotes the order of a set S, a(X)=x(X, Oy) —1+dim (Pic Var (X)),
D, ---, D, are independent elements of NS(X) and B = ) ZD, is the sub-
group of NS(X) generated by the D,.

In [20] it is shown that if (T) is assumed to hold for X/k, then it follows
that Br(X) (non-p), the subgroup of Br(X) of elements of order prime to
P, is finite and has the order predicted by (A-T). The proof of this makes
heavy use of the known properties of l-adic étale cohomology. In attempt-
ing to extend this result to include the p-part, three essential difficulties
arise. Firstly, the different components of the formula in (A-T) are described
by two different cohomology theories; viz., Br(X) and NS(X) are described
by the flat cohomology and P,(¢) by the crystalline cohomology. Secondly,
neither the flat nor the crystalline cohomology is as well understood as the
étale cohomology. Thirdly, the p-part of (A-T) seems genuinely to have

P(X, g ~ 1—g¢™)y*ass—1,

* This work was begun, and completed, while the author was at IHES and partially
supported by NSF.
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more content than the prime-to-p part; for example, the term ¢**' plays
no role in the prime-to-p case and the roots of P,(t) are l-adic units for all
primes [ # p.

In this paper we prove that (T) implies the whole of (A-T) when p # 2.
In an earlier version of this paper we followed a program suggested by
Grothendieck [9, p. 316] to relate flat and crystalline cohomology; viz.,
we defined flat homology groups and then showed how their Dieudonné
modules were related to the crystalline cohomology groups. While the flat
homology groups are undoubtedly essential for a full understanding of the
relation between flat and crystalline cohomology, we have been able to
simplify this paper by removing them except for one reference.

In Section 1 we review various results on the cohomologies of varieties
in characteristic p, and in particular the results of Artin and Mazur, and
Bloch comparing various of the p-adic cohomologies. In Section 2 we quote
a Poincaré duality theorem for the flat cohomology of a surface and apply
it to show that the Brauer group is self-dual. The next five sections de-
monstrate that, once one has the results quoted in the first two sections,
Tate’s paper [20] may be rewritten to include the p-part. We have tried to
give a proof which simultaneously covers the p-case and the prime-to-p
case but there remain considerable, and interesting, differences between
the two cases. In Section 8 we re-interpret our results in terms of the
function field analogues of the conjectures of Birch and Swinnerton-Dyer.

In [20, p. 212] Tate suggested that the proving of the analogues for
! = p of his theorems “should furnish a good test for any p-adic cohomology
theory, and might well serve as a guide for sorting out and unifying the
various constructions which have been suggested and used”. On this, we
note that our proof uses flat cohomology, crystalline cohomology, and Witt
vector cohomology, and that the close relation between flat cohomology and
crystalline cohomology is becoming increasingly apparent.

In [12, 13], [14], and [1] it was shown that (T) implies (A-T) for products
of curves, rational surfaces, and elliptic supersingular K3 surfaces respec-
tively. (In each of these cases, one even knows that (T) is true.) In [12, 13]
the explicit use of crystalline cohomology could be avoided, essentially
because the crystalline cohomology groups of a curve are obvious, and then
those for a product of curves can be deduced by assuming the Kunneth
formula. With hindsight, one can see that this is what is done in [12, 13].
The use of crystalline cohomology could be avoided in [14] and [1] because
of the special nature of the surfaces considered.
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To convince the reader that this paper is non-vacuous, we list the sur-
faces for which Tate’s conjecture (T) is known: (i) rational surfaces (trivial);
(ii) certain hypersurfaces X + X" + X.* + X = 0 (Tate [19]); (iii) abelian
surfaces (Tate [21]); (iv) a product of two curves (Tate [21]); (v) any K3
surface with a pencil of elliptic curves (Artin and Swinnerton-Dyer [3]); (vi)
any surface birationally equivalent to a surface for which (T) holds (trivial);
(vii) any surface X for which there exists a map Y — X of finite degree
with Y a surface for which (T) holds (trivial). Thus, for example, (T) also
holds for unirational surfaces and Kummer surfaces. It is known for sur-
faces which lift to a surface in characteristic zero with p, = 0.

