Basic Theory of Affine Group Schemes (Version 1.00 March 11, 2012 )

p3. ... I Definition of an affine group --- > I Definition of an Affine Group

p4. ... VI Affine groups over fields  --- >   Affine Groups over Fields

p6. ... XVIII Beyond the basics  --- > XVIII Beyond the Basics  

p9.  We use the following conventions:  .....  --- >  

We use the following conventions:  ..... 

(i)  --->-->  for surjective map 

(ii) \hookedarrow for embedding

p21.  (2.10) ... with neutral element the image of ...  --- >  

... with neutral element as the image of ...

p22. (3.3)  ... there is a even canonical choice for it.  --- >  

... there is an even canonical choice for it.  

p26. (4.3) Let B be an associative k-algebra B with identity  ...  --- >  

Let B be an associative k-algebra with identity 

p30. (2.1 (a)) (co-associativity) the following diagram ... 

id \ctimes \Delta   --- >  id \ctimes \epsilon

(on the two right arrows from C \ctimes C to C).

p35.   ... products ((9), p. 9), and is fully faithful   ...  --- >  

... products ((9), p. 21), and is fully faithful ...

p35.   ...  a pair (A, \Delta)  is an corresponds to an affine group if and only if  ...  --- >  

 ...  a pair (A, \Delta) corresponds to an affine group if and only if ...

 p35.   ...  although it becomes simpler you do, because  ...  --- >  

...  although it becomes simpler if/ when you do, because ...

p43.   ... and so the best we can hope for is that  ...  --- >  

and so the best we can hope for this is that  ...    

p46.   ... (b) there exist there exist morphisms ..

... (b) there exist morphisms ...

p52.   ...  For the general case, use (3.2). ...  --- > 

 For the general case, use (3.2, below).

p57.   ... because, for any k-algebras A, A2 , R, ...  --- > 

because, for any k-algebras A1, A2 , R, ...   

p60.   On applying this remark with W a k' -algebra R, we see that ...  --- > 

On applying this remark with W as k' -algebra R, we see that ...

p60.  (5.2) ... preserves inverse limits MacLane 1971, V, @ 5).  --- > 

preserves inverse limit, see MacLane 1971, V, @ 5), @ = section

p65.  (6.2) ...  then it represented by a quotient of B.  --- > 

... then it is represented by a quotient of B. 

p65.  (6.4) ... by a scheme Y 0 (III, 2), then the ... --- > 

... by a scheme Y 0 (III, @ 2), then the ...

@ = section or some item number

p67.  ... if there exist exist elements ... --- > 

...if there exist elements ...

p71.  Affine groups over fields  ... --- > 

Affine Groups over Fields

p72. It can be defined the same way as for  ...  --- > 

It can be defined in the same way as for  ...

p81. (ASIDE 9.5)  ... Hom_k (Spec A, X ) is formally smooth. --- > 

  ... Hom_k (Spec (A), X ) is formally smooth.

p87 (1.1) ...  give rise to homomorphisms of Hopf algebras 

... \ctimes(H) Condition (a) implies ....  --- > ... \mathcal{O} (H) Condition (a) implies ...

p88 (2.1) ... (b) We say that u injective if the map the map ....  --- >

(b) We say that u injective if the map .. 

p92 (4.6) Proposition 4.5 is false for fields ... 

--- > Corollary 4.5 is false for fields ... 

p92 (4.7) ... over k is a injective if and only if ...

