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In this article, I prove the Weil conjecture on the eigenvalues of Frobenius endomor-
phisms. The precise statement is given in (1.6). I have tried to present the proof in a form
as geometric and elementary as possible and have included many reviews: only the results
of ��3, 6, 7, and 8 are original.

In a sequel to this article,1 I will give various refinements of the intermediate results and
of the applications, including the “hard” Lefschetz theorem (on the iterated cup-products
by the cohomology class of a hyperplane section).

The text faithfully follows that of six lectures given at Cambridge in July 1973. I thank
N.Katz for allowing me to use his notes.

1 Grothendieck’s theory: cohomological interpretation
of L-functions

(1.1) Let X be a scheme of finite type over Z and jX j the set of closed points of X . For
x 2 jX j, let N.x/ denote the number of elements in the residue field k.x/ of X at x. The

�This is a translation of Deligne, Pierre, La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. No.
43 (1974), 273–307, based on arXiv:10807.10810 (Evgeny Goncharov). It is available at www.jmilne.org/
math under Documents. Last revised October 24, 2021.

1La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. No. 52 (1980), 137–252.

1

www.jmilne.org/math
www.jmilne.org/math


1 GROTHENDIECK’S THEORY: COHOMOLOGICAL INTERPRETATIONOFL-FUNCTIONS2

Hasse-Weil zeta function of X is

(1.1.1) �X .s/D
Y
x2jX j

.1�N.x/�s/�1

(this product converges absolutely for <.s/ sufficiently large). For X D Spec.Z/, �X .s/ is
the Riemann zeta function.

We will consider exclusively the case where X is a scheme over a finite field Fq .
For x 2 jX j, we write qx for N.x/. Putting deg.x/D Œk.x/WFq�, we have qx D qdeg.x/.

It is useful to introduce a new variable t D q�s . Let

(1.1.2) Z.X I t /D
Y
x2jX j

.1� tdeg.x//�1I

this product converges for jt j sufficiently small, and we have

(1.1.3) �X .s/DZ.X Iq
�s/:

(1.2) Dwork (On the rationality of the zeta function of an algebraic variety, Amer. J.
Math., 82, 1960, p. 631–648) and Grothendieck ([1] and SGA 5) have proved that Z.X I t /
is a rational function of t .

For Grothendieck, this is a corollary of general results in l-adic cohomology (where l
is a prime number not equal to the characteristic p of Fq). These provide a cohomological
interpretation of the zeros and poles ofZ.X I t /, and a functional equation whenX is proper
and smooth. The methods of Dwork are p-adic. For X a non-singular hypersurface in a
projective space they also provided him with a cohomological interpretation of the zeros and
poles, and the functional equation. They inspired the crystalline theory of Grothendieck and
Berthelot, which for X proper and smooth provides a p-adic cohomological interpretation
of the zeros and poles, and the functional equation. Based on the ideas of Washnitzer,
Lubkin created a variant of this theory, valid only for X proper, smooth, and liftable to
characteristic 0 (A p-adic proof of Weil’s conjectures, Ann of Math, 87, 1968, pp. 125-
255).

We will make essential use of Grothendieck’s results, and recall them below.

(1.3) Let X be an algebraic variety over an algebraically closed field k of characteristic
p, i.e., a separated scheme of finite type over k. We do not exclude the case p D 0. For
any prime number l ¤ p, Grothendieck defined l-adic cohomology groups H i .X;Ql/.
He also defined cohomology groups with compact support H i

c .X;Ql/. For X proper, the
two coincide. The H i

c .X;Ql/ are vector spaces of finite dimension over Ql , zero for i >
2dim.X/.

(1.4) Let X0 be an algebraic variety over Fq , xFq the algebraic closure of Fq , and X the
algebraic variety over xFq obtained from X0 by extension of scalars from Fq to xFq . In the
language of Weil and Shimura, we would express this situation by: “Let X be an algebraic
variety defined over Fq”. Let F WX ! X be the Frobenius morphism; it sends a point with
coordinates x to the point with coordinates xq; in other words, for U0 a Zariski open subset
of X0, defining an open subset U of X , we have F�1.U / D U ; for x 2 H 0.U0;O/, we
have F �x D xq . Let us identify the set jX j of closed points of X with X0.xFq/ (the set
HomFq .Spec.xFq/;X0/ of points of X0 with coefficients in xFq) and let ' 2 Gal.xFq=Fq/ be
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the Frobenius map: '.x/D xq . The action of F on jX j can be identified with the action of
' on X0.xFq/. So:

a) The set XF of closed points of X fixed under F can be identified with the set
X0.Fq/ � X0.xFq/ of points of X defined over Fq . This simply expresses the fact that
for, x 2 xFq , we have x 2 Fq, xq D x.

b) Similarly, the set XF
n

of closed points of X fixed under the nth iterate of F can be
identified with X0.Fqn/.

c) The set jX j of closed points ofX can be identified with the set jX jF of orbits of F (or
') on jX j. The degree deg.x/ of x 2 jX0j is the number of elements in the corresponding
orbit.

d) From b) and c) we see that

(1.4.1) #XF
n

D #X0.Fqn/D
X

deg.x/jn

deg.x/:

(If x 2 jX0j and deg.x/jn, then x defines deg.x/ points with coordinates in Fqn , all conju-
gate over Fq).

(1.5) The morphism F is finite, in particular, proper. Therefore, it induces morphisms

F �WH i
c .X;Ql/!H i

c .X;Ql/:

Grothendieck proved the Lefschetz formula

#XF D
X
i

.�1/i Tr.F �;H i
c .X;Ql//I

the term on the right, a priori an l-adic number, is an integer, equal to the term on the left.
We note that such a formula is only reasonable because dF D 0, even at infinity (X is not
assumed to be proper); the relation dF D 0 implies that fixed points of F have multiplicity
one.

An analogous formula is valid for the iterates of F :

(1.5.1) #XF
n

DX0.Fqn/D
X
i

.�1/i Tr.F �n;H i
c .X;Ql//

We take the logarithmic derivative of (1.1.2):

t
d

dt
logZ.X0; t /D

t d
dt
Z.X0; t /

Z.X0; t /
(1.5.2)

D

X
x2jX0j

�
�deg.x/tdeg.x/

1� tdeg.x/

D

X
x2jX0j

X
n>0

deg.x/tndeg.x/ .1:4:1/
D

X
n

X0.Fqn/tn

For F an endomorphism of a vector space V , we have an identity of formal series

(1.5.3) t
d

dt
log.det.1�F t;V /�1/D

X
n>0

Tr.F n;V /tn
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(check it for dimV D 1 and observe that both sides are additive in V when we take short
exact sequences). On substituting (1.5.1) into (1.5.2) and applying (1.5.3), we find that

t
d

dt
logZ.X0; t /D

X
i

.�1/i t
d

dt
logdet.1�F �t;H i

c .X;Ql//
�1;

or

(1.5.4) Z.X;t/D
Y
i

det.1�F �t;H i
c .X;Ql//

.�1/iC1

The term on the right is in Ql.t/. The formula affirms that its Taylor expansion at t D 0, a
priori a formal series in Ql ŒŒt �� with constant coefficient one, is in ZŒŒt �� and is equal to the
term on the left, also considered as a formal series in t . This formula is the Grothendiek’s
cohomological interpretation of the Z-function.

Our main result is the following:

Theorem (1.6). LetX0 be a projective nonsingular (= smooth) variety over Fq . For each i ,
the characteristic polynomial det.1�F �t;H i .X;Ql// has integer coefficients independent
of l .l ¤p/. The complex roots ˛ of this polynomial (complex conjugates of the eigenvalues
of F �) have absolute value j˛j D q

i
2 .

We show that (1.6) is a consequence of the following apparently weaker statement:

Lemma (1.7). For each i and each l ¤ p, the eigenvalues of the Frobenius endomorphism
F � on H i .X;Ql/ are algebraic numbers all of whose complex conjugates are of absolute
value j˛j D q

i
2 .

Proof of (1.7) )(1.6): Regard Z.X0; t / as a formal series with constant term 1 in
ZŒŒt �� W Z.X0; t / D

P
nant

n. From (1.5.3), the image of Z.X0; t / in Ql ŒŒt �� is the Taylor
expansion of a rational function. This means that for N and M sufficiently large (� the
degrees of numerators and denominators) the Hankel determinants

Hk D det..aiCjCk/0�i;j�M / .k > N/

are zero. The vanishing is true in Ql if and only if it is true in Q; Z.X0; t / is therefore the
Taylor expansion of an element of Q.t/. In other words,

Z.X0; t / 2 ZŒŒt ��\Ql.t/�Q.t/:

Let Z.X0; t / D P=Q with P;Q coprime elements of ZŒt � having positive constant
terms. According to a lemma of Fatou, since Z.X0; t / lies in ZŒŒt �� and has constant term
1, the constant terms of P and Q are 1. Let

Pi .t/D det.1�F �t;H i .X;Ql//:

(1.7) implies that Pi are coprime. The term on the right of (1.5.4) is therefore an irreducible
fraction and

P.t/D
Y
i odd

Pi .t/

Q.t/D
Y
i even

Pi .t/:
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Let K be the subfield of the algebraic closure xQl of Ql generated over Q by the roots of
R.t/ D P.t/Q.t/. The roots of Pi .t/ are those roots of R.t/ with the property that all
their complex conjugates have absolute value q�

i
2 . This set is stable under Gal.K=Q/.

Therefore, Pi .t/ has rational coefficients. According to a lemma of Gauss (or because
roots of Pi , being roots of R, are the inverses of algebraic integers), it even has integer
coefficients. The description above of the roots of Pi .t/ is independent of l ; therefore, the
polynomial Pi .t/ is also independent of l .

The rest of the article is devoted to the proof of (1.7).