Notation

X is always a variety over a perfect field k of characteristic p # 0, kis
the algebraic closure of %, I the Galois group of k over k&, and X = X ®, k.
All cohomology groups are relative to the flat (f. p. p. f.) topology unless
otherwise stated. g, is the sheaf of »'* roots of unity and p(co) = lim g,
the limit being taken over all positive integers n. Then H'(X, ﬁ(o—:)) =
1_i_r{1 H'(X, tt,) and we define

H'(X, Ty) = lim H"(X, 1t.) .

W, is the ring of Witt vectors over k, K, the field of fractions of W,,
and o — a'” the Frobenius automorphism of W,. An Fl-isocrystal over k is
a finite-dimensional vector space V over K, together with a bijective addi-
tive homomorphism F: V — V satisfying F(av) = a® F(v) for a € K,, ve V.
If Vis an F-isocrystal then V(n) is the F-isocrystal which, as a vector space
is V, but on which F acts by p "F. Also we write V¥ = {ve V| F(v) = v}.

For an abelian group A4, A, and A™ are respectively the kernel and
cokernel of multiplication by n on A, A,,., =1limA,, and TA =1lim A4, =
Hom (Q/Z, A). Also, for a prime ], we write A(l—)—>: lim Am, T,A =Tim Am,
and VA = T'A ®z, Q.. Note that T4 and T,A4 are t&)sion-free. -

In Sections 2 to 6, X is a smooth projective surface over a finite field
with ¢ elements. ¢ then denotes the canonical generator of I" and if 4 isa
I'-module then AT and Ar are respectively the kernel and cokernel of ¢ — 1:
A — A. Note that, if A is torsion, then A" and Ay are the Galois cohomology
groups H(T, A) and H'(T, A).

1. Review of cohomology in characteristic p

Throughout this section, X will be a smooth projective variety of
dimension d over a finite field k£ of ¢ elements.
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(1.1) l-adic étale cohomology, |+ p [10, 6]. The étale cohomology
groups H"(X, Q,) are finite-dimensional vector spaces over Q, and are zero
except for 0 < r < 2d. Let ®: X— X be the Frobenius endomorphism,
i.e., the endomorphism of X/k which raises the coordinates of points to their
g¢** power, and let P,(X,¢) = det(1 — ®t|H"(X, Q)) = II!", X — a,,;t). Then
P, e Z[t] is independent of I, and Z(X, t) = [, P.(X, t)"2"*

If 0 is the canonical generator of I' = Gal (k/k) then det (1-ot|H (X,
T®) ®Q) = Iz, (1 — ¢’/a, )t. In the case that d =2, j=1, r =2,

=1

Poincaré duality allows this last equation to be written

det (1 — ot | HYX, Ty ® Q) = 122, (1 — %t) :

(1.2) Crystalline cohomology [5, 11]. Let H"(X/W) and H"(X/W) be
the cohomology groups of the crystalline sites X/ W and X/ W, where W= W,,
W = Wi. Then H(X/W)x = H'(X/W) ®, K is a finite-dimensional vector
space over K and is zero except for 0 < » < 2d. Moreover H"(X/W) =
H"(X/W)x @« K, where K = K;. The absolute Frobenius on X induces
(p)-linear injective maps F: H(X/W)x — H"(X/W)x and so H(X/ W), and
H'"(X/W)g are isocrystals.

If ® is the Frobenius endomorphism of X/k, then det(1—®t| H'(X/W)x)=
P,(X, t). It follows that the slopes of H"(X/W)z are exactly the numbers
v(@,,), *++, v(a,;) Where v is the p-adic valuation such that v(¢) =1 [7,
p. 90].

(1.3) Witt vector cohomology [18, 4, 2]. Write H"(X, W) = lim H"(X,
W,) and H"(X, W)z = H"(X, W) ® K. Assume either that p > d or that
the assumptions of [2] apply. Then H"(X, W) is zero except for 0 < r < d
and is isomorphic as an F-isocrystal to (H"(X/W)z) the part of the
crystalline cohomology of slope M with 0 <\ < 1.

Write

fo,1)?