... over k is injective if and only if ...

p92 (4.7) Two monomorphisms u: H \rightarrow G and u: H^{\prime} \rightarrow G are ...  --- >

Two monomorphisms u: H \rightarrow G and u^{\prime}: H^{\prime} \rightarrow G  are ...

p92 ... is injective with image the set of maximal ideals... --- >

... is injective with image as the set of maximal ideals ...

p96 (5.15) ... when is infinite. --- >

... when it is infinite.

p96 (5.16) ... a closed subset of k^n some n with a group law on it ... --- >

... a closed subset of k^n for some n with a group law on it ...

p96 (5.18) ... such the subset ... --- >

... such that the subset ... 

p100 (6.12) (b) k is algebraic closed of characteristic ... --- >

(b) k is algebraically closed of characteristic ...

p116 (4.3(c))  .... \sum_{i \in I } e_j \epsilon (c_{ij}) = e_j  --- >

.... \sum_{i \in I } e_i \epsilon (c_{ij}) = e_j

p117 (4.7) ... As \rho(W) is a finitely generated over k, ....

As  \rho(W) is finitely generated over k, ...

p119 ... (see p. 47), and so  ... --- >

.. (see (26) p. 47), and so  ...

p119 ... structures. In Proposition 6.8 we show that,  ... --- >

... structures. In Proposition 6.8 we shall show that,  ...

p120 (see (10)), gh is the map   ... --- >

(see (10) p. 24), gh is the map   ... 

p123 The tensor product of two representations .... 

...  is defined to be (V \ctimes V, r \ctimes r^{\prime} where ... --- >

...  is defined to be (V \ctimes V^{\prime}, r \ctimes r^{\prime} where ...

p125 (9.3 Proof ) ... are need to generate it, and so there exists a ... --- >

... are needed to generate it, and so there exists a ...

p128 (11.2 Proof ) Then (e_i \ctimes e_{i^{\prime}}) _{(i, i^{\prime}) \in I \ctimes I^{\prime}} is a basis for V\ctimes_k V^{\prime} and \rho_{V \ctimes V^{\prime}} (e_j \ctimes e_j^{\prime}) = \sum_{(i, i^{\prime})} (e_i \ctimes e_i) \ctimes (a_{i j} \ctimes a^{\prime}_{i^{\prime} j^{\prime}}) --->

Then (e_i \ctimes e^{\prime}_{i^{\prime}}) _{(i, i^{\prime}) \in I \ctimes I^{\prime}} is a basis for V\ctimes_k V^{\prime} and \rho_{V \ctimes V^{\prime}} (e_j \ctimes e^{\prime}_j^{\prime}) = \sum_{(i, i^{\prime})} (e_i \ctimes e^{\prime}_{i^{\prime}}) \ctimes (a_{i j} \ctimes a^{\prime}_{i^{\prime} j^{\prime}}) 

p132 (13.2) .... and let D = D = ...  --->

.... and let D = ...

p153 (1.4) ... of Theorem 1.4. When G is an ...  --->

... of Theorem 1.2. When G is an ...

p154 (1.8) ... It is possible to give an explicit description description of ...  --->

... It is possible to give an explicit description of ... 

p156    Since this is true for all Gal(K/ k), the matrices . .. --->

 Since this is true for all Gal(k^{\prime}/ k), the matrices ...

(else define K)

p162 (3.5) ... in (3.6) simply sends an ... --->

...  in (3.6, below) simply sends an ...   

p162 (3.5) ... in detail in (3.9) and (3.10). --->

... in detail in (3.9, below) and (3.10, below).

p162 (3.7) ... with a tensor product structure (cf. 3.13).  --->

... with a tensor product structure (cf. 3.13, below). 

p174  ... is separable (XII, 2.1, 2.4). The only separable subalgebra ...  --->

...  is separable (XII, 2.1, 2.4, below). The only separable subalgebra ...

p175  ... is an affine group over k (see XIV, @3).  --->

is an affine group over k (see XIV, @3, below).