(1.8) Grothendieck’s theory provides a cohomological interpretation, not only of zeta
functions, but also of L-functions. The results are as follows.

(1.9) Let X be an algebraic variety over a field k. For the definition of a constructible
Ql -sheaf on X , I refer to SGA 5 VI. It suffices to say that:

a) If F is a constructible Ql -sheaf on X , then there exists a finite partition of X into
locally closed subschemes such that F jXi is locally constant.

b) Suppose that X is connected, and let xx be a geometric point of X . For F locally
constant, �1.X; xx/ acts on the stalks Fxx; the functor sending a sheaf to its stalk at xx is
an equivalence from the category of locally constant Ql -sheaves on X to the category of
continuous representations of �1.X; xx/ on Ql -vector spaces of finite dimension. Such a
representation in general does not factor through a finite quotient.

c) When k DC, the constructible Ql -sheaves over X can be identified with the sheaves
of Ql -vector spaces F on X an with the property that there exists a finite partition of X
into Zariski-locally closed subsets Xi such that, for each i , there is a local system of free
Zl -modules Fi of finite type on Xi with

F jXi D Fi ˝Zl Ql :

We will consider only constructible Ql -sheaves, and will simply call them Ql -sheaves.

(1.10) Suppose that k is algebraically closed, and let F be a Ql -sheaf onX . Grothendieck
has defined l-adic cohomology groups H i .X;F/ and H i

c .X;F/. The H i
c .X;F/ are vec-

tor spaces of finite dimension over Ql , zero for i > 2dim.X/. For k D C, the H i .X;F/
and H i

c .X;F/ are the usual cohomology groups (resp. with compact support) of X an with
coefficients in F .

(1.11) Let X0 be an algebraic variety over Fq , X the corresponding variety over xFq ,
and F0 a sheaf of sets on X0 (for the etale topology). We denote by F its inverse image on
X . In addition to the Frobenius isomorphism F WX!X , we have a canonical isomorphism
F �WF �F ��! F . Here is a description. We regard F0 as an étale space over X0, i.e., we
identify F0 with an algebraic space ŒF0� equipped with an etale morphism f W ŒF0�! X0
such that F0 is the sheaf of local sections of ŒF0�. The similar etale space ŒF � over X is
obtained from ŒF0� by extension of scalars. Therefore, we have a commutative diagram

ŒF � ŒF �

X X;

F

f f

F
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and hence a morphism ŒF �!X �.F;X;f / ŒF �D ŒF �F �, which is an isomorphism because
f is étale. The inverse of this isomorphism defines the isomorphism F �F ��! F sought.

This construction can be generalized to Ql -sheaves.

(1.12) Let X0 be an algebraic variety over Fq , F0 a Ql -sheaf on X0, .X;F) the pair
obtained by extension of scalars from Fq to xFq , F WX !X , and F �WF �F ! F .

The finite morphism F and F � define an endomorphism

F �WH i
c .X;F/!H i

c .X;F
�F/!H i

c .X;F/:

For x 2 jX j, F � defines a morphism F �x WFF.x/! Fx . When x 2XF this is an endomor-
phism of Fx . Grothendieck proved the Lefschetz formulaX

x2XF

Tr.F �x ;Fx/D
X
i

.�1/i Tr.F �;H i
c .X;F//:

A similar formula holds for the iterates of F : the n iterate of F � defines morphisms
F �nx WFF n.x/! Fx; for x fixed by F n, F �nx is an endomorphism and

(1.12.1)
X

x2XF
n

Tr.F �nx ;Fx/D
X
i

.�1/i Tr.F �n;H i
c .X;F//

(1.13) Let x0 2 jX j, Z the orbit corresponding to F in jX j, and x 2Z. The orbit Z has
deg.x0/ elements (1.4). We denote by F �x0 the endomorphism F

�deg.x0/
x of Fx , and we put

det.1�F �x0 t;F0/D det.1�F �x0 t;Fx/:

Up to isomorphism, .Fx;F �x0/ does not depend on the choice of x. This justifies omitting
x in the notation. We will use a similar notation for other functions of .Fx;F �x0/.

(1.14) Define Z.X0;F0; t / 2Ql ŒŒt �� by the product

(1.14.1) Z.X0;F0; t /D
Y

x2jX0j

det.1�F �x t
deg.x/;F0/�1:

For F the constant sheaf Ql , we recover (1.1.2). According to (1.5.3), the logarithmic
derivative of Z is

(1.14.2) t
d

dt
logZ.X0;F0; t / def

D
t d
dt
Z.X0;F0; t /

Z.X0;F0; t /
D

X
n

X
x2XF

n
DX0.Fqn /

Tr.F �nx ;F0/tn

Substituting (1.12.1) into (1.14.2), we find, by the same calculation as in (1.5), the following
generalization of (1.5.4)

(1.14.3) Z.X0;F0; t /D
Y
i

det.1�F �t;H i
c .X;F//.�1/

iC1

This formula is an identity in Ql ŒŒt ��.

(1.15) It is sometimes convenient to use a galoisian language rather than a geometric
one. Here is the dictionary.
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If xF1q and xF2q are two algebraic closures of Fq , then .X0;F0/ over Fq defines by exten-
sion of scalars .X1;F1/ over xF1q and .X2;F2/ over xF2q . Every Fq-isomorphism � W xF1q ��! xF2q
defines an isomorphism

H�c .X1;F1/ ��!H�c .X2;F2/:

In particular, for xF1q D xF2q (denoted by xFq), we find that Gal.xFq=Fq/ acts on H�c .X;F/
(action by transport of structure ). Let ' 2 Gal.xFq=Fq/ be the Frobenius map. One can
check that

F � D '�1 (in End.H�c .X;F///:

This suggests defining the geometric Frobenius F 2 Gal.xFq=Fq/ to be '�1. We have

(1.15.1) F � D F:

Let x be a geometric point of X0, localized to x0 2 jX0j. By transport of structure,
the group Gal.k.x/=k.x0// acts on the stalk .F0/x of F0 at x; in particular, the geometric
Frobenius relative to k.x0/, Fx0 2 Gal.k.x/=k.x0//, acts. For x defined by a closed point,
again denoted by x, in X , we have Fx D .F0/x and

(1.15.2) F �x0
def
D F

�deg.x0/
x D Fx0 (in End.Fx//

.
In the galoisian notation, (1.14.3) becomesY

x2jX0j

det.1�Fxtdeg.x/;F0/�1 D
Y
i

det.1�F t;H i
c .X;F//.�1/

iC1

:

2 Grothendieck’s theory: Poincare duality

(2.1) To explain the relation between roots of unity and orientations, I will first restate two
classical cases in an unusual language .

a) Differentiable manifolds. - LetX be a differentiable manifold purely of dimension n.
The orientation sheaf Z0 onX is the sheaf locally isomorphic to the constant sheaf Z, whose
invertible sections on an open U in X correspond to the orientations of U . An orientation
of X is an isomorphism of Z0 with the constant sheaf Z. The fundamental class of X is
a morphism TrWHn

c .X;Z0/! Z; if X is orientable, it can be identified with a morphism
TrWHn

c .X;Z/! Z. Poincaré duality can be expressed using this fundamental class.
b) Complex varieties. - Let C be an algebraic closure of R. A smooth complex algebraic

variety, or rather the underlying differentiable variety, is always orientable. To justify this
it suffices to orient C itself. This amounts to a choice:

a) choosing one of the two roots of the equation X2 D�1; we call itCi I
b) choosing an isomorphism from R=Z to U 1 D fz 2 Cj jzj D 1g; Ci is the image of

1=4;
c) choosing one of the two isomorphisms x 7! exp.˙2�ix/ from Q=Z to the group of

the roots of unity of C, which extends continuously to an isomorphism from R=Z to U 1.
We denote by Z.1/ a free Z-module of rank one whose set of generators has two ele-

ments canonically corresponding to one of the two-element sets a), b), c). The simplest is to
take Z.1/DKer.expWC!C�/. The generator y D˙2�i corresponds to the isomorphism
c): x 7! exp.xy/.
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Let Z.r/ be the r-th tensor power of Z.1/. If X is a smooth complex algebraic variety
purely of complex dimension r , the orientation sheaf on X is the constant sheaf of value
Z.r/.

(2.2) To “orient” an algebraic variety over an algebraically closed k of characteristic
zero, we must choose an isomorphism from Q=Z to the group of the roots of unity of k.
The set of such isomorphisms is a principal homogeneous space under yZ� (no longer under
Z�). When one is only interested in l-adic cohomology, it suffices to consider the roots of
unity of order a power of l , and to suppose that the characteristic p of k differs from l . We
denote by Z=ln.1/ the group of roots of unity of k of order dividing ln. For variable n, the
Z=ln.1/ form a projective system with transition maps

�m;nWZ=lm.1/! Z=ln.1/; x 7! xl
m�n

:

We put Zl.1/ D limprojZ=ln.1/ and Ql.1/ D Zl.1/˝Zl Ql . Denote by Ql.r/ the r-th
tensor power of Ql.1/; for r 2 Z negative we put Ql.r/DQl.�r/_.

As a vector space over Ql , Ql.1/ is isomorphic to Ql . However, the automorphism
group of k acts non-trivially on Ql.1/: it acts via the character with values in Z�

l
giving its

action on the roots of unity. In particular, for k D xFq , the Frobenius map 'Wx! xq acts by
multiplication by q.

Let X be an algebraic variety purely of dimension n over k. The orientation sheaf of
X for the l-adic cohomology is the constant Ql -sheaf Ql.n/. The fundamental class is a
morphism

TrWH 2n
c .X;Ql.n//!Ql ;

or again
TrWH 2n

c .X;Ql/!Ql.�n/:

Theorem (2.3) (Poincare duality). For X proper and smooth, purely of dimension n, the
bilinear form

Tr.x[y/WH i .X;Ql/˝H 2n�i .X;Ql/!Ql.�n/

is a perfect pairing (it identifies H i .X;Ql/ with the dual of H 2n�i .X;Ql.n//).