H"(X, W), = Ker (H"(X, W) — H"(X, W)x) ,
i.e., H(X, W), is the p-torsion in H"(X, W). As H'(X, W) is finitely gener-
ated over W[[ V] (see [4]), H"(X, W), ® W((V)) has finite length over W((V)).
In the notation of (1.4) below, this length is equal to dim U?*(p~) for r = 2.
(See [2] under certain assumptions, and [15] in general.)

(1.4) Flat cohomology [4, 15]. Assume p > d. The flat cohomology
group H"(X, V,p) = (lim H(X, t,)) ®2, Q, is isomorphic to H"(X/W)z(1)".
The corresponding statement over % is also true. It follows that
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det (1 — ot | H'(X, Vyt) = L, o1 = 2t) -

(L 29

In the case that » = 2 = d this may be written
det (1 — ot | HY(X, Vo) = TL,epomn (1 - %t) : ®+2).

Let X be a surface. For each » and n there is a unipotent connected
quasi-algebraic group U"(p™) and an étale group scheme D"(p™) such that
there are exact sequences 0 — U"(p")(S) — H" (X, ttyn) — D"(p")(S) — 0 for
any affine perfect k-scheme S([1], [16]). The groups U~ are zero except for
r = 2, 8, and for large n, U"(p™) is equal to a group scheme U"(p~) which is
independent of n. The dimensions of U%*(p*) and U?*(p~) are equal.

2. The auto-duality of Br(X)
First we review what is known on the Poincaré duality of a surface.

THEOREM 2.1. Let X be a projective smooth surface over a finite field
k of characteristic p # 2.

(a) For all n, the groups H (X, p.) are finite.

(b) There is a canonical non-degenerate pairing

< ’ >: HT(X’ ‘un) X Hb_T(X, #n) _ Z/’I’LZ .

(c) The pairings in (b) are compatible for varying n, and with inter-
section products of divisors on X.

@) Ifé,: H(X, p,) — H™*\(X, tt.) is the boundary map arising from
the exact sequence

0 > [n > Pn2 o >0
then
Y, 0,2) + (=1)<w, 0,y =0, xeH"(X, ), ye H (X, p) .
Proof. If p k nthen H"(X, ft,) may be interpreted as an étale cohomology
group, and the proofs of (a), (b), (c) are to be found in [10] and [22]. There
is a canonical trace map H*(X, (%% ~ Z/nZ (p ¥ n) and the pairing {, ) may
be interpreted as the cup-product on Cech cohomology arising from the
pairing g, X pt, — ¢, There is a standard formula for cup-products

0,2, ) + (—1)<=, 0,y) = 0.{z, ¥) ,
and 0,{x, ¥> = 0 because the map H*(X, ©%*) — H*(X, %5 is injective.
If n =p™, then H"(X, p,) may be identified with H"*(X., O%/0%").
There is a sheaf v,(2) on X,, and a trace map H%X.,, v,(2)) = Z/nZ. Also
there is a canonical pairing 0%/0%" x 0%/0%" — v,(2) and it is shown in [16]
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that the cup-product pairing
H'(X, 0%/0%") x H* (X, 0%/0%") — Z/nZ
has all the properties required for the theorem.

Remark 2.2. The condition that p # 2 is only needed for (b), (c), (d)
of the theorem, and only in the case that p*|n.
The following easy lemma will also be needed.

LEMMA 2.3. Let M be a discrete torsion abelian group, let N be a pro-
JSinite abelian group, and let M x N — Q/Z be a continuous non-degenerate
pairing. The exact annihilator of Niws ©8 May, the group of divisible
elements of M. Thus there is a non-degenerate pairing

M/Mdiv X Ntors — Q/Z .

THEOREM 2.4. Let X be as in (2.1). There s a skew-symmetric bi-
additive pairing

Br(X) x Br(X) — Q/Z
whose kernel consists exactly of the divisible elements of Br(X).

Proof. From the Kummer sequence
n

0 > U, > G G, 0
we get a cohomology sequence,
0 — Pic (X)™ — H¥(X, tt,) — Br(X) — Br(X)
— H¥X, p,) — H(X, G,), — 0.
On passing to the direct and inverse limits, this gives
0 — NS(X) ® Q/Z — H*(X, p(c0)) — Br(X) — 0

and
0 — lim Br(X)"” — H*X, Tp) — TH*X, G,) — 0.