(@ = section)

p178 ... and the diagrams  ...  commute for all R, 

(Check the 2nd diagram , it seems me that there should be h(R) at the right top corner of the square diagram, i.e. you have a square with g(R) \downarrow_{ Lie(f)} h(R) \rightarrow g(R) \uparrow_{ Lie(f)} h(R) so that the diagonal is the identity map from h(R) to h(R)).

p179 ... atisfies the conditions in (VIII, 1.1) and ...  --->

... atisfies the conditions in (IX, 1.1) and ...

p182 ... with equality if k has characteristic zero (tba).  --->

with equality if k has characteristic zero (tba).

p185 (16.1 (b))... the identity component of G (see XIII, 3.1). --->

... the identity component of G (see XIII, 3.1, below).

p185 (16.1 (b)) ... is an integral domain (XIII, 3.2).  --->

is an integral domain (XIII, 3.2, below)). 

p191  ... of elements of k generating the ideal k and such ... --->

.... of elements of k generating the ideal of (/in) k and such ...

p193  (2.2) ...  (see FT 3.6, et seq.). Let  ....  --->

(see FT 3.6, and sequel.). Let  ...

p195  (2.7) ... from the category etale of k-algebras to the category of finite sets ... --->

...  from the category of etale k-algebras to the category of finite sets ... 

p199  (4.1) ... Condition (a) of the Definition II, 4.4 is obviously self-dual. --->

Condition (a) of the Proposition II, 4.4 is obviously self-dual.

p200  (4.3) ... where it has fibre is \mu2 .  --->

... where it is fibre is \mu_2 . 

p201  (4.4) ... See also Mumford, Abelian Varieties, ...

... See also Mumford (1996), Abelian Varieties, ...

p205 (1.3) ... (see CA 12.3 et seq.). In a Jacobson ring, ... --->

... (see CA 12.3 and sequel). In a Jacobson ring, ...

p208 (3.2) (Proof (a) -> (d)) ... (Lemma 2.1). Write spm ... --->

... ( Proposition 2.1). Write spm ...

p209 (3.5) ... = \mathcal(\pi_0 G)  ----> \mathcal(\pi_0 (G)).

p209 (3.6) ... The homomorphism of k-algebras \epsilon: \mathcal(\pi_0 G) \rightarrow k decomposes \mathcal(\pi_0 G) into a direct product  \mathcal(\pi_0 G) = ... --->

... The homomorphism of k-algebras \epsilon: \mathcal(\pi_0 (G)) \rightarrow k decomposes \mathcal(\pi_0 (G)) into a direct product  \mathcal(\pi_0 (G)) = ... --->

p209 (3.6) ... the augmentation ideal of \pi_0 G is ... --->

... the augmentation ideal of \pi_0 (G) is ... 

p209 (3.6) Therefore \pi_0 G =  ... --->

Therefore \pi_0 (G) =  ... 

p209 3.7) ... then (by (a)) the homomorphism

... then (by 3.2 (a)) the homomorphism

p209 (3.7) ...   and so we get a commutative diagram 

... \pi_0 G ... ---> ... \pi_0 (G) ... 

p209  (3.7) ... \pi_0 G ... ---> ... \pi_0 (G) ... (116)

p209  (3.7) ... Since this functorial in R, ...  ---> Since this is functorial in R, ...

p209  (3.7) ... it gives a sequence of algebraic groups ... \pi_0 G.  ---> 

... it gives a sequence of algebraic groups ... \pi_0 (G).

p209  (3.7) ... G^0 is the kernel of H \rightarrow \pi_0 G. --->

 .. G^0 is the kernel of H \rightarrow \pi_0 (G). 

p209  (3.7) ... This map factors through \pi_0 H , and so if \pi_0 H = 1, ... --->

This map factors through \pi_0 (H) , and so if \pi_0 (H) = 1, ...

p209  The next proposition says that the functors G \wigllyrightarrow \pi_0 G and ... --->

The next proposition says that the functors G \wigllyrightarrow \pi_0 (G) and ... 

p210 ... it must be trivial if G is connected. --->

... it must be trivial if G is connected (see 3.2).  

p211  (3.13) ...   Thus, \pi_0 G = Sn (regarded as a constant algebraic group, and ... --->