(2.4) Let X0 be a smooth proper algebraic variety over Fq , purely of dimension n, and
X over xFq the variety deduced from X0 by extension of scalars. The morphism (2.3) is
compatible with the action of Gal.xFq=Fq/. If the . j̨ / are the eigenvalues of the geometric
Frobenius acting onH i .X;Ql/, the eigenvalues of F acting onH 2n�i .X;Q/ are .qn˛�1j /.

(2.5) Suppose, for simplicity, that X is connected. The proof of (2.4) is as follows once
we transpose to the geometric language instead of the Galois one (see (1.15)).

a) Cup-product puts H i .X;Ql/ and H 2n�i .X;Ql/ in perfect duality with values in
H 2n.X;Ql/, which has dimension one.

b) Cup-product commutes with forming the inverse image F � by the Frobenius mor-
phism F WX !X .

c) The morphism F is finite of degree qn: on H 2n.X;Ql/, F � is multiplication by qn.
d) The eigenvalues of F � therefore have the property (2.4).
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(2.6) We let �.X/D
P
i .�1/

i dimH i .X;Ql/. When n is odd, the form Tr.x[y/ on
Hn.X;Ql/ is alternating; the integer n�.X/ is therefore always even. It is easy to deduce
from .1:5:4/ and (2.3), (2.4) that

Z.X0; t /D "q
�n�.X/

2 t��.X/Z.X0;q
�nt�n/;

where "D˙1. When n is even, we let N denote the multiplicity of the eigenvalue qn=2 of
F � acting on Hn.X;Ql/ (i.e., the dimension of the corresponding invariant subspace). We
have

"D

(
1; if n is odd
.�1/N ; if n is even.

This is the Grothendieck’s formulation of the functional equation for Z-functions.

(2.7) We will need other forms of the duality theorem. The case of curves will be enough
for our purposes. If F is a Ql -sheaf on an algebraic variety X over an algebraically closed
k, we denote by F.r/ the sheaf F ˝Ql.r/. This sheaf is (noncanonically) isomorphic to
F .

Theorem (2.8). Let X be smooth purely of dimension n and F locally constant. We denote
by F_ the dual of F . The bilinear form

Tr.x[y/WH i .X;F/˝H 2n�i
c .X;F_.n//!H 2n

c .X;F˝F_.n//!H 2n
c .X;Ql.n//!Ql

is a perfect pairing.

(2.9) Suppose that X is connected and that x is a closed point of X . The functor
F 7! Fx is an equivalence of the category of locally constant Ql -sheaves with that of l-
adic representations of �1.X;x/. Via this equivalence,H 0.X;F/ can be identified with the
invariants of �1.X;x/ acting on Fx:

(2.9.1) H 0.X;F/ ��! F�1.X;x/x :

According to (2.8), for X smooth and connected of dimension n, we have

H 2n
c .X;F/DH 0.X;F_.n//_ D ..F_x .n//�1.X;x//_:

The duality exchanges invariants (the largest invariant subspace) with coinvariants (the
largest invariant quotient). The formula can be rewritten as

H 2n
c .X;F/D .Fx/�1.X;x/.�n/:

We will use it only for nD 1.

Statement (2.10). Let X be a connected smooth curve over an algebraically closed field k,
x a closed point of X , and F a locally constant Ql -sheaf. We have

(i) H 0
c .X;F/D 0 if X is affine.

(ii) H 2
c .X;F/D .Fx/�1.X;x/.�1/:
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Assertion (i) simply states that F does not have sections with finite support.

(2.11) Let X be a connected smooth projective curve over an algebraically closed field
k, U an open set in X , the complement of the finite set S of closed points of X , j the
inclusion U ,�! X , and F a locally constant Ql -sheaf on U . Let j�F be the constructible
Ql -sheaf – the direct image of F . Its stalk at x 2 S has rank at most the rank of the stalk at
a general point; it is the space of invariants of the local monodromy group.

Theorem (2.12). The bilinear form

Tr.x[y/WH i .X;j�F/˝H 2�i .X;j�F_.1//!H 2.X;j�F˝j�F_.1//
!H 2.X;j�.F˝F_/.1//!H 2

c .X;Ql.1//!Ql

is a perfect pairing.

(2.13) It will be convenient to have Ql -sheaves Ql.r/ on any scheme X on which l is
invertible. The main point is to define Z=ln.1/. By definition, Z=ln.1/ is the étale sheaf of
ln-th roots of unity.

(2.14) Bibliographical notes for paragraphs 1 and 2.
A) All the important results in étale cohomology are first proved for torsion sheaves.

The extension to Ql -sheaves is done by passing to formal limits. In what follows, for each
theorem mentioned, I will not refer to the reference where it is proved, but to the reference
where a similar statement for torsion sheaves is proved.

B) With the exception of the Lefschetz formula and (2.12), all the results in étale coho-
mology used in this article are all proved in SGA 4. For those already stated, the references
are: definition of H i : VII; definition of H i

c : XVII 5.1; finiteness theorem: XIV 1, com-
pleted in XVII 5.3; cohomological dimension: X; Poincare duality: XVIII.

C) The relation between the various Frobenius elements ((1.4), (1.11), (1.15)) is ex-
plained in detail in SGA 5, XV, ��1, 2.

D) The cohomological interpretation of the Z-functions is clearly explained in [1];
however, the Lefschetz formula (1.12) for X a smooth projective curve is used, but not
proved. For the proof, one has to consult SGA 5.

E) The form .2:12/ of Poincare duality follows from the general result SGA 4, XVIII
(3.2.5) (for S D Spec.k/; X D X; K D j�F ; L D Ql ) by a local calculation that is not
difficult. The statement will be explicitly included in the final version of SGA 5. For the
case where we use it (tame ramification of F), we could obtain it by transcendental methods
by lifting X and F to characteristic 0.

3 The main lemma (La majoration fondamentale)

The result of this paragraph was catalyzed by reading Rankin [3].

(3.1) Let U0 be a curve over Fq , complement in P1 of a finite set of closed points, U
the curve over xFq deduced from it, u a closed point of U , F0 a locally constant sheaf on
U0, and F its inverse image on U .

Let ˇ 2 Q. We say that F0 is of weight ˇ if, for all x 2 jU0j, the eigenvalues of Fx
acting on F0 (1.13) are algebraic numbers all of whose complex conjugates are of absolute
value qˇ=2x . For example, Ql.r/ is of weight �2r .
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Theorem (3.2). We make the following hypotheses:
(i) F0 is equipped with a nondegenerate alternating bilinear form

 WF0˝F0!Ql.�ˇ/ .ˇ 2 Z/:

(ii) The image of �1.U;u/ in GL.Fu/ is an open subgroup of the symplectic group
Sp.Fu; u/.

(iii) For all x 2 jU0j, the polynomial det.1�Fxt;F0/ has rational coefficients.
Then F is of weight ˇ.

We may suppose, and we do suppose, that U is affine and that F ¤ 0.

Lemma (3.3). Let 2k be an even integer and denote by
2k
˝F0 the 2k-th tensor power of F0.

For x 2 jU0j, the logarithmic derivative

t
d

dt
log.det.1�Fxtdeg.x/;

2k
˝F0/�1/

is a formal series with positive rational coefficients.

The hypothesis (iii) ensures that, for all n, Tr.F nx ;F0/ 2Q. The number

Tr.F nx ;
2k
˝F0/D T r.F nx ;F0/2k

is a positive rational, and we apply (1.5.3).

Lemma (3.4). The local factors det.1�Fxtdeg.x/;
2k
˝F0/�1 are formal series with positive

rational coefficients.

The formal series log.det.1�Fxtdeg.x/;
2k
˝F0/�1/ has constant term zero; from (3.3)

all the coefficients are � 0; the coefficients of its exponential are therefore also positive.

Lemma (3.5). Let fi D
P
nai;nt

n be a sequence of formal series with constant term 1 and
positive real coefficients. We assume that the order of fi �1 tends to infinity with i ; and we
put f D

Q
i fi . Then the radius of convergence of fi is at least equal to that of f .

If f D
P
nant

n, we have ai;n � an.

Lemma (3.6). Under the hypotheses of (3.5), if f and the fi are Taylor expansions of
meromorphic functions, then

inffjzj jf .z/D1g � inffjzj jfi .z/D1g:

Indeed, these numbers are the radii of absolute convergence.

(3.7) For each partition P of Œ1;2k� into two element sets fi˛;j˛g .i˛ � j˛/, we define

 P W
2k
˝F0!Ql.�kˇ/Wx1˝�� �˝x2k!

Y
˛

 .xi˛ ;xj˛ /:

Let x be a closed point of X . Hypothesis (ii) ensures that the coinvariants of �1.U;u/

on
2k
˝Fu are the coinvariants on

2k
˝Fu of the entire symplectic group (�1 is Zariski-dense
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in Sp). Let P be the set of partitions P . From H.Weil (The classical groups, Princeton
University Press, chap. VI, �1), for a suitable P 0 � P , depending on dim.Fu/, the  P (for
P 2 P 0) define isomorphisms

.
2k
˝Fu/�1 D .

2k
˝Fu/Sp

�
�!Ql.�kˇ/P

0

:

Let N be the number of elements in P 0. According to (2.10) the formula above gives

H 2
c .U;

2k
˝F/'Ql.�kˇ�1/N :

Since H 0
c .U;

2k
˝F/D 0 , the formula (1.14.3) reduces to

Z.U0;
2k
˝F0; t /D

det.1�F �t;H 1.U;
2k
˝F//

.1�qkˇC1t /N
:

This Z-function is therefore the Taylor series expansion of a rational function having only
one pole at t D 1=qkˇC1. We will only use the fact that the poles are of absolute value
t D 1=qkˇC1 in C. This could be concluded from general arguments on reductive groups.