The pairings in (2.1) induce a non-degenerate pairing H*(X, #(=0)) X
H¥X, Tr) — Q/Z, and the theorem follows from (2.3) by taking M =
H¥X, pt(0)) and N = H*X, Tp). Indeed, NS(X) ® Q/Z is divisible and so
M/M,;, ~ Br(X)/Br(X)a.. Also TH¥X, G,) is torsion-free, and so N, =
(lim Br(X)™)y0r, = BE(X)/BE(X)as..

Let « and y be in Br(X),.- On unscrambling the above, one finds that
under the pairing just defined, (v, ) is mapped to <{«’, 4,%’> where 2’ and
y' are elements of H*(X, p,) mapping to « and y respectively. Thus the
skew-symmetry follows from (2.1d).
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Remark 2.5. It follows that the order of Br(X), if finite, is either a
square or twice a square (without restriction on the characteristic).

3. Diagrams
We collect here some exact commutative diagrams which will be needed
later. :
The exact sequence of sheaves

n

0— tty— Gp—> G, — 0

yields exact_cohomology sequences over X and X respectively:
J* — k¥ — H'(X, ) — Pic (X) —— Pic (X)
— H¥X, p,) — Br(X),— 0, '
k2 B* —2 HY(X, pt,) — Pic (X) — Pic (X)
— H¥X, p,) — Br(X),— 0.
The Hochschild-Serre spectral sequence for X/X ,
H'(T, H*(X, t,)) =— H™(X, p.)
reduces to short exact sequences
0— H(X, pt)r — H'(X, p,) — H'(X, pt.)" — 0.
Out of these exact sequences, we get an exact commutative diagram:
0 0

0 Pic (X)™ — (NS(X)™)

@3.1) 0 — HY(X, 1)y — HX, 1t,) — H(X, 1£,)" — 0 .

(Pic (®).)r  Br(X), — (Br(X).)"

0 0

The columns come from the first two sequences and the rows from fhe
third. Note that Pic (X)™ ~ NS(X)"™ because Pic’(X) is divisible, and
HY(X, pt.) ~ Pic (X), because k* is divisible. All groups in the diagram

are finite because H*(X, y,) is finite.
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On passing to the direct limit over positive integers n we get an exact
commutative diagram:

0 0

0 NS(X) ® Q/Z — (NS(X) ® Q/2)"

, l
7

(3.2) 00— HY(X, p(e0))r — H¥X, p(=0)) ——>VI-I2(X', (0))F —>0.

v

(NS(X) ome)r Br(X)

0 0
NS(X) replaces Pic (X) in upper-centre because 0 — Pic’ (X) — Pic (X) —
NS(X)— 0 is exact, and Pic’(X) ® Q/Z = 0 because Pic’(X) is finite. NS(X)1ors
replaces Pic (X).ors in the lower-left because Pic’ (X)r = H'(T, Pic’ (X)) = 0
(Lang’s theorem). We get all of Br(X) in lower-centre because Br(X) is a
torsion group [8].

On passing to the inverse limit in (3.1), we get an exact commutative
diagram:

0 0
0 Pic (X) ® Z — NS(X) ® Z — 0
n 7
3.3  0— H'(X, Te)r — HYX, Tt) — HYX, Ti)" — 0.
Pic (X)uers T(Br(X)) = T(Br(X))
0 0 0

The diagram stays exact because inverse limits preserve the exactness of
sequences of finite groups. NS(X)® Z occurs in the top right because
NS(X) is defined to be the image of Pic (X) in NS(X), and the map Pic (X)—
Pic (X)© — NS(X)" is surjective. To see that lim (Pic (X).)r = Pic (X)wors
pass to the inverse limit in the exact sequence “

(Pic (X)sors)” — (Pic (X)sors)— (Pic (X)) — ((Pie (X)eors)r »
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and note that (Pic (X)) = Pic (X)wrs and that (Pic (X'lms)p is finite.
Finally, the fact that H*(X, Ty)r is finite implies that k& and & have the same
cokernel.

4. Equivalent forms of Tate’s conjecture

THEOREM 4.1. Let X be a smooth projective surface over a finite field
k of characteristic # 2. The following statements are equivalent:

(@) (T) holds for X/k.