 Thus, \pi_0 (G) = Sn (regarded as a constant algebraic group, and ...

p212 Section  4 Affine groups 

\pi_0 G = lim_{\leftarrow i \in I} pi_0 G_i  ---> 

\pi_0 (G) =  lim_{\leftarrow i \in I} pi_0 (G_i)

p213 (XIII-6 (d)) .... and \pi_0 G. --->

 .... and \pi_0 (G). 

p216 ...  then a =^{II} (( \epsilon, id_A) .... --->

 ...  then a =^{II, (16)} (( \epsilon, id_A) .... 

p216 ... and the set of characters is an commutative group, ... --->

... and the set of characters is a commutative group, ...

p219 (3.6) ... vector space with basis the set of symbols ... --->

... vector space with basis as the set of symbols ...

p220 (b) ... is the ideal generated the elements  ... --->

... is the ideal generated by the elements  ...

p220 (c -->d) ... = ... < ... , a \ctimes b + b \ctimes b > \verepsilon. It follows that ... --->

 ... = ... < ...  , a \ctimes b + b \ctimes a > \verepsilon. It follows that ... 

p226 ... , and the converse follows the theorem. --->

... , and the converse follows from the theorem. 

p227  Let (V,  r) be a faithful finite-dimensional representation (V,  r) of G . --->

 Let (V,  r) be a faithful finite-dimensional representation of G . 

p227 (5.16) ... have semisimple representations (see XVII, 5.4). --->

... have semisimple representations (see XVII, 5.4, below).

p227 Rigidity 

Later (see the proof of XVII, Theorem 5.1) we shall need ... --->

Later (see the proof of XVII, Theorem 5.1, below) we shall need  ...

p229 (7.1) ... p195).

 ---> ... p.195).

p235 (2.9) has order a power of the characteristic exponent ... --->

... has order of /as a power of the characteristic exponent ...

p235 (2.9 Proof) This implies that 0 .G/ has order a power of the characteristic exponent ... --->

This implies that \pi_0 (G) has order  of /as a power of the characteristic exponent ... 

p236 (2.18) Let k be a nonperfect field characteristic p. --->

Let k be a nonperfect field of characteristic p.

p236 (2.18) ... with a_0 = 0 and n \ge 1, ...  --->

... with a_0 = 0 and m \ge 1, ... 

p237 (2.18) ...  or apply 4.1). --->

... or apply 4.1, below).

p239 Then U is solvable, and so, by the Lie-Kolchin theorem XVI, 4.7,  ... --->

Then U is solvable, and so, by the Lie-Kolchin theorem (see, XVI, 4.7, below),  ...

p239  (3.8) ...  of G, Lie r maps the elements of ...  --->

...  of G, Lie (r) maps the elements of ...

p239 Group schemes 

 See DG IV @ 3, 6.6 et seq., p. 521.  --->

 See DG IV @ 3, 6.6 and sequel, p. 521.

p244  ... for all R (alternatively, apply XIV, 2.15). --->

... for all R (alternatively, apply XV, 2.15).

p246 ...  See XVII, 6.1. --->

 ...  See XVII, 6.1, below. 

p247  (3.4 ) ... =  \mathcal{D}G_K --->

 ... =  \mathcal{D}G_k

p247 Because U is open and dense ... --->

Because U is open and dense in ... 

p247 ... which must therefore meet U , forcing g to lie in U \cdot U.