If ˛ is an eigenvalue of Fx on F0, then ˛2k is an eigenvalue of Fx on
2k
˝F0. We now let

˛ be any complex conjugate of ˛. The inverse power 1=˛2k=deg.x/ is a pole of det.1�

Fxt
deg.x/;

2k
˝F/�1. After (3.4) and (3.6) we therefore have

j1=qkˇC1j � j1=˛2k=deg.x/
j;

or
j˛j � q

ˇ
2
C 1
2k

x :

Letting k tend to infinity, we find that

j˛j � q
ˇ
2
x :

On the other hand, the existence of  ensures that qˇx ˛�1 is also an eigenvalue, so we have
the inequality

jqˇx ˛
�1
j � qˇ=2x ;

or
qˇ=2x � j˛j:

This completes the proof.

Corollary (3.8). Let ˛ be an eigenvalue of F � acting onH 1
c .U;F/. Then ˛ is an algebraic

number all of whose complex conjugates satisfy

j˛j � q
ˇC1
2
C 1
2 :

The formula (1.14.3) for F0 reduces to

Z.U0;F ; t /D det.1�F �t;H 1
c .U;F//:
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The term on the left is a formal series with rational coefficients, in view of its representation
as a product and hypothesis (iii). The term on the right is therefore a polynomial with
rational coefficients; 1=˛ is a root. This already implies that ˛ is algebraic. To complete the
proof, it suffices to show that the infinite product definingZ.U0;F0; t / converges absolutely
(and thus is nonzero) for jt j< q

�ˇ
2
�1.

Let N be the rank of F , and put

det.1�Fxt;F/D
NY
iD1

.1�˛i;xt /:

According to (3.2), j˛i;xj D q
ˇ=2
x . The convergence of the infinite product for Z follows

from that of the series X
i;x

j˛i;xt
deg.x/

j:

For jt j D q
�ˇ
2
�1�" ." > 0/, we haveX

i;x

j˛i;xt
deg.x/

j DN
X
x

q�1�"x :

On the affine line, there are qn points with coordinate in Fqn , so there are at most qn closed
points of degree n. We have thereforeX

x

q�1�"x �

X
n

qnqn.�1�"/ D
X
n

q�n" <1;

which completes the proof.

Corollary (3.9). Let j0 be the inclusion of U0 in P1Fq , j that of U into P1, and ˛ an
eigenvalue of F � acting on H 1.P1;j�F/. Then ˛ is an algebraic number all of whose
complex conjugates satisfy

q
ˇC1
2
� 1
2 � j˛j � q

ˇC1
2
C 1
2 :

A segment of the long exact sequence in cohomology defined by the short exact se-
quence

0! jŠF ! j�F ! j�F=jŠF ! 0

(jŠ is extension by 0) can be written

H 1
c .U;F/!H 1.P;j�F/! 0:

Therefore, the eigenvalue ˛ already appears in H 1
c .U;F/, and so by (3.8) we have:

j˛j � q
ˇC1
2
C 1
2 :

Poincare duality (2.12) implies that qˇC1˛�1 is an eigenvalue, so we have the inequality

jqˇC1˛�1j � q
ˇC1
2
C 1
2

and the corollary is proved.
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4 Lefschetz theory: local theory

(4.1) Over C, the local Lefshietz results are the following.
Let D D fzj jzj < 1g be the unit disk, D� DD�f0g, and f WX !D a morphism of

analytic spaces. We suppose that
a) X is nonsingular and purely of dimension nC1;
b) f is proper;
c) f is smooth outside the point x of the special fiber X0 D f �1.0/;
d) at x, f has a nondegenerate double point.
Let t ¤ 0 be a point of D and Xt D f �1.t/ “the” general fiber. With the previous data

we associate:
˛) a specialization morphisms spWH i .X0;Z/!H i .Xt ;Z/: X0 is a deformation retract

of X and sp is the composite arrow

H i .X0;Z/ � �H i .X;Z/!H i .Xt ;Z/

ˇ) the monodromy transformations T WH i .Xt ;Z/! H i .Xt ;Z/, which describe the
effect on the singular cycles of Xt of “rotating t around 0”. This is even an action on
H i .Xt ;Z/, the stalk at t of the local system Rif�ZjD�, of the positive generator of
�1.D

�; t /.
Lefschetz theory describes ˛) and ˇ) in terms of the vanishing cycle ı 2 Hn.Xt ;Z/.

This cycle is well-defined up to sign. For i ¤ n; nC1 we have

H i .X0;Z/ ��!H i .Xt ;Z/ .i ¤ n; nC1/:

For i D n; nC1, we have an exact sequence

0!Hn.X0;Z/!Hn.Xt ;Z/
x 7!.x;ı/
������! Z!HnC1.X0;Z/!HnC1.Xt ;Z/! 0:

For i ¤ n, the monodromy T is the identity. For i D n, we have

T x D x˙ .x;ı/ı:

The values of˙, T ı and .ı;ı/ are as follows:

n mod 4 0 1 2 3
T x D x˙ .x;ı/ı � � C C

.ı;ı/ 2 0 �2 0

T ı �ı ı �ı ı

The monodromy transformation preserves the intersection form Tr.x[y/ on Hn.Xt ;Z/.
For n odd, it is the symplectic transvection. For n even, it is an orthogonal symmetry.

(4.2) Here is the analog of (4.1) in abstract algebraic geometry. The disk D is replaced
by the spectrum of a henselian discrete valuation ring A with algebraically closed residue
field. Let S be its spectrum, � its generic point (spectrum of the field of fractions of A), s
the closed point (spectrum of the residue field). The role of t is played by the geometric
generic point x� (spectrum of the algebraic closure of the field of fractions of A).

Let f WX ! S be a proper morphism, with X regular purely of dimension nC 1. We
suppose that f is smooth except for an ordinary double point x in the special fiber Xs . Let
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l be a prime number different from the residue characteristic p of S . Denoting by Xx� the
geometric generic fiber, we have a specialization morphism

(4.2.1) spWH i .Xs;Ql/ � �H i .X;Ql/!H i .Xx�;Ql/

The role of T is played by the action of the inertia group I D Gal.x�=�/ on H i .Xx�;Ql/ by
transport of structure (see (1.15)):

(4.2.2) I D Gal.x�=�/! GL.H i .Xx�;Ql//

The data (4.2.1), (4.2.2) fully determine the sheaf Rif�Ql on S .

(4.3) Put nD 2m for n even and nD 2mC1 for n odd. (4.2.1) and (4.2.2) can still be
described in terms of the vanishing cycle

(4.3.1) ı 2Hn.Xx�;Ql/.m/:

This cycle is well-defined up to sign.
For i ¤ n; nC1, we have

(4.3.2) H i .Xs;Ql/ ��!H i .Xx�;Ql/ .i ¤ n; nC1/:

For i D n; nC1, we have an exact sequence
(4.3.3)

0!Hn.Xs;Ql/!Hn.Xx�;Ql/
x 7!Tr.x[ı/
��������!Ql.m�n/!HnC1.Xs;Ql/!HnC1.Xx�;Ql/!0

The action (4.2.2) of I (local monodromy) is trivial for i ¤ n. For i D n, it is described
as follows.

A) n odd. - We have a canonical homomorphism

tl WI ! Zl.1/;

and the action of � 2 I is
x! x˙ tl.�/.x;ı/ı:

B) n even. - We will not need this case. We just say that, if p ¤ 2, there exists a unique
character of order two

"WI ! f˙1g;

and that we have

�x D x if ".�/D 1

�x D x˙ .x;ı/ı if ".�/D�1.

The signs˙ in A) and B) are the same as in (4.1).

(4.4) These results furnish the following information about Rif�Ql .
a) If ı ¤ 0:

1) For i ¤ n, the sheaf Rif�Ql is constant.
2) Let j be the inclusion of � into S . We have

Rif�Ql D j�j �Rif�Ql :
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b) If ı D 0: (This is the exceptional case. Since .ı;ı/D˙2 for n even, it can happen
only for n odd.)

1) For i ¤ nC1, the sheaf Rif�Ql is constant.
2) Let Ql.m�n/s be the sheaf Ql.m�n/ on fsg, extended by zero on S . Then we

have an exact sequence

0!Ql.m�n/s!RnC1f�Ql ! j�j
�RnC1f�Ql ! 0;

where j�j �RnC1f�Ql is a constant sheaf.

5 Lefschetz theory: global theory

(5.1) Over C, the results of Lefschetz are the followsing. Let P be a projective space of
dimension � 1 and {P the dual projective space; its points parametrize the hyperplanes of
P and we denote by Ht the hyperplane defined by t 2 {P. If A is a linear subspace of
codimension 2 in P, the hyperplanes containing A are parameterized by points of a line
D � {P, the dual of A. These hyperplanes .Ht /t2D form the pencil with axis A.

Let X � P be a connected nonsingular projective variety of dimension nC1. Let zX �
X �D be the set of pairs .x; t/ such that x 2Ht . The projections to the first and second
coordinates form a diagram

(5.1.1)
X zX

D

�

f

The fiber of f at t 2D is the hyperplane section Xt DX \Ht of X .
Fix X , and take A sufficiently general. Then:
A) A is transverse to X and zX is the blowing up of X along A\X . In particular, zX is

nonsingular.
B) There exists a finite subset S of D and, for each s 2 S , a point xs 2 Xs such that f

is smooth outside xs .
C) The xs are nondegenerate critical points of f .
Therefore, for each s 2 S , local Lefschetz theory (4.1) applies to a small diskDs around

s and to f �1.Ds/.