(b) There is a prime l (I = p is allowed) such that Br(X)({) is finite.

') For all primes I, Br(X)() is finite.

(¢) There is a prime l such that o(X) = rank,, (H*X, T,p)").

(¢") For all primes l, p(X) = rank, (HX, T.)").

(d) There is a prime 1 such that h: NS(X)® Z, — H¥X, T\ s
bijective (See (3.3) for the map k).

(d) The map h: NS(X) ® Z — H*X, Tp)" is bijective.

(). p(X) = dimg, (H(X/W,)x(1)").

Proof. There is, for any prime [, an exact sequence (3.3)

0 — NS(X) ® Zi —% H*(X, T,y — Ty(Br(X)) — 0 .
Also, H*X, ;) is finite (2.1) which implies that Br(X), is finite, which in
turn implies that Br(X)(l) is finite if and only if T, Br(X) = 0. From this
follows immediately the equivalences (b) = (c) = (d) and also (b') = (¢') =
@).

The equivalence of (e) to (¢) with I = p (i.e., the implications (¢’) =
(e) = (c)) follows from (1.4) and (3.3).

Now let 0’(X) be the multiplicity of ¢ as a reciprocal root of P,(X, ¢t).
From Section 1 it is clear that, for any prime I, p’(X) is also equal to the
multiplicity of 1 as an eigenvalue for o acting on H*( X, T,#). Since the map
h, in (d) is always injective, we get the following inequalities holding for
any [,

o(X) < rank,, (H*X, T,)") < 0'(X) .
Thus if (a) holds, i.e., o(X) = p'(X), then both inequalities are equalities,
and (c¢’) holds.

To complete the proof of the theorem we have only to prove that, if

any one of (b), (¢) or (d) holds, then (a) holds. This is done in the next
section.

Remark 4.2. It is conjectured that the Frobenius endomorphism @ acts
semi-simply on the groups H"(X, Q,). If this is assumed, then automatically
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0'(X) = rank,,(H*X, T\#)") and (c) implies (a).

S. Another diagram

Let +: A— B be a homomorphism of Z-modules. Such a map breaks
up into a product of homomorphisms +r,: 4, — B, where A, is the Z,-module
A ®; Z, ete. If the kernel and cokernel of -, are finite then we say that
is an l-quasi-isomorphism and write z,(y) = ([ker v])/([coker 4]). If 4 isan
l-quasi-isomorphism for all /, we call it a quasi-isomorphism and put z(y)
equal to the formal product IJ, ... 2(¥) (“un nombre surnaturel”). For
example, if the kernel and cokernel of 4 are both finite then + is a quasi-
isomorphism and z(y) = ([ker +])/([coker v]) € Q. These notations are similar
to those adopted in [20, p. 207] and we assume that the reader is familiar
with the elementary lemmas z.1, z. 2, z.3 and z. 4 stated there.

Consider the diagram:

NS(X) ® Z —— Hom (NS(X), Z) ~ Hom (NS(X) ® Q/Z, Q/Z)

I Jo
HY(X, Toy" L HY(X, T —— Hom (H(X, 1)), Q/Z)
where the maps will be explained below.

The map e is induced by intersection-products NS(X)x NS(X) — Z.
Recall that NS(X) is defined to be the image of Pic (X) in NS(X), and that
intersection-products define a non-degenerate pairing on NS(X)/NS(X).ors.
From this it follows that e is a quasi-isomorphism and

(—1)(NS(X): By’
det (D, D;)[NS(X)1ors]
where D,, ---, D, are independent elements of NS(X) and B is the subgroup
generated by them. The number on the right is positive because, by the
Hodge index theorem, if D is defined by a hyperplane section of X, then
D-D>0 and D’-D’' <0 for any D’ orthogonal to D. Thus the bilinear
form (NS(X) ®, R) x (NS(X) ®, R) — R is of type (+, —, —, *++).