... which must therefore meet U , forcing g to lie in U \cdot U^{-1}.

p257 (2.6)...  The radical of this is G_m \times G_m . --->

...  The radical of this is G_m \times G_n .

p258 (3.1 Proof (b)) ...  (see VI, 6.3). This is reduced, and hence smooth (VI, 8.3b).  --->

... (see VI, 8.3). This is reduced, and hence smooth (VI, 8.3b). 

p259 ... leaving stable a maximal torus and a Borel subgroup ... --->

... leaving stable up to a maximal torus and a Borel subgroup ...

p259 ... the proof to the next chapter. --->

the proof to the LAG. 

p260 (4.2 Proof) ...  and H = G_1 ... G_ r is a smooth connected normal subgroup of G. --->

 ...  and H = G_1 \times ... \times G_ r is a smooth connected normal subgroup of G

p260 ...  An semisimple algebraic group G is simply connected if every isogeny ... --->

..  A semisimple algebraic group G is simply connected if every isogeny ...

p264 (6.5) ...   is reductive (except possibly in characteristic 2; Conrad et al. 2010, 11.1.1).  --->

 is reductive (except possibly in characteristic 2; Ibid, 11.1.1). 

p264 (6.6) ... for “reductive” (Conrad et al. 2010, 11.2.1). --->

for “reductive” (Ibid, 11.2.1)

p265 (6.8) ... is not dense in G (Conrad et al. 2010, 11.3.1). --->

... is not dense in G (Ibid, 11.3.1). 

p265 (7.2) A affine group G is strongly connected ... --->

An affine group G is strongly connected ...

Lie Algebras, Algebraic Groups, and Lie Groups (Version 1.00 , March 11, 2012 ): 

p6.  We use the following conventions:  .....  --- >  

We use the following conventions:  ..... 

(i)  --->-->  for surjective map 

(ii) \hookedarrow for embedding

p11. (1.5) ... is symmetric or alternating, then  g= ... is a Lie subalgebra of ... --- >  

... is symmetric or alternating, then g= ... } is a Lie subalgebra of ...

p11. (1.7) ... and denoted ad_g x or ad x . --->

and denoted ad_g (x) or ad (x) .

p12.  ... is called a characteristic ideal . For example,  ... --- >  

... is called a characteristic ideal. For example, ...

p15.  ... theorem (7.19, 7.22), then the map ... --- >

... theorem (7.19, 7.22, below), then the map ...

p16.  The representation x \mapsto ad x: g \roghtarrow gl_g --->

The representation x \mapsto ad (x): g \roghtarrow gl_g

p17. (1.20) Otherwise, we can choose it satisfy the additional congruence ... --->

Otherwise, we can choose it to satisfy the additional congruence ...

p24. (2.9) ... is an algebraic group. Its Lie algebra is g= ... (see 1.5) --->

... is an algebraic group. Its Lie algebra is g= ... } (see 1.5)

p29. (3.5) ... there exists a nonzero vector v in such that ... --->

... there exists a nonzero vector v in V such that ..

p30. (PROOF THAT THEOREM 3.5 IMPLIES THEOREM 3.6.)

... then (3.5) applied to shows that ... --->

... then (3.5) applied to g \rightarrow gl_V shows that ...

p32. ... such x_V is nilpotent, ... --->

... such that x_V is nilpotent, ...

p34. PROOF. Ado’s theorem (7.19) allows us to identify  ... --->

PROOF. Ado’s theorem (7.19, below) allows us to identify ... 

p44. ...  then ad x ad y is an endomorphism  ... ---> 

...  then ad (x) ad (y) is an endomorphism ...

(similarly everywhere, by searching by tab)

p44. ... has trace zero (because its ...  ---> 

 ... has zero trace (because its ... 

p52. (6.19) ... by showing that such algebras all arise from the Lie algebras ... --->

...by showing that all such algebras arise from the Lie algebras ...

p58. (7.15) ...  11, 2, Pptn 3). --->  ...     11, 2, Proposition 3). 

p60. (7.20) ... , 2, Thm 1 (to be added).  ---> ... , 2, Theorem 1 (to be added). 

p60. As ad_g x is nilpotent for all ... --->

As ad_g (x) is nilpotent for all  ...

p61.  ... this shows that t = 1. --->

 ... this shows that m= 1.

p62. (8.5) (Pptn, Thm)  --->  (Proposition, Theorem)

p71.  The program

 ... endomorphism ad_g h of g becomes  ...