(5.2) Let U D D�S . Let u 2 U , and choose disjoint loops .
s/s2S starting from u,
with 
s turning once around s:
These loops generate the fundamental group �1.U;u/. This group acts on H i .Xu;Z/, the
stalk at u of the local system Rif�ZjU . According to the local theory (4.1), to each s 2 S
corresponds a vanishing cycle ıs 2 Hn.Xu;Z/; these cycles depend on the choice of the

s . For i ¤ n, the action of �1.U;u/ on H i .Xu;Z/ is trivial. For i D n, we have

(5.2.1) 
sx D x˙ .x;ıs/ıs

Let E be the subspace of Hn.Xu;Q/ generated by the ıs (vanishing part of the coho-
mology).

Proposition (5.3). E is stable under the action of the monodromy group �1.U;u/. The
orthogonal complement E? of E (for the intersection form Tr.x[y/) is the subspace of
invariants of the monodromy in Hn.Xu;Q/.
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The 
s generate the monodromy group, so this is clear from (5.2.1).

Theorem (5.4). The vanishing cycles˙ıs (taken up to sign) are conjugate under the action
of �1.U;u/.

Let {X � {P be the dual variety of X ; it is the set of t 2 {P such that Ht is tangent to X ,
i.e., such that Xt is singular or X �Ht . The variety {X is irreducible. Let Y � X � {P be
the space of pairs .x; t/ such that x 2Ht . We have a diagram

X Y

{P

g

The fiber of g at t 2 {P is the hyperplane section Xt DX \Ht of X , and g is smooth on the
complement of the inverse image of {X .

We recover the situation of (5.1) by replacing {P with the lineD� {P and Y with g�1.D/.
We have S DD\ {X . According to a theorem of Lefschetz, for D sufficiently general, the
map

�1.D�S;u/! �1.{P� {X;u/

is surjective. It suffices to show that the˙ıs are conjugate under �1.{P� {X/.
For x in the smooth locus of codimension 1 of {X , let ch be the path from t to x in

{P� {X and 
x the loop that follows ch until the neighborhood of {X , turns once around {X ,
and then returns to t by ch. The loops 
x (for various ch) are mutually conjugate. Since
{X is irreducible, two points in the smooth locus of {X can always be joined, in {X , by a

path that does not leave the smooth locus. It follows that the conjugacy class of 
x does
not depend on x. In particular, the 
s are mutually conjugate. We see from (5.2.1) that this
implies the conjugacy of˙ıs .

Corollary (5.5). The action of �1.U;u/ on E=.E\E?/ is absolutely irreducible.

Let F � E˝C be a subspace stable under the monodromy. If F 6� .E \E?/˝C,
there exists an x 2 F and an s 2 S such that .x;ıs/¤ 0. We then have


sx�x D˙.x;ıs/ıs 2 F;

and ıs 2 F . According to (5.4), all the ıs are then in F and F DE. This proves (5.5).

(5.6) These results transpose as follows into abstract algebraic geometry. Let P be a
projective space of dimension > 1 over an algebraically closed field k of characteristic p
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and X � P a connected projective nonsingular variety of dimension nC 1. For A a linear
subspace of codimension 2 we define D, the pencil .Ht /t2D , zX , and the diagram (5.1.1)
as in (5.1). We say that the .Ht /t2D form a Lefschetz pencil of hyperplane sections if the
following conditions are satisfied:

A) The axis A is transverse to X . The variety zX is then obtained from X by blowing
up along A\X , and it is smooth.

B) There is a finite subset S of D and, for each s 2 S , a point xs 2 Xs such that f is
smooth outside xs .

C) xs is an ordinary quadratic singular point of Xs .
For each s 2 S , the local Lefschetz theory of �4 applies to the spectrum Ds of the

henselization of the local ring of D at s and to zXDs D zX �DDs .

(5.7) Let N be the dimension of P, r an integer � 1, and �.r/ the embedding of P into
the projective space of dimension

�
NCr
N

�
� 1, the homogeneous coordinates of which are

the monomials of degree r in the homogeneous coordinates of P. The hyperplane sections
of �.r/.P/ are the hypersurfaces of degree r of P.

For p ¤ 0 it might happen that there is no such pencil of hyperplane sections of X
that is Lefschetz. However, if r � 2 and we replace the projective embedding �1WX ,�! P
by �r D �.r/ ı �1, then, in this new embedding, any general enough pencil of hypersurface
sections of degree r on X is always Lefschetz.

(5.8) For the rest of this discussion, we will study the Lefschetz pencil of hyperplane
sections ofX , excluding the case pD 2, n even. The case where n is odd will suffice for our
purposes. We put U DD�S . Take u 2 U and l a prime number¤ p. The local results of
�4 show that Rnf�Ql is tamely ramified at each s 2 S . The tame fundamental group of U
is a quotient of the profinite completion of the corresponding transcendental fundamental
group (lifting to characteristic 0 of the tame coverings and the Riemann existence theorem).
The algebraic situation is therefore very similar to the transcendental situation, and the
transfer of Lefschetz’s results can be done by standard arguments. In the proof of (5.4),
the theorem of Lefschetz for �1 is replaced by the theorem of Bertini, and we have to
invoke Abhyankar’s lemma to control the ramification of R�g�Ql along the smooth locus
of codimension one in {X .

The results are as follows:
a) If the vanishing cycles are nonzero:

1) For i ¤ n, the sheaf Rif�Ql is constant.
2) Let j be the inclusion of U in D. We have

Rnf�Ql D j�j �Rnf�Ql :

3) Let E � Hn.Xu;Ql/ be the subspace of the cohomology generated by the van-
ishing cycles. This subspace is stable under �1.U;u/ and

E? DHn.Xu;Ql/�.U;u/:

The representation of �1.U;u/ on E=.E \E?/ is absolutely irreducible and the image of
�1 in GL.E=.E\E?// is generated (topologically) by the maps x 7! x˙.x;ıs/ıs .s 2 S/

(the˙ sign is determined as in (4.1)).
b) If the vanishing cycles are zero: (This is an exceptional case. Since .ı;ı/D˙2 for

n even, it can only happen for n odd: nD 2mC1. Note that if one vanishing cycle is zero,
they all are, because of conjugacy.)
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1) For i ¤ nC1, the sheaf Rif�Ql is constant.
2) We have an exact sequence

0! ˚
s2S

Ql.m�n/s!RnC1f�Ql ! F ! 0

with F constant.
3) E D 0.

(5.9) The subspace E\E? of E is the kernel of the restriction to E of the intersection
form Tr.x[y/. Therefore, this form induces a bilinear nondegenerate form

 WE=.E\E?/˝E=.E\E?/!Ql.�n/;

skew-symmetric for n odd and symmetric for n even. This form is preserved by the mon-
odromy; for n odd, therefore, the monodromy representation induces

�W�1.U;u/! Sp.E=.E\E?/; /:

Theorem (5.10) (Kajdan-Margulis). The image of � is open.

The image of � is a compact, hence analytic l-adic, subgroup of Sp.E=.E \E?/; /.
It suffices to show that its Lie algebra L equals sp.E=.E \E?/; /. The transcendental
analog of this Lie algebra is the Lie algebra of the Zariski closure of the monodromy group.

We deduce from (5.8) that L is generated by transformations with square zero

NsWx 7! .x;ıs/ıs .s 2 S/

and that E=.E\E?/ is an absolutely irreducible representation of L. The theorem follows
from the next lemma.

Lemma (5.11). Let V be a finite dimensional vector space over a field k of characteristic
zero, and a nondegenerate skew-symmetric form on a Lie subalgebra L of the Lie algebra
sp.V;�/. We suppose that:

(i) V is a simple representation of L.
(ii) L is generated by the family of endomorphisms of V of the form x 7!  .x;ı/ı.

Then LD sp.V; /.

We may, and do, assume that V , therefore L, is nonzero. LetW � V be the set of ı 2 V
such that N.ı/ W x 7!  .x;ı/ı is in L.

a) W is stable under homotheties (because L is a vector subspace of gl.V /).
b) If ı 2W , exp.�N.ı// is an automorphism of .V; ;L/, and therefore transforms W

to itself. If ı0; ı00 2W , we therefore have

exp.�N.ı0//ı00 D ı00C� .ı00; ı0/ı0 2W I

if  .ı0; ı00/¤ 0, then the vector subspace spanned by ı0 and ı00 lies in W .
c) It follows that W is the union of its maximal linear subspaces W˛, and that they are

pairwise orthogonal. Each W˛ is therefore stable under the N.ı/ .ı 2 W /, so it is stable
under L. By hypothesis (i), W˛ D V and L contains all N.ı/ for ı 2 V . We conclude by
noting that Lie algebra sp.V; / is generated by the N.ı/, .ı 2 V /.
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Remark (5.12) (not necessary for what follows). — It is now easy to prove (1.6) for a
hypersurface of odd dimension n in PnC1Fq .

Let X0 be such a hypersurface and xX0 the hypersurface over xFq deduced from X0 by
extension of scalars. We have

H i . xX0;Ql/DQl.�i/ .0� i � n/I

H i . xX0;Ql.i// is generated by the i -th cup power of �, the cohomology class c1.O.1// of
a hyperplane section. Therefore, we have

Z.X0; t /D
det.1�F �t;Hn. xX0;Ql/Qn

iD0.1�q
i t /

and det.1�F �t;Hn. xX0;Ql/ is a polynomial with integer coefficients independent of l .
We letX0 vary in a Lefschetz pencil of hypersurfaces defined over Fq (see (5.7) forX D

PnC1; the existence of such a pencil is not clear; if we wanted to complete the argument
sketched here, we would have to use the arguments that will be given in (7.1). One checks
that E coincides here with the whole Hn, and (3.2) proves the Weil conjecture for all the
hypersurfaces of the pencil, in particular for X0.