The isomorphism on the top row is obvious. ]

The map j is the composite of the map H*X, Tp)r — HX, Tp)
coming from the Hochschild-Serre spectral sequence (cf. § 3) and the isomor-
phism 7,: H¥(X, Ttt)— Hom (H*(X, ¢t(0)), Q/Z) coming from Poincaré duality.
The map j, is injective, with cokernel H*(X, T¢)", and so it follows from
the next lemma that j is a quasi-isomorphism with 2(j) = [NS(X)..rs] ¢

LEMMA 5.2. The group H¥X, T1)" is finite, with order [H (X, Ti)"]|=

z(e) =
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[Iqs(){)tors]q’J where s = dim US(pca).

Proof. HYX, T.tt) ~Z, with o acting as ¢™* for [ + p, and H'(X, T,p) =
0. Thus HYX, T)" = 0 and HYX, T) ~ HYX, Tt). Also HY(X, Tp) is
dual to H'(X, ¢(-)) (§2) and H(X, (o)) ~ Pic (X)uoess Thus H(X, Ttt)r
is finite and [H*(X, Tt)r] = [Pic (X)iors].

For 1 = p, H¥X, T,t) is a finitely-generated Z,module and det (1l —
ot| H¥(X, T) ® Q) = II (1 — (9/as,)t). An easy computation using [20,
Lemma z. 4] shows that
[HY(X, Ty)r] = [HY(X, )" TT A — ¢/as) |
where | |, is the valuation with | |, = 1/I.
For p, there is an exact sequence,

0 — UXp)(k) —> H¥X, T,p) — lim D(p")(k) — 0 .

The group lim D(p™)(k) is a finitely-generated Z,-module and its tensor pro-

duct with Q, is isomorphic to H*(X, V,#). A computation similar to the
above, using that

det (1 — ot | HX(X, Vo) = Ty pos @ — @), U*@)@)r =0,
U(p~) (k)™ = Up~) (k) ,
shows that
[HX, To)r] = [HXX, Tot)]| oy, @ — @las) |07
On combining these equations for all primes, we get
[H¥X, Te)r] = =[H¥X, T TL @ = ¢/as,0) [TLoey o @ — @/05,9) 1,07°
Since Py(X, t) = P,(X, qt) we have that

II @ - g/as.)

Hv(aa,i)aél (1 — q/as,) |p = %l H'v(al'i)aéo 1 —a) lp

= [Pic Var (X)(k)]
as H @y, = qdimmcvu(m) = IHv(al )70 (1 - a’l—'i) Ip' Thus

(Y Il — [Pic (X)tors] [ 8
[H(X, T"] = [Pic Var (X’ [NS(X)eors]a*

The map g¢* is the dual of the map ¢ in (8.2). Thus ¢ is an l-quasi-
isomorphism for a given prime ! if and only if Br(X)(l) is finite.

The map & is as in (8.8). It is an l-quasi-isomorphism for a given prime
! if and only if T, Br(X) = 0, i.e., if and only if Br(X)(l) is finite.

The map f is induced by the identity map on H* X, Ty). By [20, z. 4]
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it is an l-quasi-isomorphism for a given prime ! if and only if the multipli-
city of 1 as an eigenvalue for ¢ acting on H* X, T,z) is equal to the Z,-rank
of H*(X, T\w)*", i.e., in the notation of Section 4, if and only if 0'(X) =
rank, HX(X, T,p)".

Finally we need:

LEMMA 5.3. The diagram at the start of this section commutes.

Proof. This amounts to saying that the following diagram commutes:

Pic(X) X NS(X)— Z

| |

| HZ(X’ #n)l‘ I

l |

Hz(Xy )un) X Ha(X, #'n) _’Z/'nz .

The top pairing is intersection-product, the bottom pairing is cup-product,
and the maps should, by now, be obvious. The commutativity of this
diagram is exactly what we meant in (2.1) by the compatibility of cup and
intersection products.

Now assume that Br(X)(l) is finite for some given prime [; i.e., assume
(4.1b’). Then all maps in the diagram, except possibly f, are l-quasi-
isomorphisms. It follows that f must be an l-quasi-isomorphism which,
after the remark preceding (5.3), implies that 0'(X) = rank,, HX, T,)"=
o0(X), i.e., that (T) holds.

This completes the proof of Theorem 4.1.