... endomorphism ad_g (h) of g becomes ...

p71.  ... and so the ad_g h, ... --->

... and so the ad_g (h), ...

p73.  ... of the linear map ad x: g \rightarrow g:  ... --->

... of the linear map ad (x): g \rightarrow g:  ... 

p73.  ... as an eigenvalue of ad x acting on g ... --->

... as an eigenvalue of ad (x) acting on g ...

p73.  ... eigenvalues of ad x on g, and so ... --->

... eigenvalues of ad (x) on g, and so ...

p73.  We apply this terminology to ad_g x, x \in g.  --->

We apply this terminology to ad_g (x), x \in g. 

p73.  Thus ... | ( ad x - \lambda)^m y =0 ... --->

Thus ...  | ( ad (x) - \lambda)^m y =0 ...

p73.  ... | ad x ^m y =0 ... --->

Thus ... | ad (x) ^m y =0 ...

p74. (a) If all the eigenvalues of ad x lie in k  ... --->

(a) If all the eigenvalues of ad (x) lie in k  ...

p74. (Proof (b))  ad x  --->  ad (x) 

(3 places)

p74.  ... i.e., (ad x)^m [z; x]= 0 ... --->

 ... i.e., (ad (x))^m [z; x]= 0 ... 

p74.  ... But then (ad x)^{m+1}z=0, and so ... --->

... But then (ad (x))^{m+1}z=0, and so ...

p75.  ... ad x  --->  ad (x) ...

 ad x_i  --->  ad (x_i) 

ad h_0  --->  ad (h_0)

(8 places) 

p75. ... such that every element of g at which at which Q is nonzero ... --->

... such that every element of g at which Q is nonzero ...

p76. (9.13) ... ad x  ---> ... ad (x) 

p77. (Let x in h ..., this shows that x_n =0.)

 ad x_s  --->  ad (x_s) 

 ad x_n --->  ad (x_n) 

ad x  --->  ad (x)

 ad x_n --->  ad (x_n) 

 ad y  --->  ad (y)

(5 places)

p78. The semisimple Lie algebra .... (see 9.47).  ---> 

 The semisimple Lie algebra .... (see 9.47, below).

p78. (9.22) ... eigenvectors for ad h with integer eigenvalues ...  ---> 

... eigenvectors for ad (h) with integer eigenvalues ... 

p78. (9.22) ... it is finite, spans h^{\check},and doesn’t contain 0;

it is finite, spans h^{\check}, and doesn’t contain 0;

p85. (9.39: Proof) (Pptn, Thm)  --->  (Proposition, Theorem)

p86. (9.41: Proof) Pptn  --->  Proposition

For base S of R, ... Pptn  --->  Proposition

p86. (9.46) ... ad x  --->  ad (x)

p87. (Proof)

ad_g x_1 --->  ad_g (x_1) 

ad_g x_2 --->  ad_g (x_2) 

et seq ---> and sequel

p87. (9.48) 

et seq ---> and sequel

Thm 1 ---> Theorem 1

p87. (9.49) 

Thm 2 ---> Theorem 2

p87.  (10 Representations of split semisimple Lie algebras)

Proofs of the next three theorems can found in ... --->

Proofs of the next three theorems can be found in ...

p87.  (10.5) ... for W as on p.9. Recall that  ... --->

... for W as on p.84. Recall that  ... 

p89.  (10.6)  ...  with generators the elements of ...

...  with generators as the elements of ...

p89.  (10.6)  ... and the relation

\omega = \omega_1 + \omega_1 if ... --->

\omega = \omega_1 + \omega_2 if ...

p93. (1.8) A character of an algebraic group is a homomorphism ... --->

A character of an algebraic group G is a homomorphism ...

p93. (1.9) ...  with coordinate ring the group algebra of M.

 ... with coordinate ring as the group algebra of M.

p98. (2.10) ... space V , we have an R-linear ...