(5.13) Bibliographical notes for ��4 and 5.
A) The results of Lefschetz (4.1) and (5.1) to (5.5) are contained in his book [2]. For

the local theory (4.1), it may be more convenient to consult SGA 7, XIV (3.2).
B) The results of �4 are proved in Exposés XIII, XIV, and XV of SGA 7.
C) (5.7) is proved in SGA 7, XVII.
D) (5.8) is proved in SGA 7, XVIII. The irreducibility theorem is proved there for

E, but only under the hypothesis that E \E? D f0g. The proof of the general case (for
E=.E\E?/) is similar.

6 The rationality theorem

(6.1) Let P0 be a projective space of dimension � 1 over Fq , X0 � P0 a projective nonsin-
gular variety, A0 � P0 a linear subspace of codimension two,D0 � {P0 the dual line, xFq the
algebraic closure of Fq , and P;X;A;D the varieties over xFq obtained from P0;X0;A0;D0
by extension of scalars. The diagram (5.1.1) from (5.6) comes from a similar diagram over
Fq:

(6.1.1)
X0 zX0

D0

�0

f0

We suppose that X is connected of even dimension nC1D 2mC2 and that the pencil
of hyperplane sections of X defined by D is a Lefschetz pencil. The set S of t 2D such
that Xt is singular and defined over Fq comes from S0 �D0. We put U0 DD0�S0 and
U DD�S .

Let u 2 U . The vanishing part of the cohomology E � Hn.Xu;Ql/ is stable under
�1.U;u/, so it is defined over U by a local subsystem E of Rnf�Ql . The latter is defined
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over Fq: Rif�Ql is the inverse image of the Ql -sheaf Rif0�Ql on D0 and, on U , E is the
inverse image of a local subsystem

E0 �Rnf0�Ql :

Cup product is a skew-symmetric form

 WRnf0�Ql˝Rnf0�Ql !Ql.�n/:

Denoting by E?0 the orthogonal complement of E0 relative to  on Rnf0�Ql jU0, we see
that  induces a a perfect pairing

 WE0=.E0\E?0 /˝E0=.E0\E?0 /!Ql.�n/:

Theorem (6.2). For all x 2 jU0j, the polynomial det.1�F �x t;E0=.E0\E?0 // has rational
coefficients.

Corollary (6.3). Let j0 be the inclusion of U0 in D0 and j that of U in D. The eigenval-
ues of F � acting on H 1.D;j�E0=.E0\E?0 // are algebraic numbers all of whose complex
conjugates ˛ satisfy

q
nC1
2
� 1
2 � j˛j � q

nC1
2
C 1
2 :

After (5.10) and (6.2), the hypotheses of (3.2) are indeed satisfied for

.U0;E0=.E0\E?0 /; /

for ˇ D n, and we can apply (3.9).

Lemma (6.4). Let G0 be a locally constant Ql -sheaf on U0 such that its inverse image G on
U is a constant sheaf. Then there exist units ˛i in xQl such that for each x 2 jU0j we have

det.1�F �x t;G0/D
Y
i

.1�˛
deg.x/
i t /:

The lemma expresses the fact that G0 is the inverse image of a sheaf on Spec.Fq/,
namely, its direct image on Spec.Fq/ . The latter can be identified with an l-adic represen-
tation G0 of Gal.xFq=Fq/, and we have

det.1�F t;G0/D
Y
i

.1�˛i t /:

Lemma (6.4) applies to Rif0�Ql , .i ¤ n/, to Rnf0�Ql=E0, and to E0\E?0 .
For x 2 jU0j, the fiberXx D f �10 .x/ is a variety over the finite field k.x/. If xx is a point

of U above x, Xxx is obtained from Xx by extension of scalars from k.x/ to the algebraic
closure k.xx/D xFq andH i .Xxx;Ql/ is the stalk of Rif�Ql at xx. The formula (1.5.4) for the
variety Xx over k.x/ can therefore be written

Z.Xx; t /D
Y
i

det.1�F �x t;R
if0�Ql/.�1/

iC1

and Z.Xx; t / is the product of

Zf D det.1�F �x t;R
nf0�Ql=E0/ �det.1�F �x t;E0\E?0 / �

Y
i¤n

det.1�F �x t;R
if0�Ql/.�1/

iC1
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with
Zm D det.1�F �x t;E0=.E0\E?0 /:

Put F0 D E0=.E0\ E?0 / and F D E=.E \ E?/, and apply (6.4) to the factors of Zf . We
find that there exist l-adic units ˛i .1� i �N/ and ǰ .1� j �M/ in xQl such that for all
x 2 jU0j,

Z.Xx; t /D

Q
i .1�˛

deg.x/
i t /Q

j .1�ˇ
deg.x/
j t /

�det.1�F �x t;F0/;

and in particular the term on the right is in Q.t/. If some ˛i coincides with a ǰ , we can
simultaneously delete ˛i from the family of ˛ and ǰ from the family of ˇ. Therefore, we
may and do suppose that ˛i ¤ ǰ for all i and all j .

(6.5) It suffices to prove that the polynomials
Q
i .1�˛i t / and

Q
j .1� ǰ t / have rational

coefficients, i.e., that the family of ˛i (resp. the family of ǰ ) is defined over Q. We will
deduce this from the following propositions.

Proposition (6.6). Let .
i /1�i�P and .ıj /1�j�Q be two families of l-adic units in xQl .
Suppose that 
i ¤ ıj . If K is a sufficiently large finite set of integers ¤ 1, and L is a
sufficiently large nowhere dense subset of jU0j, then, if x 2 jU0j satisfies k − deg.x/ (for all
k 2K) and x … L, the denominator of the fraction,

(6.6.1)
det.1�F �x t;F0/ �

Q
i .1�


deg.x/
i t /Q

j .1� ı
deg.x/
j t /

;

written in irreducible form, is
Q
j .1� ı

deg.x/
j t /.

The proof will be given in (6.10-13). According to (6.7) below, (6.6) provides an in-
trinsic description of the family of ıj in terms of the family of rational fractions (6.6.1) for
x 2 jU0j.

Lemma (6.7). Let K be a finite set of integers ¤ 1 and .ıj /1�j�Q and ."j /1�j�Q two
families of elements of a field. If, for all sufficiently large n not divisible by any of the
k 2 K, the family .ınj / coincides with the family ."nj / (up to order), then the family .ıj /
coincides with the family ."j / (up to order).

We proceed by induction onQ. The set of integers n such that ınQ D "
n
j is an ideal .nj /.

We prove that there exists a j0 such that ıQ D "j0 . Otherwise the nj would be distinct from
1 and there would be arbitrarily large integers n, not divisible by any of the nj nor by any
of the k 2K. We would have ınQ ¤ "

n
j and this contradicts the hypothesis. So there exists

a j0 such that ıQ D "j0 .We conclude by applying the induction hypothesis to the families
.ıj /j¤Q and ."j /j¤j0 .

Proposition (6.8). Let .
i /1�i�P and .ıj /1�j�Q be two families of p-adic units in xQl ,
R.t/ D

Q
i .1� 
i t /, and S.t/ D

Q
j .1� ıj t /. Suppose that for all x 2 jU0j, the productQ

j .1� ı
deg.x/
j t / divides Y

i

.1�

deg.x/
i t / �det.1�F �x t;F0/:

Then S.t/ divides R.t/.
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Remove from the families .
i / and .ıj / pairs of common elements until they satisfy the
hypothesis of (6.6). Apply (6.6). By hypothesis, the rational fractions (6.6.1) are polyno-
mials. Therefore, no ı survives, which means that S.t/ divides R.t/.

(6.9) We prove (6.5) and (6.2) (modulo (6.6)). Put .
i /D .˛i / and .ıi /D .ˇi / in (6.6).
We get an intrinsic characterization of the family of ǰ in terms of the family of rational
functions Z.Xx; t / .x 2 jU0j/. These being in Q.t/, the family of ǰ is defined over Q.

The polynomials
Q
i .1�˛

deg.x/
j t / �det.1�F �x t;F0/ are therefore in QŒt �. Proposition

(6.8) provides an intrinsic description of the family of ˛i in terms of this family of polyno-
mials. The family of ˛i is thus defined over Q.

(6.10) Preliminaries.— Let u2U , and let Fu be the stalk of F at u. The arithmetic fun-
damental group �1.U0;u/, the extension of yZD Gal.xF=F/ (generator: ') by the geometric
fundamental group �1.U;u/, acts on Fu by symplectic similitudes

�W�1.U0;u/! CSp.Fu; /:

We denote by �.g/ the multiplier of the symplectic similitude g. Let

H � yZ�C Sp.Fu; /

be the subgroup defined by the equation

q�n D �.g/

(q being an l-adic unit, qn 2 Q�
l

is defined for all n 2 yZ). The fact that  has values in
Ql.�n/ can be expressed by saying that the map from �1 to yZ�CSp, with coordinates the
canonical projection to yZ and �, factors through

�1W�1.U0;u/!H:

Lemma (6.11). The image H1 of �1 is open in H .

Indeed, �1.U0;u/ projects onto yZ, and the image of �1.U;u/D Ker.�1.U0;u/! yZ/
in Sp.Fu; /D Ker.H ! yZ/ is open (5.10).

Lemma (6.12). For ı 2 xQl an l-adic unit, the set Z of .n;g/ 2 H1 such that ın is an
eigenvalue of g is closed of measure 0..

It is clear that Z is closed. For each n 2 yZ, let CSpn be the set of g 2 CSp.Fu; /
such that �.g/D q�n and let Zn be the set of g 2 CSpn such that ın is an eigenvalue of g.
Then CSpn is a homogeneous space for Sp and one can check that Zn is a proper algebraic
subspace, thus, of measure 0. After (6.11),H1\ .fng�Zn/ is therefore of measure 0 in the
inverse image in H1 of n and we can apply Fubini to the projection H1! yZ.