Remark 5.4. The conditions of the theorem are also equivalent to the
map h: Pic (X) ® Z — H*(X, Tr) being an isomorphism, and to the cycle
map in crystalline cohomology defining an isomorphism NS(X)®,Q,—

HY(X/W)x(1)".
6. The Artin-Tate conjecture

THEOREM 6.1. Let X be a smooth projective surface over a finite field
k of characteristic + 2. If (T) holds for X[k then so also does (A-T).

Proof. We must show that Br(X) is finite and that

Q) (— 1)P(X)_1[BI‘(X)] det (D;-D;)
Huz,i#ﬂ (1 T) = q“(X)(NS(X): B)2 .

Since we are assuming (T), all of the maps in the diagram (5.1) are quasi-
isomorphisms and, since the diagram commutes,
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2(e) = z(R)z(f)2(5)z(g*) .
We have that:
(—1)*"(NS(X): B)*

Z(e) = det (D,:-Dj)[NS(X)““S] '
sh)=1,
L Gy @y,4
z(f) - Huz ﬁ*q<1 —q_) I Hv(az'i)# (_q_) P '
N g
‘) = NS @]’

2(g*) = [Br(X)] .

Since all of these are rational numbers except possibly the last, we see that
the last must also be a rational number, i.e., that [Br(X)] is finite.

Note that both sides of the equation are positive and so it remains to
prove that

aX) _ _ Qs
00 = | Iy g (1~ 222)

q

q,
Y4
i.e., that
a(X) = Ev(ﬂz,i)<l (1 - v(a%i)) t+s.

This we do in the next section.

7. Calculation of a(X)

Since it requires no extra effort, we prove a slightly more general
result than necessary.

PRrROPOSITION 7.1. Let X be a smooth projective wvariety over an
algebraically closed field of characteristic p. Then

X(Xr OX) = Exhigj,(_l)rmr.i(l - x’1-,«:) + E, (—1)rdr

where the N, , are the slopes of H(X/ W)k, m, ; is the multiplicity of N,
and d, = lengthwuv))(Hr(X, W), ®W[[V]]W(( V)))

Before proving this we need to make some computations concerning
modules over the ring W[V]. If M is such a module, then the kernel and
cokernel of V: M — M are W-modules (V is (p~!)-linear) and we define

X(M) = length, (ker (V)) — length, (coker (V)

provided both numbers on the right are finite.
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LEMMA T7.2.

(a) If M has finite length as a W-module then (M) = 0.

(b) If 0>M' —-M— M"— 0 is an exact sequence of W[V |-modules,
then x(M) is defined if Y(M') and Y(M") are defined and (M) = y(M') +
x(M").

(¢) If M is a module over the Dieudonné ring WI[F, V] which is
free and finitely-generated when regarded as a W-module, then (M) =
- m(1 — \,) where the \; are the slopes of M and m; is the multiplicity
of N;.

(d) Let M be a finitely-generated p-torsion W[V |]-module. Then
X(M) = —lengthy )M Swirvy W(( V))-

Proof. (a) This follows from counting lengths in the exact segence,

0 — ker (V') — M —— M —— coker (V) — 0 .

(b) This is a trivial application of the serpent lemma.

(¢ If M= WIF, V]/(F™ — p™) then a trivial calculation shows that
Y¥(M) = —m(@ — N). But any W[F, V]-module M which is free as a W-
module contains a submodule M’ which is a direct sum of such modules and
is such that M/M’ is of finite length over W. Thus (¢) now follows from (a)
and (b).

(d) If M=W][[V]] then clearly (M) = —1 = —(length W((V))). But
every finitely-generated torsion W[[V]]-module has a finite composition
series whose quotients are W[[V]] and modules of finite length over W.
Moreover the number of factors W[[V]] is equal to lengthy ) M. Thus
(d) now follows.from (a) and (b). '

Proof (of 7.1). There is a long exact sequence [18]
s H'(X, W) —— H'(X, W) —> H'(X, O)
—s HMX, W)— «- .,
Thus (X, Ox) = > (—1)""'x(H"(X, W)). But, for each r, there is an exact
sequence
00— HX,W)),—H(X, W)y— H(X, W) —0

where H(X, W), is a module as in (7.2 d) and H"(X, W)’ is a module as in
(7.2 ¢) with slopes {\,,; | N,,; < 1} (see §1). Thus

WH (X, W) = x(H" (X, W),) + y(H"(X, W)

= —d, — Ezm,gl a—x,)m,,;.