... space V, we have an R-linear ... 

p99. (2.18) ... and compatible associativity and commutativity constraints ... --->

... and compatible with the associativity and commutativity constraints ...

p100. (2.22) ... compatible the associativity and commutativity constraints ... --->

... compatible with the associativity and commutativity constraints ...

p100. (2.22) ...  and sending neutral objects to a neutral objects. 

...  and sending neutral objects to neutral objects. 

p100. (2.23) ... finite-dimensional k-vector space V has as dual ... --->

... finite-dimensional k-vector space V has a dual ...

p102. (2.36 (b)) ...  with generators the elements of ... --->

... with generators as the elements of ...

p103.

((52), p97), ---> ((52), p.97),

p106. (3.12) On applying 3.14, to the full subcategory of ... --->

On applying 3.10, to the full subcategory of ...

p107. NOTES

For a commutative Lie group g, ...  --->

For a commutative Lie group G, ...

p107. NOTES

For the Lie algebra in (I, 13.1),  --->

For the Lie algebra in (AGS, 13.1), 

p108. (3.16) ... and Ado’s theorem. --->

... and Ado’s theorem (see I, 7.19).

p108. (3.17) ...

under tensor products (see AGS, XII, 1.5 ). When g is semisimple, this follows from (10.1). --->

under tensor products (see AGS, XII, 1.5 ). When g is semisimple, this follows from (Ibid 10.1).

p108. (3.17) ... Let V be a representation of g with the property. 

Let V be a representation of g with the above property. 

p110. (3.22 PROOF. (c)) ...  

(see 10.6), --->  (see I, 10.6),

p111.  (3.25) ... with g the semisimple Lie algebra Lie(G). --->

 ... with g as the semisimple Lie algebra Lie(G).

p111.  (3.25) ...

According to (9.19), there exist nilpotent elements .... --->

According to (I, 9.19), there exist nilpotent elements ...

p112.  (3.28) ... (see 9.48). Let ... --->

 ... (see I, 9.48). Let ... 

p113.  (3.29 Proof) ... (see 9.49). Now ... --->

 ... (see I, 9.49). Now ...

p113.  (3.30) ...  of (9.25).  --->

...  of (I, 9.25).

p120.  (2.11) ...  is reductive (5.4). Conversely,  ...

... is reductive (AGS, 5.4). Conversely,  ...

p121.  (3.4)

Pptn 5  --->  Proposition 5

p122.  (3.5)

Thm 4 ---> Theorem 4

p122.  (3.6)

Rem. ---> Remark

p122.  (3.7)

Thm 6 ---> Theorem 6

p125.  (2.6)

For the torus T = (G_m)_{K/k} over Q, ... --->

For the torus T = (G_m)_{K} over Q,  ...

(else K \superset k \superset Q)

p125. When are all arithmetic subgroups congruence?

When are all arithmetic subgroups congruent?

p128. ( 8.2) If not, it will contain an element of order a prime l,... --->

If not, it will contain an element of a prime order l....

p135.  Is every arithmetic subgroup congruence? 

Is every arithmetic subgroup congruent? 

Reductive Groups  (Version 1.00 , March 11, 2012 )

p6.  We use the following conventions:  .....  --- >  

We use the following conventions:  ..... 

(i)  --->-->  for surjective map 

(ii) \hookedarrow for embedding

p11. (1.11) a unique (Jordan) decomposition g_s \cdot g_u = g_u \circle g_s  ... --- >  

a unique (Jordan) decomposition g_s \circle g_u = g_u \circle g_s ...

p11. (1.13) ... with coordinate ring the group algebra of M:  --- >  

with coordinate ring as the group algebra of M: 

p14. (1.28) From this it follows quotients of semisimple algebraic groups are semisimple. --- >  

From this it follows that quotients of semisimple algebraic groups are semisimple.

p17. ... because it is equal to own centralizer. --- >  

... because it is equal to its own centralizer.