(6.13) Let us prove (6.6). For each i and j , the set of integers n such that 
ni D ı
n
j is the

set of multiples of a fixed integer nij (we do not exclude nij D 0). By hypothesis, nij ¤ 1.
After (6.12) and the Chebotarev density theorem, the set of x 2 jU0j such that ˇdeg.x/

j

is an eigenvalue of F �x acting on F0 is nowhere dense. We take for K the set of nij and for
L the set of x as above.
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7 Completion of the proof of (1.7)

Lemma (7.1). Let X0 be an absolutely irreducible nonsingular projective variety of even
dimension d over Fq . Let X over xFq be obtained from X0 by extension of scalars, and let
˛ an eigenvalue of F � acting on Hd .X;Ql/. Then ˛ is an algebraic number, all of whose
complex conjugates, again denoted by ˛, satisfy

(7.1.1) q
d
2
� 1
2 � j˛j � q

d
2
C 1
2

We proceed by induction on d (always assumed even). The case d D 0 is trivial even
without assuming that X0 is absolutely irreducible; we assume from now on d � 2. We put
d D nC1D 2mC2.

If Fqr is an extension of degree r of Fq and X 00=Fqr is obtained from X0=Fq by exten-
sion of scalars, the statement (7.1) for X0=Fq is equivalent to (7.1) for X 00=Fqr ; in the same
way as q is replaced by qr , the eigenvalues of F � are replaced by their r-th powers.

According to (5.7), in a suitable projective embedding i WX ! P, X admits a Lefschetz
pencil of hyperplane sections. The preceding remark allows us to assume that the pencil is
defined over Fq (once we replace Fq by a finite extension).

Suppose therefore that there exists a projective embedding X0 ! P0 and a subspace
A0 � P0 of codimension two defining the Lefschetz pencil. We recall the notation of (6.1)
and (6.3). A new extension of scalars allows us to assume that:

a) The points of S are defined over Fq .
b) The vanishing cycles for xs .s 2 S/ are defined over Fq (since only ˙ı is intrinsic,

they can only be defined over quadratic extensions).
c) There exists a rational point u0 2 U0. We take the corresponding point u of U as the

base point.
d) Xu0 D f

�1
0 .u0/ admits a smooth hyperplane section Y0 defined over Fq . We let

Y D Y0˝Fq
xFq .

Since zX is obtained from X by blowing up along a smooth subvariety A\X of dimen-
sion two, we have

H i .X;Ql/ ,�!H i . zX;Ql/

(in fact, H i . zX;Ql/DH i .X;Ql/˚H i�2.A\X;Ql/.�1//. It suffices to prove (7.1.1) for
the eigenvalues ˛ of F � acting on Hd . zX;Ql/.

The Leray spectral sequence for f is

E
pq
2 DH

p.D;Rqf�Ql/)HpCq. zX;Ql/:

It suffices to prove (7.1.1) for the eigenvalues of F � acting on Epq2 for pCq D d D nC1.
They are:

A) E2;n�12 . According to (5.8), Rn�1f�Ql is constant. From (2.10) we have

E
2;n�1
2 DHn�1.Xu;Ql/.�1/:

Applying the weak Lefschetz theorem (corollary of SGA 4, XIV (3.2)) and Poincare duality
(SGA 4, XVIII), we have

Hn�1.Xu;Ql/.�1/ ,�!Hn�1.Y;Ql/.�1/

and we apply the induction hypothesis to Y0.
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B) E0;nC12 . If the vanishing cycles are nonzero, RnC1f�Ql is constant and

E
0;nC1
2 DHnC1.Xu;Ql/:

The Gysin map
Hn�1.Y;Ql/.�1/!HnC1.Xu;Ql/

is surjective (by an argument dual to that of A)) and we apply the induction hypothesis to
Y0.

If the vanishing cycles are zero, the exact sequence of (5.8) b) gives the following exact
sequence M

s2S

Ql.m�n/!E
0;nC1
2 !HnC1.Xu;Ql/:

The eigenvalues of F acting on Ql.m�n/ are qd=2, and for HnC1 everything is as above.
C) E1;n2 . If we had the “hard” Lefschetz theorem, we would know that E \E? is zero

and that Rnf�Ql is the direct sum of j�E and a constant sheaf. TheH 1 of a constant sheaf
on P1 is zero and it would suffice to apply (6.3).

Since we have not proved the “hard” Lefshetz theorem yet, we will have to figure a way
out (literally: unscrew). If the vanishing cycles are zero, Rnf�Ql is constant ((5.8) b)) and
E
1;n
2 D 0. Therefore we may and do assume that the vanishing cycles are nonzero. Filter

Rnf�Ql D j�j �Rnf�Ql (5.8) by the subsheafs j�E and j�.E \ E?/. If the vanishing
cycles ı are not in E \E?, then we have exact sequences:

0! j�E!Rnf�Ql ! constant sheaf! 0;(7.1.2)

0! constant sheaf j�.E \E?/! j�E! j�.E=.E \E?//! 0:(7.1.3)

If, God forbid, the ı are in E \E?, then E � E? and we have exact sequences:

0! the constant sheaf j�E?!Rnf�Ql ! a sheaf F ! 0(7.1.4)

0! F ! the constant sheaf j�j �F ! ˚
s2S

Ql.n�m/s! 0(7.1.5)

In the first case the long exact sequences in cohomology give

H 1.D;j�E/!H 1.D;Rnf�Ql/! 0(7.1.20)

0!H 1.D;j�E/!H 1.D;j�.E=.E \E?///(7.1.30)

and we apply (6.3).
In the second case, they give

0!H 1.D;Rnf�Ql/!H 1.D;F/(7.1.40) M
s2S

Ql.n�m/!H 1.D;F/! 0(7.1.50)

and we remark that F acts on Ql.n�m/ by multiplication by qd=2.

Lemma (7.2). LetX0 be an absolutely irreducible nonsingular projective variety of dimen-
sion d over Fq . Let X over xFq be obtained from X0 by extension of scalars and let ˛ be
an eigenvalue of F � acting on Hd .X;Ql/. Then ˛ is an algebraic number all of whose
complex conjugates, still denoted ˛, satisfy

j˛j D q
d
2 :
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We first prove that (7.2)) (1.7). For X0 projective nonsingular over xFq we have to
prove the following statements:

W.X0; i/. Let X be obtained from X0 by extension of scalars from Fq to xFq . If ˛ is an
eigenvalue of F � acting onH i .X;Ql/, then ˛ is an algebraic number all of which complex
conjugates, again denoted ˛, satisfy j˛j D qi=2.

a) If Fqn is an an extension of degree n of Fq and X 00=Fqn is obtained from X0=Fq
by extension of scalars, then W.X0; i/ is equivalent to W.X 00; i/: the extension of scalars
replaces ˛ by ˛n and q by qn.

b) If X0 is purely of dimension n,W.X0; i/ is equivalent toW.X0;2n� i/; this follows
from Poincare duality.

c) If X0 is a sum of the varieties X˛0 , then W.X0; i/ is equivalent to the conjunction of
the W.X˛0 ; i/.

d) If X0 is purely of dimension n, Y0 is a smooth hyperplane section of X0, and i < n,
then W.Y0; i/)W.X0; i/: this follows from the weak Lefschetz theorem.

To prove the statements W.X0; i/ we move in succession:
— by c), we may suppose that X0 is purely of dimension n;
— by b), we may also suppose that 0� i � n;
— by a) and d), we may also suppose that i D n;
— by a) and c), we may also suppose that X0 is absolutely irreducible.

This case satisfies the hypotheses of (7.2).

(7.3) We prove (7.2). For every integer k, ˛k is an eigenvalue ofF � acting onHkd .Xk;Ql/
(Künneth formula). For k even, Xk satisfies the conditions of (7.1), so we have

q
kd
2
� 1
2 � j˛kj � q

kd
2
C 1
2

and
q
d
2
� 1
2k � j˛j � q

d
2
C 1
2k :

Letting k go to infinity, we establish (7.2).

8 First applications

Theorem (8.1). Let X0 � PnCr0 be a nonsingular complete intersection over Fq of dimen-
sion n and multidegree .d1; � � �dr/. Let b0 be the n-th Betti number of a complex nonsingular
complete intersection with the same dimension and multidegree. Put b D b0 for n odd and
b D b0�1 for n even. Then

j#X0.Fq/�#Pn.Fq/j � bqn=2:

Let X=xFq be obtained from X0, and let Ql ��i be the line in H 2n.X;Ql/ generated by
the i -th cup power of the cohomology class of the hyperplane section. On this line F � acts
by multiplication by qi . The cohomology of X is the direct sum of the Ql�i .0 � i � n/
and the primitive part of Hn.X;Ql/ of dimension b. According to (1.5), therefore, there
exist b algebraic numbers j̨ , the eigenvalues of F � acting on this primitive cohomology,
such that

#X0.Fq/D
nX
iD0

qi C .�1/n
X
j

j̨ :
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According to (1.7), j j̨ j D qn=2 and

j#X0.Fq/�#Pn.Fq/j D j#X0.Fq/�
nX
iD0

qi j D j
X
j

j̨ j �

X
j

j j̨ j D bq
n=2:

Theorem (8.2). Let N be an integer � 1, "W.Z=N/�! C� a character, k an integer � 2,
and f a holomorphic modular form on �0.N / of weight k and with character ": f is a
holomorphic function on the Poincare half-plane X such that for

�
a b
c d

�
2 SL.2;Z/; with

c � 0 .N / we have

f

�
azCb

czCd

�
D ".a/�1.czCd/kf .z/:

We suppose that f is cuspidal and primitive (”new” in the sense of Atkin-Lehner and
Miyake), in particular an eigenvector of the Hecke operators Tp .p −N/. Let f D

P1
nD1anq

n

with q D e2�iz (and a1 D 1). Then for p prime not dividing N

japj � 2p
k�1
2 :

In other words, the roots of the equation

T 2�apT C ".p/p
k�1

are of absolute value p
k�1
2 .