On combining this with the previous equation, we get the required formula.
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COROLLARY 7.3. Let X be a projective smooth variety over a finite
field k. Then

X(X9 OX) = E”(“ni)él (_1)7(1 - v(a"r,i)) + Ef=1 (_l)rdr .

Proof. Since H'(X,03) = H"(X,0;)®,kand H'(X, W)= H (X, W) Qw
W we see thattwo of the terms are unchanged when X is replaced by X.
The fact that

Ev(a,,.,i)sl(_l)r(l - ,U(a"r,i)) = Elr.i§1 (_1)rmr,i(1 - )“'r,i)
follows from (1.2).
Remark 7.4. Let X be as in (7.3). Then
Ev(ao,i)gl (1 - v(ao,i)) =1,
}_’:Mm)él (1 — v(a,,,)) = dim (Pic Var (X)) .
For let d’ = dim (Pic Var (X)); then
D ps (1= v(@,)) = 2L, (L= v(@,)) + (1 — (@) where a,.@.:=¢
=37 (2 —v,a,)=4d.
Moreover, if X is a surface, then 37, . (1 — #(a,)) =0 for » > 2, as
{as;} = {ga,;} and {a,.} = {¢*}. Thus, in this case, the identity in (7.3)

reduces to

x(X, Oy) = 1 — dim (Pic Var (X)) + Emm_m(l — v(a,,,) + d, .
But (cf. § 1), d, = s, and so this may be re-written

2X, 0x) — 1 + dim (Pie Var (X)) = 32, 1« (1 — v(a,,)) + s .
This completes the proof of Theorem 6.1.

8. The conjectures of Birch and Swinnerton-Dyer

We state things only for the simplest case. The notations are the same
as those of [20].

THEOREM 8.1. Let E be an elliptic curve over a function field K in
one wvariable with finite constant field of characteristic p + 2. The
following statements are equivalent:

(a) The L-series L(E, s) of E has a zero of order r at s = 1, where r is
the rank of E(K) (see [20, A]).

(b) For some prime l, the l-primary component of the Tate-gafa'revié
group lL(E/K) of E over K s finite.

(¢) U (E/K) s finite, and
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L*(E, s)~ [-HL[]Ed((}z;a':’]f’»(s — 1) ass—>1

(see [20, B]).

Proof. This follows from (4.1) and (6.1) and the known equivalence of
conjectures (B) and (C) of [20] in the case of elliptic surfaces.

Remark 8.2 (a). There exist many curves for which it is trivial to
check that the statements of (8.1) hold. For example let E be the curve
defined by the equation Y? = X(X — 1)(X — T) over the field K = k(T), k
finite of characteristic » # 2, 3. Consider £ over K = k(T). It has bad
reduction only at T = 0, 1, - and, in the notation of [17, Thm. 8], 8 =1, 1, 2
at these points. Thus (loc. cit.)

rank (E(K)) + rank (T, W(E/K)) = —4+1+1+2=0,

and 1 (E/K)(1) is finite. This implies that 1 (E/K) is finite. (In fact the
minimal model of E over P! must be a rational surface.)

(b) Artin and Swinnerton-Dyer [1] have shown that the statement (b)
of (8.1) holds for curves E over k(T) whose equations have the form

Y’4+a, XY +a,Y = X3+ a, X2+ a,X + a,

where @, is a polynomial of degree < 2i.

(¢) Let E be an elliptic curve over an algebraically closed field C of
characteristic » and of transcendence degree at least one over F,. Then
there exists a function field K C, of transcendence degree 1 over its finite
constant field, and an elliptic curve E over K such that:

(i) EQzC~E,

(ii) Statement (8.1 b) holds for E/K.

Indeed, if the j-invariant j(E) of E is algebraic over F, then any K
containing F,(j), and any constant E over K such that E® C = E, will do.
Otherwise

E:Y'+ (j — 1728) XY = X° — 36(j — 1728)°X — (§ — 1728)°

over K = F,(j) will do (by the last remark).

Thus, in order to prove that the statements in (8.1) hold for all elliptic
curves over function fields, it suffices to show that at least one statement is
preserved under finite extensions of the function field.
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