p17. (2.2) ... with split maximal torus the diagonal matrices of determinant 1. --- >  

 ... with split maximal torus as the diagonal matrices of determinant 1. 

p20. ... if g lies Lie(G), then ... --- >  

... if g lies in Lie(G), then ...

p21. ... AB – BA,and T acts on ... --- >  

... AB – BA, and T acts on ...

p24. ... with T the subgroup of diagonal matrices: --- >  

... with T as the subgroup of diagonal matrices:

p30. (2.25) ... A homomorphism u satisfying (9) has image a subgroup  ... --- >  

A homomorphism u satisfying (9) has image as a subgroup  ...

p30. This proves (a) of Proposition 2.20, and  ... --- >  

This proves (a) of Theorem 2.20, and  ... 

p40. (3.11) The action of G on V defines a action ... --- >

The action of G on V defines an action ...

p41. (3.15)  Then then the sheaf associated with the flat presheaf ... --- >

Then the sheaf associated with the flat presheaf ... 

p43. Therefore G \cdot F is a closed (3.8), and ... --- >

Therefore G \cdot F is a closed orbit (or subvariety) (3.8), and ...  

p43.  (3.24) and hence in a Borel subgroup, ... --- >

and hence is a Borel subgroup, ...

p48.   See Allcock 2009, Pptn 1. --- >

 See Allcock 2009, Proposition 1.

p49.  Corollary 3.33b would show that ... --- >

Corollary 3.33 would show that ... 

p51. (The dominant weights of a semisimple root datum)

Recall (5.21) that to give ... --- >

Recall (5.21, below) that to give ... 

p53. (4.3) PROOF. Serre 1968, Thm 4. --- >

PROOF. Serre 1968, Theorem 4.

p54. (5 Root data and their classification)

The section is only combinatorics — --- >

This section is only combinatorics —

p54. In this subsection, we give the standard definition of a root datum (5.1), and we prove that --- >

In this subsection, we give the standard definition of a root datum (5.1, below), and we prove that

p62. ... for some q(\alpha) as in (b), some ... --->

 ... for some q(\alpha) as in (6.1 b), some ... 

p62. ... is that it is an isomorphism T \rightarrow T .

... is that it is an isomorphism T  \rightarrow T^{\prime}.

p69. We explain this approach this chapter following ...

We explain this approach in this chapter following ...

Semisimple Algebraic Groups in Characteristic Zero (arXiv.0705.1348v1 [math.RT])

p4. (3.5) ... free abelian group with generators the elements of P_{++} 

.... free abelian group with generators as the elements of P_{++}

p4. (3.5) ... and relations \omega = \omega_1 +\omega_1 if ...  --->

... and relations \omega = \omega_1 + \omega_2 if ...

p5.(4.3 Proof) ... Then Lie(G_1) = C_g( g_2 \directsum ... \directsum g_r) = g_1, which ... --->

... Then Lie(G_1) = C_{g_1}( g_2 \directsum ... \directsum g_r) = g_1, which ...

(check, as there is given g = g_1 \directsum g_2 \directsum ... \directsum g_r)

p6. (above 5.1) ... of representations in R, \alpha_W \circle \beta =   \beta \circle \alpha_V  --->

... of representations in R, \alpha_W \circle \beta =   \beta \circle \alpha_V

(check, as it appears differently with the G-quivariance (1.1) and g-homomorphism (6.1))

p8. (6.2) Let V be a representation of g with the property. --->

Let V be a representation of g with this property.

p11. (8.1 Proof) Let g = Lie G and h = Lie T. --->

Let g = Lie (G) and h = Lie (T). 

p12. (8.4)  ... , and let (V, R, X) and (V, R^{\prime}, X^{\prime}) be their associated diagrams. --->

... , and let (V, R, X) and (V^{\prime}, R^{\prime}, X^{\prime}) be their associated diagrams. 
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