These roots are indeed the eigenvalues of the Frobenius map acting on the Hk�1 of a
nonsingular projective variety of dimension k�1 defined over Fp.

Under restrictive assumptions, this fact is proved in my Bourbaki exposé (Formes mod-
ulaires et représentations l-adiques, exposé 355, February 1969, in: Lecture Notes in Math-
ematics, 179). The general case is not much more difficult.

Remark (8.3) J. P. Serre and I have recently proved that (8.2) remains true for k D 1.

The proof is quite different.
The following application was suggested to me by E. Bombieri.

Theorem (8.4). Let Q be a polynomial in n variables and of degree d over Fq , Qd the
homogeneous part of degree d of Q, and  WFq ! C� an additive nontrivial character on
Fq . We assume that:

(i) d is prime to p
(ii) the hypersurface H0 in Pn�1Fq defined by Qd is smooth.
Then

j

X
x1;��� ;xn2Fq

 .Q.x1; � � � ;xn//j � .d �1/
nqn=2:

After replacing Q by a scalar multiple, we may (and do) suppose that

(8.4.1)  .x/D exp.2�i TrFq=Fp .x/=p/:

Let X0 be the étale covering of the affine space A0 of dimension n over Fq with equation
T p�T DQ, and let � be the projection of X0 to A0:

� WX0! A0; X0 D Spec.FqŒx1; � � � ;xn;T �=.T p�T �Q//:
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The covering X0 is Galois with Galois group Z=p; i 2 Z=p D Fp acts by T ! T C i .
For x 2 A0.Fq/, we compute the Frobenius endomorphism on the fiber of X0=A0 at x.

Let qD pf , and let xFq be the algebraic closure of Fq . For .x;T / 2X0.xF/ above x we have
F..x;T //D .x;T q/ and

T q D T C

fX
iD1

.T p
i

�T p
i�1

/D T C
X

Q.x/p
i�1

D T CTrFq=Fp .Q.x//:

This is the action of the element TrFq=Fp .Q.x// of the Galois group.
Let E be the field of the p-th roots of unity and � a finite place of E prime to p.

We will work in �-adic cohomology. For j 2 Z=p, let Fj;0 be a E�-local system of rank
one on A0 defined by X0 and  .�jx/WZ=p ! E� ! E�

�
: we have �WX0 ! Fj;0 and

�.i �x/D  .�ij /�.x/. Denote without 0 objects obtained from A0, X0, Fj;0 by extension
of scalars to xFq . The trace formula (1.12.1) for Fj;0 gives:

(8.4.2)
X

x1;��� ;xn2Fq

 .Q.x1; � � � ;xn//D
X
i

Tr.F �;H i
c .A;F1//

We have ��E� D˚
j
Fj and so

(8.4.3) H�c .X;Ql/˝Ql E� D˚
j
H�c .A;Fj /:

For j D 0, Fj is the constant sheaf E�; this factor corresponds to inclusion, by taking the
inverse image, of the cohomology of A in that of X .

Lemma (8.5). (i) For j ¤ 0,H i
c .A;Fj / is zero for i ¤ n; for i D n, this cohomology space

has dimension .d �1/n.
(ii) For j ¤ 0, the cup-product

Hn
c .A;Fj /˝Hn

c .A;F�j /!H 2n.A;E�/
Tr
!E�.�n/

is a perfect pairing.
(iii) X0 is open in a nonsinqular projective variety Z0.

Let’s deduce (8.4) from (8.5). Let j0WX0 ,�!Z0 and j WX ,�!Z be obtained by extension
of scalars to xFq . According to (8.4.2), (i), and (1.7) forZ0, it suffices to prove the injectivity
of

Hn
c .A;F1/

��

!Hn
c .X;F1/DHn

c .X;E�/
jŠ
!Hn.Z;E�/:

We have Tr.a[b/D 1
p

Tr.jŠ��a\jŠ��b/, so this injectivity follows from (ii).

(8.6) We prove (8.5) (iii). Let P0 be the projective space over Fq obtained from A0 by
adding a hyperplane at infinity P10 , H0 � P10 with equation Qd D 0, and Y0 the covering
of P0 normalizing P0 along X0.

(8.6.1)

X0 Y0

A0 P0 P10 H0

�

We study Y0=P0 near the infinity, locally for the étale topology.
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Lemma (8.7). Y0 is smooth outside the inverse image of H0.

The divisor of a rational function Q on P0 is the sum of the finite part div.Q/f and of
.�d/ times the hyperplane at infinity. We have:

div.Q/D div.Q/f �dP10(8.7.1)

div.Q/f \P10 DH0

At finite distance, Y0 D X0 is étale over A0, so smooth. At the infinity, but outside the
inverse image of H0, there exist local coordinates .z1; � � � ;zn/ such that QD z�d1 (here we
use .d;p/D 1). In these coordinates, Y0 appears as a product of a curve and a smooth space
(corresponding to coordinates z2; � � � ;zn). By normality it is smooth.

Lemma (8.8). In an étale neighborhood of a point above H0, Y0 is smooth on a normal
singular surface, always the same.

This time we can find local coordinates such that Q D z�d1 z2. Indeed, since H0 is
smooth, div.Q/f is smooth in the neighborhood of infinity and crosses P10 transversely.
This form is independent of the chosen point, and uses only two coordinates, hence the
assertion.

(8.9) The following method (due to Zariski) allows one to resolve singularities on sur-
faces: alternately, we normalize and we blow up the (reduced) singular locus. The opera-
tors in play commute with étale localization and taking a product with a smooth space. The
method of Zariski, therefore, allows one to resolve the singularities of a space that (like Y0)
is, locally for the étale topology, smooth over a surface. The resolution obtained from Y0 is
the Z0 sought.

If T is a curve on a surface S , containing the singular locus, and T 0 is the inverse
image of T in the Zariski resolution S 0 of S , we know that if we repeatedly blow up the
(reduced) singular locus of .T 0/red in S 0, we obtain a surface S 00 such that the reduced
inverse image .T 00/red of T in S 00 is a divisor with normal crossings. Again, the operators
in play commute with étale localization and taking products with a smooth space. Arguing
as above and observing that .Y0; infinity/ is locally smooth in .S;T /, we can find Z0 such
that Z0�X0 is a divisor with normal crossings.

(8.10) We prove (8.5) (i), (ii). These assertions are geometric; this allows us to work
from now on over xFq . Let S 0 be the affine space over xFq that parametrizes polynomials
in n variables of degree � d , and let S be the open subscheme in S 0 corresponding to the
polynomials whose homogeneous part of degree d has nonzero discriminant. We denote
by QS 2H 0.S;OŒx1; � � � ;xn�/ the universal polynomial of S and by XS the Galois étale
covering of AS D An�S with equation T p �T DQS and Galois group Z=p. Let PS D
Pn�S be the projective completion of AS and YS the normalization of PS along Xs . We
have, for S , a diagram similar to (8.6.1).

The expressions of Q in local coordinates given in (8.7) and (8.8) remain valid in the
present situation, with parameters, so that, locally for the étale topology on YS , YS=S is
isomorphic to the product of S (which is smooth) with a fiber. The method of canonical
resolution used in (8.9) gives us a relative compactification ZS=S of XS=S with ZS �XS
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a divisor with normal crossings relative to S

XS ZS

AS S

u

� f

a

(f proper and smooth, u an open immersion, Zs�Xs a divisor with relative normal cross-
ings).

Let Fj;S be an E�-sheaf on AS obtained as in (8.4) from XS=AS . We have ��E� D
˚Fj;S , so

R�.f u/Š.E�/D˚
j
R�aŠFj;S :

The properties of ZS ensure that Ri .f u/ŠE� DRif�.uŠE�/ is a locally constant sheaf on
S . Therefore, RiaŠFj;S is also locally constant. Since S is connected, it suffices to prove
(8.5) (i), (ii) for a particular polynomial Q. We will take Q D

P
i x
d
i . This polynomial

satisfies the nonsingularity condition because .d;p/D 1. For this polynomial, the variables
separate in the exponential sum (8.4). This corresponds to the fact that Fj is the tensor
product of the inverse images of similar sheaves F1j on the factors of dimension one A1 of
AD An. By the Künneth formula

H�.A;Fj /D
O

H�.A1;F1j /:

This reduces the proof of (8.5) (i), (ii) to the case where nD 1 and Q is xd .

(8.11) We treat this particular case. The covering X of A is irreducible, so for i D 0;2

H i
c .A;E�/

�
!H i

c .X;E�/:

So for i ¤ 1 and j ¤ 0 we have
H i
c .X;Fj /D 0:

Assertion (ii) follows from (2.8) or (2.12) and the fact that uŠFj D u�Fj . To prove (i) it
remains to show that

�c.A;Fj /D 1�d:

According to the Euler-Poincare formula (see Bourbaki Exposé 286, February 1965, by
M.Raynaud), this is equivalent to the following lemma.

Lemma (8.12). Swan’s conductor of Fj at infinity equals d .

This statement is equivalent to the following.

Lemma (8.13). Let k be a finite field of characteristic p, y 2 kŒŒx�� an element of valuation
d prime to p, L the extension of K D k..x// generated by the roots of T p�T D y�1, and
� the following character on Gal.L=K/ with values in Z=p:

�.�/D �T �T:

Then � has conductor d C1.

By extension of the residue field, we may suppose that k is algebraically closed rather
than finite and apply: J.P.Serre, Sur les corps locaux a corps residuel algebriquement clos,
Bull. Soc. Math. France, 89 (1961), p. 105-154, no 4.4.
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